1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * comedi/drivers/s626.c
4  * Sensoray s626 Comedi driver
5  *
6  * COMEDI - Linux Control and Measurement Device Interface
7  * Copyright (C) 2000 David A. Schleef <ds@schleef.org>
8  *
9  * Based on Sensoray Model 626 Linux driver Version 0.2
10  * Copyright (C) 2002-2004 Sensoray Co., Inc.
11  */
12 
13 /*
14  * Driver: s626
15  * Description: Sensoray 626 driver
16  * Devices: [Sensoray] 626 (s626)
17  * Authors: Gianluca Palli <gpalli@deis.unibo.it>,
18  * Updated: Fri, 15 Feb 2008 10:28:42 +0000
19  * Status: experimental
20 
21  * Configuration options: not applicable, uses PCI auto config
22 
23  * INSN_CONFIG instructions:
24  *   analog input:
25  *    none
26  *
27  *   analog output:
28  *    none
29  *
30  *   digital channel:
31  *    s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
32  *    supported configuration options:
33  *    INSN_CONFIG_DIO_QUERY
34  *    COMEDI_INPUT
35  *    COMEDI_OUTPUT
36  *
37  *   encoder:
38  *    Every channel must be configured before reading.
39  *
40  *   Example code
41  *
42  *    insn.insn=INSN_CONFIG;   //configuration instruction
43  *    insn.n=1;                //number of operation (must be 1)
44  *    insn.data=&initialvalue; //initial value loaded into encoder
45  *                             //during configuration
46  *    insn.subdev=5;           //encoder subdevice
47  *    insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
48  *                                                         //to configure
49  *
50  *    comedi_do_insn(cf,&insn); //executing configuration
51  */
52 
53 #include <linux/module.h>
54 #include <linux/delay.h>
55 #include <linux/interrupt.h>
56 #include <linux/kernel.h>
57 #include <linux/types.h>
58 
59 #include "../comedi_pci.h"
60 
61 #include "s626.h"
62 
63 struct s626_buffer_dma {
64 	dma_addr_t physical_base;
65 	void *logical_base;
66 };
67 
68 /**
69  * struct s626_private - Working data for s626 driver.
70  * @ai_cmd_running: non-zero if ai_cmd is running.
71  * @ai_sample_timer: time between samples in units of the timer.
72  * @ai_convert_count: conversion counter.
73  * @ai_convert_timer: time between conversion in units of the timer.
74  * @counter_int_enabs: counter interrupt enable mask for MISC2 register.
75  * @adc_items: number of items in ADC poll list.
76  * @rps_buf: DMA buffer used to hold ADC (RPS1) program.
77  * @ana_buf:  DMA buffer used to receive ADC data and hold DAC data.
78  * @dac_wbuf: pointer to logical adrs of DMA buffer used to hold DAC data.
79  * @dacpol: image of DAC polarity register.
80  * @trim_setpoint: images of TrimDAC setpoints.
81  * @i2c_adrs: I2C device address for onboard EEPROM (board rev dependent)
82  */
83 struct s626_private {
84 	u8 ai_cmd_running;
85 	unsigned int ai_sample_timer;
86 	int ai_convert_count;
87 	unsigned int ai_convert_timer;
88 	u16 counter_int_enabs;
89 	u8 adc_items;
90 	struct s626_buffer_dma rps_buf;
91 	struct s626_buffer_dma ana_buf;
92 	u32 *dac_wbuf;
93 	u16 dacpol;
94 	u8 trim_setpoint[12];
95 	u32 i2c_adrs;
96 };
97 
98 /* Counter overflow/index event flag masks for RDMISC2. */
99 #define S626_INDXMASK(C) (1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 +  4)))
100 #define S626_OVERMASK(C) (1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10)))
101 
102 /*
103  * Enable/disable a function or test status bit(s) that are accessed
104  * through Main Control Registers 1 or 2.
105  */
s626_mc_enable(struct comedi_device * dev,unsigned int cmd,unsigned int reg)106 static void s626_mc_enable(struct comedi_device *dev,
107 			   unsigned int cmd, unsigned int reg)
108 {
109 	unsigned int val = (cmd << 16) | cmd;
110 
111 	writel(val, dev->mmio + reg);
112 }
113 
s626_mc_disable(struct comedi_device * dev,unsigned int cmd,unsigned int reg)114 static void s626_mc_disable(struct comedi_device *dev,
115 			    unsigned int cmd, unsigned int reg)
116 {
117 	writel(cmd << 16, dev->mmio + reg);
118 }
119 
s626_mc_test(struct comedi_device * dev,unsigned int cmd,unsigned int reg)120 static bool s626_mc_test(struct comedi_device *dev,
121 			 unsigned int cmd, unsigned int reg)
122 {
123 	unsigned int val;
124 
125 	val = readl(dev->mmio + reg);
126 
127 	return (val & cmd) ? true : false;
128 }
129 
130 #define S626_BUGFIX_STREG(REGADRS)   ((REGADRS) - 4)
131 
132 /* Write a time slot control record to TSL2. */
133 #define S626_VECTPORT(VECTNUM)		(S626_P_TSL2 + ((VECTNUM) << 2))
134 
135 static const struct comedi_lrange s626_range_table = {
136 	2, {
137 		BIP_RANGE(5),
138 		BIP_RANGE(10)
139 	}
140 };
141 
142 /*
143  * Execute a DEBI transfer.  This must be called from within a critical section.
144  */
s626_debi_transfer(struct comedi_device * dev)145 static void s626_debi_transfer(struct comedi_device *dev)
146 {
147 	static const int timeout = 10000;
148 	int i;
149 
150 	/* Initiate upload of shadow RAM to DEBI control register */
151 	s626_mc_enable(dev, S626_MC2_UPLD_DEBI, S626_P_MC2);
152 
153 	/*
154 	 * Wait for completion of upload from shadow RAM to
155 	 * DEBI control register.
156 	 */
157 	for (i = 0; i < timeout; i++) {
158 		if (s626_mc_test(dev, S626_MC2_UPLD_DEBI, S626_P_MC2))
159 			break;
160 		udelay(1);
161 	}
162 	if (i == timeout)
163 		dev_err(dev->class_dev,
164 			"Timeout while uploading to DEBI control register\n");
165 
166 	/* Wait until DEBI transfer is done */
167 	for (i = 0; i < timeout; i++) {
168 		if (!(readl(dev->mmio + S626_P_PSR) & S626_PSR_DEBI_S))
169 			break;
170 		udelay(1);
171 	}
172 	if (i == timeout)
173 		dev_err(dev->class_dev, "DEBI transfer timeout\n");
174 }
175 
176 /*
177  * Read a value from a gate array register.
178  */
s626_debi_read(struct comedi_device * dev,u16 addr)179 static u16 s626_debi_read(struct comedi_device *dev, u16 addr)
180 {
181 	/* Set up DEBI control register value in shadow RAM */
182 	writel(S626_DEBI_CMD_RDWORD | addr, dev->mmio + S626_P_DEBICMD);
183 
184 	/*  Execute the DEBI transfer. */
185 	s626_debi_transfer(dev);
186 
187 	return readl(dev->mmio + S626_P_DEBIAD);
188 }
189 
190 /*
191  * Write a value to a gate array register.
192  */
s626_debi_write(struct comedi_device * dev,u16 addr,u16 wdata)193 static void s626_debi_write(struct comedi_device *dev, u16 addr,
194 			    u16 wdata)
195 {
196 	/* Set up DEBI control register value in shadow RAM */
197 	writel(S626_DEBI_CMD_WRWORD | addr, dev->mmio + S626_P_DEBICMD);
198 	writel(wdata, dev->mmio + S626_P_DEBIAD);
199 
200 	/*  Execute the DEBI transfer. */
201 	s626_debi_transfer(dev);
202 }
203 
204 /*
205  * Replace the specified bits in a gate array register.  Imports: mask
206  * specifies bits that are to be preserved, wdata is new value to be
207  * or'd with the masked original.
208  */
s626_debi_replace(struct comedi_device * dev,unsigned int addr,unsigned int mask,unsigned int wdata)209 static void s626_debi_replace(struct comedi_device *dev, unsigned int addr,
210 			      unsigned int mask, unsigned int wdata)
211 {
212 	unsigned int val;
213 
214 	addr &= 0xffff;
215 	writel(S626_DEBI_CMD_RDWORD | addr, dev->mmio + S626_P_DEBICMD);
216 	s626_debi_transfer(dev);
217 
218 	writel(S626_DEBI_CMD_WRWORD | addr, dev->mmio + S626_P_DEBICMD);
219 	val = readl(dev->mmio + S626_P_DEBIAD);
220 	val &= mask;
221 	val |= wdata;
222 	writel(val & 0xffff, dev->mmio + S626_P_DEBIAD);
223 	s626_debi_transfer(dev);
224 }
225 
226 /* **************  EEPROM ACCESS FUNCTIONS  ************** */
227 
s626_i2c_handshake_eoc(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned long context)228 static int s626_i2c_handshake_eoc(struct comedi_device *dev,
229 				  struct comedi_subdevice *s,
230 				  struct comedi_insn *insn,
231 				  unsigned long context)
232 {
233 	bool status;
234 
235 	status = s626_mc_test(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
236 	if (status)
237 		return 0;
238 	return -EBUSY;
239 }
240 
s626_i2c_handshake(struct comedi_device * dev,u32 val)241 static int s626_i2c_handshake(struct comedi_device *dev, u32 val)
242 {
243 	unsigned int ctrl;
244 	int ret;
245 
246 	/* Write I2C command to I2C Transfer Control shadow register */
247 	writel(val, dev->mmio + S626_P_I2CCTRL);
248 
249 	/*
250 	 * Upload I2C shadow registers into working registers and
251 	 * wait for upload confirmation.
252 	 */
253 	s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
254 	ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0);
255 	if (ret)
256 		return ret;
257 
258 	/* Wait until I2C bus transfer is finished or an error occurs */
259 	do {
260 		ctrl = readl(dev->mmio + S626_P_I2CCTRL);
261 	} while ((ctrl & (S626_I2C_BUSY | S626_I2C_ERR)) == S626_I2C_BUSY);
262 
263 	/* Return non-zero if I2C error occurred */
264 	return ctrl & S626_I2C_ERR;
265 }
266 
267 /* Read u8 from EEPROM. */
s626_i2c_read(struct comedi_device * dev,u8 addr)268 static u8 s626_i2c_read(struct comedi_device *dev, u8 addr)
269 {
270 	struct s626_private *devpriv = dev->private;
271 
272 	/*
273 	 * Send EEPROM target address:
274 	 *  Byte2 = I2C command: write to I2C EEPROM device.
275 	 *  Byte1 = EEPROM internal target address.
276 	 *  Byte0 = Not sent.
277 	 */
278 	if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
279 						devpriv->i2c_adrs) |
280 				    S626_I2C_B1(S626_I2C_ATTRSTOP, addr) |
281 				    S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
282 		/* Abort function and declare error if handshake failed. */
283 		return 0;
284 
285 	/*
286 	 * Execute EEPROM read:
287 	 *  Byte2 = I2C command: read from I2C EEPROM device.
288 	 *  Byte1 receives uint8_t from EEPROM.
289 	 *  Byte0 = Not sent.
290 	 */
291 	if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
292 						(devpriv->i2c_adrs | 1)) |
293 				    S626_I2C_B1(S626_I2C_ATTRSTOP, 0) |
294 				    S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
295 		/* Abort function and declare error if handshake failed. */
296 		return 0;
297 
298 	return (readl(dev->mmio + S626_P_I2CCTRL) >> 16) & 0xff;
299 }
300 
301 /* ***********  DAC FUNCTIONS *********** */
302 
303 /* TrimDac LogicalChan-to-PhysicalChan mapping table. */
304 static const u8 s626_trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
305 
306 /* TrimDac LogicalChan-to-EepromAdrs mapping table. */
307 static const u8 s626_trimadrs[] = {
308 	0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63
309 };
310 
311 enum {
312 	s626_send_dac_wait_not_mc1_a2out,
313 	s626_send_dac_wait_ssr_af2_out,
314 	s626_send_dac_wait_fb_buffer2_msb_00,
315 	s626_send_dac_wait_fb_buffer2_msb_ff
316 };
317 
s626_send_dac_eoc(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned long context)318 static int s626_send_dac_eoc(struct comedi_device *dev,
319 			     struct comedi_subdevice *s,
320 			     struct comedi_insn *insn,
321 			     unsigned long context)
322 {
323 	unsigned int status;
324 
325 	switch (context) {
326 	case s626_send_dac_wait_not_mc1_a2out:
327 		status = readl(dev->mmio + S626_P_MC1);
328 		if (!(status & S626_MC1_A2OUT))
329 			return 0;
330 		break;
331 	case s626_send_dac_wait_ssr_af2_out:
332 		status = readl(dev->mmio + S626_P_SSR);
333 		if (status & S626_SSR_AF2_OUT)
334 			return 0;
335 		break;
336 	case s626_send_dac_wait_fb_buffer2_msb_00:
337 		status = readl(dev->mmio + S626_P_FB_BUFFER2);
338 		if (!(status & 0xff000000))
339 			return 0;
340 		break;
341 	case s626_send_dac_wait_fb_buffer2_msb_ff:
342 		status = readl(dev->mmio + S626_P_FB_BUFFER2);
343 		if (status & 0xff000000)
344 			return 0;
345 		break;
346 	default:
347 		return -EINVAL;
348 	}
349 	return -EBUSY;
350 }
351 
352 /*
353  * Private helper function: Transmit serial data to DAC via Audio
354  * channel 2.  Assumes: (1) TSL2 slot records initialized, and (2)
355  * dacpol contains valid target image.
356  */
s626_send_dac(struct comedi_device * dev,u32 val)357 static int s626_send_dac(struct comedi_device *dev, u32 val)
358 {
359 	struct s626_private *devpriv = dev->private;
360 	int ret;
361 
362 	/* START THE SERIAL CLOCK RUNNING ------------- */
363 
364 	/*
365 	 * Assert DAC polarity control and enable gating of DAC serial clock
366 	 * and audio bit stream signals.  At this point in time we must be
367 	 * assured of being in time slot 0.  If we are not in slot 0, the
368 	 * serial clock and audio stream signals will be disabled; this is
369 	 * because the following s626_debi_write statement (which enables
370 	 * signals to be passed through the gate array) would execute before
371 	 * the trailing edge of WS1/WS3 (which turns off the signals), thus
372 	 * causing the signals to be inactive during the DAC write.
373 	 */
374 	s626_debi_write(dev, S626_LP_DACPOL, devpriv->dacpol);
375 
376 	/* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
377 
378 	/* Copy DAC setpoint value to DAC's output DMA buffer. */
379 	/* writel(val, dev->mmio + (uint32_t)devpriv->dac_wbuf); */
380 	*devpriv->dac_wbuf = val;
381 
382 	/*
383 	 * Enable the output DMA transfer. This will cause the DMAC to copy
384 	 * the DAC's data value to A2's output FIFO. The DMA transfer will
385 	 * then immediately terminate because the protection address is
386 	 * reached upon transfer of the first DWORD value.
387 	 */
388 	s626_mc_enable(dev, S626_MC1_A2OUT, S626_P_MC1);
389 
390 	/* While the DMA transfer is executing ... */
391 
392 	/*
393 	 * Reset Audio2 output FIFO's underflow flag (along with any
394 	 * other FIFO underflow/overflow flags). When set, this flag
395 	 * will indicate that we have emerged from slot 0.
396 	 */
397 	writel(S626_ISR_AFOU, dev->mmio + S626_P_ISR);
398 
399 	/*
400 	 * Wait for the DMA transfer to finish so that there will be data
401 	 * available in the FIFO when time slot 1 tries to transfer a DWORD
402 	 * from the FIFO to the output buffer register.  We test for DMA
403 	 * Done by polling the DMAC enable flag; this flag is automatically
404 	 * cleared when the transfer has finished.
405 	 */
406 	ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
407 			     s626_send_dac_wait_not_mc1_a2out);
408 	if (ret) {
409 		dev_err(dev->class_dev, "DMA transfer timeout\n");
410 		return ret;
411 	}
412 
413 	/* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
414 
415 	/*
416 	 * FIFO data is now available, so we enable execution of time slots
417 	 * 1 and higher by clearing the EOS flag in slot 0.  Note that SD3
418 	 * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
419 	 * detection.
420 	 */
421 	writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2,
422 	       dev->mmio + S626_VECTPORT(0));
423 
424 	/*
425 	 * Wait for slot 1 to execute to ensure that the Packet will be
426 	 * transmitted.  This is detected by polling the Audio2 output FIFO
427 	 * underflow flag, which will be set when slot 1 execution has
428 	 * finished transferring the DAC's data DWORD from the output FIFO
429 	 * to the output buffer register.
430 	 */
431 	ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
432 			     s626_send_dac_wait_ssr_af2_out);
433 	if (ret) {
434 		dev_err(dev->class_dev,
435 			"TSL timeout waiting for slot 1 to execute\n");
436 		return ret;
437 	}
438 
439 	/*
440 	 * Set up to trap execution at slot 0 when the TSL sequencer cycles
441 	 * back to slot 0 after executing the EOS in slot 5.  Also,
442 	 * simultaneously shift out and in the 0x00 that is ALWAYS the value
443 	 * stored in the last byte to be shifted out of the FIFO's DWORD
444 	 * buffer register.
445 	 */
446 	writel(S626_XSD2 | S626_XFIFO_2 | S626_RSD2 | S626_SIB_A2 | S626_EOS,
447 	       dev->mmio + S626_VECTPORT(0));
448 
449 	/* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
450 
451 	/*
452 	 * Wait for the TSL to finish executing all time slots before
453 	 * exiting this function.  We must do this so that the next DAC
454 	 * write doesn't start, thereby enabling clock/chip select signals:
455 	 *
456 	 * 1. Before the TSL sequence cycles back to slot 0, which disables
457 	 *    the clock/cs signal gating and traps slot // list execution.
458 	 *    we have not yet finished slot 5 then the clock/cs signals are
459 	 *    still gated and we have not finished transmitting the stream.
460 	 *
461 	 * 2. While slots 2-5 are executing due to a late slot 0 trap.  In
462 	 *    this case, the slot sequence is currently repeating, but with
463 	 *    clock/cs signals disabled.  We must wait for slot 0 to trap
464 	 *    execution before setting up the next DAC setpoint DMA transfer
465 	 *    and enabling the clock/cs signals.  To detect the end of slot 5,
466 	 *    we test for the FB_BUFFER2 MSB contents to be equal to 0xFF.  If
467 	 *    the TSL has not yet finished executing slot 5 ...
468 	 */
469 	if (readl(dev->mmio + S626_P_FB_BUFFER2) & 0xff000000) {
470 		/*
471 		 * The trap was set on time and we are still executing somewhere
472 		 * in slots 2-5, so we now wait for slot 0 to execute and trap
473 		 * TSL execution.  This is detected when FB_BUFFER2 MSB changes
474 		 * from 0xFF to 0x00, which slot 0 causes to happen by shifting
475 		 * out/in on SD2 the 0x00 that is always referenced by slot 5.
476 		 */
477 		ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
478 				     s626_send_dac_wait_fb_buffer2_msb_00);
479 		if (ret) {
480 			dev_err(dev->class_dev,
481 				"TSL timeout waiting for slot 0 to execute\n");
482 			return ret;
483 		}
484 	}
485 	/*
486 	 * Either (1) we were too late setting the slot 0 trap; the TSL
487 	 * sequencer restarted slot 0 before we could set the EOS trap flag,
488 	 * or (2) we were not late and execution is now trapped at slot 0.
489 	 * In either case, we must now change slot 0 so that it will store
490 	 * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
491 	 * In order to do this, we reprogram slot 0 so that it will shift in
492 	 * SD3, which is driven only by a pull-up resistor.
493 	 */
494 	writel(S626_RSD3 | S626_SIB_A2 | S626_EOS,
495 	       dev->mmio + S626_VECTPORT(0));
496 
497 	/*
498 	 * Wait for slot 0 to execute, at which time the TSL is setup for
499 	 * the next DAC write.  This is detected when FB_BUFFER2 MSB changes
500 	 * from 0x00 to 0xFF.
501 	 */
502 	ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
503 			     s626_send_dac_wait_fb_buffer2_msb_ff);
504 	if (ret) {
505 		dev_err(dev->class_dev,
506 			"TSL timeout waiting for slot 0 to execute\n");
507 		return ret;
508 	}
509 	return 0;
510 }
511 
512 /*
513  * Private helper function: Write setpoint to an application DAC channel.
514  */
s626_set_dac(struct comedi_device * dev,u16 chan,int16_t dacdata)515 static int s626_set_dac(struct comedi_device *dev,
516 			u16 chan, int16_t dacdata)
517 {
518 	struct s626_private *devpriv = dev->private;
519 	u16 signmask;
520 	u32 ws_image;
521 	u32 val;
522 
523 	/*
524 	 * Adjust DAC data polarity and set up Polarity Control Register image.
525 	 */
526 	signmask = 1 << chan;
527 	if (dacdata < 0) {
528 		dacdata = -dacdata;
529 		devpriv->dacpol |= signmask;
530 	} else {
531 		devpriv->dacpol &= ~signmask;
532 	}
533 
534 	/* Limit DAC setpoint value to valid range. */
535 	if ((u16)dacdata > 0x1FFF)
536 		dacdata = 0x1FFF;
537 
538 	/*
539 	 * Set up TSL2 records (aka "vectors") for DAC update.  Vectors V2
540 	 * and V3 transmit the setpoint to the target DAC.  V4 and V5 send
541 	 * data to a non-existent TrimDac channel just to keep the clock
542 	 * running after sending data to the target DAC.  This is necessary
543 	 * to eliminate the clock glitch that would otherwise occur at the
544 	 * end of the target DAC's serial data stream.  When the sequence
545 	 * restarts at V0 (after executing V5), the gate array automatically
546 	 * disables gating for the DAC clock and all DAC chip selects.
547 	 */
548 
549 	/* Choose DAC chip select to be asserted */
550 	ws_image = (chan & 2) ? S626_WS1 : S626_WS2;
551 	/* Slot 2: Transmit high data byte to target DAC */
552 	writel(S626_XSD2 | S626_XFIFO_1 | ws_image,
553 	       dev->mmio + S626_VECTPORT(2));
554 	/* Slot 3: Transmit low data byte to target DAC */
555 	writel(S626_XSD2 | S626_XFIFO_0 | ws_image,
556 	       dev->mmio + S626_VECTPORT(3));
557 	/* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
558 	writel(S626_XSD2 | S626_XFIFO_3 | S626_WS3,
559 	       dev->mmio + S626_VECTPORT(4));
560 	/* Slot 5: running after writing target DAC's low data byte */
561 	writel(S626_XSD2 | S626_XFIFO_2 | S626_WS3 | S626_EOS,
562 	       dev->mmio + S626_VECTPORT(5));
563 
564 	/*
565 	 * Construct and transmit target DAC's serial packet:
566 	 * (A10D DDDD), (DDDD DDDD), (0x0F), (0x00) where A is chan<0>,
567 	 * and D<12:0> is the DAC setpoint.  Append a WORD value (that writes
568 	 * to a  non-existent TrimDac channel) that serves to keep the clock
569 	 * running after the packet has been sent to the target DAC.
570 	 */
571 	val = 0x0F000000;	/* Continue clock after target DAC data
572 				 * (write to non-existent trimdac).
573 				 */
574 	val |= 0x00004000;	/* Address the two main dual-DAC devices
575 				 * (TSL's chip select enables target device).
576 				 */
577 	val |= ((u32)(chan & 1) << 15);	/* Address the DAC channel
578 					 * within the device.
579 					 */
580 	val |= (u32)dacdata;	/* Include DAC setpoint data. */
581 	return s626_send_dac(dev, val);
582 }
583 
s626_write_trim_dac(struct comedi_device * dev,u8 logical_chan,u8 dac_data)584 static int s626_write_trim_dac(struct comedi_device *dev,
585 			       u8 logical_chan, u8 dac_data)
586 {
587 	struct s626_private *devpriv = dev->private;
588 	u32 chan;
589 
590 	/*
591 	 * Save the new setpoint in case the application needs to read it back
592 	 * later.
593 	 */
594 	devpriv->trim_setpoint[logical_chan] = dac_data;
595 
596 	/* Map logical channel number to physical channel number. */
597 	chan = s626_trimchan[logical_chan];
598 
599 	/*
600 	 * Set up TSL2 records for TrimDac write operation.  All slots shift
601 	 * 0xFF in from pulled-up SD3 so that the end of the slot sequence
602 	 * can be detected.
603 	 */
604 
605 	/* Slot 2: Send high uint8_t to target TrimDac */
606 	writel(S626_XSD2 | S626_XFIFO_1 | S626_WS3,
607 	       dev->mmio + S626_VECTPORT(2));
608 	/* Slot 3: Send low uint8_t to target TrimDac */
609 	writel(S626_XSD2 | S626_XFIFO_0 | S626_WS3,
610 	       dev->mmio + S626_VECTPORT(3));
611 	/* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running */
612 	writel(S626_XSD2 | S626_XFIFO_3 | S626_WS1,
613 	       dev->mmio + S626_VECTPORT(4));
614 	/* Slot 5: Send NOP low  uint8_t to DAC0 */
615 	writel(S626_XSD2 | S626_XFIFO_2 | S626_WS1 | S626_EOS,
616 	       dev->mmio + S626_VECTPORT(5));
617 
618 	/*
619 	 * Construct and transmit target DAC's serial packet:
620 	 * (0000 AAAA), (DDDD DDDD), (0x00), (0x00) where A<3:0> is the
621 	 * DAC channel's address, and D<7:0> is the DAC setpoint.  Append a
622 	 * WORD value (that writes a channel 0 NOP command to a non-existent
623 	 * main DAC channel) that serves to keep the clock running after the
624 	 * packet has been sent to the target DAC.
625 	 */
626 
627 	/*
628 	 * Address the DAC channel within the trimdac device.
629 	 * Include DAC setpoint data.
630 	 */
631 	return s626_send_dac(dev, (chan << 8) | dac_data);
632 }
633 
s626_load_trim_dacs(struct comedi_device * dev)634 static int s626_load_trim_dacs(struct comedi_device *dev)
635 {
636 	u8 i;
637 	int ret;
638 
639 	/* Copy TrimDac setpoint values from EEPROM to TrimDacs. */
640 	for (i = 0; i < ARRAY_SIZE(s626_trimchan); i++) {
641 		ret = s626_write_trim_dac(dev, i,
642 					  s626_i2c_read(dev, s626_trimadrs[i]));
643 		if (ret)
644 			return ret;
645 	}
646 	return 0;
647 }
648 
649 /* ******  COUNTER FUNCTIONS  ******* */
650 
651 /*
652  * All counter functions address a specific counter by means of the
653  * "Counter" argument, which is a logical counter number.  The Counter
654  * argument may have any of the following legal values: 0=0A, 1=1A,
655  * 2=2A, 3=0B, 4=1B, 5=2B.
656  */
657 
658 /*
659  * Return/set a counter pair's latch trigger source.  0: On read
660  * access, 1: A index latches A, 2: B index latches B, 3: A overflow
661  * latches B.
662  */
s626_set_latch_source(struct comedi_device * dev,unsigned int chan,u16 value)663 static void s626_set_latch_source(struct comedi_device *dev,
664 				  unsigned int chan, u16 value)
665 {
666 	s626_debi_replace(dev, S626_LP_CRB(chan),
667 			  ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_LATCHSRC),
668 			  S626_SET_CRB_LATCHSRC(value));
669 }
670 
671 /*
672  * Write value into counter preload register.
673  */
s626_preload(struct comedi_device * dev,unsigned int chan,u32 value)674 static void s626_preload(struct comedi_device *dev,
675 			 unsigned int chan, u32 value)
676 {
677 	s626_debi_write(dev, S626_LP_CNTR(chan), value);
678 	s626_debi_write(dev, S626_LP_CNTR(chan) + 2, value >> 16);
679 }
680 
681 /* ******  PRIVATE COUNTER FUNCTIONS ****** */
682 
683 /*
684  * Reset a counter's index and overflow event capture flags.
685  */
s626_reset_cap_flags(struct comedi_device * dev,unsigned int chan)686 static void s626_reset_cap_flags(struct comedi_device *dev,
687 				 unsigned int chan)
688 {
689 	u16 set;
690 
691 	set = S626_SET_CRB_INTRESETCMD(1);
692 	if (chan < 3)
693 		set |= S626_SET_CRB_INTRESET_A(1);
694 	else
695 		set |= S626_SET_CRB_INTRESET_B(1);
696 
697 	s626_debi_replace(dev, S626_LP_CRB(chan), ~S626_CRBMSK_INTCTRL, set);
698 }
699 
700 /*
701  * Set the operating mode for the specified counter.  The setup
702  * parameter is treated as a COUNTER_SETUP data type.  The following
703  * parameters are programmable (all other parms are ignored): ClkMult,
704  * ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
705  */
s626_set_mode_a(struct comedi_device * dev,unsigned int chan,u16 setup,u16 disable_int_src)706 static void s626_set_mode_a(struct comedi_device *dev,
707 			    unsigned int chan, u16 setup,
708 			    u16 disable_int_src)
709 {
710 	struct s626_private *devpriv = dev->private;
711 	u16 cra;
712 	u16 crb;
713 	unsigned int cntsrc, clkmult, clkpol;
714 
715 	/* Initialize CRA and CRB images. */
716 	/* Preload trigger is passed through. */
717 	cra = S626_SET_CRA_LOADSRC_A(S626_GET_STD_LOADSRC(setup));
718 	/* IndexSrc is passed through. */
719 	cra |= S626_SET_CRA_INDXSRC_A(S626_GET_STD_INDXSRC(setup));
720 
721 	/* Reset any pending CounterA event captures. */
722 	crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_A(1);
723 	/* Clock enable is passed through. */
724 	crb |= S626_SET_CRB_CLKENAB_A(S626_GET_STD_CLKENAB(setup));
725 
726 	/* Force IntSrc to Disabled if disable_int_src is asserted. */
727 	if (!disable_int_src)
728 		cra |= S626_SET_CRA_INTSRC_A(S626_GET_STD_INTSRC(setup));
729 
730 	/* Populate all mode-dependent attributes of CRA & CRB images. */
731 	clkpol = S626_GET_STD_CLKPOL(setup);
732 	switch (S626_GET_STD_ENCMODE(setup)) {
733 	case S626_ENCMODE_EXTENDER: /* Extender Mode: */
734 		/* Force to Timer mode (Extender valid only for B counters). */
735 		/* Fall through to case S626_ENCMODE_TIMER: */
736 	case S626_ENCMODE_TIMER:	/* Timer Mode: */
737 		/* CntSrcA<1> selects system clock */
738 		cntsrc = S626_CNTSRC_SYSCLK;
739 		/* Count direction (CntSrcA<0>) obtained from ClkPol. */
740 		cntsrc |= clkpol;
741 		/* ClkPolA behaves as always-on clock enable. */
742 		clkpol = 1;
743 		/* ClkMult must be 1x. */
744 		clkmult = S626_CLKMULT_1X;
745 		break;
746 	default:		/* Counter Mode: */
747 		/* Select ENC_C and ENC_D as clock/direction inputs. */
748 		cntsrc = S626_CNTSRC_ENCODER;
749 		/* Clock polarity is passed through. */
750 		/* Force multiplier to x1 if not legal, else pass through. */
751 		clkmult = S626_GET_STD_CLKMULT(setup);
752 		if (clkmult == S626_CLKMULT_SPECIAL)
753 			clkmult = S626_CLKMULT_1X;
754 		break;
755 	}
756 	cra |= S626_SET_CRA_CNTSRC_A(cntsrc) | S626_SET_CRA_CLKPOL_A(clkpol) |
757 	       S626_SET_CRA_CLKMULT_A(clkmult);
758 
759 	/*
760 	 * Force positive index polarity if IndxSrc is software-driven only,
761 	 * otherwise pass it through.
762 	 */
763 	if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT)
764 		cra |= S626_SET_CRA_INDXPOL_A(S626_GET_STD_INDXPOL(setup));
765 
766 	/*
767 	 * If IntSrc has been forced to Disabled, update the MISC2 interrupt
768 	 * enable mask to indicate the counter interrupt is disabled.
769 	 */
770 	if (disable_int_src)
771 		devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
772 						S626_INDXMASK(chan));
773 
774 	/*
775 	 * While retaining CounterB and LatchSrc configurations, program the
776 	 * new counter operating mode.
777 	 */
778 	s626_debi_replace(dev, S626_LP_CRA(chan),
779 			  S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B, cra);
780 	s626_debi_replace(dev, S626_LP_CRB(chan),
781 			  ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_CLKENAB_A), crb);
782 }
783 
s626_set_mode_b(struct comedi_device * dev,unsigned int chan,u16 setup,u16 disable_int_src)784 static void s626_set_mode_b(struct comedi_device *dev,
785 			    unsigned int chan, u16 setup,
786 			    u16 disable_int_src)
787 {
788 	struct s626_private *devpriv = dev->private;
789 	u16 cra;
790 	u16 crb;
791 	unsigned int cntsrc, clkmult, clkpol;
792 
793 	/* Initialize CRA and CRB images. */
794 	/* IndexSrc is passed through. */
795 	cra = S626_SET_CRA_INDXSRC_B(S626_GET_STD_INDXSRC(setup));
796 
797 	/* Reset event captures and disable interrupts. */
798 	crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_B(1);
799 	/* Clock enable is passed through. */
800 	crb |= S626_SET_CRB_CLKENAB_B(S626_GET_STD_CLKENAB(setup));
801 	/* Preload trigger source is passed through. */
802 	crb |= S626_SET_CRB_LOADSRC_B(S626_GET_STD_LOADSRC(setup));
803 
804 	/* Force IntSrc to Disabled if disable_int_src is asserted. */
805 	if (!disable_int_src)
806 		crb |= S626_SET_CRB_INTSRC_B(S626_GET_STD_INTSRC(setup));
807 
808 	/* Populate all mode-dependent attributes of CRA & CRB images. */
809 	clkpol = S626_GET_STD_CLKPOL(setup);
810 	switch (S626_GET_STD_ENCMODE(setup)) {
811 	case S626_ENCMODE_TIMER:	/* Timer Mode: */
812 		/* CntSrcB<1> selects system clock */
813 		cntsrc = S626_CNTSRC_SYSCLK;
814 		/* with direction (CntSrcB<0>) obtained from ClkPol. */
815 		cntsrc |= clkpol;
816 		/* ClkPolB behaves as always-on clock enable. */
817 		clkpol = 1;
818 		/* ClkMultB must be 1x. */
819 		clkmult = S626_CLKMULT_1X;
820 		break;
821 	case S626_ENCMODE_EXTENDER:	/* Extender Mode: */
822 		/* CntSrcB source is OverflowA (same as "timer") */
823 		cntsrc = S626_CNTSRC_SYSCLK;
824 		/* with direction obtained from ClkPol. */
825 		cntsrc |= clkpol;
826 		/* ClkPolB controls IndexB -- always set to active. */
827 		clkpol = 1;
828 		/* ClkMultB selects OverflowA as the clock source. */
829 		clkmult = S626_CLKMULT_SPECIAL;
830 		break;
831 	default:		/* Counter Mode: */
832 		/* Select ENC_C and ENC_D as clock/direction inputs. */
833 		cntsrc = S626_CNTSRC_ENCODER;
834 		/* ClkPol is passed through. */
835 		/* Force ClkMult to x1 if not legal, otherwise pass through. */
836 		clkmult = S626_GET_STD_CLKMULT(setup);
837 		if (clkmult == S626_CLKMULT_SPECIAL)
838 			clkmult = S626_CLKMULT_1X;
839 		break;
840 	}
841 	cra |= S626_SET_CRA_CNTSRC_B(cntsrc);
842 	crb |= S626_SET_CRB_CLKPOL_B(clkpol) | S626_SET_CRB_CLKMULT_B(clkmult);
843 
844 	/*
845 	 * Force positive index polarity if IndxSrc is software-driven only,
846 	 * otherwise pass it through.
847 	 */
848 	if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT)
849 		crb |= S626_SET_CRB_INDXPOL_B(S626_GET_STD_INDXPOL(setup));
850 
851 	/*
852 	 * If IntSrc has been forced to Disabled, update the MISC2 interrupt
853 	 * enable mask to indicate the counter interrupt is disabled.
854 	 */
855 	if (disable_int_src)
856 		devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
857 						S626_INDXMASK(chan));
858 
859 	/*
860 	 * While retaining CounterA and LatchSrc configurations, program the
861 	 * new counter operating mode.
862 	 */
863 	s626_debi_replace(dev, S626_LP_CRA(chan),
864 			  ~(S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B), cra);
865 	s626_debi_replace(dev, S626_LP_CRB(chan),
866 			  S626_CRBMSK_CLKENAB_A | S626_CRBMSK_LATCHSRC, crb);
867 }
868 
s626_set_mode(struct comedi_device * dev,unsigned int chan,u16 setup,u16 disable_int_src)869 static void s626_set_mode(struct comedi_device *dev,
870 			  unsigned int chan,
871 			  u16 setup, u16 disable_int_src)
872 {
873 	if (chan < 3)
874 		s626_set_mode_a(dev, chan, setup, disable_int_src);
875 	else
876 		s626_set_mode_b(dev, chan, setup, disable_int_src);
877 }
878 
879 /*
880  * Return/set a counter's enable.  enab: 0=always enabled, 1=enabled by index.
881  */
s626_set_enable(struct comedi_device * dev,unsigned int chan,u16 enab)882 static void s626_set_enable(struct comedi_device *dev,
883 			    unsigned int chan, u16 enab)
884 {
885 	unsigned int mask = S626_CRBMSK_INTCTRL;
886 	unsigned int set;
887 
888 	if (chan < 3) {
889 		mask |= S626_CRBMSK_CLKENAB_A;
890 		set = S626_SET_CRB_CLKENAB_A(enab);
891 	} else {
892 		mask |= S626_CRBMSK_CLKENAB_B;
893 		set = S626_SET_CRB_CLKENAB_B(enab);
894 	}
895 	s626_debi_replace(dev, S626_LP_CRB(chan), ~mask, set);
896 }
897 
898 /*
899  * Return/set the event that will trigger transfer of the preload
900  * register into the counter.  0=ThisCntr_Index, 1=ThisCntr_Overflow,
901  * 2=OverflowA (B counters only), 3=disabled.
902  */
s626_set_load_trig(struct comedi_device * dev,unsigned int chan,u16 trig)903 static void s626_set_load_trig(struct comedi_device *dev,
904 			       unsigned int chan, u16 trig)
905 {
906 	u16 reg;
907 	u16 mask;
908 	u16 set;
909 
910 	if (chan < 3) {
911 		reg = S626_LP_CRA(chan);
912 		mask = S626_CRAMSK_LOADSRC_A;
913 		set = S626_SET_CRA_LOADSRC_A(trig);
914 	} else {
915 		reg = S626_LP_CRB(chan);
916 		mask = S626_CRBMSK_LOADSRC_B | S626_CRBMSK_INTCTRL;
917 		set = S626_SET_CRB_LOADSRC_B(trig);
918 	}
919 	s626_debi_replace(dev, reg, ~mask, set);
920 }
921 
922 /*
923  * Return/set counter interrupt source and clear any captured
924  * index/overflow events.  int_source: 0=Disabled, 1=OverflowOnly,
925  * 2=IndexOnly, 3=IndexAndOverflow.
926  */
s626_set_int_src(struct comedi_device * dev,unsigned int chan,u16 int_source)927 static void s626_set_int_src(struct comedi_device *dev,
928 			     unsigned int chan, u16 int_source)
929 {
930 	struct s626_private *devpriv = dev->private;
931 	u16 cra_reg = S626_LP_CRA(chan);
932 	u16 crb_reg = S626_LP_CRB(chan);
933 
934 	if (chan < 3) {
935 		/* Reset any pending counter overflow or index captures */
936 		s626_debi_replace(dev, crb_reg, ~S626_CRBMSK_INTCTRL,
937 				  S626_SET_CRB_INTRESETCMD(1) |
938 				  S626_SET_CRB_INTRESET_A(1));
939 
940 		/* Program counter interrupt source */
941 		s626_debi_replace(dev, cra_reg, ~S626_CRAMSK_INTSRC_A,
942 				  S626_SET_CRA_INTSRC_A(int_source));
943 	} else {
944 		u16 crb;
945 
946 		/* Cache writeable CRB register image */
947 		crb = s626_debi_read(dev, crb_reg);
948 		crb &= ~S626_CRBMSK_INTCTRL;
949 
950 		/* Reset any pending counter overflow or index captures */
951 		s626_debi_write(dev, crb_reg,
952 				crb | S626_SET_CRB_INTRESETCMD(1) |
953 				S626_SET_CRB_INTRESET_B(1));
954 
955 		/* Program counter interrupt source */
956 		s626_debi_write(dev, crb_reg,
957 				(crb & ~S626_CRBMSK_INTSRC_B) |
958 				S626_SET_CRB_INTSRC_B(int_source));
959 	}
960 
961 	/* Update MISC2 interrupt enable mask. */
962 	devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
963 					S626_INDXMASK(chan));
964 	switch (int_source) {
965 	case 0:
966 	default:
967 		break;
968 	case 1:
969 		devpriv->counter_int_enabs |= S626_OVERMASK(chan);
970 		break;
971 	case 2:
972 		devpriv->counter_int_enabs |= S626_INDXMASK(chan);
973 		break;
974 	case 3:
975 		devpriv->counter_int_enabs |= (S626_OVERMASK(chan) |
976 					       S626_INDXMASK(chan));
977 		break;
978 	}
979 }
980 
981 /*
982  * Generate an index pulse.
983  */
s626_pulse_index(struct comedi_device * dev,unsigned int chan)984 static void s626_pulse_index(struct comedi_device *dev,
985 			     unsigned int chan)
986 {
987 	if (chan < 3) {
988 		u16 cra;
989 
990 		cra = s626_debi_read(dev, S626_LP_CRA(chan));
991 
992 		/* Pulse index */
993 		s626_debi_write(dev, S626_LP_CRA(chan),
994 				(cra ^ S626_CRAMSK_INDXPOL_A));
995 		s626_debi_write(dev, S626_LP_CRA(chan), cra);
996 	} else {
997 		u16 crb;
998 
999 		crb = s626_debi_read(dev, S626_LP_CRB(chan));
1000 		crb &= ~S626_CRBMSK_INTCTRL;
1001 
1002 		/* Pulse index */
1003 		s626_debi_write(dev, S626_LP_CRB(chan),
1004 				(crb ^ S626_CRBMSK_INDXPOL_B));
1005 		s626_debi_write(dev, S626_LP_CRB(chan), crb);
1006 	}
1007 }
1008 
s626_ai_reg_to_uint(unsigned int data)1009 static unsigned int s626_ai_reg_to_uint(unsigned int data)
1010 {
1011 	return ((data >> 18) & 0x3fff) ^ 0x2000;
1012 }
1013 
s626_dio_set_irq(struct comedi_device * dev,unsigned int chan)1014 static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan)
1015 {
1016 	unsigned int group = chan / 16;
1017 	unsigned int mask = 1 << (chan - (16 * group));
1018 	unsigned int status;
1019 
1020 	/* set channel to capture positive edge */
1021 	status = s626_debi_read(dev, S626_LP_RDEDGSEL(group));
1022 	s626_debi_write(dev, S626_LP_WREDGSEL(group), mask | status);
1023 
1024 	/* enable interrupt on selected channel */
1025 	status = s626_debi_read(dev, S626_LP_RDINTSEL(group));
1026 	s626_debi_write(dev, S626_LP_WRINTSEL(group), mask | status);
1027 
1028 	/* enable edge capture write command */
1029 	s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_EDCAP);
1030 
1031 	/* enable edge capture on selected channel */
1032 	status = s626_debi_read(dev, S626_LP_RDCAPSEL(group));
1033 	s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask | status);
1034 
1035 	return 0;
1036 }
1037 
s626_dio_reset_irq(struct comedi_device * dev,unsigned int group,unsigned int mask)1038 static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int group,
1039 			      unsigned int mask)
1040 {
1041 	/* disable edge capture write command */
1042 	s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
1043 
1044 	/* enable edge capture on selected channel */
1045 	s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask);
1046 
1047 	return 0;
1048 }
1049 
s626_dio_clear_irq(struct comedi_device * dev)1050 static int s626_dio_clear_irq(struct comedi_device *dev)
1051 {
1052 	unsigned int group;
1053 
1054 	/* disable edge capture write command */
1055 	s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
1056 
1057 	/* clear all dio pending events and interrupt */
1058 	for (group = 0; group < S626_DIO_BANKS; group++)
1059 		s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff);
1060 
1061 	return 0;
1062 }
1063 
s626_handle_dio_interrupt(struct comedi_device * dev,u16 irqbit,u8 group)1064 static void s626_handle_dio_interrupt(struct comedi_device *dev,
1065 				      u16 irqbit, u8 group)
1066 {
1067 	struct s626_private *devpriv = dev->private;
1068 	struct comedi_subdevice *s = dev->read_subdev;
1069 	struct comedi_cmd *cmd = &s->async->cmd;
1070 
1071 	s626_dio_reset_irq(dev, group, irqbit);
1072 
1073 	if (devpriv->ai_cmd_running) {
1074 		/* check if interrupt is an ai acquisition start trigger */
1075 		if ((irqbit >> (cmd->start_arg - (16 * group))) == 1 &&
1076 		    cmd->start_src == TRIG_EXT) {
1077 			/* Start executing the RPS program */
1078 			s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
1079 
1080 			if (cmd->scan_begin_src == TRIG_EXT)
1081 				s626_dio_set_irq(dev, cmd->scan_begin_arg);
1082 		}
1083 		if ((irqbit >> (cmd->scan_begin_arg - (16 * group))) == 1 &&
1084 		    cmd->scan_begin_src == TRIG_EXT) {
1085 			/* Trigger ADC scan loop start */
1086 			s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
1087 
1088 			if (cmd->convert_src == TRIG_EXT) {
1089 				devpriv->ai_convert_count = cmd->chanlist_len;
1090 
1091 				s626_dio_set_irq(dev, cmd->convert_arg);
1092 			}
1093 
1094 			if (cmd->convert_src == TRIG_TIMER) {
1095 				devpriv->ai_convert_count = cmd->chanlist_len;
1096 				s626_set_enable(dev, 5, S626_CLKENAB_ALWAYS);
1097 			}
1098 		}
1099 		if ((irqbit >> (cmd->convert_arg - (16 * group))) == 1 &&
1100 		    cmd->convert_src == TRIG_EXT) {
1101 			/* Trigger ADC scan loop start */
1102 			s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
1103 
1104 			devpriv->ai_convert_count--;
1105 			if (devpriv->ai_convert_count > 0)
1106 				s626_dio_set_irq(dev, cmd->convert_arg);
1107 		}
1108 	}
1109 }
1110 
s626_check_dio_interrupts(struct comedi_device * dev)1111 static void s626_check_dio_interrupts(struct comedi_device *dev)
1112 {
1113 	u16 irqbit;
1114 	u8 group;
1115 
1116 	for (group = 0; group < S626_DIO_BANKS; group++) {
1117 		/* read interrupt type */
1118 		irqbit = s626_debi_read(dev, S626_LP_RDCAPFLG(group));
1119 
1120 		/* check if interrupt is generated from dio channels */
1121 		if (irqbit) {
1122 			s626_handle_dio_interrupt(dev, irqbit, group);
1123 			return;
1124 		}
1125 	}
1126 }
1127 
s626_check_counter_interrupts(struct comedi_device * dev)1128 static void s626_check_counter_interrupts(struct comedi_device *dev)
1129 {
1130 	struct s626_private *devpriv = dev->private;
1131 	struct comedi_subdevice *s = dev->read_subdev;
1132 	struct comedi_async *async = s->async;
1133 	struct comedi_cmd *cmd = &async->cmd;
1134 	u16 irqbit;
1135 
1136 	/* read interrupt type */
1137 	irqbit = s626_debi_read(dev, S626_LP_RDMISC2);
1138 
1139 	/* check interrupt on counters */
1140 	if (irqbit & S626_IRQ_COINT1A) {
1141 		/* clear interrupt capture flag */
1142 		s626_reset_cap_flags(dev, 0);
1143 	}
1144 	if (irqbit & S626_IRQ_COINT2A) {
1145 		/* clear interrupt capture flag */
1146 		s626_reset_cap_flags(dev, 1);
1147 	}
1148 	if (irqbit & S626_IRQ_COINT3A) {
1149 		/* clear interrupt capture flag */
1150 		s626_reset_cap_flags(dev, 2);
1151 	}
1152 	if (irqbit & S626_IRQ_COINT1B) {
1153 		/* clear interrupt capture flag */
1154 		s626_reset_cap_flags(dev, 3);
1155 	}
1156 	if (irqbit & S626_IRQ_COINT2B) {
1157 		/* clear interrupt capture flag */
1158 		s626_reset_cap_flags(dev, 4);
1159 
1160 		if (devpriv->ai_convert_count > 0) {
1161 			devpriv->ai_convert_count--;
1162 			if (devpriv->ai_convert_count == 0)
1163 				s626_set_enable(dev, 4, S626_CLKENAB_INDEX);
1164 
1165 			if (cmd->convert_src == TRIG_TIMER) {
1166 				/* Trigger ADC scan loop start */
1167 				s626_mc_enable(dev, S626_MC2_ADC_RPS,
1168 					       S626_P_MC2);
1169 			}
1170 		}
1171 	}
1172 	if (irqbit & S626_IRQ_COINT3B) {
1173 		/* clear interrupt capture flag */
1174 		s626_reset_cap_flags(dev, 5);
1175 
1176 		if (cmd->scan_begin_src == TRIG_TIMER) {
1177 			/* Trigger ADC scan loop start */
1178 			s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
1179 		}
1180 
1181 		if (cmd->convert_src == TRIG_TIMER) {
1182 			devpriv->ai_convert_count = cmd->chanlist_len;
1183 			s626_set_enable(dev, 4, S626_CLKENAB_ALWAYS);
1184 		}
1185 	}
1186 }
1187 
s626_handle_eos_interrupt(struct comedi_device * dev)1188 static bool s626_handle_eos_interrupt(struct comedi_device *dev)
1189 {
1190 	struct s626_private *devpriv = dev->private;
1191 	struct comedi_subdevice *s = dev->read_subdev;
1192 	struct comedi_async *async = s->async;
1193 	struct comedi_cmd *cmd = &async->cmd;
1194 	/*
1195 	 * Init ptr to DMA buffer that holds new ADC data.  We skip the
1196 	 * first uint16_t in the buffer because it contains junk data
1197 	 * from the final ADC of the previous poll list scan.
1198 	 */
1199 	u32 *readaddr = (u32 *)devpriv->ana_buf.logical_base + 1;
1200 	int i;
1201 
1202 	/* get the data and hand it over to comedi */
1203 	for (i = 0; i < cmd->chanlist_len; i++) {
1204 		unsigned short tempdata;
1205 
1206 		/*
1207 		 * Convert ADC data to 16-bit integer values and copy
1208 		 * to application buffer.
1209 		 */
1210 		tempdata = s626_ai_reg_to_uint(*readaddr);
1211 		readaddr++;
1212 
1213 		comedi_buf_write_samples(s, &tempdata, 1);
1214 	}
1215 
1216 	if (cmd->stop_src == TRIG_COUNT && async->scans_done >= cmd->stop_arg)
1217 		async->events |= COMEDI_CB_EOA;
1218 
1219 	if (async->events & COMEDI_CB_CANCEL_MASK)
1220 		devpriv->ai_cmd_running = 0;
1221 
1222 	if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT)
1223 		s626_dio_set_irq(dev, cmd->scan_begin_arg);
1224 
1225 	comedi_handle_events(dev, s);
1226 
1227 	return !devpriv->ai_cmd_running;
1228 }
1229 
s626_irq_handler(int irq,void * d)1230 static irqreturn_t s626_irq_handler(int irq, void *d)
1231 {
1232 	struct comedi_device *dev = d;
1233 	unsigned long flags;
1234 	u32 irqtype, irqstatus;
1235 
1236 	if (!dev->attached)
1237 		return IRQ_NONE;
1238 	/* lock to avoid race with comedi_poll */
1239 	spin_lock_irqsave(&dev->spinlock, flags);
1240 
1241 	/* save interrupt enable register state */
1242 	irqstatus = readl(dev->mmio + S626_P_IER);
1243 
1244 	/* read interrupt type */
1245 	irqtype = readl(dev->mmio + S626_P_ISR);
1246 
1247 	/* disable master interrupt */
1248 	writel(0, dev->mmio + S626_P_IER);
1249 
1250 	/* clear interrupt */
1251 	writel(irqtype, dev->mmio + S626_P_ISR);
1252 
1253 	switch (irqtype) {
1254 	case S626_IRQ_RPS1:	/* end_of_scan occurs */
1255 		if (s626_handle_eos_interrupt(dev))
1256 			irqstatus = 0;
1257 		break;
1258 	case S626_IRQ_GPIO3:	/* check dio and counter interrupt */
1259 		/* s626_dio_clear_irq(dev); */
1260 		s626_check_dio_interrupts(dev);
1261 		s626_check_counter_interrupts(dev);
1262 		break;
1263 	}
1264 
1265 	/* enable interrupt */
1266 	writel(irqstatus, dev->mmio + S626_P_IER);
1267 
1268 	spin_unlock_irqrestore(&dev->spinlock, flags);
1269 	return IRQ_HANDLED;
1270 }
1271 
1272 /*
1273  * This function builds the RPS program for hardware driven acquisition.
1274  */
s626_reset_adc(struct comedi_device * dev,u8 * ppl)1275 static void s626_reset_adc(struct comedi_device *dev, u8 *ppl)
1276 {
1277 	struct s626_private *devpriv = dev->private;
1278 	struct comedi_subdevice *s = dev->read_subdev;
1279 	struct comedi_cmd *cmd = &s->async->cmd;
1280 	u32 *rps;
1281 	u32 jmp_adrs;
1282 	u16 i;
1283 	u16 n;
1284 	u32 local_ppl;
1285 
1286 	/* Stop RPS program in case it is currently running */
1287 	s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
1288 
1289 	/* Set starting logical address to write RPS commands. */
1290 	rps = (u32 *)devpriv->rps_buf.logical_base;
1291 
1292 	/* Initialize RPS instruction pointer */
1293 	writel((u32)devpriv->rps_buf.physical_base,
1294 	       dev->mmio + S626_P_RPSADDR1);
1295 
1296 	/* Construct RPS program in rps_buf DMA buffer */
1297 	if (cmd->scan_begin_src != TRIG_FOLLOW) {
1298 		/* Wait for Start trigger. */
1299 		*rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
1300 		*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
1301 	}
1302 
1303 	/*
1304 	 * SAA7146 BUG WORKAROUND Do a dummy DEBI Write.  This is necessary
1305 	 * because the first RPS DEBI Write following a non-RPS DEBI write
1306 	 * seems to always fail.  If we don't do this dummy write, the ADC
1307 	 * gain might not be set to the value required for the first slot in
1308 	 * the poll list; the ADC gain would instead remain unchanged from
1309 	 * the previously programmed value.
1310 	 */
1311 	/* Write DEBI Write command and address to shadow RAM. */
1312 	*rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
1313 	*rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
1314 	*rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
1315 	/* Write DEBI immediate data  to shadow RAM: */
1316 	*rps++ = S626_GSEL_BIPOLAR5V;	/* arbitrary immediate data  value. */
1317 	*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
1318 	/* Reset "shadow RAM  uploaded" flag. */
1319 	/* Invoke shadow RAM upload. */
1320 	*rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
1321 	/* Wait for shadow upload to finish. */
1322 	*rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
1323 
1324 	/*
1325 	 * Digitize all slots in the poll list. This is implemented as a
1326 	 * for loop to limit the slot count to 16 in case the application
1327 	 * forgot to set the S626_EOPL flag in the final slot.
1328 	 */
1329 	for (devpriv->adc_items = 0; devpriv->adc_items < 16;
1330 	     devpriv->adc_items++) {
1331 		/*
1332 		 * Convert application's poll list item to private board class
1333 		 * format.  Each app poll list item is an uint8_t with form
1334 		 * (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
1335 		 * +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
1336 		 */
1337 		local_ppl = (*ppl << 8) | (*ppl & 0x10 ? S626_GSEL_BIPOLAR5V :
1338 					   S626_GSEL_BIPOLAR10V);
1339 
1340 		/* Switch ADC analog gain. */
1341 		/* Write DEBI command and address to shadow RAM. */
1342 		*rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
1343 		*rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
1344 		/* Write DEBI immediate data to shadow RAM. */
1345 		*rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
1346 		*rps++ = local_ppl;
1347 		/* Reset "shadow RAM uploaded" flag. */
1348 		*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
1349 		/* Invoke shadow RAM upload. */
1350 		*rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
1351 		/* Wait for shadow upload to finish. */
1352 		*rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
1353 		/* Select ADC analog input channel. */
1354 		*rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
1355 		/* Write DEBI command and address to shadow RAM. */
1356 		*rps++ = S626_DEBI_CMD_WRWORD | S626_LP_ISEL;
1357 		*rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
1358 		/* Write DEBI immediate data to shadow RAM. */
1359 		*rps++ = local_ppl;
1360 		/* Reset "shadow RAM uploaded" flag. */
1361 		*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
1362 		/* Invoke shadow RAM upload. */
1363 		*rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
1364 		/* Wait for shadow upload to finish. */
1365 		*rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
1366 
1367 		/*
1368 		 * Delay at least 10 microseconds for analog input settling.
1369 		 * Instead of padding with NOPs, we use S626_RPS_JUMP
1370 		 * instructions here; this allows us to produce a longer delay
1371 		 * than is possible with NOPs because each S626_RPS_JUMP
1372 		 * flushes the RPS' instruction prefetch pipeline.
1373 		 */
1374 		jmp_adrs =
1375 			(u32)devpriv->rps_buf.physical_base +
1376 			(u32)((unsigned long)rps -
1377 			      (unsigned long)devpriv->rps_buf.logical_base);
1378 		for (i = 0; i < (10 * S626_RPSCLK_PER_US / 2); i++) {
1379 			jmp_adrs += 8;	/* Repeat to implement time delay: */
1380 			/* Jump to next RPS instruction. */
1381 			*rps++ = S626_RPS_JUMP;
1382 			*rps++ = jmp_adrs;
1383 		}
1384 
1385 		if (cmd->convert_src != TRIG_NOW) {
1386 			/* Wait for Start trigger. */
1387 			*rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
1388 			*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
1389 		}
1390 		/* Start ADC by pulsing GPIO1. */
1391 		/* Begin ADC Start pulse. */
1392 		*rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1393 		*rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
1394 		*rps++ = S626_RPS_NOP;
1395 		/* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1396 		/* End ADC Start pulse. */
1397 		*rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1398 		*rps++ = S626_GPIO_BASE | S626_GPIO1_HI;
1399 		/*
1400 		 * Wait for ADC to complete (GPIO2 is asserted high when ADC not
1401 		 * busy) and for data from previous conversion to shift into FB
1402 		 * BUFFER 1 register.
1403 		 */
1404 		/* Wait for ADC done. */
1405 		*rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2;
1406 
1407 		/* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
1408 		*rps++ = S626_RPS_STREG |
1409 			 (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
1410 		*rps++ = (u32)devpriv->ana_buf.physical_base +
1411 			 (devpriv->adc_items << 2);
1412 
1413 		/*
1414 		 * If this slot's EndOfPollList flag is set, all channels have
1415 		 * now been processed.
1416 		 */
1417 		if (*ppl++ & S626_EOPL) {
1418 			devpriv->adc_items++; /* Adjust poll list item count. */
1419 			break;	/* Exit poll list processing loop. */
1420 		}
1421 	}
1422 
1423 	/*
1424 	 * VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US.  Allow the
1425 	 * ADC to stabilize for 2 microseconds before starting the final
1426 	 * (dummy) conversion.  This delay is necessary to allow sufficient
1427 	 * time between last conversion finished and the start of the dummy
1428 	 * conversion.  Without this delay, the last conversion's data value
1429 	 * is sometimes set to the previous conversion's data value.
1430 	 */
1431 	for (n = 0; n < (2 * S626_RPSCLK_PER_US); n++)
1432 		*rps++ = S626_RPS_NOP;
1433 
1434 	/*
1435 	 * Start a dummy conversion to cause the data from the last
1436 	 * conversion of interest to be shifted in.
1437 	 */
1438 	/* Begin ADC Start pulse. */
1439 	*rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1440 	*rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
1441 	*rps++ = S626_RPS_NOP;
1442 	/* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1443 	*rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2); /* End ADC Start pulse. */
1444 	*rps++ = S626_GPIO_BASE | S626_GPIO1_HI;
1445 
1446 	/*
1447 	 * Wait for the data from the last conversion of interest to arrive
1448 	 * in FB BUFFER 1 register.
1449 	 */
1450 	*rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2;	/* Wait for ADC done. */
1451 
1452 	/* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
1453 	*rps++ = S626_RPS_STREG | (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
1454 	*rps++ = (u32)devpriv->ana_buf.physical_base +
1455 		 (devpriv->adc_items << 2);
1456 
1457 	/* Indicate ADC scan loop is finished. */
1458 	/* Signal ReadADC() that scan is done. */
1459 	/* *rps++= S626_RPS_CLRSIGNAL | S626_RPS_SIGADC; */
1460 
1461 	/* invoke interrupt */
1462 	if (devpriv->ai_cmd_running == 1)
1463 		*rps++ = S626_RPS_IRQ;
1464 
1465 	/* Restart RPS program at its beginning. */
1466 	*rps++ = S626_RPS_JUMP;	/* Branch to start of RPS program. */
1467 	*rps++ = (u32)devpriv->rps_buf.physical_base;
1468 
1469 	/* End of RPS program build */
1470 }
1471 
s626_ai_eoc(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned long context)1472 static int s626_ai_eoc(struct comedi_device *dev,
1473 		       struct comedi_subdevice *s,
1474 		       struct comedi_insn *insn,
1475 		       unsigned long context)
1476 {
1477 	unsigned int status;
1478 
1479 	status = readl(dev->mmio + S626_P_PSR);
1480 	if (status & S626_PSR_GPIO2)
1481 		return 0;
1482 	return -EBUSY;
1483 }
1484 
s626_ai_insn_read(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)1485 static int s626_ai_insn_read(struct comedi_device *dev,
1486 			     struct comedi_subdevice *s,
1487 			     struct comedi_insn *insn,
1488 			     unsigned int *data)
1489 {
1490 	u16 chan = CR_CHAN(insn->chanspec);
1491 	u16 range = CR_RANGE(insn->chanspec);
1492 	u16 adc_spec = 0;
1493 	u32 gpio_image;
1494 	u32 tmp;
1495 	int ret;
1496 	int n;
1497 
1498 	/*
1499 	 * Convert application's ADC specification into form
1500 	 *  appropriate for register programming.
1501 	 */
1502 	if (range == 0)
1503 		adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR5V);
1504 	else
1505 		adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR10V);
1506 
1507 	/* Switch ADC analog gain. */
1508 	s626_debi_write(dev, S626_LP_GSEL, adc_spec);	/* Set gain. */
1509 
1510 	/* Select ADC analog input channel. */
1511 	s626_debi_write(dev, S626_LP_ISEL, adc_spec);	/* Select channel. */
1512 
1513 	for (n = 0; n < insn->n; n++) {
1514 		/* Delay 10 microseconds for analog input settling. */
1515 		usleep_range(10, 20);
1516 
1517 		/* Start ADC by pulsing GPIO1 low */
1518 		gpio_image = readl(dev->mmio + S626_P_GPIO);
1519 		/* Assert ADC Start command */
1520 		writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1521 		/* and stretch it out */
1522 		writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1523 		writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1524 		/* Negate ADC Start command */
1525 		writel(gpio_image | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1526 
1527 		/*
1528 		 * Wait for ADC to complete (GPIO2 is asserted high when
1529 		 * ADC not busy) and for data from previous conversion to
1530 		 * shift into FB BUFFER 1 register.
1531 		 */
1532 
1533 		/* Wait for ADC done */
1534 		ret = comedi_timeout(dev, s, insn, s626_ai_eoc, 0);
1535 		if (ret)
1536 			return ret;
1537 
1538 		/* Fetch ADC data */
1539 		if (n != 0) {
1540 			tmp = readl(dev->mmio + S626_P_FB_BUFFER1);
1541 			data[n - 1] = s626_ai_reg_to_uint(tmp);
1542 		}
1543 
1544 		/*
1545 		 * Allow the ADC to stabilize for 4 microseconds before
1546 		 * starting the next (final) conversion.  This delay is
1547 		 * necessary to allow sufficient time between last
1548 		 * conversion finished and the start of the next
1549 		 * conversion.  Without this delay, the last conversion's
1550 		 * data value is sometimes set to the previous
1551 		 * conversion's data value.
1552 		 */
1553 		udelay(4);
1554 	}
1555 
1556 	/*
1557 	 * Start a dummy conversion to cause the data from the
1558 	 * previous conversion to be shifted in.
1559 	 */
1560 	gpio_image = readl(dev->mmio + S626_P_GPIO);
1561 	/* Assert ADC Start command */
1562 	writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1563 	/* and stretch it out */
1564 	writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1565 	writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1566 	/* Negate ADC Start command */
1567 	writel(gpio_image | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1568 
1569 	/* Wait for the data to arrive in FB BUFFER 1 register. */
1570 
1571 	/* Wait for ADC done */
1572 	ret = comedi_timeout(dev, s, insn, s626_ai_eoc, 0);
1573 	if (ret)
1574 		return ret;
1575 
1576 	/* Fetch ADC data from audio interface's input shift register. */
1577 
1578 	/* Fetch ADC data */
1579 	if (n != 0) {
1580 		tmp = readl(dev->mmio + S626_P_FB_BUFFER1);
1581 		data[n - 1] = s626_ai_reg_to_uint(tmp);
1582 	}
1583 
1584 	return n;
1585 }
1586 
s626_ai_load_polllist(u8 * ppl,struct comedi_cmd * cmd)1587 static int s626_ai_load_polllist(u8 *ppl, struct comedi_cmd *cmd)
1588 {
1589 	int n;
1590 
1591 	for (n = 0; n < cmd->chanlist_len; n++) {
1592 		if (CR_RANGE(cmd->chanlist[n]) == 0)
1593 			ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_5V;
1594 		else
1595 			ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_10V;
1596 	}
1597 	if (n != 0)
1598 		ppl[n - 1] |= S626_EOPL;
1599 
1600 	return n;
1601 }
1602 
s626_ai_inttrig(struct comedi_device * dev,struct comedi_subdevice * s,unsigned int trig_num)1603 static int s626_ai_inttrig(struct comedi_device *dev,
1604 			   struct comedi_subdevice *s,
1605 			   unsigned int trig_num)
1606 {
1607 	struct comedi_cmd *cmd = &s->async->cmd;
1608 
1609 	if (trig_num != cmd->start_arg)
1610 		return -EINVAL;
1611 
1612 	/* Start executing the RPS program */
1613 	s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
1614 
1615 	s->async->inttrig = NULL;
1616 
1617 	return 1;
1618 }
1619 
1620 /*
1621  * This function doesn't require a particular form, this is just what
1622  * happens to be used in some of the drivers.  It should convert ns
1623  * nanoseconds to a counter value suitable for programming the device.
1624  * Also, it should adjust ns so that it cooresponds to the actual time
1625  * that the device will use.
1626  */
s626_ns_to_timer(unsigned int * nanosec,unsigned int flags)1627 static int s626_ns_to_timer(unsigned int *nanosec, unsigned int flags)
1628 {
1629 	int divider, base;
1630 
1631 	base = 500;		/* 2MHz internal clock */
1632 
1633 	switch (flags & CMDF_ROUND_MASK) {
1634 	case CMDF_ROUND_NEAREST:
1635 	default:
1636 		divider = DIV_ROUND_CLOSEST(*nanosec, base);
1637 		break;
1638 	case CMDF_ROUND_DOWN:
1639 		divider = (*nanosec) / base;
1640 		break;
1641 	case CMDF_ROUND_UP:
1642 		divider = DIV_ROUND_UP(*nanosec, base);
1643 		break;
1644 	}
1645 
1646 	*nanosec = base * divider;
1647 	return divider - 1;
1648 }
1649 
s626_timer_load(struct comedi_device * dev,unsigned int chan,int tick)1650 static void s626_timer_load(struct comedi_device *dev,
1651 			    unsigned int chan, int tick)
1652 {
1653 	u16 setup =
1654 		/* Preload upon index. */
1655 		S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
1656 		/* Disable hardware index. */
1657 		S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
1658 		/* Operating mode is Timer. */
1659 		S626_SET_STD_ENCMODE(S626_ENCMODE_TIMER) |
1660 		/* Count direction is Down. */
1661 		S626_SET_STD_CLKPOL(S626_CNTDIR_DOWN) |
1662 		/* Clock multiplier is 1x. */
1663 		S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
1664 		/* Enabled by index */
1665 		S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
1666 	u16 value_latchsrc = S626_LATCHSRC_A_INDXA;
1667 	/* uint16_t enab = S626_CLKENAB_ALWAYS; */
1668 
1669 	s626_set_mode(dev, chan, setup, false);
1670 
1671 	/* Set the preload register */
1672 	s626_preload(dev, chan, tick);
1673 
1674 	/*
1675 	 * Software index pulse forces the preload register to load
1676 	 * into the counter
1677 	 */
1678 	s626_set_load_trig(dev, chan, 0);
1679 	s626_pulse_index(dev, chan);
1680 
1681 	/* set reload on counter overflow */
1682 	s626_set_load_trig(dev, chan, 1);
1683 
1684 	/* set interrupt on overflow */
1685 	s626_set_int_src(dev, chan, S626_INTSRC_OVER);
1686 
1687 	s626_set_latch_source(dev, chan, value_latchsrc);
1688 	/* s626_set_enable(dev, chan, (uint16_t)(enab != 0)); */
1689 }
1690 
1691 /* TO COMPLETE  */
s626_ai_cmd(struct comedi_device * dev,struct comedi_subdevice * s)1692 static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
1693 {
1694 	struct s626_private *devpriv = dev->private;
1695 	u8 ppl[16];
1696 	struct comedi_cmd *cmd = &s->async->cmd;
1697 	int tick;
1698 
1699 	if (devpriv->ai_cmd_running) {
1700 		dev_err(dev->class_dev,
1701 			"%s: Another ai_cmd is running\n", __func__);
1702 		return -EBUSY;
1703 	}
1704 	/* disable interrupt */
1705 	writel(0, dev->mmio + S626_P_IER);
1706 
1707 	/* clear interrupt request */
1708 	writel(S626_IRQ_RPS1 | S626_IRQ_GPIO3, dev->mmio + S626_P_ISR);
1709 
1710 	/* clear any pending interrupt */
1711 	s626_dio_clear_irq(dev);
1712 	/* s626_enc_clear_irq(dev); */
1713 
1714 	/* reset ai_cmd_running flag */
1715 	devpriv->ai_cmd_running = 0;
1716 
1717 	s626_ai_load_polllist(ppl, cmd);
1718 	devpriv->ai_cmd_running = 1;
1719 	devpriv->ai_convert_count = 0;
1720 
1721 	switch (cmd->scan_begin_src) {
1722 	case TRIG_FOLLOW:
1723 		break;
1724 	case TRIG_TIMER:
1725 		/*
1726 		 * set a counter to generate adc trigger at scan_begin_arg
1727 		 * interval
1728 		 */
1729 		tick = s626_ns_to_timer(&cmd->scan_begin_arg, cmd->flags);
1730 
1731 		/* load timer value and enable interrupt */
1732 		s626_timer_load(dev, 5, tick);
1733 		s626_set_enable(dev, 5, S626_CLKENAB_ALWAYS);
1734 		break;
1735 	case TRIG_EXT:
1736 		/* set the digital line and interrupt for scan trigger */
1737 		if (cmd->start_src != TRIG_EXT)
1738 			s626_dio_set_irq(dev, cmd->scan_begin_arg);
1739 		break;
1740 	}
1741 
1742 	switch (cmd->convert_src) {
1743 	case TRIG_NOW:
1744 		break;
1745 	case TRIG_TIMER:
1746 		/*
1747 		 * set a counter to generate adc trigger at convert_arg
1748 		 * interval
1749 		 */
1750 		tick = s626_ns_to_timer(&cmd->convert_arg, cmd->flags);
1751 
1752 		/* load timer value and enable interrupt */
1753 		s626_timer_load(dev, 4, tick);
1754 		s626_set_enable(dev, 4, S626_CLKENAB_INDEX);
1755 		break;
1756 	case TRIG_EXT:
1757 		/* set the digital line and interrupt for convert trigger */
1758 		if (cmd->scan_begin_src != TRIG_EXT &&
1759 		    cmd->start_src == TRIG_EXT)
1760 			s626_dio_set_irq(dev, cmd->convert_arg);
1761 		break;
1762 	}
1763 
1764 	s626_reset_adc(dev, ppl);
1765 
1766 	switch (cmd->start_src) {
1767 	case TRIG_NOW:
1768 		/* Trigger ADC scan loop start */
1769 		/* s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2); */
1770 
1771 		/* Start executing the RPS program */
1772 		s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
1773 		s->async->inttrig = NULL;
1774 		break;
1775 	case TRIG_EXT:
1776 		/* configure DIO channel for acquisition trigger */
1777 		s626_dio_set_irq(dev, cmd->start_arg);
1778 		s->async->inttrig = NULL;
1779 		break;
1780 	case TRIG_INT:
1781 		s->async->inttrig = s626_ai_inttrig;
1782 		break;
1783 	}
1784 
1785 	/* enable interrupt */
1786 	writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1, dev->mmio + S626_P_IER);
1787 
1788 	return 0;
1789 }
1790 
s626_ai_cmdtest(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_cmd * cmd)1791 static int s626_ai_cmdtest(struct comedi_device *dev,
1792 			   struct comedi_subdevice *s, struct comedi_cmd *cmd)
1793 {
1794 	int err = 0;
1795 	unsigned int arg;
1796 
1797 	/* Step 1 : check if triggers are trivially valid */
1798 
1799 	err |= comedi_check_trigger_src(&cmd->start_src,
1800 					TRIG_NOW | TRIG_INT | TRIG_EXT);
1801 	err |= comedi_check_trigger_src(&cmd->scan_begin_src,
1802 					TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW);
1803 	err |= comedi_check_trigger_src(&cmd->convert_src,
1804 					TRIG_TIMER | TRIG_EXT | TRIG_NOW);
1805 	err |= comedi_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
1806 	err |= comedi_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE);
1807 
1808 	if (err)
1809 		return 1;
1810 
1811 	/* Step 2a : make sure trigger sources are unique */
1812 
1813 	err |= comedi_check_trigger_is_unique(cmd->start_src);
1814 	err |= comedi_check_trigger_is_unique(cmd->scan_begin_src);
1815 	err |= comedi_check_trigger_is_unique(cmd->convert_src);
1816 	err |= comedi_check_trigger_is_unique(cmd->stop_src);
1817 
1818 	/* Step 2b : and mutually compatible */
1819 
1820 	if (err)
1821 		return 2;
1822 
1823 	/* Step 3: check if arguments are trivially valid */
1824 
1825 	switch (cmd->start_src) {
1826 	case TRIG_NOW:
1827 	case TRIG_INT:
1828 		err |= comedi_check_trigger_arg_is(&cmd->start_arg, 0);
1829 		break;
1830 	case TRIG_EXT:
1831 		err |= comedi_check_trigger_arg_max(&cmd->start_arg, 39);
1832 		break;
1833 	}
1834 
1835 	if (cmd->scan_begin_src == TRIG_EXT)
1836 		err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 39);
1837 	if (cmd->convert_src == TRIG_EXT)
1838 		err |= comedi_check_trigger_arg_max(&cmd->convert_arg, 39);
1839 
1840 #define S626_MAX_SPEED	200000	/* in nanoseconds */
1841 #define S626_MIN_SPEED	2000000000	/* in nanoseconds */
1842 
1843 	if (cmd->scan_begin_src == TRIG_TIMER) {
1844 		err |= comedi_check_trigger_arg_min(&cmd->scan_begin_arg,
1845 						    S626_MAX_SPEED);
1846 		err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg,
1847 						    S626_MIN_SPEED);
1848 	} else {
1849 		/*
1850 		 * external trigger
1851 		 * should be level/edge, hi/lo specification here
1852 		 * should specify multiple external triggers
1853 		 * err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9);
1854 		 */
1855 	}
1856 	if (cmd->convert_src == TRIG_TIMER) {
1857 		err |= comedi_check_trigger_arg_min(&cmd->convert_arg,
1858 						    S626_MAX_SPEED);
1859 		err |= comedi_check_trigger_arg_max(&cmd->convert_arg,
1860 						    S626_MIN_SPEED);
1861 	} else {
1862 		/*
1863 		 * external trigger - see above
1864 		 * err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9);
1865 		 */
1866 	}
1867 
1868 	err |= comedi_check_trigger_arg_is(&cmd->scan_end_arg,
1869 					   cmd->chanlist_len);
1870 
1871 	if (cmd->stop_src == TRIG_COUNT)
1872 		err |= comedi_check_trigger_arg_min(&cmd->stop_arg, 1);
1873 	else	/* TRIG_NONE */
1874 		err |= comedi_check_trigger_arg_is(&cmd->stop_arg, 0);
1875 
1876 	if (err)
1877 		return 3;
1878 
1879 	/* step 4: fix up any arguments */
1880 
1881 	if (cmd->scan_begin_src == TRIG_TIMER) {
1882 		arg = cmd->scan_begin_arg;
1883 		s626_ns_to_timer(&arg, cmd->flags);
1884 		err |= comedi_check_trigger_arg_is(&cmd->scan_begin_arg, arg);
1885 	}
1886 
1887 	if (cmd->convert_src == TRIG_TIMER) {
1888 		arg = cmd->convert_arg;
1889 		s626_ns_to_timer(&arg, cmd->flags);
1890 		err |= comedi_check_trigger_arg_is(&cmd->convert_arg, arg);
1891 
1892 		if (cmd->scan_begin_src == TRIG_TIMER) {
1893 			arg = cmd->convert_arg * cmd->scan_end_arg;
1894 			err |= comedi_check_trigger_arg_min(
1895 					&cmd->scan_begin_arg, arg);
1896 		}
1897 	}
1898 
1899 	if (err)
1900 		return 4;
1901 
1902 	return 0;
1903 }
1904 
s626_ai_cancel(struct comedi_device * dev,struct comedi_subdevice * s)1905 static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
1906 {
1907 	struct s626_private *devpriv = dev->private;
1908 
1909 	/* Stop RPS program in case it is currently running */
1910 	s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
1911 
1912 	/* disable master interrupt */
1913 	writel(0, dev->mmio + S626_P_IER);
1914 
1915 	devpriv->ai_cmd_running = 0;
1916 
1917 	return 0;
1918 }
1919 
s626_ao_insn_write(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)1920 static int s626_ao_insn_write(struct comedi_device *dev,
1921 			      struct comedi_subdevice *s,
1922 			      struct comedi_insn *insn,
1923 			      unsigned int *data)
1924 {
1925 	unsigned int chan = CR_CHAN(insn->chanspec);
1926 	int i;
1927 
1928 	for (i = 0; i < insn->n; i++) {
1929 		s16 dacdata = (s16)data[i];
1930 		int ret;
1931 
1932 		dacdata -= (0x1fff);
1933 
1934 		ret = s626_set_dac(dev, chan, dacdata);
1935 		if (ret)
1936 			return ret;
1937 
1938 		s->readback[chan] = data[i];
1939 	}
1940 
1941 	return insn->n;
1942 }
1943 
1944 /* *************** DIGITAL I/O FUNCTIONS *************** */
1945 
1946 /*
1947  * All DIO functions address a group of DIO channels by means of
1948  * "group" argument.  group may be 0, 1 or 2, which correspond to DIO
1949  * ports A, B and C, respectively.
1950  */
1951 
s626_dio_init(struct comedi_device * dev)1952 static void s626_dio_init(struct comedi_device *dev)
1953 {
1954 	u16 group;
1955 
1956 	/* Prepare to treat writes to WRCapSel as capture disables. */
1957 	s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
1958 
1959 	/* For each group of sixteen channels ... */
1960 	for (group = 0; group < S626_DIO_BANKS; group++) {
1961 		/* Disable all interrupts */
1962 		s626_debi_write(dev, S626_LP_WRINTSEL(group), 0);
1963 		/* Disable all event captures */
1964 		s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff);
1965 		/* Init all DIOs to default edge polarity */
1966 		s626_debi_write(dev, S626_LP_WREDGSEL(group), 0);
1967 		/* Program all outputs to inactive state */
1968 		s626_debi_write(dev, S626_LP_WRDOUT(group), 0);
1969 	}
1970 }
1971 
s626_dio_insn_bits(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)1972 static int s626_dio_insn_bits(struct comedi_device *dev,
1973 			      struct comedi_subdevice *s,
1974 			      struct comedi_insn *insn,
1975 			      unsigned int *data)
1976 {
1977 	unsigned long group = (unsigned long)s->private;
1978 
1979 	if (comedi_dio_update_state(s, data))
1980 		s626_debi_write(dev, S626_LP_WRDOUT(group), s->state);
1981 
1982 	data[1] = s626_debi_read(dev, S626_LP_RDDIN(group));
1983 
1984 	return insn->n;
1985 }
1986 
s626_dio_insn_config(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)1987 static int s626_dio_insn_config(struct comedi_device *dev,
1988 				struct comedi_subdevice *s,
1989 				struct comedi_insn *insn,
1990 				unsigned int *data)
1991 {
1992 	unsigned long group = (unsigned long)s->private;
1993 	int ret;
1994 
1995 	ret = comedi_dio_insn_config(dev, s, insn, data, 0);
1996 	if (ret)
1997 		return ret;
1998 
1999 	s626_debi_write(dev, S626_LP_WRDOUT(group), s->io_bits);
2000 
2001 	return insn->n;
2002 }
2003 
2004 /*
2005  * Now this function initializes the value of the counter (data[0])
2006  * and set the subdevice. To complete with trigger and interrupt
2007  * configuration.
2008  *
2009  * FIXME: data[0] is supposed to be an INSN_CONFIG_xxx constant indicating
2010  * what is being configured, but this function appears to be using data[0]
2011  * as a variable.
2012  */
s626_enc_insn_config(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)2013 static int s626_enc_insn_config(struct comedi_device *dev,
2014 				struct comedi_subdevice *s,
2015 				struct comedi_insn *insn, unsigned int *data)
2016 {
2017 	unsigned int chan = CR_CHAN(insn->chanspec);
2018 	u16 setup =
2019 		/* Preload upon index. */
2020 		S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
2021 		/* Disable hardware index. */
2022 		S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
2023 		/* Operating mode is Counter. */
2024 		S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) |
2025 		/* Active high clock. */
2026 		S626_SET_STD_CLKPOL(S626_CLKPOL_POS) |
2027 		/* Clock multiplier is 1x. */
2028 		S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
2029 		/* Enabled by index */
2030 		S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
2031 	/* uint16_t disable_int_src = true; */
2032 	/* uint32_t Preloadvalue;              //Counter initial value */
2033 	u16 value_latchsrc = S626_LATCHSRC_AB_READ;
2034 	u16 enab = S626_CLKENAB_ALWAYS;
2035 
2036 	/* (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */
2037 
2038 	s626_set_mode(dev, chan, setup, true);
2039 	s626_preload(dev, chan, data[0]);
2040 	s626_pulse_index(dev, chan);
2041 	s626_set_latch_source(dev, chan, value_latchsrc);
2042 	s626_set_enable(dev, chan, (enab != 0));
2043 
2044 	return insn->n;
2045 }
2046 
s626_enc_insn_read(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)2047 static int s626_enc_insn_read(struct comedi_device *dev,
2048 			      struct comedi_subdevice *s,
2049 			      struct comedi_insn *insn,
2050 			      unsigned int *data)
2051 {
2052 	unsigned int chan = CR_CHAN(insn->chanspec);
2053 	u16 cntr_latch_reg = S626_LP_CNTR(chan);
2054 	int i;
2055 
2056 	for (i = 0; i < insn->n; i++) {
2057 		unsigned int val;
2058 
2059 		/*
2060 		 * Read the counter's output latch LSW/MSW.
2061 		 * Latches on LSW read.
2062 		 */
2063 		val = s626_debi_read(dev, cntr_latch_reg);
2064 		val |= (s626_debi_read(dev, cntr_latch_reg + 2) << 16);
2065 		data[i] = val;
2066 	}
2067 
2068 	return insn->n;
2069 }
2070 
s626_enc_insn_write(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)2071 static int s626_enc_insn_write(struct comedi_device *dev,
2072 			       struct comedi_subdevice *s,
2073 			       struct comedi_insn *insn, unsigned int *data)
2074 {
2075 	unsigned int chan = CR_CHAN(insn->chanspec);
2076 
2077 	/* Set the preload register */
2078 	s626_preload(dev, chan, data[0]);
2079 
2080 	/*
2081 	 * Software index pulse forces the preload register to load
2082 	 * into the counter
2083 	 */
2084 	s626_set_load_trig(dev, chan, 0);
2085 	s626_pulse_index(dev, chan);
2086 	s626_set_load_trig(dev, chan, 2);
2087 
2088 	return 1;
2089 }
2090 
s626_write_misc2(struct comedi_device * dev,u16 new_image)2091 static void s626_write_misc2(struct comedi_device *dev, u16 new_image)
2092 {
2093 	s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WENABLE);
2094 	s626_debi_write(dev, S626_LP_WRMISC2, new_image);
2095 	s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WDISABLE);
2096 }
2097 
s626_counters_init(struct comedi_device * dev)2098 static void s626_counters_init(struct comedi_device *dev)
2099 {
2100 	int chan;
2101 	u16 setup =
2102 		/* Preload upon index. */
2103 		S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
2104 		/* Disable hardware index. */
2105 		S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
2106 		/* Operating mode is counter. */
2107 		S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) |
2108 		/* Active high clock. */
2109 		S626_SET_STD_CLKPOL(S626_CLKPOL_POS) |
2110 		/* Clock multiplier is 1x. */
2111 		S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
2112 		/* Enabled by index */
2113 		S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
2114 
2115 	/*
2116 	 * Disable all counter interrupts and clear any captured counter events.
2117 	 */
2118 	for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
2119 		s626_set_mode(dev, chan, setup, true);
2120 		s626_set_int_src(dev, chan, 0);
2121 		s626_reset_cap_flags(dev, chan);
2122 		s626_set_enable(dev, chan, S626_CLKENAB_ALWAYS);
2123 	}
2124 }
2125 
s626_allocate_dma_buffers(struct comedi_device * dev)2126 static int s626_allocate_dma_buffers(struct comedi_device *dev)
2127 {
2128 	struct pci_dev *pcidev = comedi_to_pci_dev(dev);
2129 	struct s626_private *devpriv = dev->private;
2130 	void *addr;
2131 	dma_addr_t appdma;
2132 
2133 	addr = dma_alloc_coherent(&pcidev->dev, S626_DMABUF_SIZE, &appdma,
2134 				  GFP_KERNEL);
2135 	if (!addr)
2136 		return -ENOMEM;
2137 	devpriv->ana_buf.logical_base = addr;
2138 	devpriv->ana_buf.physical_base = appdma;
2139 
2140 	addr = dma_alloc_coherent(&pcidev->dev, S626_DMABUF_SIZE, &appdma,
2141 				  GFP_KERNEL);
2142 	if (!addr)
2143 		return -ENOMEM;
2144 	devpriv->rps_buf.logical_base = addr;
2145 	devpriv->rps_buf.physical_base = appdma;
2146 
2147 	return 0;
2148 }
2149 
s626_free_dma_buffers(struct comedi_device * dev)2150 static void s626_free_dma_buffers(struct comedi_device *dev)
2151 {
2152 	struct pci_dev *pcidev = comedi_to_pci_dev(dev);
2153 	struct s626_private *devpriv = dev->private;
2154 
2155 	if (!devpriv)
2156 		return;
2157 
2158 	if (devpriv->rps_buf.logical_base)
2159 		dma_free_coherent(&pcidev->dev, S626_DMABUF_SIZE,
2160 				  devpriv->rps_buf.logical_base,
2161 				  devpriv->rps_buf.physical_base);
2162 	if (devpriv->ana_buf.logical_base)
2163 		dma_free_coherent(&pcidev->dev, S626_DMABUF_SIZE,
2164 				  devpriv->ana_buf.logical_base,
2165 				  devpriv->ana_buf.physical_base);
2166 }
2167 
s626_initialize(struct comedi_device * dev)2168 static int s626_initialize(struct comedi_device *dev)
2169 {
2170 	struct s626_private *devpriv = dev->private;
2171 	dma_addr_t phys_buf;
2172 	u16 chan;
2173 	int i;
2174 	int ret;
2175 
2176 	/* Enable DEBI and audio pins, enable I2C interface */
2177 	s626_mc_enable(dev, S626_MC1_DEBI | S626_MC1_AUDIO | S626_MC1_I2C,
2178 		       S626_P_MC1);
2179 
2180 	/*
2181 	 * Configure DEBI operating mode
2182 	 *
2183 	 *  Local bus is 16 bits wide
2184 	 *  Declare DEBI transfer timeout interval
2185 	 *  Set up byte lane steering
2186 	 *  Intel-compatible local bus (DEBI never times out)
2187 	 */
2188 	writel(S626_DEBI_CFG_SLAVE16 |
2189 	       (S626_DEBI_TOUT << S626_DEBI_CFG_TOUT_BIT) | S626_DEBI_SWAP |
2190 	       S626_DEBI_CFG_INTEL, dev->mmio + S626_P_DEBICFG);
2191 
2192 	/* Disable MMU paging */
2193 	writel(S626_DEBI_PAGE_DISABLE, dev->mmio + S626_P_DEBIPAGE);
2194 
2195 	/* Init GPIO so that ADC Start* is negated */
2196 	writel(S626_GPIO_BASE | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
2197 
2198 	/* I2C device address for onboard eeprom (revb) */
2199 	devpriv->i2c_adrs = 0xA0;
2200 
2201 	/*
2202 	 * Issue an I2C ABORT command to halt any I2C
2203 	 * operation in progress and reset BUSY flag.
2204 	 */
2205 	writel(S626_I2C_CLKSEL | S626_I2C_ABORT,
2206 	       dev->mmio + S626_P_I2CSTAT);
2207 	s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
2208 	ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0);
2209 	if (ret)
2210 		return ret;
2211 
2212 	/*
2213 	 * Per SAA7146 data sheet, write to STATUS
2214 	 * reg twice to reset all  I2C error flags.
2215 	 */
2216 	for (i = 0; i < 2; i++) {
2217 		writel(S626_I2C_CLKSEL, dev->mmio + S626_P_I2CSTAT);
2218 		s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
2219 		ret = comedi_timeout(dev, NULL,
2220 				     NULL, s626_i2c_handshake_eoc, 0);
2221 		if (ret)
2222 			return ret;
2223 	}
2224 
2225 	/*
2226 	 * Init audio interface functional attributes: set DAC/ADC
2227 	 * serial clock rates, invert DAC serial clock so that
2228 	 * DAC data setup times are satisfied, enable DAC serial
2229 	 * clock out.
2230 	 */
2231 	writel(S626_ACON2_INIT, dev->mmio + S626_P_ACON2);
2232 
2233 	/*
2234 	 * Set up TSL1 slot list, which is used to control the
2235 	 * accumulation of ADC data: S626_RSD1 = shift data in on SD1.
2236 	 * S626_SIB_A1  = store data uint8_t at next available location
2237 	 * in FB BUFFER1 register.
2238 	 */
2239 	writel(S626_RSD1 | S626_SIB_A1, dev->mmio + S626_P_TSL1);
2240 	writel(S626_RSD1 | S626_SIB_A1 | S626_EOS,
2241 	       dev->mmio + S626_P_TSL1 + 4);
2242 
2243 	/* Enable TSL1 slot list so that it executes all the time */
2244 	writel(S626_ACON1_ADCSTART, dev->mmio + S626_P_ACON1);
2245 
2246 	/*
2247 	 * Initialize RPS registers used for ADC
2248 	 */
2249 
2250 	/* Physical start of RPS program */
2251 	writel((u32)devpriv->rps_buf.physical_base,
2252 	       dev->mmio + S626_P_RPSADDR1);
2253 	/* RPS program performs no explicit mem writes */
2254 	writel(0, dev->mmio + S626_P_RPSPAGE1);
2255 	/* Disable RPS timeouts */
2256 	writel(0, dev->mmio + S626_P_RPS1_TOUT);
2257 
2258 #if 0
2259 	/*
2260 	 * SAA7146 BUG WORKAROUND
2261 	 *
2262 	 * Initialize SAA7146 ADC interface to a known state by
2263 	 * invoking ADCs until FB BUFFER 1 register shows that it
2264 	 * is correctly receiving ADC data. This is necessary
2265 	 * because the SAA7146 ADC interface does not start up in
2266 	 * a defined state after a PCI reset.
2267 	 */
2268 	{
2269 		struct comedi_subdevice *s = dev->read_subdev;
2270 		u8 poll_list;
2271 		u16 adc_data;
2272 		u16 start_val;
2273 		u16 index;
2274 		unsigned int data[16];
2275 
2276 		/* Create a simple polling list for analog input channel 0 */
2277 		poll_list = S626_EOPL;
2278 		s626_reset_adc(dev, &poll_list);
2279 
2280 		/* Get initial ADC value */
2281 		s626_ai_rinsn(dev, s, NULL, data);
2282 		start_val = data[0];
2283 
2284 		/*
2285 		 * VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED
2286 		 * EXECUTION.
2287 		 *
2288 		 * Invoke ADCs until the new ADC value differs from the initial
2289 		 * value or a timeout occurs.  The timeout protects against the
2290 		 * possibility that the driver is restarting and the ADC data is
2291 		 * a fixed value resulting from the applied ADC analog input
2292 		 * being unusually quiet or at the rail.
2293 		 */
2294 		for (index = 0; index < 500; index++) {
2295 			s626_ai_rinsn(dev, s, NULL, data);
2296 			adc_data = data[0];
2297 			if (adc_data != start_val)
2298 				break;
2299 		}
2300 	}
2301 #endif	/* SAA7146 BUG WORKAROUND */
2302 
2303 	/*
2304 	 * Initialize the DAC interface
2305 	 */
2306 
2307 	/*
2308 	 * Init Audio2's output DMAC attributes:
2309 	 *   burst length = 1 DWORD
2310 	 *   threshold = 1 DWORD.
2311 	 */
2312 	writel(0, dev->mmio + S626_P_PCI_BT_A);
2313 
2314 	/*
2315 	 * Init Audio2's output DMA physical addresses.  The protection
2316 	 * address is set to 1 DWORD past the base address so that a
2317 	 * single DWORD will be transferred each time a DMA transfer is
2318 	 * enabled.
2319 	 */
2320 	phys_buf = devpriv->ana_buf.physical_base +
2321 		   (S626_DAC_WDMABUF_OS * sizeof(u32));
2322 	writel((u32)phys_buf, dev->mmio + S626_P_BASEA2_OUT);
2323 	writel((u32)(phys_buf + sizeof(u32)),
2324 	       dev->mmio + S626_P_PROTA2_OUT);
2325 
2326 	/*
2327 	 * Cache Audio2's output DMA buffer logical address.  This is
2328 	 * where DAC data is buffered for A2 output DMA transfers.
2329 	 */
2330 	devpriv->dac_wbuf = (u32 *)devpriv->ana_buf.logical_base +
2331 			    S626_DAC_WDMABUF_OS;
2332 
2333 	/*
2334 	 * Audio2's output channels does not use paging.  The
2335 	 * protection violation handling bit is set so that the
2336 	 * DMAC will automatically halt and its PCI address pointer
2337 	 * will be reset when the protection address is reached.
2338 	 */
2339 	writel(8, dev->mmio + S626_P_PAGEA2_OUT);
2340 
2341 	/*
2342 	 * Initialize time slot list 2 (TSL2), which is used to control
2343 	 * the clock generation for and serialization of data to be sent
2344 	 * to the DAC devices.  Slot 0 is a NOP that is used to trap TSL
2345 	 * execution; this permits other slots to be safely modified
2346 	 * without first turning off the TSL sequencer (which is
2347 	 * apparently impossible to do).  Also, SD3 (which is driven by a
2348 	 * pull-up resistor) is shifted in and stored to the MSB of
2349 	 * FB_BUFFER2 to be used as evidence that the slot sequence has
2350 	 * not yet finished executing.
2351 	 */
2352 
2353 	/* Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2 */
2354 	writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2 | S626_EOS,
2355 	       dev->mmio + S626_VECTPORT(0));
2356 
2357 	/*
2358 	 * Initialize slot 1, which is constant.  Slot 1 causes a
2359 	 * DWORD to be transferred from audio channel 2's output FIFO
2360 	 * to the FIFO's output buffer so that it can be serialized
2361 	 * and sent to the DAC during subsequent slots.  All remaining
2362 	 * slots are dynamically populated as required by the target
2363 	 * DAC device.
2364 	 */
2365 
2366 	/* Slot 1: Fetch DWORD from Audio2's output FIFO */
2367 	writel(S626_LF_A2, dev->mmio + S626_VECTPORT(1));
2368 
2369 	/* Start DAC's audio interface (TSL2) running */
2370 	writel(S626_ACON1_DACSTART, dev->mmio + S626_P_ACON1);
2371 
2372 	/*
2373 	 * Init Trim DACs to calibrated values.  Do it twice because the
2374 	 * SAA7146 audio channel does not always reset properly and
2375 	 * sometimes causes the first few TrimDAC writes to malfunction.
2376 	 */
2377 	s626_load_trim_dacs(dev);
2378 	ret = s626_load_trim_dacs(dev);
2379 	if (ret)
2380 		return ret;
2381 
2382 	/*
2383 	 * Manually init all gate array hardware in case this is a soft
2384 	 * reset (we have no way of determining whether this is a warm
2385 	 * or cold start).  This is necessary because the gate array will
2386 	 * reset only in response to a PCI hard reset; there is no soft
2387 	 * reset function.
2388 	 */
2389 
2390 	/*
2391 	 * Init all DAC outputs to 0V and init all DAC setpoint and
2392 	 * polarity images.
2393 	 */
2394 	for (chan = 0; chan < S626_DAC_CHANNELS; chan++) {
2395 		ret = s626_set_dac(dev, chan, 0);
2396 		if (ret)
2397 			return ret;
2398 	}
2399 
2400 	/* Init counters */
2401 	s626_counters_init(dev);
2402 
2403 	/*
2404 	 * Without modifying the state of the Battery Backup enab, disable
2405 	 * the watchdog timer, set DIO channels 0-5 to operate in the
2406 	 * standard DIO (vs. counter overflow) mode, disable the battery
2407 	 * charger, and reset the watchdog interval selector to zero.
2408 	 */
2409 	s626_write_misc2(dev, (s626_debi_read(dev, S626_LP_RDMISC2) &
2410 			       S626_MISC2_BATT_ENABLE));
2411 
2412 	/* Initialize the digital I/O subsystem */
2413 	s626_dio_init(dev);
2414 
2415 	return 0;
2416 }
2417 
s626_auto_attach(struct comedi_device * dev,unsigned long context_unused)2418 static int s626_auto_attach(struct comedi_device *dev,
2419 			    unsigned long context_unused)
2420 {
2421 	struct pci_dev *pcidev = comedi_to_pci_dev(dev);
2422 	struct s626_private *devpriv;
2423 	struct comedi_subdevice *s;
2424 	int ret;
2425 
2426 	devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv));
2427 	if (!devpriv)
2428 		return -ENOMEM;
2429 
2430 	ret = comedi_pci_enable(dev);
2431 	if (ret)
2432 		return ret;
2433 
2434 	dev->mmio = pci_ioremap_bar(pcidev, 0);
2435 	if (!dev->mmio)
2436 		return -ENOMEM;
2437 
2438 	/* disable master interrupt */
2439 	writel(0, dev->mmio + S626_P_IER);
2440 
2441 	/* soft reset */
2442 	writel(S626_MC1_SOFT_RESET, dev->mmio + S626_P_MC1);
2443 
2444 	/* DMA FIXME DMA// */
2445 
2446 	ret = s626_allocate_dma_buffers(dev);
2447 	if (ret)
2448 		return ret;
2449 
2450 	if (pcidev->irq) {
2451 		ret = request_irq(pcidev->irq, s626_irq_handler, IRQF_SHARED,
2452 				  dev->board_name, dev);
2453 
2454 		if (ret == 0)
2455 			dev->irq = pcidev->irq;
2456 	}
2457 
2458 	ret = comedi_alloc_subdevices(dev, 6);
2459 	if (ret)
2460 		return ret;
2461 
2462 	s = &dev->subdevices[0];
2463 	/* analog input subdevice */
2464 	s->type		= COMEDI_SUBD_AI;
2465 	s->subdev_flags	= SDF_READABLE | SDF_DIFF;
2466 	s->n_chan	= S626_ADC_CHANNELS;
2467 	s->maxdata	= 0x3fff;
2468 	s->range_table	= &s626_range_table;
2469 	s->len_chanlist	= S626_ADC_CHANNELS;
2470 	s->insn_read	= s626_ai_insn_read;
2471 	if (dev->irq) {
2472 		dev->read_subdev = s;
2473 		s->subdev_flags	|= SDF_CMD_READ;
2474 		s->do_cmd	= s626_ai_cmd;
2475 		s->do_cmdtest	= s626_ai_cmdtest;
2476 		s->cancel	= s626_ai_cancel;
2477 	}
2478 
2479 	s = &dev->subdevices[1];
2480 	/* analog output subdevice */
2481 	s->type		= COMEDI_SUBD_AO;
2482 	s->subdev_flags	= SDF_WRITABLE | SDF_READABLE;
2483 	s->n_chan	= S626_DAC_CHANNELS;
2484 	s->maxdata	= 0x3fff;
2485 	s->range_table	= &range_bipolar10;
2486 	s->insn_write	= s626_ao_insn_write;
2487 
2488 	ret = comedi_alloc_subdev_readback(s);
2489 	if (ret)
2490 		return ret;
2491 
2492 	s = &dev->subdevices[2];
2493 	/* digital I/O subdevice */
2494 	s->type		= COMEDI_SUBD_DIO;
2495 	s->subdev_flags	= SDF_WRITABLE | SDF_READABLE;
2496 	s->n_chan	= 16;
2497 	s->maxdata	= 1;
2498 	s->io_bits	= 0xffff;
2499 	s->private	= (void *)0;	/* DIO group 0 */
2500 	s->range_table	= &range_digital;
2501 	s->insn_config	= s626_dio_insn_config;
2502 	s->insn_bits	= s626_dio_insn_bits;
2503 
2504 	s = &dev->subdevices[3];
2505 	/* digital I/O subdevice */
2506 	s->type		= COMEDI_SUBD_DIO;
2507 	s->subdev_flags	= SDF_WRITABLE | SDF_READABLE;
2508 	s->n_chan	= 16;
2509 	s->maxdata	= 1;
2510 	s->io_bits	= 0xffff;
2511 	s->private	= (void *)1;	/* DIO group 1 */
2512 	s->range_table	= &range_digital;
2513 	s->insn_config	= s626_dio_insn_config;
2514 	s->insn_bits	= s626_dio_insn_bits;
2515 
2516 	s = &dev->subdevices[4];
2517 	/* digital I/O subdevice */
2518 	s->type		= COMEDI_SUBD_DIO;
2519 	s->subdev_flags	= SDF_WRITABLE | SDF_READABLE;
2520 	s->n_chan	= 16;
2521 	s->maxdata	= 1;
2522 	s->io_bits	= 0xffff;
2523 	s->private	= (void *)2;	/* DIO group 2 */
2524 	s->range_table	= &range_digital;
2525 	s->insn_config	= s626_dio_insn_config;
2526 	s->insn_bits	= s626_dio_insn_bits;
2527 
2528 	s = &dev->subdevices[5];
2529 	/* encoder (counter) subdevice */
2530 	s->type		= COMEDI_SUBD_COUNTER;
2531 	s->subdev_flags	= SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL;
2532 	s->n_chan	= S626_ENCODER_CHANNELS;
2533 	s->maxdata	= 0xffffff;
2534 	s->range_table	= &range_unknown;
2535 	s->insn_config	= s626_enc_insn_config;
2536 	s->insn_read	= s626_enc_insn_read;
2537 	s->insn_write	= s626_enc_insn_write;
2538 
2539 	return s626_initialize(dev);
2540 }
2541 
s626_detach(struct comedi_device * dev)2542 static void s626_detach(struct comedi_device *dev)
2543 {
2544 	struct s626_private *devpriv = dev->private;
2545 
2546 	if (devpriv) {
2547 		/* stop ai_command */
2548 		devpriv->ai_cmd_running = 0;
2549 
2550 		if (dev->mmio) {
2551 			/* interrupt mask */
2552 			/* Disable master interrupt */
2553 			writel(0, dev->mmio + S626_P_IER);
2554 			/* Clear board's IRQ status flag */
2555 			writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1,
2556 			       dev->mmio + S626_P_ISR);
2557 
2558 			/* Disable the watchdog timer and battery charger. */
2559 			s626_write_misc2(dev, 0);
2560 
2561 			/* Close all interfaces on 7146 device */
2562 			writel(S626_MC1_SHUTDOWN, dev->mmio + S626_P_MC1);
2563 			writel(S626_ACON1_BASE, dev->mmio + S626_P_ACON1);
2564 		}
2565 	}
2566 	comedi_pci_detach(dev);
2567 	s626_free_dma_buffers(dev);
2568 }
2569 
2570 static struct comedi_driver s626_driver = {
2571 	.driver_name	= "s626",
2572 	.module		= THIS_MODULE,
2573 	.auto_attach	= s626_auto_attach,
2574 	.detach		= s626_detach,
2575 };
2576 
s626_pci_probe(struct pci_dev * dev,const struct pci_device_id * id)2577 static int s626_pci_probe(struct pci_dev *dev,
2578 			  const struct pci_device_id *id)
2579 {
2580 	return comedi_pci_auto_config(dev, &s626_driver, id->driver_data);
2581 }
2582 
2583 /*
2584  * For devices with vendor:device id == 0x1131:0x7146 you must specify
2585  * also subvendor:subdevice ids, because otherwise it will conflict with
2586  * Philips SAA7146 media/dvb based cards.
2587  */
2588 static const struct pci_device_id s626_pci_table[] = {
2589 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_PHILIPS, PCI_DEVICE_ID_PHILIPS_SAA7146,
2590 			 0x6000, 0x0272) },
2591 	{ 0 }
2592 };
2593 MODULE_DEVICE_TABLE(pci, s626_pci_table);
2594 
2595 static struct pci_driver s626_pci_driver = {
2596 	.name		= "s626",
2597 	.id_table	= s626_pci_table,
2598 	.probe		= s626_pci_probe,
2599 	.remove		= comedi_pci_auto_unconfig,
2600 };
2601 module_comedi_pci_driver(s626_driver, s626_pci_driver);
2602 
2603 MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>");
2604 MODULE_DESCRIPTION("Sensoray 626 Comedi driver module");
2605 MODULE_LICENSE("GPL");
2606