1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Cryptographic API.
4  * Support for Nomadik hardware crypto engine.
5 
6  * Copyright (C) ST-Ericsson SA 2010
7  * Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson
8  * Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson
9  * Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
10  * Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
11  * Author: Andreas Westin <andreas.westin@stericsson.com> for ST-Ericsson.
12  */
13 
14 #define pr_fmt(fmt) "hashX hashX: " fmt
15 
16 #include <linux/clk.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/io.h>
22 #include <linux/klist.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/mod_devicetable.h>
26 #include <linux/platform_device.h>
27 #include <linux/crypto.h>
28 
29 #include <linux/regulator/consumer.h>
30 #include <linux/dmaengine.h>
31 #include <linux/bitops.h>
32 
33 #include <crypto/internal/hash.h>
34 #include <crypto/sha1.h>
35 #include <crypto/sha2.h>
36 #include <crypto/scatterwalk.h>
37 #include <crypto/algapi.h>
38 
39 #include <linux/platform_data/crypto-ux500.h>
40 
41 #include "hash_alg.h"
42 
43 static int hash_mode;
44 module_param(hash_mode, int, 0);
45 MODULE_PARM_DESC(hash_mode, "CPU or DMA mode. CPU = 0 (default), DMA = 1");
46 
47 /* HMAC-SHA1, no key */
48 static const u8 zero_message_hmac_sha1[SHA1_DIGEST_SIZE] = {
49 	0xfb, 0xdb, 0x1d, 0x1b, 0x18, 0xaa, 0x6c, 0x08,
50 	0x32, 0x4b, 0x7d, 0x64, 0xb7, 0x1f, 0xb7, 0x63,
51 	0x70, 0x69, 0x0e, 0x1d
52 };
53 
54 /* HMAC-SHA256, no key */
55 static const u8 zero_message_hmac_sha256[SHA256_DIGEST_SIZE] = {
56 	0xb6, 0x13, 0x67, 0x9a, 0x08, 0x14, 0xd9, 0xec,
57 	0x77, 0x2f, 0x95, 0xd7, 0x78, 0xc3, 0x5f, 0xc5,
58 	0xff, 0x16, 0x97, 0xc4, 0x93, 0x71, 0x56, 0x53,
59 	0xc6, 0xc7, 0x12, 0x14, 0x42, 0x92, 0xc5, 0xad
60 };
61 
62 /**
63  * struct hash_driver_data - data specific to the driver.
64  *
65  * @device_list:	A list of registered devices to choose from.
66  * @device_allocation:	A semaphore initialized with number of devices.
67  */
68 struct hash_driver_data {
69 	struct klist		device_list;
70 	struct semaphore	device_allocation;
71 };
72 
73 static struct hash_driver_data	driver_data;
74 
75 /* Declaration of functions */
76 /**
77  * hash_messagepad - Pads a message and write the nblw bits.
78  * @device_data:	Structure for the hash device.
79  * @message:		Last word of a message
80  * @index_bytes:	The number of bytes in the last message
81  *
82  * This function manages the final part of the digest calculation, when less
83  * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
84  *
85  */
86 static void hash_messagepad(struct hash_device_data *device_data,
87 			    const u32 *message, u8 index_bytes);
88 
89 /**
90  * release_hash_device - Releases a previously allocated hash device.
91  * @device_data:	Structure for the hash device.
92  *
93  */
release_hash_device(struct hash_device_data * device_data)94 static void release_hash_device(struct hash_device_data *device_data)
95 {
96 	spin_lock(&device_data->ctx_lock);
97 	device_data->current_ctx->device = NULL;
98 	device_data->current_ctx = NULL;
99 	spin_unlock(&device_data->ctx_lock);
100 
101 	/*
102 	 * The down_interruptible part for this semaphore is called in
103 	 * cryp_get_device_data.
104 	 */
105 	up(&driver_data.device_allocation);
106 }
107 
hash_dma_setup_channel(struct hash_device_data * device_data,struct device * dev)108 static void hash_dma_setup_channel(struct hash_device_data *device_data,
109 				   struct device *dev)
110 {
111 	struct hash_platform_data *platform_data = dev->platform_data;
112 	struct dma_slave_config conf = {
113 		.direction = DMA_MEM_TO_DEV,
114 		.dst_addr = device_data->phybase + HASH_DMA_FIFO,
115 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES,
116 		.dst_maxburst = 16,
117 	};
118 
119 	dma_cap_zero(device_data->dma.mask);
120 	dma_cap_set(DMA_SLAVE, device_data->dma.mask);
121 
122 	device_data->dma.cfg_mem2hash = platform_data->mem_to_engine;
123 	device_data->dma.chan_mem2hash =
124 		dma_request_channel(device_data->dma.mask,
125 				    platform_data->dma_filter,
126 				    device_data->dma.cfg_mem2hash);
127 
128 	dmaengine_slave_config(device_data->dma.chan_mem2hash, &conf);
129 
130 	init_completion(&device_data->dma.complete);
131 }
132 
hash_dma_callback(void * data)133 static void hash_dma_callback(void *data)
134 {
135 	struct hash_ctx *ctx = data;
136 
137 	complete(&ctx->device->dma.complete);
138 }
139 
hash_set_dma_transfer(struct hash_ctx * ctx,struct scatterlist * sg,int len,enum dma_data_direction direction)140 static int hash_set_dma_transfer(struct hash_ctx *ctx, struct scatterlist *sg,
141 				 int len, enum dma_data_direction direction)
142 {
143 	struct dma_async_tx_descriptor *desc = NULL;
144 	struct dma_chan *channel = NULL;
145 
146 	if (direction != DMA_TO_DEVICE) {
147 		dev_err(ctx->device->dev, "%s: Invalid DMA direction\n",
148 			__func__);
149 		return -EFAULT;
150 	}
151 
152 	sg->length = ALIGN(sg->length, HASH_DMA_ALIGN_SIZE);
153 
154 	channel = ctx->device->dma.chan_mem2hash;
155 	ctx->device->dma.sg = sg;
156 	ctx->device->dma.sg_len = dma_map_sg(channel->device->dev,
157 			ctx->device->dma.sg, ctx->device->dma.nents,
158 			direction);
159 
160 	if (!ctx->device->dma.sg_len) {
161 		dev_err(ctx->device->dev, "%s: Could not map the sg list (TO_DEVICE)\n",
162 			__func__);
163 		return -EFAULT;
164 	}
165 
166 	dev_dbg(ctx->device->dev, "%s: Setting up DMA for buffer (TO_DEVICE)\n",
167 		__func__);
168 	desc = dmaengine_prep_slave_sg(channel,
169 			ctx->device->dma.sg, ctx->device->dma.sg_len,
170 			DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
171 	if (!desc) {
172 		dev_err(ctx->device->dev,
173 			"%s: dmaengine_prep_slave_sg() failed!\n", __func__);
174 		return -EFAULT;
175 	}
176 
177 	desc->callback = hash_dma_callback;
178 	desc->callback_param = ctx;
179 
180 	dmaengine_submit(desc);
181 	dma_async_issue_pending(channel);
182 
183 	return 0;
184 }
185 
hash_dma_done(struct hash_ctx * ctx)186 static void hash_dma_done(struct hash_ctx *ctx)
187 {
188 	struct dma_chan *chan;
189 
190 	chan = ctx->device->dma.chan_mem2hash;
191 	dmaengine_terminate_all(chan);
192 	dma_unmap_sg(chan->device->dev, ctx->device->dma.sg,
193 		     ctx->device->dma.nents, DMA_TO_DEVICE);
194 }
195 
hash_dma_write(struct hash_ctx * ctx,struct scatterlist * sg,int len)196 static int hash_dma_write(struct hash_ctx *ctx,
197 			  struct scatterlist *sg, int len)
198 {
199 	int error = hash_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE);
200 	if (error) {
201 		dev_dbg(ctx->device->dev,
202 			"%s: hash_set_dma_transfer() failed\n", __func__);
203 		return error;
204 	}
205 
206 	return len;
207 }
208 
209 /**
210  * get_empty_message_digest - Returns a pre-calculated digest for
211  * the empty message.
212  * @device_data:	Structure for the hash device.
213  * @zero_hash:		Buffer to return the empty message digest.
214  * @zero_hash_size:	Hash size of the empty message digest.
215  * @zero_digest:	True if zero_digest returned.
216  */
get_empty_message_digest(struct hash_device_data * device_data,u8 * zero_hash,u32 * zero_hash_size,bool * zero_digest)217 static int get_empty_message_digest(
218 		struct hash_device_data *device_data,
219 		u8 *zero_hash, u32 *zero_hash_size, bool *zero_digest)
220 {
221 	int ret = 0;
222 	struct hash_ctx *ctx = device_data->current_ctx;
223 	*zero_digest = false;
224 
225 	/**
226 	 * Caller responsible for ctx != NULL.
227 	 */
228 
229 	if (HASH_OPER_MODE_HASH == ctx->config.oper_mode) {
230 		if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
231 			memcpy(zero_hash, &sha1_zero_message_hash[0],
232 			       SHA1_DIGEST_SIZE);
233 			*zero_hash_size = SHA1_DIGEST_SIZE;
234 			*zero_digest = true;
235 		} else if (HASH_ALGO_SHA256 ==
236 				ctx->config.algorithm) {
237 			memcpy(zero_hash, &sha256_zero_message_hash[0],
238 			       SHA256_DIGEST_SIZE);
239 			*zero_hash_size = SHA256_DIGEST_SIZE;
240 			*zero_digest = true;
241 		} else {
242 			dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
243 				__func__);
244 			ret = -EINVAL;
245 			goto out;
246 		}
247 	} else if (HASH_OPER_MODE_HMAC == ctx->config.oper_mode) {
248 		if (!ctx->keylen) {
249 			if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
250 				memcpy(zero_hash, &zero_message_hmac_sha1[0],
251 				       SHA1_DIGEST_SIZE);
252 				*zero_hash_size = SHA1_DIGEST_SIZE;
253 				*zero_digest = true;
254 			} else if (HASH_ALGO_SHA256 == ctx->config.algorithm) {
255 				memcpy(zero_hash, &zero_message_hmac_sha256[0],
256 				       SHA256_DIGEST_SIZE);
257 				*zero_hash_size = SHA256_DIGEST_SIZE;
258 				*zero_digest = true;
259 			} else {
260 				dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
261 					__func__);
262 				ret = -EINVAL;
263 				goto out;
264 			}
265 		} else {
266 			dev_dbg(device_data->dev,
267 				"%s: Continue hash calculation, since hmac key available\n",
268 				__func__);
269 		}
270 	}
271 out:
272 
273 	return ret;
274 }
275 
276 /**
277  * hash_disable_power - Request to disable power and clock.
278  * @device_data:	Structure for the hash device.
279  * @save_device_state:	If true, saves the current hw state.
280  *
281  * This function request for disabling power (regulator) and clock,
282  * and could also save current hw state.
283  */
hash_disable_power(struct hash_device_data * device_data,bool save_device_state)284 static int hash_disable_power(struct hash_device_data *device_data,
285 			      bool save_device_state)
286 {
287 	int ret = 0;
288 	struct device *dev = device_data->dev;
289 
290 	spin_lock(&device_data->power_state_lock);
291 	if (!device_data->power_state)
292 		goto out;
293 
294 	if (save_device_state) {
295 		hash_save_state(device_data,
296 				&device_data->state);
297 		device_data->restore_dev_state = true;
298 	}
299 
300 	clk_disable(device_data->clk);
301 	ret = regulator_disable(device_data->regulator);
302 	if (ret)
303 		dev_err(dev, "%s: regulator_disable() failed!\n", __func__);
304 
305 	device_data->power_state = false;
306 
307 out:
308 	spin_unlock(&device_data->power_state_lock);
309 
310 	return ret;
311 }
312 
313 /**
314  * hash_enable_power - Request to enable power and clock.
315  * @device_data:		Structure for the hash device.
316  * @restore_device_state:	If true, restores a previous saved hw state.
317  *
318  * This function request for enabling power (regulator) and clock,
319  * and could also restore a previously saved hw state.
320  */
hash_enable_power(struct hash_device_data * device_data,bool restore_device_state)321 static int hash_enable_power(struct hash_device_data *device_data,
322 			     bool restore_device_state)
323 {
324 	int ret = 0;
325 	struct device *dev = device_data->dev;
326 
327 	spin_lock(&device_data->power_state_lock);
328 	if (!device_data->power_state) {
329 		ret = regulator_enable(device_data->regulator);
330 		if (ret) {
331 			dev_err(dev, "%s: regulator_enable() failed!\n",
332 				__func__);
333 			goto out;
334 		}
335 		ret = clk_enable(device_data->clk);
336 		if (ret) {
337 			dev_err(dev, "%s: clk_enable() failed!\n", __func__);
338 			ret = regulator_disable(
339 					device_data->regulator);
340 			goto out;
341 		}
342 		device_data->power_state = true;
343 	}
344 
345 	if (device_data->restore_dev_state) {
346 		if (restore_device_state) {
347 			device_data->restore_dev_state = false;
348 			hash_resume_state(device_data, &device_data->state);
349 		}
350 	}
351 out:
352 	spin_unlock(&device_data->power_state_lock);
353 
354 	return ret;
355 }
356 
357 /**
358  * hash_get_device_data - Checks for an available hash device and return it.
359  * @ctx:		Structure for the hash context.
360  * @device_data:	Structure for the hash device.
361  *
362  * This function check for an available hash device and return it to
363  * the caller.
364  * Note! Caller need to release the device, calling up().
365  */
hash_get_device_data(struct hash_ctx * ctx,struct hash_device_data ** device_data)366 static int hash_get_device_data(struct hash_ctx *ctx,
367 				struct hash_device_data **device_data)
368 {
369 	int			ret;
370 	struct klist_iter	device_iterator;
371 	struct klist_node	*device_node;
372 	struct hash_device_data *local_device_data = NULL;
373 
374 	/* Wait until a device is available */
375 	ret = down_interruptible(&driver_data.device_allocation);
376 	if (ret)
377 		return ret;  /* Interrupted */
378 
379 	/* Select a device */
380 	klist_iter_init(&driver_data.device_list, &device_iterator);
381 	device_node = klist_next(&device_iterator);
382 	while (device_node) {
383 		local_device_data = container_of(device_node,
384 					   struct hash_device_data, list_node);
385 		spin_lock(&local_device_data->ctx_lock);
386 		/* current_ctx allocates a device, NULL = unallocated */
387 		if (local_device_data->current_ctx) {
388 			device_node = klist_next(&device_iterator);
389 		} else {
390 			local_device_data->current_ctx = ctx;
391 			ctx->device = local_device_data;
392 			spin_unlock(&local_device_data->ctx_lock);
393 			break;
394 		}
395 		spin_unlock(&local_device_data->ctx_lock);
396 	}
397 	klist_iter_exit(&device_iterator);
398 
399 	if (!device_node) {
400 		/**
401 		 * No free device found.
402 		 * Since we allocated a device with down_interruptible, this
403 		 * should not be able to happen.
404 		 * Number of available devices, which are contained in
405 		 * device_allocation, is therefore decremented by not doing
406 		 * an up(device_allocation).
407 		 */
408 		return -EBUSY;
409 	}
410 
411 	*device_data = local_device_data;
412 
413 	return 0;
414 }
415 
416 /**
417  * hash_hw_write_key - Writes the key to the hardware registries.
418  *
419  * @device_data:	Structure for the hash device.
420  * @key:		Key to be written.
421  * @keylen:		The lengt of the key.
422  *
423  * Note! This function DOES NOT write to the NBLW registry, even though
424  * specified in the the hw design spec. Either due to incorrect info in the
425  * spec or due to a bug in the hw.
426  */
hash_hw_write_key(struct hash_device_data * device_data,const u8 * key,unsigned int keylen)427 static void hash_hw_write_key(struct hash_device_data *device_data,
428 			      const u8 *key, unsigned int keylen)
429 {
430 	u32 word = 0;
431 	int nwords = 1;
432 
433 	HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
434 
435 	while (keylen >= 4) {
436 		u32 *key_word = (u32 *)key;
437 
438 		HASH_SET_DIN(key_word, nwords);
439 		keylen -= 4;
440 		key += 4;
441 	}
442 
443 	/* Take care of the remaining bytes in the last word */
444 	if (keylen) {
445 		word = 0;
446 		while (keylen) {
447 			word |= (key[keylen - 1] << (8 * (keylen - 1)));
448 			keylen--;
449 		}
450 
451 		HASH_SET_DIN(&word, nwords);
452 	}
453 
454 	while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
455 		cpu_relax();
456 
457 	HASH_SET_DCAL;
458 
459 	while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
460 		cpu_relax();
461 }
462 
463 /**
464  * init_hash_hw - Initialise the hash hardware for a new calculation.
465  * @device_data:	Structure for the hash device.
466  * @ctx:		The hash context.
467  *
468  * This function will enable the bits needed to clear and start a new
469  * calculation.
470  */
init_hash_hw(struct hash_device_data * device_data,struct hash_ctx * ctx)471 static int init_hash_hw(struct hash_device_data *device_data,
472 			struct hash_ctx *ctx)
473 {
474 	int ret = 0;
475 
476 	ret = hash_setconfiguration(device_data, &ctx->config);
477 	if (ret) {
478 		dev_err(device_data->dev, "%s: hash_setconfiguration() failed!\n",
479 			__func__);
480 		return ret;
481 	}
482 
483 	hash_begin(device_data, ctx);
484 
485 	if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
486 		hash_hw_write_key(device_data, ctx->key, ctx->keylen);
487 
488 	return ret;
489 }
490 
491 /**
492  * hash_get_nents - Return number of entries (nents) in scatterlist (sg).
493  *
494  * @sg:		Scatterlist.
495  * @size:	Size in bytes.
496  * @aligned:	True if sg data aligned to work in DMA mode.
497  *
498  */
hash_get_nents(struct scatterlist * sg,int size,bool * aligned)499 static int hash_get_nents(struct scatterlist *sg, int size, bool *aligned)
500 {
501 	int nents = 0;
502 	bool aligned_data = true;
503 
504 	while (size > 0 && sg) {
505 		nents++;
506 		size -= sg->length;
507 
508 		/* hash_set_dma_transfer will align last nent */
509 		if ((aligned && !IS_ALIGNED(sg->offset, HASH_DMA_ALIGN_SIZE)) ||
510 		    (!IS_ALIGNED(sg->length, HASH_DMA_ALIGN_SIZE) && size > 0))
511 			aligned_data = false;
512 
513 		sg = sg_next(sg);
514 	}
515 
516 	if (aligned)
517 		*aligned = aligned_data;
518 
519 	if (size != 0)
520 		return -EFAULT;
521 
522 	return nents;
523 }
524 
525 /**
526  * hash_dma_valid_data - checks for dma valid sg data.
527  * @sg:		Scatterlist.
528  * @datasize:	Datasize in bytes.
529  *
530  * NOTE! This function checks for dma valid sg data, since dma
531  * only accept datasizes of even wordsize.
532  */
hash_dma_valid_data(struct scatterlist * sg,int datasize)533 static bool hash_dma_valid_data(struct scatterlist *sg, int datasize)
534 {
535 	bool aligned;
536 
537 	/* Need to include at least one nent, else error */
538 	if (hash_get_nents(sg, datasize, &aligned) < 1)
539 		return false;
540 
541 	return aligned;
542 }
543 
544 /**
545  * ux500_hash_init - Common hash init function for SHA1/SHA2 (SHA256).
546  * @req: The hash request for the job.
547  *
548  * Initialize structures.
549  */
ux500_hash_init(struct ahash_request * req)550 static int ux500_hash_init(struct ahash_request *req)
551 {
552 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
553 	struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
554 	struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
555 
556 	if (!ctx->key)
557 		ctx->keylen = 0;
558 
559 	memset(&req_ctx->state, 0, sizeof(struct hash_state));
560 	req_ctx->updated = 0;
561 	if (hash_mode == HASH_MODE_DMA) {
562 		if (req->nbytes < HASH_DMA_ALIGN_SIZE) {
563 			req_ctx->dma_mode = false; /* Don't use DMA */
564 
565 			pr_debug("%s: DMA mode, but direct to CPU mode for data size < %d\n",
566 				 __func__, HASH_DMA_ALIGN_SIZE);
567 		} else {
568 			if (req->nbytes >= HASH_DMA_PERFORMANCE_MIN_SIZE &&
569 			    hash_dma_valid_data(req->src, req->nbytes)) {
570 				req_ctx->dma_mode = true;
571 			} else {
572 				req_ctx->dma_mode = false;
573 				pr_debug("%s: DMA mode, but use CPU mode for datalength < %d or non-aligned data, except in last nent\n",
574 					 __func__,
575 					 HASH_DMA_PERFORMANCE_MIN_SIZE);
576 			}
577 		}
578 	}
579 	return 0;
580 }
581 
582 /**
583  * hash_processblock - This function processes a single block of 512 bits (64
584  *                     bytes), word aligned, starting at message.
585  * @device_data:	Structure for the hash device.
586  * @message:		Block (512 bits) of message to be written to
587  *			the HASH hardware.
588  * @length:		Message length
589  *
590  */
hash_processblock(struct hash_device_data * device_data,const u32 * message,int length)591 static void hash_processblock(struct hash_device_data *device_data,
592 			      const u32 *message, int length)
593 {
594 	int len = length / HASH_BYTES_PER_WORD;
595 	/*
596 	 * NBLW bits. Reset the number of bits in last word (NBLW).
597 	 */
598 	HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
599 
600 	/*
601 	 * Write message data to the HASH_DIN register.
602 	 */
603 	HASH_SET_DIN(message, len);
604 }
605 
606 /**
607  * hash_messagepad - Pads a message and write the nblw bits.
608  * @device_data:	Structure for the hash device.
609  * @message:		Last word of a message.
610  * @index_bytes:	The number of bytes in the last message.
611  *
612  * This function manages the final part of the digest calculation, when less
613  * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
614  *
615  */
hash_messagepad(struct hash_device_data * device_data,const u32 * message,u8 index_bytes)616 static void hash_messagepad(struct hash_device_data *device_data,
617 			    const u32 *message, u8 index_bytes)
618 {
619 	int nwords = 1;
620 
621 	/*
622 	 * Clear hash str register, only clear NBLW
623 	 * since DCAL will be reset by hardware.
624 	 */
625 	HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
626 
627 	/* Main loop */
628 	while (index_bytes >= 4) {
629 		HASH_SET_DIN(message, nwords);
630 		index_bytes -= 4;
631 		message++;
632 	}
633 
634 	if (index_bytes)
635 		HASH_SET_DIN(message, nwords);
636 
637 	while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
638 		cpu_relax();
639 
640 	/* num_of_bytes == 0 => NBLW <- 0 (32 bits valid in DATAIN) */
641 	HASH_SET_NBLW(index_bytes * 8);
642 	dev_dbg(device_data->dev, "%s: DIN=0x%08x NBLW=%lu\n",
643 		__func__, readl_relaxed(&device_data->base->din),
644 		readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
645 	HASH_SET_DCAL;
646 	dev_dbg(device_data->dev, "%s: after dcal -> DIN=0x%08x NBLW=%lu\n",
647 		__func__, readl_relaxed(&device_data->base->din),
648 		readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
649 
650 	while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
651 		cpu_relax();
652 }
653 
654 /**
655  * hash_incrementlength - Increments the length of the current message.
656  * @ctx: Hash context
657  * @incr: Length of message processed already
658  *
659  * Overflow cannot occur, because conditions for overflow are checked in
660  * hash_hw_update.
661  */
hash_incrementlength(struct hash_req_ctx * ctx,u32 incr)662 static void hash_incrementlength(struct hash_req_ctx *ctx, u32 incr)
663 {
664 	ctx->state.length.low_word += incr;
665 
666 	/* Check for wrap-around */
667 	if (ctx->state.length.low_word < incr)
668 		ctx->state.length.high_word++;
669 }
670 
671 /**
672  * hash_setconfiguration - Sets the required configuration for the hash
673  *                         hardware.
674  * @device_data:	Structure for the hash device.
675  * @config:		Pointer to a configuration structure.
676  */
hash_setconfiguration(struct hash_device_data * device_data,struct hash_config * config)677 int hash_setconfiguration(struct hash_device_data *device_data,
678 			  struct hash_config *config)
679 {
680 	int ret = 0;
681 
682 	if (config->algorithm != HASH_ALGO_SHA1 &&
683 	    config->algorithm != HASH_ALGO_SHA256)
684 		return -EPERM;
685 
686 	/*
687 	 * DATAFORM bits. Set the DATAFORM bits to 0b11, which means the data
688 	 * to be written to HASH_DIN is considered as 32 bits.
689 	 */
690 	HASH_SET_DATA_FORMAT(config->data_format);
691 
692 	/*
693 	 * ALGO bit. Set to 0b1 for SHA-1 and 0b0 for SHA-256
694 	 */
695 	switch (config->algorithm) {
696 	case HASH_ALGO_SHA1:
697 		HASH_SET_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
698 		break;
699 
700 	case HASH_ALGO_SHA256:
701 		HASH_CLEAR_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
702 		break;
703 
704 	default:
705 		dev_err(device_data->dev, "%s: Incorrect algorithm\n",
706 			__func__);
707 		return -EPERM;
708 	}
709 
710 	/*
711 	 * MODE bit. This bit selects between HASH or HMAC mode for the
712 	 * selected algorithm. 0b0 = HASH and 0b1 = HMAC.
713 	 */
714 	if (HASH_OPER_MODE_HASH == config->oper_mode)
715 		HASH_CLEAR_BITS(&device_data->base->cr,
716 				HASH_CR_MODE_MASK);
717 	else if (HASH_OPER_MODE_HMAC == config->oper_mode) {
718 		HASH_SET_BITS(&device_data->base->cr, HASH_CR_MODE_MASK);
719 		if (device_data->current_ctx->keylen > HASH_BLOCK_SIZE) {
720 			/* Truncate key to blocksize */
721 			dev_dbg(device_data->dev, "%s: LKEY set\n", __func__);
722 			HASH_SET_BITS(&device_data->base->cr,
723 				      HASH_CR_LKEY_MASK);
724 		} else {
725 			dev_dbg(device_data->dev, "%s: LKEY cleared\n",
726 				__func__);
727 			HASH_CLEAR_BITS(&device_data->base->cr,
728 					HASH_CR_LKEY_MASK);
729 		}
730 	} else {	/* Wrong hash mode */
731 		ret = -EPERM;
732 		dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
733 			__func__);
734 	}
735 	return ret;
736 }
737 
738 /**
739  * hash_begin - This routine resets some globals and initializes the hash
740  *              hardware.
741  * @device_data:	Structure for the hash device.
742  * @ctx:		Hash context.
743  */
hash_begin(struct hash_device_data * device_data,struct hash_ctx * ctx)744 void hash_begin(struct hash_device_data *device_data, struct hash_ctx *ctx)
745 {
746 	/* HW and SW initializations */
747 	/* Note: there is no need to initialize buffer and digest members */
748 
749 	while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
750 		cpu_relax();
751 
752 	/*
753 	 * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
754 	 * prepare the initialize the HASH accelerator to compute the message
755 	 * digest of a new message.
756 	 */
757 	HASH_INITIALIZE;
758 
759 	/*
760 	 * NBLW bits. Reset the number of bits in last word (NBLW).
761 	 */
762 	HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
763 }
764 
hash_process_data(struct hash_device_data * device_data,struct hash_ctx * ctx,struct hash_req_ctx * req_ctx,int msg_length,u8 * data_buffer,u8 * buffer,u8 * index)765 static int hash_process_data(struct hash_device_data *device_data,
766 			     struct hash_ctx *ctx, struct hash_req_ctx *req_ctx,
767 			     int msg_length, u8 *data_buffer, u8 *buffer,
768 			     u8 *index)
769 {
770 	int ret = 0;
771 	u32 count;
772 
773 	do {
774 		if ((*index + msg_length) < HASH_BLOCK_SIZE) {
775 			for (count = 0; count < msg_length; count++) {
776 				buffer[*index + count] =
777 					*(data_buffer + count);
778 			}
779 			*index += msg_length;
780 			msg_length = 0;
781 		} else {
782 			if (req_ctx->updated) {
783 				ret = hash_resume_state(device_data,
784 						&device_data->state);
785 				memmove(req_ctx->state.buffer,
786 					device_data->state.buffer,
787 					HASH_BLOCK_SIZE);
788 				if (ret) {
789 					dev_err(device_data->dev,
790 						"%s: hash_resume_state() failed!\n",
791 						__func__);
792 					goto out;
793 				}
794 			} else {
795 				ret = init_hash_hw(device_data, ctx);
796 				if (ret) {
797 					dev_err(device_data->dev,
798 						"%s: init_hash_hw() failed!\n",
799 						__func__);
800 					goto out;
801 				}
802 				req_ctx->updated = 1;
803 			}
804 			/*
805 			 * If 'data_buffer' is four byte aligned and
806 			 * local buffer does not have any data, we can
807 			 * write data directly from 'data_buffer' to
808 			 * HW peripheral, otherwise we first copy data
809 			 * to a local buffer
810 			 */
811 			if (IS_ALIGNED((unsigned long)data_buffer, 4) &&
812 			    (0 == *index))
813 				hash_processblock(device_data,
814 						  (const u32 *)data_buffer,
815 						  HASH_BLOCK_SIZE);
816 			else {
817 				for (count = 0;
818 				     count < (u32)(HASH_BLOCK_SIZE - *index);
819 				     count++) {
820 					buffer[*index + count] =
821 						*(data_buffer + count);
822 				}
823 				hash_processblock(device_data,
824 						  (const u32 *)buffer,
825 						  HASH_BLOCK_SIZE);
826 			}
827 			hash_incrementlength(req_ctx, HASH_BLOCK_SIZE);
828 			data_buffer += (HASH_BLOCK_SIZE - *index);
829 
830 			msg_length -= (HASH_BLOCK_SIZE - *index);
831 			*index = 0;
832 
833 			ret = hash_save_state(device_data,
834 					&device_data->state);
835 
836 			memmove(device_data->state.buffer,
837 				req_ctx->state.buffer,
838 				HASH_BLOCK_SIZE);
839 			if (ret) {
840 				dev_err(device_data->dev, "%s: hash_save_state() failed!\n",
841 					__func__);
842 				goto out;
843 			}
844 		}
845 	} while (msg_length != 0);
846 out:
847 
848 	return ret;
849 }
850 
851 /**
852  * hash_dma_final - The hash dma final function for SHA1/SHA256.
853  * @req:	The hash request for the job.
854  */
hash_dma_final(struct ahash_request * req)855 static int hash_dma_final(struct ahash_request *req)
856 {
857 	int ret = 0;
858 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
859 	struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
860 	struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
861 	struct hash_device_data *device_data;
862 	u8 digest[SHA256_DIGEST_SIZE];
863 	int bytes_written = 0;
864 
865 	ret = hash_get_device_data(ctx, &device_data);
866 	if (ret)
867 		return ret;
868 
869 	dev_dbg(device_data->dev, "%s: (ctx=0x%lx)!\n", __func__,
870 		(unsigned long)ctx);
871 
872 	if (req_ctx->updated) {
873 		ret = hash_resume_state(device_data, &device_data->state);
874 
875 		if (ret) {
876 			dev_err(device_data->dev, "%s: hash_resume_state() failed!\n",
877 				__func__);
878 			goto out;
879 		}
880 	}
881 
882 	if (!req_ctx->updated) {
883 		ret = hash_setconfiguration(device_data, &ctx->config);
884 		if (ret) {
885 			dev_err(device_data->dev,
886 				"%s: hash_setconfiguration() failed!\n",
887 				__func__);
888 			goto out;
889 		}
890 
891 		/* Enable DMA input */
892 		if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode) {
893 			HASH_CLEAR_BITS(&device_data->base->cr,
894 					HASH_CR_DMAE_MASK);
895 		} else {
896 			HASH_SET_BITS(&device_data->base->cr,
897 				      HASH_CR_DMAE_MASK);
898 			HASH_SET_BITS(&device_data->base->cr,
899 				      HASH_CR_PRIVN_MASK);
900 		}
901 
902 		HASH_INITIALIZE;
903 
904 		if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
905 			hash_hw_write_key(device_data, ctx->key, ctx->keylen);
906 
907 		/* Number of bits in last word = (nbytes * 8) % 32 */
908 		HASH_SET_NBLW((req->nbytes * 8) % 32);
909 		req_ctx->updated = 1;
910 	}
911 
912 	/* Store the nents in the dma struct. */
913 	ctx->device->dma.nents = hash_get_nents(req->src, req->nbytes, NULL);
914 	if (!ctx->device->dma.nents) {
915 		dev_err(device_data->dev, "%s: ctx->device->dma.nents = 0\n",
916 			__func__);
917 		ret = ctx->device->dma.nents;
918 		goto out;
919 	}
920 
921 	bytes_written = hash_dma_write(ctx, req->src, req->nbytes);
922 	if (bytes_written != req->nbytes) {
923 		dev_err(device_data->dev, "%s: hash_dma_write() failed!\n",
924 			__func__);
925 		ret = bytes_written;
926 		goto out;
927 	}
928 
929 	wait_for_completion(&ctx->device->dma.complete);
930 	hash_dma_done(ctx);
931 
932 	while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
933 		cpu_relax();
934 
935 	if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
936 		unsigned int keylen = ctx->keylen;
937 		u8 *key = ctx->key;
938 
939 		dev_dbg(device_data->dev, "%s: keylen: %d\n",
940 			__func__, ctx->keylen);
941 		hash_hw_write_key(device_data, key, keylen);
942 	}
943 
944 	hash_get_digest(device_data, digest, ctx->config.algorithm);
945 	memcpy(req->result, digest, ctx->digestsize);
946 
947 out:
948 	release_hash_device(device_data);
949 
950 	/**
951 	 * Allocated in setkey, and only used in HMAC.
952 	 */
953 	kfree(ctx->key);
954 
955 	return ret;
956 }
957 
958 /**
959  * hash_hw_final - The final hash calculation function
960  * @req:	The hash request for the job.
961  */
hash_hw_final(struct ahash_request * req)962 static int hash_hw_final(struct ahash_request *req)
963 {
964 	int ret = 0;
965 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
966 	struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
967 	struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
968 	struct hash_device_data *device_data;
969 	u8 digest[SHA256_DIGEST_SIZE];
970 
971 	ret = hash_get_device_data(ctx, &device_data);
972 	if (ret)
973 		return ret;
974 
975 	dev_dbg(device_data->dev, "%s: (ctx=0x%lx)!\n", __func__,
976 		(unsigned long)ctx);
977 
978 	if (req_ctx->updated) {
979 		ret = hash_resume_state(device_data, &device_data->state);
980 
981 		if (ret) {
982 			dev_err(device_data->dev,
983 				"%s: hash_resume_state() failed!\n", __func__);
984 			goto out;
985 		}
986 	} else if (req->nbytes == 0 && ctx->keylen == 0) {
987 		u8 zero_hash[SHA256_DIGEST_SIZE];
988 		u32 zero_hash_size = 0;
989 		bool zero_digest = false;
990 		/**
991 		 * Use a pre-calculated empty message digest
992 		 * (workaround since hw return zeroes, hw bug!?)
993 		 */
994 		ret = get_empty_message_digest(device_data, &zero_hash[0],
995 				&zero_hash_size, &zero_digest);
996 		if (!ret && likely(zero_hash_size == ctx->digestsize) &&
997 		    zero_digest) {
998 			memcpy(req->result, &zero_hash[0], ctx->digestsize);
999 			goto out;
1000 		} else if (!ret && !zero_digest) {
1001 			dev_dbg(device_data->dev,
1002 				"%s: HMAC zero msg with key, continue...\n",
1003 				__func__);
1004 		} else {
1005 			dev_err(device_data->dev,
1006 				"%s: ret=%d, or wrong digest size? %s\n",
1007 				__func__, ret,
1008 				zero_hash_size == ctx->digestsize ?
1009 				"true" : "false");
1010 			/* Return error */
1011 			goto out;
1012 		}
1013 	} else if (req->nbytes == 0 && ctx->keylen > 0) {
1014 		dev_err(device_data->dev, "%s: Empty message with keylength > 0, NOT supported\n",
1015 			__func__);
1016 		goto out;
1017 	}
1018 
1019 	if (!req_ctx->updated) {
1020 		ret = init_hash_hw(device_data, ctx);
1021 		if (ret) {
1022 			dev_err(device_data->dev,
1023 				"%s: init_hash_hw() failed!\n", __func__);
1024 			goto out;
1025 		}
1026 	}
1027 
1028 	if (req_ctx->state.index) {
1029 		hash_messagepad(device_data, req_ctx->state.buffer,
1030 				req_ctx->state.index);
1031 	} else {
1032 		HASH_SET_DCAL;
1033 		while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
1034 			cpu_relax();
1035 	}
1036 
1037 	if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
1038 		unsigned int keylen = ctx->keylen;
1039 		u8 *key = ctx->key;
1040 
1041 		dev_dbg(device_data->dev, "%s: keylen: %d\n",
1042 			__func__, ctx->keylen);
1043 		hash_hw_write_key(device_data, key, keylen);
1044 	}
1045 
1046 	hash_get_digest(device_data, digest, ctx->config.algorithm);
1047 	memcpy(req->result, digest, ctx->digestsize);
1048 
1049 out:
1050 	release_hash_device(device_data);
1051 
1052 	/**
1053 	 * Allocated in setkey, and only used in HMAC.
1054 	 */
1055 	kfree(ctx->key);
1056 
1057 	return ret;
1058 }
1059 
1060 /**
1061  * hash_hw_update - Updates current HASH computation hashing another part of
1062  *                  the message.
1063  * @req:	Byte array containing the message to be hashed (caller
1064  *		allocated).
1065  */
hash_hw_update(struct ahash_request * req)1066 int hash_hw_update(struct ahash_request *req)
1067 {
1068 	int ret = 0;
1069 	u8 index = 0;
1070 	u8 *buffer;
1071 	struct hash_device_data *device_data;
1072 	u8 *data_buffer;
1073 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1074 	struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1075 	struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1076 	struct crypto_hash_walk walk;
1077 	int msg_length;
1078 
1079 	index = req_ctx->state.index;
1080 	buffer = (u8 *)req_ctx->state.buffer;
1081 
1082 	ret = hash_get_device_data(ctx, &device_data);
1083 	if (ret)
1084 		return ret;
1085 
1086 	msg_length = crypto_hash_walk_first(req, &walk);
1087 
1088 	/* Empty message ("") is correct indata */
1089 	if (msg_length == 0) {
1090 		ret = 0;
1091 		goto release_dev;
1092 	}
1093 
1094 	/* Check if ctx->state.length + msg_length
1095 	   overflows */
1096 	if (msg_length > (req_ctx->state.length.low_word + msg_length) &&
1097 	    HASH_HIGH_WORD_MAX_VAL == req_ctx->state.length.high_word) {
1098 		pr_err("%s: HASH_MSG_LENGTH_OVERFLOW!\n", __func__);
1099 		ret = crypto_hash_walk_done(&walk, -EPERM);
1100 		goto release_dev;
1101 	}
1102 
1103 	/* Main loop */
1104 	while (0 != msg_length) {
1105 		data_buffer = walk.data;
1106 		ret = hash_process_data(device_data, ctx, req_ctx, msg_length,
1107 				data_buffer, buffer, &index);
1108 
1109 		if (ret) {
1110 			dev_err(device_data->dev, "%s: hash_internal_hw_update() failed!\n",
1111 				__func__);
1112 			crypto_hash_walk_done(&walk, ret);
1113 			goto release_dev;
1114 		}
1115 
1116 		msg_length = crypto_hash_walk_done(&walk, 0);
1117 	}
1118 
1119 	req_ctx->state.index = index;
1120 	dev_dbg(device_data->dev, "%s: indata length=%d, bin=%d\n",
1121 		__func__, req_ctx->state.index, req_ctx->state.bit_index);
1122 
1123 release_dev:
1124 	release_hash_device(device_data);
1125 
1126 	return ret;
1127 }
1128 
1129 /**
1130  * hash_resume_state - Function that resumes the state of an calculation.
1131  * @device_data:	Pointer to the device structure.
1132  * @device_state:	The state to be restored in the hash hardware
1133  */
hash_resume_state(struct hash_device_data * device_data,const struct hash_state * device_state)1134 int hash_resume_state(struct hash_device_data *device_data,
1135 		      const struct hash_state *device_state)
1136 {
1137 	u32 temp_cr;
1138 	s32 count;
1139 	int hash_mode = HASH_OPER_MODE_HASH;
1140 
1141 	if (NULL == device_state) {
1142 		dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1143 			__func__);
1144 		return -EPERM;
1145 	}
1146 
1147 	/* Check correctness of index and length members */
1148 	if (device_state->index > HASH_BLOCK_SIZE ||
1149 	    (device_state->length.low_word % HASH_BLOCK_SIZE) != 0) {
1150 		dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1151 			__func__);
1152 		return -EPERM;
1153 	}
1154 
1155 	/*
1156 	 * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
1157 	 * prepare the initialize the HASH accelerator to compute the message
1158 	 * digest of a new message.
1159 	 */
1160 	HASH_INITIALIZE;
1161 
1162 	temp_cr = device_state->temp_cr;
1163 	writel_relaxed(temp_cr & HASH_CR_RESUME_MASK, &device_data->base->cr);
1164 
1165 	if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
1166 		hash_mode = HASH_OPER_MODE_HMAC;
1167 	else
1168 		hash_mode = HASH_OPER_MODE_HASH;
1169 
1170 	for (count = 0; count < HASH_CSR_COUNT; count++) {
1171 		if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1172 			break;
1173 
1174 		writel_relaxed(device_state->csr[count],
1175 			       &device_data->base->csrx[count]);
1176 	}
1177 
1178 	writel_relaxed(device_state->csfull, &device_data->base->csfull);
1179 	writel_relaxed(device_state->csdatain, &device_data->base->csdatain);
1180 
1181 	writel_relaxed(device_state->str_reg, &device_data->base->str);
1182 	writel_relaxed(temp_cr, &device_data->base->cr);
1183 
1184 	return 0;
1185 }
1186 
1187 /**
1188  * hash_save_state - Function that saves the state of hardware.
1189  * @device_data:	Pointer to the device structure.
1190  * @device_state:	The strucure where the hardware state should be saved.
1191  */
hash_save_state(struct hash_device_data * device_data,struct hash_state * device_state)1192 int hash_save_state(struct hash_device_data *device_data,
1193 		    struct hash_state *device_state)
1194 {
1195 	u32 temp_cr;
1196 	u32 count;
1197 	int hash_mode = HASH_OPER_MODE_HASH;
1198 
1199 	if (NULL == device_state) {
1200 		dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1201 			__func__);
1202 		return -ENOTSUPP;
1203 	}
1204 
1205 	/* Write dummy value to force digest intermediate calculation. This
1206 	 * actually makes sure that there isn't any ongoing calculation in the
1207 	 * hardware.
1208 	 */
1209 	while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
1210 		cpu_relax();
1211 
1212 	temp_cr = readl_relaxed(&device_data->base->cr);
1213 
1214 	device_state->str_reg = readl_relaxed(&device_data->base->str);
1215 
1216 	device_state->din_reg = readl_relaxed(&device_data->base->din);
1217 
1218 	if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
1219 		hash_mode = HASH_OPER_MODE_HMAC;
1220 	else
1221 		hash_mode = HASH_OPER_MODE_HASH;
1222 
1223 	for (count = 0; count < HASH_CSR_COUNT; count++) {
1224 		if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1225 			break;
1226 
1227 		device_state->csr[count] =
1228 			readl_relaxed(&device_data->base->csrx[count]);
1229 	}
1230 
1231 	device_state->csfull = readl_relaxed(&device_data->base->csfull);
1232 	device_state->csdatain = readl_relaxed(&device_data->base->csdatain);
1233 
1234 	device_state->temp_cr = temp_cr;
1235 
1236 	return 0;
1237 }
1238 
1239 /**
1240  * hash_check_hw - This routine checks for peripheral Ids and PCell Ids.
1241  * @device_data:
1242  *
1243  */
hash_check_hw(struct hash_device_data * device_data)1244 int hash_check_hw(struct hash_device_data *device_data)
1245 {
1246 	/* Checking Peripheral Ids  */
1247 	if (HASH_P_ID0 == readl_relaxed(&device_data->base->periphid0) &&
1248 	    HASH_P_ID1 == readl_relaxed(&device_data->base->periphid1) &&
1249 	    HASH_P_ID2 == readl_relaxed(&device_data->base->periphid2) &&
1250 	    HASH_P_ID3 == readl_relaxed(&device_data->base->periphid3) &&
1251 	    HASH_CELL_ID0 == readl_relaxed(&device_data->base->cellid0) &&
1252 	    HASH_CELL_ID1 == readl_relaxed(&device_data->base->cellid1) &&
1253 	    HASH_CELL_ID2 == readl_relaxed(&device_data->base->cellid2) &&
1254 	    HASH_CELL_ID3 == readl_relaxed(&device_data->base->cellid3)) {
1255 		return 0;
1256 	}
1257 
1258 	dev_err(device_data->dev, "%s: HASH_UNSUPPORTED_HW!\n", __func__);
1259 	return -ENOTSUPP;
1260 }
1261 
1262 /**
1263  * hash_get_digest - Gets the digest.
1264  * @device_data:	Pointer to the device structure.
1265  * @digest:		User allocated byte array for the calculated digest.
1266  * @algorithm:		The algorithm in use.
1267  */
hash_get_digest(struct hash_device_data * device_data,u8 * digest,int algorithm)1268 void hash_get_digest(struct hash_device_data *device_data,
1269 		     u8 *digest, int algorithm)
1270 {
1271 	u32 temp_hx_val, count;
1272 	int loop_ctr;
1273 
1274 	if (algorithm != HASH_ALGO_SHA1 && algorithm != HASH_ALGO_SHA256) {
1275 		dev_err(device_data->dev, "%s: Incorrect algorithm %d\n",
1276 			__func__, algorithm);
1277 		return;
1278 	}
1279 
1280 	if (algorithm == HASH_ALGO_SHA1)
1281 		loop_ctr = SHA1_DIGEST_SIZE / sizeof(u32);
1282 	else
1283 		loop_ctr = SHA256_DIGEST_SIZE / sizeof(u32);
1284 
1285 	dev_dbg(device_data->dev, "%s: digest array:(0x%lx)\n",
1286 		__func__, (unsigned long)digest);
1287 
1288 	/* Copy result into digest array */
1289 	for (count = 0; count < loop_ctr; count++) {
1290 		temp_hx_val = readl_relaxed(&device_data->base->hx[count]);
1291 		digest[count * 4] = (u8) ((temp_hx_val >> 24) & 0xFF);
1292 		digest[count * 4 + 1] = (u8) ((temp_hx_val >> 16) & 0xFF);
1293 		digest[count * 4 + 2] = (u8) ((temp_hx_val >> 8) & 0xFF);
1294 		digest[count * 4 + 3] = (u8) ((temp_hx_val >> 0) & 0xFF);
1295 	}
1296 }
1297 
1298 /**
1299  * ahash_update - The hash update function for SHA1/SHA2 (SHA256).
1300  * @req: The hash request for the job.
1301  */
ahash_update(struct ahash_request * req)1302 static int ahash_update(struct ahash_request *req)
1303 {
1304 	int ret = 0;
1305 	struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1306 
1307 	if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode)
1308 		ret = hash_hw_update(req);
1309 	/* Skip update for DMA, all data will be passed to DMA in final */
1310 
1311 	if (ret) {
1312 		pr_err("%s: hash_hw_update() failed!\n", __func__);
1313 	}
1314 
1315 	return ret;
1316 }
1317 
1318 /**
1319  * ahash_final - The hash final function for SHA1/SHA2 (SHA256).
1320  * @req:	The hash request for the job.
1321  */
ahash_final(struct ahash_request * req)1322 static int ahash_final(struct ahash_request *req)
1323 {
1324 	int ret = 0;
1325 	struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1326 
1327 	pr_debug("%s: data size: %d\n", __func__, req->nbytes);
1328 
1329 	if ((hash_mode == HASH_MODE_DMA) && req_ctx->dma_mode)
1330 		ret = hash_dma_final(req);
1331 	else
1332 		ret = hash_hw_final(req);
1333 
1334 	if (ret) {
1335 		pr_err("%s: hash_hw/dma_final() failed\n", __func__);
1336 	}
1337 
1338 	return ret;
1339 }
1340 
hash_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen,int alg)1341 static int hash_setkey(struct crypto_ahash *tfm,
1342 		       const u8 *key, unsigned int keylen, int alg)
1343 {
1344 	int ret = 0;
1345 	struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1346 
1347 	/**
1348 	 * Freed in final.
1349 	 */
1350 	ctx->key = kmemdup(key, keylen, GFP_KERNEL);
1351 	if (!ctx->key) {
1352 		pr_err("%s: Failed to allocate ctx->key for %d\n",
1353 		       __func__, alg);
1354 		return -ENOMEM;
1355 	}
1356 	ctx->keylen = keylen;
1357 
1358 	return ret;
1359 }
1360 
ahash_sha1_init(struct ahash_request * req)1361 static int ahash_sha1_init(struct ahash_request *req)
1362 {
1363 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1364 	struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1365 
1366 	ctx->config.data_format = HASH_DATA_8_BITS;
1367 	ctx->config.algorithm = HASH_ALGO_SHA1;
1368 	ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1369 	ctx->digestsize = SHA1_DIGEST_SIZE;
1370 
1371 	return ux500_hash_init(req);
1372 }
1373 
ahash_sha256_init(struct ahash_request * req)1374 static int ahash_sha256_init(struct ahash_request *req)
1375 {
1376 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1377 	struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1378 
1379 	ctx->config.data_format = HASH_DATA_8_BITS;
1380 	ctx->config.algorithm = HASH_ALGO_SHA256;
1381 	ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1382 	ctx->digestsize = SHA256_DIGEST_SIZE;
1383 
1384 	return ux500_hash_init(req);
1385 }
1386 
ahash_sha1_digest(struct ahash_request * req)1387 static int ahash_sha1_digest(struct ahash_request *req)
1388 {
1389 	int ret2, ret1;
1390 
1391 	ret1 = ahash_sha1_init(req);
1392 	if (ret1)
1393 		goto out;
1394 
1395 	ret1 = ahash_update(req);
1396 	ret2 = ahash_final(req);
1397 
1398 out:
1399 	return ret1 ? ret1 : ret2;
1400 }
1401 
ahash_sha256_digest(struct ahash_request * req)1402 static int ahash_sha256_digest(struct ahash_request *req)
1403 {
1404 	int ret2, ret1;
1405 
1406 	ret1 = ahash_sha256_init(req);
1407 	if (ret1)
1408 		goto out;
1409 
1410 	ret1 = ahash_update(req);
1411 	ret2 = ahash_final(req);
1412 
1413 out:
1414 	return ret1 ? ret1 : ret2;
1415 }
1416 
ahash_noimport(struct ahash_request * req,const void * in)1417 static int ahash_noimport(struct ahash_request *req, const void *in)
1418 {
1419 	return -ENOSYS;
1420 }
1421 
ahash_noexport(struct ahash_request * req,void * out)1422 static int ahash_noexport(struct ahash_request *req, void *out)
1423 {
1424 	return -ENOSYS;
1425 }
1426 
hmac_sha1_init(struct ahash_request * req)1427 static int hmac_sha1_init(struct ahash_request *req)
1428 {
1429 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1430 	struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1431 
1432 	ctx->config.data_format	= HASH_DATA_8_BITS;
1433 	ctx->config.algorithm	= HASH_ALGO_SHA1;
1434 	ctx->config.oper_mode	= HASH_OPER_MODE_HMAC;
1435 	ctx->digestsize		= SHA1_DIGEST_SIZE;
1436 
1437 	return ux500_hash_init(req);
1438 }
1439 
hmac_sha256_init(struct ahash_request * req)1440 static int hmac_sha256_init(struct ahash_request *req)
1441 {
1442 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1443 	struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1444 
1445 	ctx->config.data_format	= HASH_DATA_8_BITS;
1446 	ctx->config.algorithm	= HASH_ALGO_SHA256;
1447 	ctx->config.oper_mode	= HASH_OPER_MODE_HMAC;
1448 	ctx->digestsize		= SHA256_DIGEST_SIZE;
1449 
1450 	return ux500_hash_init(req);
1451 }
1452 
hmac_sha1_digest(struct ahash_request * req)1453 static int hmac_sha1_digest(struct ahash_request *req)
1454 {
1455 	int ret2, ret1;
1456 
1457 	ret1 = hmac_sha1_init(req);
1458 	if (ret1)
1459 		goto out;
1460 
1461 	ret1 = ahash_update(req);
1462 	ret2 = ahash_final(req);
1463 
1464 out:
1465 	return ret1 ? ret1 : ret2;
1466 }
1467 
hmac_sha256_digest(struct ahash_request * req)1468 static int hmac_sha256_digest(struct ahash_request *req)
1469 {
1470 	int ret2, ret1;
1471 
1472 	ret1 = hmac_sha256_init(req);
1473 	if (ret1)
1474 		goto out;
1475 
1476 	ret1 = ahash_update(req);
1477 	ret2 = ahash_final(req);
1478 
1479 out:
1480 	return ret1 ? ret1 : ret2;
1481 }
1482 
hmac_sha1_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1483 static int hmac_sha1_setkey(struct crypto_ahash *tfm,
1484 			    const u8 *key, unsigned int keylen)
1485 {
1486 	return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA1);
1487 }
1488 
hmac_sha256_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1489 static int hmac_sha256_setkey(struct crypto_ahash *tfm,
1490 			      const u8 *key, unsigned int keylen)
1491 {
1492 	return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA256);
1493 }
1494 
1495 struct hash_algo_template {
1496 	struct hash_config conf;
1497 	struct ahash_alg hash;
1498 };
1499 
hash_cra_init(struct crypto_tfm * tfm)1500 static int hash_cra_init(struct crypto_tfm *tfm)
1501 {
1502 	struct hash_ctx *ctx = crypto_tfm_ctx(tfm);
1503 	struct crypto_alg *alg = tfm->__crt_alg;
1504 	struct hash_algo_template *hash_alg;
1505 
1506 	hash_alg = container_of(__crypto_ahash_alg(alg),
1507 			struct hash_algo_template,
1508 			hash);
1509 
1510 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1511 				 sizeof(struct hash_req_ctx));
1512 
1513 	ctx->config.data_format = HASH_DATA_8_BITS;
1514 	ctx->config.algorithm = hash_alg->conf.algorithm;
1515 	ctx->config.oper_mode = hash_alg->conf.oper_mode;
1516 
1517 	ctx->digestsize = hash_alg->hash.halg.digestsize;
1518 
1519 	return 0;
1520 }
1521 
1522 static struct hash_algo_template hash_algs[] = {
1523 	{
1524 		.conf.algorithm = HASH_ALGO_SHA1,
1525 		.conf.oper_mode = HASH_OPER_MODE_HASH,
1526 		.hash = {
1527 			.init = ux500_hash_init,
1528 			.update = ahash_update,
1529 			.final = ahash_final,
1530 			.digest = ahash_sha1_digest,
1531 			.export = ahash_noexport,
1532 			.import = ahash_noimport,
1533 			.halg.digestsize = SHA1_DIGEST_SIZE,
1534 			.halg.statesize = sizeof(struct hash_ctx),
1535 			.halg.base = {
1536 				.cra_name = "sha1",
1537 				.cra_driver_name = "sha1-ux500",
1538 				.cra_flags = CRYPTO_ALG_ASYNC,
1539 				.cra_blocksize = SHA1_BLOCK_SIZE,
1540 				.cra_ctxsize = sizeof(struct hash_ctx),
1541 				.cra_init = hash_cra_init,
1542 				.cra_module = THIS_MODULE,
1543 			}
1544 		}
1545 	},
1546 	{
1547 		.conf.algorithm	= HASH_ALGO_SHA256,
1548 		.conf.oper_mode	= HASH_OPER_MODE_HASH,
1549 		.hash = {
1550 			.init = ux500_hash_init,
1551 			.update	= ahash_update,
1552 			.final = ahash_final,
1553 			.digest = ahash_sha256_digest,
1554 			.export = ahash_noexport,
1555 			.import = ahash_noimport,
1556 			.halg.digestsize = SHA256_DIGEST_SIZE,
1557 			.halg.statesize = sizeof(struct hash_ctx),
1558 			.halg.base = {
1559 				.cra_name = "sha256",
1560 				.cra_driver_name = "sha256-ux500",
1561 				.cra_flags = CRYPTO_ALG_ASYNC,
1562 				.cra_blocksize = SHA256_BLOCK_SIZE,
1563 				.cra_ctxsize = sizeof(struct hash_ctx),
1564 				.cra_init = hash_cra_init,
1565 				.cra_module = THIS_MODULE,
1566 			}
1567 		}
1568 	},
1569 	{
1570 		.conf.algorithm = HASH_ALGO_SHA1,
1571 		.conf.oper_mode = HASH_OPER_MODE_HMAC,
1572 			.hash = {
1573 			.init = ux500_hash_init,
1574 			.update = ahash_update,
1575 			.final = ahash_final,
1576 			.digest = hmac_sha1_digest,
1577 			.setkey = hmac_sha1_setkey,
1578 			.export = ahash_noexport,
1579 			.import = ahash_noimport,
1580 			.halg.digestsize = SHA1_DIGEST_SIZE,
1581 			.halg.statesize = sizeof(struct hash_ctx),
1582 			.halg.base = {
1583 				.cra_name = "hmac(sha1)",
1584 				.cra_driver_name = "hmac-sha1-ux500",
1585 				.cra_flags = CRYPTO_ALG_ASYNC,
1586 				.cra_blocksize = SHA1_BLOCK_SIZE,
1587 				.cra_ctxsize = sizeof(struct hash_ctx),
1588 				.cra_init = hash_cra_init,
1589 				.cra_module = THIS_MODULE,
1590 			}
1591 		}
1592 	},
1593 	{
1594 		.conf.algorithm = HASH_ALGO_SHA256,
1595 		.conf.oper_mode = HASH_OPER_MODE_HMAC,
1596 		.hash = {
1597 			.init = ux500_hash_init,
1598 			.update = ahash_update,
1599 			.final = ahash_final,
1600 			.digest = hmac_sha256_digest,
1601 			.setkey = hmac_sha256_setkey,
1602 			.export = ahash_noexport,
1603 			.import = ahash_noimport,
1604 			.halg.digestsize = SHA256_DIGEST_SIZE,
1605 			.halg.statesize = sizeof(struct hash_ctx),
1606 			.halg.base = {
1607 				.cra_name = "hmac(sha256)",
1608 				.cra_driver_name = "hmac-sha256-ux500",
1609 				.cra_flags = CRYPTO_ALG_ASYNC,
1610 				.cra_blocksize = SHA256_BLOCK_SIZE,
1611 				.cra_ctxsize = sizeof(struct hash_ctx),
1612 				.cra_init = hash_cra_init,
1613 				.cra_module = THIS_MODULE,
1614 			}
1615 		}
1616 	}
1617 };
1618 
ahash_algs_register_all(struct hash_device_data * device_data)1619 static int ahash_algs_register_all(struct hash_device_data *device_data)
1620 {
1621 	int ret;
1622 	int i;
1623 	int count;
1624 
1625 	for (i = 0; i < ARRAY_SIZE(hash_algs); i++) {
1626 		ret = crypto_register_ahash(&hash_algs[i].hash);
1627 		if (ret) {
1628 			count = i;
1629 			dev_err(device_data->dev, "%s: alg registration failed\n",
1630 				hash_algs[i].hash.halg.base.cra_driver_name);
1631 			goto unreg;
1632 		}
1633 	}
1634 	return 0;
1635 unreg:
1636 	for (i = 0; i < count; i++)
1637 		crypto_unregister_ahash(&hash_algs[i].hash);
1638 	return ret;
1639 }
1640 
ahash_algs_unregister_all(struct hash_device_data * device_data)1641 static void ahash_algs_unregister_all(struct hash_device_data *device_data)
1642 {
1643 	int i;
1644 
1645 	for (i = 0; i < ARRAY_SIZE(hash_algs); i++)
1646 		crypto_unregister_ahash(&hash_algs[i].hash);
1647 }
1648 
1649 /**
1650  * ux500_hash_probe - Function that probes the hash hardware.
1651  * @pdev: The platform device.
1652  */
ux500_hash_probe(struct platform_device * pdev)1653 static int ux500_hash_probe(struct platform_device *pdev)
1654 {
1655 	int			ret = 0;
1656 	struct resource		*res = NULL;
1657 	struct hash_device_data *device_data;
1658 	struct device		*dev = &pdev->dev;
1659 
1660 	device_data = devm_kzalloc(dev, sizeof(*device_data), GFP_ATOMIC);
1661 	if (!device_data) {
1662 		ret = -ENOMEM;
1663 		goto out;
1664 	}
1665 
1666 	device_data->dev = dev;
1667 	device_data->current_ctx = NULL;
1668 
1669 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1670 	if (!res) {
1671 		dev_dbg(dev, "%s: platform_get_resource() failed!\n", __func__);
1672 		ret = -ENODEV;
1673 		goto out;
1674 	}
1675 
1676 	device_data->phybase = res->start;
1677 	device_data->base = devm_ioremap_resource(dev, res);
1678 	if (IS_ERR(device_data->base)) {
1679 		ret = PTR_ERR(device_data->base);
1680 		goto out;
1681 	}
1682 	spin_lock_init(&device_data->ctx_lock);
1683 	spin_lock_init(&device_data->power_state_lock);
1684 
1685 	/* Enable power for HASH1 hardware block */
1686 	device_data->regulator = regulator_get(dev, "v-ape");
1687 	if (IS_ERR(device_data->regulator)) {
1688 		dev_err(dev, "%s: regulator_get() failed!\n", __func__);
1689 		ret = PTR_ERR(device_data->regulator);
1690 		device_data->regulator = NULL;
1691 		goto out;
1692 	}
1693 
1694 	/* Enable the clock for HASH1 hardware block */
1695 	device_data->clk = devm_clk_get(dev, NULL);
1696 	if (IS_ERR(device_data->clk)) {
1697 		dev_err(dev, "%s: clk_get() failed!\n", __func__);
1698 		ret = PTR_ERR(device_data->clk);
1699 		goto out_regulator;
1700 	}
1701 
1702 	ret = clk_prepare(device_data->clk);
1703 	if (ret) {
1704 		dev_err(dev, "%s: clk_prepare() failed!\n", __func__);
1705 		goto out_regulator;
1706 	}
1707 
1708 	/* Enable device power (and clock) */
1709 	ret = hash_enable_power(device_data, false);
1710 	if (ret) {
1711 		dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
1712 		goto out_clk_unprepare;
1713 	}
1714 
1715 	ret = hash_check_hw(device_data);
1716 	if (ret) {
1717 		dev_err(dev, "%s: hash_check_hw() failed!\n", __func__);
1718 		goto out_power;
1719 	}
1720 
1721 	if (hash_mode == HASH_MODE_DMA)
1722 		hash_dma_setup_channel(device_data, dev);
1723 
1724 	platform_set_drvdata(pdev, device_data);
1725 
1726 	/* Put the new device into the device list... */
1727 	klist_add_tail(&device_data->list_node, &driver_data.device_list);
1728 	/* ... and signal that a new device is available. */
1729 	up(&driver_data.device_allocation);
1730 
1731 	ret = ahash_algs_register_all(device_data);
1732 	if (ret) {
1733 		dev_err(dev, "%s: ahash_algs_register_all() failed!\n",
1734 			__func__);
1735 		goto out_power;
1736 	}
1737 
1738 	dev_info(dev, "successfully registered\n");
1739 	return 0;
1740 
1741 out_power:
1742 	hash_disable_power(device_data, false);
1743 
1744 out_clk_unprepare:
1745 	clk_unprepare(device_data->clk);
1746 
1747 out_regulator:
1748 	regulator_put(device_data->regulator);
1749 
1750 out:
1751 	return ret;
1752 }
1753 
1754 /**
1755  * ux500_hash_remove - Function that removes the hash device from the platform.
1756  * @pdev: The platform device.
1757  */
ux500_hash_remove(struct platform_device * pdev)1758 static int ux500_hash_remove(struct platform_device *pdev)
1759 {
1760 	struct hash_device_data *device_data;
1761 	struct device		*dev = &pdev->dev;
1762 
1763 	device_data = platform_get_drvdata(pdev);
1764 	if (!device_data) {
1765 		dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1766 		return -ENOMEM;
1767 	}
1768 
1769 	/* Try to decrease the number of available devices. */
1770 	if (down_trylock(&driver_data.device_allocation))
1771 		return -EBUSY;
1772 
1773 	/* Check that the device is free */
1774 	spin_lock(&device_data->ctx_lock);
1775 	/* current_ctx allocates a device, NULL = unallocated */
1776 	if (device_data->current_ctx) {
1777 		/* The device is busy */
1778 		spin_unlock(&device_data->ctx_lock);
1779 		/* Return the device to the pool. */
1780 		up(&driver_data.device_allocation);
1781 		return -EBUSY;
1782 	}
1783 
1784 	spin_unlock(&device_data->ctx_lock);
1785 
1786 	/* Remove the device from the list */
1787 	if (klist_node_attached(&device_data->list_node))
1788 		klist_remove(&device_data->list_node);
1789 
1790 	/* If this was the last device, remove the services */
1791 	if (list_empty(&driver_data.device_list.k_list))
1792 		ahash_algs_unregister_all(device_data);
1793 
1794 	if (hash_disable_power(device_data, false))
1795 		dev_err(dev, "%s: hash_disable_power() failed\n",
1796 			__func__);
1797 
1798 	clk_unprepare(device_data->clk);
1799 	regulator_put(device_data->regulator);
1800 
1801 	return 0;
1802 }
1803 
1804 /**
1805  * ux500_hash_shutdown - Function that shutdown the hash device.
1806  * @pdev: The platform device
1807  */
ux500_hash_shutdown(struct platform_device * pdev)1808 static void ux500_hash_shutdown(struct platform_device *pdev)
1809 {
1810 	struct hash_device_data *device_data;
1811 
1812 	device_data = platform_get_drvdata(pdev);
1813 	if (!device_data) {
1814 		dev_err(&pdev->dev, "%s: platform_get_drvdata() failed!\n",
1815 			__func__);
1816 		return;
1817 	}
1818 
1819 	/* Check that the device is free */
1820 	spin_lock(&device_data->ctx_lock);
1821 	/* current_ctx allocates a device, NULL = unallocated */
1822 	if (!device_data->current_ctx) {
1823 		if (down_trylock(&driver_data.device_allocation))
1824 			dev_dbg(&pdev->dev, "%s: Cryp still in use! Shutting down anyway...\n",
1825 				__func__);
1826 		/**
1827 		 * (Allocate the device)
1828 		 * Need to set this to non-null (dummy) value,
1829 		 * to avoid usage if context switching.
1830 		 */
1831 		device_data->current_ctx++;
1832 	}
1833 	spin_unlock(&device_data->ctx_lock);
1834 
1835 	/* Remove the device from the list */
1836 	if (klist_node_attached(&device_data->list_node))
1837 		klist_remove(&device_data->list_node);
1838 
1839 	/* If this was the last device, remove the services */
1840 	if (list_empty(&driver_data.device_list.k_list))
1841 		ahash_algs_unregister_all(device_data);
1842 
1843 	if (hash_disable_power(device_data, false))
1844 		dev_err(&pdev->dev, "%s: hash_disable_power() failed\n",
1845 			__func__);
1846 }
1847 
1848 #ifdef CONFIG_PM_SLEEP
1849 /**
1850  * ux500_hash_suspend - Function that suspends the hash device.
1851  * @dev:	Device to suspend.
1852  */
ux500_hash_suspend(struct device * dev)1853 static int ux500_hash_suspend(struct device *dev)
1854 {
1855 	int ret;
1856 	struct hash_device_data *device_data;
1857 	struct hash_ctx *temp_ctx = NULL;
1858 
1859 	device_data = dev_get_drvdata(dev);
1860 	if (!device_data) {
1861 		dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1862 		return -ENOMEM;
1863 	}
1864 
1865 	spin_lock(&device_data->ctx_lock);
1866 	if (!device_data->current_ctx)
1867 		device_data->current_ctx++;
1868 	spin_unlock(&device_data->ctx_lock);
1869 
1870 	if (device_data->current_ctx == ++temp_ctx) {
1871 		if (down_interruptible(&driver_data.device_allocation))
1872 			dev_dbg(dev, "%s: down_interruptible() failed\n",
1873 				__func__);
1874 		ret = hash_disable_power(device_data, false);
1875 
1876 	} else {
1877 		ret = hash_disable_power(device_data, true);
1878 	}
1879 
1880 	if (ret)
1881 		dev_err(dev, "%s: hash_disable_power()\n", __func__);
1882 
1883 	return ret;
1884 }
1885 
1886 /**
1887  * ux500_hash_resume - Function that resume the hash device.
1888  * @dev:	Device to resume.
1889  */
ux500_hash_resume(struct device * dev)1890 static int ux500_hash_resume(struct device *dev)
1891 {
1892 	int ret = 0;
1893 	struct hash_device_data *device_data;
1894 	struct hash_ctx *temp_ctx = NULL;
1895 
1896 	device_data = dev_get_drvdata(dev);
1897 	if (!device_data) {
1898 		dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1899 		return -ENOMEM;
1900 	}
1901 
1902 	spin_lock(&device_data->ctx_lock);
1903 	if (device_data->current_ctx == ++temp_ctx)
1904 		device_data->current_ctx = NULL;
1905 	spin_unlock(&device_data->ctx_lock);
1906 
1907 	if (!device_data->current_ctx)
1908 		up(&driver_data.device_allocation);
1909 	else
1910 		ret = hash_enable_power(device_data, true);
1911 
1912 	if (ret)
1913 		dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
1914 
1915 	return ret;
1916 }
1917 #endif
1918 
1919 static SIMPLE_DEV_PM_OPS(ux500_hash_pm, ux500_hash_suspend, ux500_hash_resume);
1920 
1921 static const struct of_device_id ux500_hash_match[] = {
1922 	{ .compatible = "stericsson,ux500-hash" },
1923 	{ },
1924 };
1925 MODULE_DEVICE_TABLE(of, ux500_hash_match);
1926 
1927 static struct platform_driver hash_driver = {
1928 	.probe  = ux500_hash_probe,
1929 	.remove = ux500_hash_remove,
1930 	.shutdown = ux500_hash_shutdown,
1931 	.driver = {
1932 		.name  = "hash1",
1933 		.of_match_table = ux500_hash_match,
1934 		.pm    = &ux500_hash_pm,
1935 	}
1936 };
1937 
1938 /**
1939  * ux500_hash_mod_init - The kernel module init function.
1940  */
ux500_hash_mod_init(void)1941 static int __init ux500_hash_mod_init(void)
1942 {
1943 	klist_init(&driver_data.device_list, NULL, NULL);
1944 	/* Initialize the semaphore to 0 devices (locked state) */
1945 	sema_init(&driver_data.device_allocation, 0);
1946 
1947 	return platform_driver_register(&hash_driver);
1948 }
1949 
1950 /**
1951  * ux500_hash_mod_fini - The kernel module exit function.
1952  */
ux500_hash_mod_fini(void)1953 static void __exit ux500_hash_mod_fini(void)
1954 {
1955 	platform_driver_unregister(&hash_driver);
1956 }
1957 
1958 module_init(ux500_hash_mod_init);
1959 module_exit(ux500_hash_mod_fini);
1960 
1961 MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 HASH engine.");
1962 MODULE_LICENSE("GPL");
1963 
1964 MODULE_ALIAS_CRYPTO("sha1-all");
1965 MODULE_ALIAS_CRYPTO("sha256-all");
1966 MODULE_ALIAS_CRYPTO("hmac-sha1-all");
1967 MODULE_ALIAS_CRYPTO("hmac-sha256-all");
1968