1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5 
6 /**
7  * DOC: Logical Rings, Logical Ring Contexts and Execlists
8  *
9  * Motivation:
10  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
11  * These expanded contexts enable a number of new abilities, especially
12  * "Execlists" (also implemented in this file).
13  *
14  * One of the main differences with the legacy HW contexts is that logical
15  * ring contexts incorporate many more things to the context's state, like
16  * PDPs or ringbuffer control registers:
17  *
18  * The reason why PDPs are included in the context is straightforward: as
19  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
20  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
21  * instead, the GPU will do it for you on the context switch.
22  *
23  * But, what about the ringbuffer control registers (head, tail, etc..)?
24  * shouldn't we just need a set of those per engine command streamer? This is
25  * where the name "Logical Rings" starts to make sense: by virtualizing the
26  * rings, the engine cs shifts to a new "ring buffer" with every context
27  * switch. When you want to submit a workload to the GPU you: A) choose your
28  * context, B) find its appropriate virtualized ring, C) write commands to it
29  * and then, finally, D) tell the GPU to switch to that context.
30  *
31  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
32  * to a contexts is via a context execution list, ergo "Execlists".
33  *
34  * LRC implementation:
35  * Regarding the creation of contexts, we have:
36  *
37  * - One global default context.
38  * - One local default context for each opened fd.
39  * - One local extra context for each context create ioctl call.
40  *
41  * Now that ringbuffers belong per-context (and not per-engine, like before)
42  * and that contexts are uniquely tied to a given engine (and not reusable,
43  * like before) we need:
44  *
45  * - One ringbuffer per-engine inside each context.
46  * - One backing object per-engine inside each context.
47  *
48  * The global default context starts its life with these new objects fully
49  * allocated and populated. The local default context for each opened fd is
50  * more complex, because we don't know at creation time which engine is going
51  * to use them. To handle this, we have implemented a deferred creation of LR
52  * contexts:
53  *
54  * The local context starts its life as a hollow or blank holder, that only
55  * gets populated for a given engine once we receive an execbuffer. If later
56  * on we receive another execbuffer ioctl for the same context but a different
57  * engine, we allocate/populate a new ringbuffer and context backing object and
58  * so on.
59  *
60  * Finally, regarding local contexts created using the ioctl call: as they are
61  * only allowed with the render ring, we can allocate & populate them right
62  * away (no need to defer anything, at least for now).
63  *
64  * Execlists implementation:
65  * Execlists are the new method by which, on gen8+ hardware, workloads are
66  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
67  * This method works as follows:
68  *
69  * When a request is committed, its commands (the BB start and any leading or
70  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
71  * for the appropriate context. The tail pointer in the hardware context is not
72  * updated at this time, but instead, kept by the driver in the ringbuffer
73  * structure. A structure representing this request is added to a request queue
74  * for the appropriate engine: this structure contains a copy of the context's
75  * tail after the request was written to the ring buffer and a pointer to the
76  * context itself.
77  *
78  * If the engine's request queue was empty before the request was added, the
79  * queue is processed immediately. Otherwise the queue will be processed during
80  * a context switch interrupt. In any case, elements on the queue will get sent
81  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
82  * globally unique 20-bits submission ID.
83  *
84  * When execution of a request completes, the GPU updates the context status
85  * buffer with a context complete event and generates a context switch interrupt.
86  * During the interrupt handling, the driver examines the events in the buffer:
87  * for each context complete event, if the announced ID matches that on the head
88  * of the request queue, then that request is retired and removed from the queue.
89  *
90  * After processing, if any requests were retired and the queue is not empty
91  * then a new execution list can be submitted. The two requests at the front of
92  * the queue are next to be submitted but since a context may not occur twice in
93  * an execution list, if subsequent requests have the same ID as the first then
94  * the two requests must be combined. This is done simply by discarding requests
95  * at the head of the queue until either only one requests is left (in which case
96  * we use a NULL second context) or the first two requests have unique IDs.
97  *
98  * By always executing the first two requests in the queue the driver ensures
99  * that the GPU is kept as busy as possible. In the case where a single context
100  * completes but a second context is still executing, the request for this second
101  * context will be at the head of the queue when we remove the first one. This
102  * request will then be resubmitted along with a new request for a different context,
103  * which will cause the hardware to continue executing the second request and queue
104  * the new request (the GPU detects the condition of a context getting preempted
105  * with the same context and optimizes the context switch flow by not doing
106  * preemption, but just sampling the new tail pointer).
107  *
108  */
109 #include <linux/interrupt.h>
110 
111 #include "i915_drv.h"
112 #include "i915_trace.h"
113 #include "i915_vgpu.h"
114 #include "gen8_engine_cs.h"
115 #include "intel_breadcrumbs.h"
116 #include "intel_context.h"
117 #include "intel_engine_pm.h"
118 #include "intel_engine_stats.h"
119 #include "intel_execlists_submission.h"
120 #include "intel_gt.h"
121 #include "intel_gt_pm.h"
122 #include "intel_gt_requests.h"
123 #include "intel_lrc.h"
124 #include "intel_lrc_reg.h"
125 #include "intel_mocs.h"
126 #include "intel_reset.h"
127 #include "intel_ring.h"
128 #include "intel_workarounds.h"
129 #include "shmem_utils.h"
130 
131 #define RING_EXECLIST_QFULL		(1 << 0x2)
132 #define RING_EXECLIST1_VALID		(1 << 0x3)
133 #define RING_EXECLIST0_VALID		(1 << 0x4)
134 #define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
135 #define RING_EXECLIST1_ACTIVE		(1 << 0x11)
136 #define RING_EXECLIST0_ACTIVE		(1 << 0x12)
137 
138 #define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
139 #define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
140 #define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
141 #define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
142 #define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
143 #define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
144 
145 #define GEN8_CTX_STATUS_COMPLETED_MASK \
146 	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
147 
148 #define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE	(0x1) /* lower csb dword */
149 #define GEN12_CTX_SWITCH_DETAIL(csb_dw)	((csb_dw) & 0xF) /* upper csb dword */
150 #define GEN12_CSB_SW_CTX_ID_MASK		GENMASK(25, 15)
151 #define GEN12_IDLE_CTX_ID		0x7FF
152 #define GEN12_CSB_CTX_VALID(csb_dw) \
153 	(FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID)
154 
155 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
156 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
157 
158 struct virtual_engine {
159 	struct intel_engine_cs base;
160 	struct intel_context context;
161 	struct rcu_work rcu;
162 
163 	/*
164 	 * We allow only a single request through the virtual engine at a time
165 	 * (each request in the timeline waits for the completion fence of
166 	 * the previous before being submitted). By restricting ourselves to
167 	 * only submitting a single request, each request is placed on to a
168 	 * physical to maximise load spreading (by virtue of the late greedy
169 	 * scheduling -- each real engine takes the next available request
170 	 * upon idling).
171 	 */
172 	struct i915_request *request;
173 
174 	/*
175 	 * We keep a rbtree of available virtual engines inside each physical
176 	 * engine, sorted by priority. Here we preallocate the nodes we need
177 	 * for the virtual engine, indexed by physical_engine->id.
178 	 */
179 	struct ve_node {
180 		struct rb_node rb;
181 		int prio;
182 	} nodes[I915_NUM_ENGINES];
183 
184 	/*
185 	 * Keep track of bonded pairs -- restrictions upon on our selection
186 	 * of physical engines any particular request may be submitted to.
187 	 * If we receive a submit-fence from a master engine, we will only
188 	 * use one of sibling_mask physical engines.
189 	 */
190 	struct ve_bond {
191 		const struct intel_engine_cs *master;
192 		intel_engine_mask_t sibling_mask;
193 	} *bonds;
194 	unsigned int num_bonds;
195 
196 	/* And finally, which physical engines this virtual engine maps onto. */
197 	unsigned int num_siblings;
198 	struct intel_engine_cs *siblings[];
199 };
200 
to_virtual_engine(struct intel_engine_cs * engine)201 static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
202 {
203 	GEM_BUG_ON(!intel_engine_is_virtual(engine));
204 	return container_of(engine, struct virtual_engine, base);
205 }
206 
207 static struct i915_request *
__active_request(const struct intel_timeline * const tl,struct i915_request * rq,int error)208 __active_request(const struct intel_timeline * const tl,
209 		 struct i915_request *rq,
210 		 int error)
211 {
212 	struct i915_request *active = rq;
213 
214 	list_for_each_entry_from_reverse(rq, &tl->requests, link) {
215 		if (__i915_request_is_complete(rq))
216 			break;
217 
218 		if (error) {
219 			i915_request_set_error_once(rq, error);
220 			__i915_request_skip(rq);
221 		}
222 		active = rq;
223 	}
224 
225 	return active;
226 }
227 
228 static struct i915_request *
active_request(const struct intel_timeline * const tl,struct i915_request * rq)229 active_request(const struct intel_timeline * const tl, struct i915_request *rq)
230 {
231 	return __active_request(tl, rq, 0);
232 }
233 
ring_set_paused(const struct intel_engine_cs * engine,int state)234 static void ring_set_paused(const struct intel_engine_cs *engine, int state)
235 {
236 	/*
237 	 * We inspect HWS_PREEMPT with a semaphore inside
238 	 * engine->emit_fini_breadcrumb. If the dword is true,
239 	 * the ring is paused as the semaphore will busywait
240 	 * until the dword is false.
241 	 */
242 	engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
243 	if (state)
244 		wmb();
245 }
246 
to_priolist(struct rb_node * rb)247 static struct i915_priolist *to_priolist(struct rb_node *rb)
248 {
249 	return rb_entry(rb, struct i915_priolist, node);
250 }
251 
rq_prio(const struct i915_request * rq)252 static int rq_prio(const struct i915_request *rq)
253 {
254 	return READ_ONCE(rq->sched.attr.priority);
255 }
256 
effective_prio(const struct i915_request * rq)257 static int effective_prio(const struct i915_request *rq)
258 {
259 	int prio = rq_prio(rq);
260 
261 	/*
262 	 * If this request is special and must not be interrupted at any
263 	 * cost, so be it. Note we are only checking the most recent request
264 	 * in the context and so may be masking an earlier vip request. It
265 	 * is hoped that under the conditions where nopreempt is used, this
266 	 * will not matter (i.e. all requests to that context will be
267 	 * nopreempt for as long as desired).
268 	 */
269 	if (i915_request_has_nopreempt(rq))
270 		prio = I915_PRIORITY_UNPREEMPTABLE;
271 
272 	return prio;
273 }
274 
queue_prio(const struct intel_engine_execlists * execlists)275 static int queue_prio(const struct intel_engine_execlists *execlists)
276 {
277 	struct rb_node *rb;
278 
279 	rb = rb_first_cached(&execlists->queue);
280 	if (!rb)
281 		return INT_MIN;
282 
283 	return to_priolist(rb)->priority;
284 }
285 
virtual_prio(const struct intel_engine_execlists * el)286 static int virtual_prio(const struct intel_engine_execlists *el)
287 {
288 	struct rb_node *rb = rb_first_cached(&el->virtual);
289 
290 	return rb ? rb_entry(rb, struct ve_node, rb)->prio : INT_MIN;
291 }
292 
need_preempt(const struct intel_engine_cs * engine,const struct i915_request * rq)293 static bool need_preempt(const struct intel_engine_cs *engine,
294 			 const struct i915_request *rq)
295 {
296 	int last_prio;
297 
298 	if (!intel_engine_has_semaphores(engine))
299 		return false;
300 
301 	/*
302 	 * Check if the current priority hint merits a preemption attempt.
303 	 *
304 	 * We record the highest value priority we saw during rescheduling
305 	 * prior to this dequeue, therefore we know that if it is strictly
306 	 * less than the current tail of ESLP[0], we do not need to force
307 	 * a preempt-to-idle cycle.
308 	 *
309 	 * However, the priority hint is a mere hint that we may need to
310 	 * preempt. If that hint is stale or we may be trying to preempt
311 	 * ourselves, ignore the request.
312 	 *
313 	 * More naturally we would write
314 	 *      prio >= max(0, last);
315 	 * except that we wish to prevent triggering preemption at the same
316 	 * priority level: the task that is running should remain running
317 	 * to preserve FIFO ordering of dependencies.
318 	 */
319 	last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1);
320 	if (engine->execlists.queue_priority_hint <= last_prio)
321 		return false;
322 
323 	/*
324 	 * Check against the first request in ELSP[1], it will, thanks to the
325 	 * power of PI, be the highest priority of that context.
326 	 */
327 	if (!list_is_last(&rq->sched.link, &engine->active.requests) &&
328 	    rq_prio(list_next_entry(rq, sched.link)) > last_prio)
329 		return true;
330 
331 	/*
332 	 * If the inflight context did not trigger the preemption, then maybe
333 	 * it was the set of queued requests? Pick the highest priority in
334 	 * the queue (the first active priolist) and see if it deserves to be
335 	 * running instead of ELSP[0].
336 	 *
337 	 * The highest priority request in the queue can not be either
338 	 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
339 	 * context, it's priority would not exceed ELSP[0] aka last_prio.
340 	 */
341 	return max(virtual_prio(&engine->execlists),
342 		   queue_prio(&engine->execlists)) > last_prio;
343 }
344 
345 __maybe_unused static bool
assert_priority_queue(const struct i915_request * prev,const struct i915_request * next)346 assert_priority_queue(const struct i915_request *prev,
347 		      const struct i915_request *next)
348 {
349 	/*
350 	 * Without preemption, the prev may refer to the still active element
351 	 * which we refuse to let go.
352 	 *
353 	 * Even with preemption, there are times when we think it is better not
354 	 * to preempt and leave an ostensibly lower priority request in flight.
355 	 */
356 	if (i915_request_is_active(prev))
357 		return true;
358 
359 	return rq_prio(prev) >= rq_prio(next);
360 }
361 
362 static struct i915_request *
__unwind_incomplete_requests(struct intel_engine_cs * engine)363 __unwind_incomplete_requests(struct intel_engine_cs *engine)
364 {
365 	struct i915_request *rq, *rn, *active = NULL;
366 	struct list_head *pl;
367 	int prio = I915_PRIORITY_INVALID;
368 
369 	lockdep_assert_held(&engine->active.lock);
370 
371 	list_for_each_entry_safe_reverse(rq, rn,
372 					 &engine->active.requests,
373 					 sched.link) {
374 		if (__i915_request_is_complete(rq)) {
375 			list_del_init(&rq->sched.link);
376 			continue;
377 		}
378 
379 		__i915_request_unsubmit(rq);
380 
381 		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
382 		if (rq_prio(rq) != prio) {
383 			prio = rq_prio(rq);
384 			pl = i915_sched_lookup_priolist(engine, prio);
385 		}
386 		GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
387 
388 		list_move(&rq->sched.link, pl);
389 		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
390 
391 		/* Check in case we rollback so far we wrap [size/2] */
392 		if (intel_ring_direction(rq->ring,
393 					 rq->tail,
394 					 rq->ring->tail + 8) > 0)
395 			rq->context->lrc.desc |= CTX_DESC_FORCE_RESTORE;
396 
397 		active = rq;
398 	}
399 
400 	return active;
401 }
402 
403 struct i915_request *
execlists_unwind_incomplete_requests(struct intel_engine_execlists * execlists)404 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
405 {
406 	struct intel_engine_cs *engine =
407 		container_of(execlists, typeof(*engine), execlists);
408 
409 	return __unwind_incomplete_requests(engine);
410 }
411 
412 static void
execlists_context_status_change(struct i915_request * rq,unsigned long status)413 execlists_context_status_change(struct i915_request *rq, unsigned long status)
414 {
415 	/*
416 	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
417 	 * The compiler should eliminate this function as dead-code.
418 	 */
419 	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
420 		return;
421 
422 	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
423 				   status, rq);
424 }
425 
reset_active(struct i915_request * rq,struct intel_engine_cs * engine)426 static void reset_active(struct i915_request *rq,
427 			 struct intel_engine_cs *engine)
428 {
429 	struct intel_context * const ce = rq->context;
430 	u32 head;
431 
432 	/*
433 	 * The executing context has been cancelled. We want to prevent
434 	 * further execution along this context and propagate the error on
435 	 * to anything depending on its results.
436 	 *
437 	 * In __i915_request_submit(), we apply the -EIO and remove the
438 	 * requests' payloads for any banned requests. But first, we must
439 	 * rewind the context back to the start of the incomplete request so
440 	 * that we do not jump back into the middle of the batch.
441 	 *
442 	 * We preserve the breadcrumbs and semaphores of the incomplete
443 	 * requests so that inter-timeline dependencies (i.e other timelines)
444 	 * remain correctly ordered. And we defer to __i915_request_submit()
445 	 * so that all asynchronous waits are correctly handled.
446 	 */
447 	ENGINE_TRACE(engine, "{ reset rq=%llx:%lld }\n",
448 		     rq->fence.context, rq->fence.seqno);
449 
450 	/* On resubmission of the active request, payload will be scrubbed */
451 	if (__i915_request_is_complete(rq))
452 		head = rq->tail;
453 	else
454 		head = __active_request(ce->timeline, rq, -EIO)->head;
455 	head = intel_ring_wrap(ce->ring, head);
456 
457 	/* Scrub the context image to prevent replaying the previous batch */
458 	lrc_init_regs(ce, engine, true);
459 
460 	/* We've switched away, so this should be a no-op, but intent matters */
461 	ce->lrc.lrca = lrc_update_regs(ce, engine, head);
462 }
463 
bad_request(const struct i915_request * rq)464 static bool bad_request(const struct i915_request *rq)
465 {
466 	return rq->fence.error && i915_request_started(rq);
467 }
468 
469 static struct intel_engine_cs *
__execlists_schedule_in(struct i915_request * rq)470 __execlists_schedule_in(struct i915_request *rq)
471 {
472 	struct intel_engine_cs * const engine = rq->engine;
473 	struct intel_context * const ce = rq->context;
474 
475 	intel_context_get(ce);
476 
477 	if (unlikely(intel_context_is_closed(ce) &&
478 		     !intel_engine_has_heartbeat(engine)))
479 		intel_context_set_banned(ce);
480 
481 	if (unlikely(intel_context_is_banned(ce) || bad_request(rq)))
482 		reset_active(rq, engine);
483 
484 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
485 		lrc_check_regs(ce, engine, "before");
486 
487 	if (ce->tag) {
488 		/* Use a fixed tag for OA and friends */
489 		GEM_BUG_ON(ce->tag <= BITS_PER_LONG);
490 		ce->lrc.ccid = ce->tag;
491 	} else {
492 		/* We don't need a strict matching tag, just different values */
493 		unsigned int tag = __ffs(engine->context_tag);
494 
495 		GEM_BUG_ON(tag >= BITS_PER_LONG);
496 		__clear_bit(tag, &engine->context_tag);
497 		ce->lrc.ccid = (1 + tag) << (GEN11_SW_CTX_ID_SHIFT - 32);
498 
499 		BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
500 	}
501 
502 	ce->lrc.ccid |= engine->execlists.ccid;
503 
504 	__intel_gt_pm_get(engine->gt);
505 	if (engine->fw_domain && !engine->fw_active++)
506 		intel_uncore_forcewake_get(engine->uncore, engine->fw_domain);
507 	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
508 	intel_engine_context_in(engine);
509 
510 	CE_TRACE(ce, "schedule-in, ccid:%x\n", ce->lrc.ccid);
511 
512 	return engine;
513 }
514 
execlists_schedule_in(struct i915_request * rq,int idx)515 static void execlists_schedule_in(struct i915_request *rq, int idx)
516 {
517 	struct intel_context * const ce = rq->context;
518 	struct intel_engine_cs *old;
519 
520 	GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine));
521 	trace_i915_request_in(rq, idx);
522 
523 	old = ce->inflight;
524 	if (!old)
525 		old = __execlists_schedule_in(rq);
526 	WRITE_ONCE(ce->inflight, ptr_inc(old));
527 
528 	GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
529 }
530 
531 static void
resubmit_virtual_request(struct i915_request * rq,struct virtual_engine * ve)532 resubmit_virtual_request(struct i915_request *rq, struct virtual_engine *ve)
533 {
534 	struct intel_engine_cs *engine = rq->engine;
535 
536 	spin_lock_irq(&engine->active.lock);
537 
538 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
539 	WRITE_ONCE(rq->engine, &ve->base);
540 	ve->base.submit_request(rq);
541 
542 	spin_unlock_irq(&engine->active.lock);
543 }
544 
kick_siblings(struct i915_request * rq,struct intel_context * ce)545 static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
546 {
547 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
548 	struct intel_engine_cs *engine = rq->engine;
549 
550 	/*
551 	 * After this point, the rq may be transferred to a new sibling, so
552 	 * before we clear ce->inflight make sure that the context has been
553 	 * removed from the b->signalers and furthermore we need to make sure
554 	 * that the concurrent iterator in signal_irq_work is no longer
555 	 * following ce->signal_link.
556 	 */
557 	if (!list_empty(&ce->signals))
558 		intel_context_remove_breadcrumbs(ce, engine->breadcrumbs);
559 
560 	/*
561 	 * This engine is now too busy to run this virtual request, so
562 	 * see if we can find an alternative engine for it to execute on.
563 	 * Once a request has become bonded to this engine, we treat it the
564 	 * same as other native request.
565 	 */
566 	if (i915_request_in_priority_queue(rq) &&
567 	    rq->execution_mask != engine->mask)
568 		resubmit_virtual_request(rq, ve);
569 
570 	if (READ_ONCE(ve->request))
571 		tasklet_hi_schedule(&ve->base.execlists.tasklet);
572 }
573 
__execlists_schedule_out(struct i915_request * const rq,struct intel_context * const ce)574 static void __execlists_schedule_out(struct i915_request * const rq,
575 				     struct intel_context * const ce)
576 {
577 	struct intel_engine_cs * const engine = rq->engine;
578 	unsigned int ccid;
579 
580 	/*
581 	 * NB process_csb() is not under the engine->active.lock and hence
582 	 * schedule_out can race with schedule_in meaning that we should
583 	 * refrain from doing non-trivial work here.
584 	 */
585 
586 	CE_TRACE(ce, "schedule-out, ccid:%x\n", ce->lrc.ccid);
587 	GEM_BUG_ON(ce->inflight != engine);
588 
589 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
590 		lrc_check_regs(ce, engine, "after");
591 
592 	/*
593 	 * If we have just completed this context, the engine may now be
594 	 * idle and we want to re-enter powersaving.
595 	 */
596 	if (intel_timeline_is_last(ce->timeline, rq) &&
597 	    __i915_request_is_complete(rq))
598 		intel_engine_add_retire(engine, ce->timeline);
599 
600 	ccid = ce->lrc.ccid;
601 	ccid >>= GEN11_SW_CTX_ID_SHIFT - 32;
602 	ccid &= GEN12_MAX_CONTEXT_HW_ID;
603 	if (ccid < BITS_PER_LONG) {
604 		GEM_BUG_ON(ccid == 0);
605 		GEM_BUG_ON(test_bit(ccid - 1, &engine->context_tag));
606 		__set_bit(ccid - 1, &engine->context_tag);
607 	}
608 
609 	lrc_update_runtime(ce);
610 	intel_engine_context_out(engine);
611 	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
612 	if (engine->fw_domain && !--engine->fw_active)
613 		intel_uncore_forcewake_put(engine->uncore, engine->fw_domain);
614 	intel_gt_pm_put_async(engine->gt);
615 
616 	/*
617 	 * If this is part of a virtual engine, its next request may
618 	 * have been blocked waiting for access to the active context.
619 	 * We have to kick all the siblings again in case we need to
620 	 * switch (e.g. the next request is not runnable on this
621 	 * engine). Hopefully, we will already have submitted the next
622 	 * request before the tasklet runs and do not need to rebuild
623 	 * each virtual tree and kick everyone again.
624 	 */
625 	if (ce->engine != engine)
626 		kick_siblings(rq, ce);
627 
628 	WRITE_ONCE(ce->inflight, NULL);
629 	intel_context_put(ce);
630 }
631 
execlists_schedule_out(struct i915_request * rq)632 static inline void execlists_schedule_out(struct i915_request *rq)
633 {
634 	struct intel_context * const ce = rq->context;
635 
636 	trace_i915_request_out(rq);
637 
638 	GEM_BUG_ON(!ce->inflight);
639 	ce->inflight = ptr_dec(ce->inflight);
640 	if (!__intel_context_inflight_count(ce->inflight))
641 		__execlists_schedule_out(rq, ce);
642 
643 	i915_request_put(rq);
644 }
645 
execlists_update_context(struct i915_request * rq)646 static u64 execlists_update_context(struct i915_request *rq)
647 {
648 	struct intel_context *ce = rq->context;
649 	u64 desc = ce->lrc.desc;
650 	u32 tail, prev;
651 
652 	/*
653 	 * WaIdleLiteRestore:bdw,skl
654 	 *
655 	 * We should never submit the context with the same RING_TAIL twice
656 	 * just in case we submit an empty ring, which confuses the HW.
657 	 *
658 	 * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of
659 	 * the normal request to be able to always advance the RING_TAIL on
660 	 * subsequent resubmissions (for lite restore). Should that fail us,
661 	 * and we try and submit the same tail again, force the context
662 	 * reload.
663 	 *
664 	 * If we need to return to a preempted context, we need to skip the
665 	 * lite-restore and force it to reload the RING_TAIL. Otherwise, the
666 	 * HW has a tendency to ignore us rewinding the TAIL to the end of
667 	 * an earlier request.
668 	 */
669 	GEM_BUG_ON(ce->lrc_reg_state[CTX_RING_TAIL] != rq->ring->tail);
670 	prev = rq->ring->tail;
671 	tail = intel_ring_set_tail(rq->ring, rq->tail);
672 	if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0))
673 		desc |= CTX_DESC_FORCE_RESTORE;
674 	ce->lrc_reg_state[CTX_RING_TAIL] = tail;
675 	rq->tail = rq->wa_tail;
676 
677 	/*
678 	 * Make sure the context image is complete before we submit it to HW.
679 	 *
680 	 * Ostensibly, writes (including the WCB) should be flushed prior to
681 	 * an uncached write such as our mmio register access, the empirical
682 	 * evidence (esp. on Braswell) suggests that the WC write into memory
683 	 * may not be visible to the HW prior to the completion of the UC
684 	 * register write and that we may begin execution from the context
685 	 * before its image is complete leading to invalid PD chasing.
686 	 */
687 	wmb();
688 
689 	ce->lrc.desc &= ~CTX_DESC_FORCE_RESTORE;
690 	return desc;
691 }
692 
write_desc(struct intel_engine_execlists * execlists,u64 desc,u32 port)693 static void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
694 {
695 	if (execlists->ctrl_reg) {
696 		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
697 		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
698 	} else {
699 		writel(upper_32_bits(desc), execlists->submit_reg);
700 		writel(lower_32_bits(desc), execlists->submit_reg);
701 	}
702 }
703 
704 static __maybe_unused char *
dump_port(char * buf,int buflen,const char * prefix,struct i915_request * rq)705 dump_port(char *buf, int buflen, const char *prefix, struct i915_request *rq)
706 {
707 	if (!rq)
708 		return "";
709 
710 	snprintf(buf, buflen, "%sccid:%x %llx:%lld%s prio %d",
711 		 prefix,
712 		 rq->context->lrc.ccid,
713 		 rq->fence.context, rq->fence.seqno,
714 		 __i915_request_is_complete(rq) ? "!" :
715 		 __i915_request_has_started(rq) ? "*" :
716 		 "",
717 		 rq_prio(rq));
718 
719 	return buf;
720 }
721 
722 static __maybe_unused noinline void
trace_ports(const struct intel_engine_execlists * execlists,const char * msg,struct i915_request * const * ports)723 trace_ports(const struct intel_engine_execlists *execlists,
724 	    const char *msg,
725 	    struct i915_request * const *ports)
726 {
727 	const struct intel_engine_cs *engine =
728 		container_of(execlists, typeof(*engine), execlists);
729 	char __maybe_unused p0[40], p1[40];
730 
731 	if (!ports[0])
732 		return;
733 
734 	ENGINE_TRACE(engine, "%s { %s%s }\n", msg,
735 		     dump_port(p0, sizeof(p0), "", ports[0]),
736 		     dump_port(p1, sizeof(p1), ", ", ports[1]));
737 }
738 
739 static bool
reset_in_progress(const struct intel_engine_execlists * execlists)740 reset_in_progress(const struct intel_engine_execlists *execlists)
741 {
742 	return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
743 }
744 
745 static __maybe_unused noinline bool
assert_pending_valid(const struct intel_engine_execlists * execlists,const char * msg)746 assert_pending_valid(const struct intel_engine_execlists *execlists,
747 		     const char *msg)
748 {
749 	struct intel_engine_cs *engine =
750 		container_of(execlists, typeof(*engine), execlists);
751 	struct i915_request * const *port, *rq, *prev = NULL;
752 	struct intel_context *ce = NULL;
753 	u32 ccid = -1;
754 
755 	trace_ports(execlists, msg, execlists->pending);
756 
757 	/* We may be messing around with the lists during reset, lalala */
758 	if (reset_in_progress(execlists))
759 		return true;
760 
761 	if (!execlists->pending[0]) {
762 		GEM_TRACE_ERR("%s: Nothing pending for promotion!\n",
763 			      engine->name);
764 		return false;
765 	}
766 
767 	if (execlists->pending[execlists_num_ports(execlists)]) {
768 		GEM_TRACE_ERR("%s: Excess pending[%d] for promotion!\n",
769 			      engine->name, execlists_num_ports(execlists));
770 		return false;
771 	}
772 
773 	for (port = execlists->pending; (rq = *port); port++) {
774 		unsigned long flags;
775 		bool ok = true;
776 
777 		GEM_BUG_ON(!kref_read(&rq->fence.refcount));
778 		GEM_BUG_ON(!i915_request_is_active(rq));
779 
780 		if (ce == rq->context) {
781 			GEM_TRACE_ERR("%s: Dup context:%llx in pending[%zd]\n",
782 				      engine->name,
783 				      ce->timeline->fence_context,
784 				      port - execlists->pending);
785 			return false;
786 		}
787 		ce = rq->context;
788 
789 		if (ccid == ce->lrc.ccid) {
790 			GEM_TRACE_ERR("%s: Dup ccid:%x context:%llx in pending[%zd]\n",
791 				      engine->name,
792 				      ccid, ce->timeline->fence_context,
793 				      port - execlists->pending);
794 			return false;
795 		}
796 		ccid = ce->lrc.ccid;
797 
798 		/*
799 		 * Sentinels are supposed to be the last request so they flush
800 		 * the current execution off the HW. Check that they are the only
801 		 * request in the pending submission.
802 		 *
803 		 * NB: Due to the async nature of preempt-to-busy and request
804 		 * cancellation we need to handle the case where request
805 		 * becomes a sentinel in parallel to CSB processing.
806 		 */
807 		if (prev && i915_request_has_sentinel(prev) &&
808 		    !READ_ONCE(prev->fence.error)) {
809 			GEM_TRACE_ERR("%s: context:%llx after sentinel in pending[%zd]\n",
810 				      engine->name,
811 				      ce->timeline->fence_context,
812 				      port - execlists->pending);
813 			return false;
814 		}
815 		prev = rq;
816 
817 		/*
818 		 * We want virtual requests to only be in the first slot so
819 		 * that they are never stuck behind a hog and can be immediately
820 		 * transferred onto the next idle engine.
821 		 */
822 		if (rq->execution_mask != engine->mask &&
823 		    port != execlists->pending) {
824 			GEM_TRACE_ERR("%s: virtual engine:%llx not in prime position[%zd]\n",
825 				      engine->name,
826 				      ce->timeline->fence_context,
827 				      port - execlists->pending);
828 			return false;
829 		}
830 
831 		/* Hold tightly onto the lock to prevent concurrent retires! */
832 		if (!spin_trylock_irqsave(&rq->lock, flags))
833 			continue;
834 
835 		if (__i915_request_is_complete(rq))
836 			goto unlock;
837 
838 		if (i915_active_is_idle(&ce->active) &&
839 		    !intel_context_is_barrier(ce)) {
840 			GEM_TRACE_ERR("%s: Inactive context:%llx in pending[%zd]\n",
841 				      engine->name,
842 				      ce->timeline->fence_context,
843 				      port - execlists->pending);
844 			ok = false;
845 			goto unlock;
846 		}
847 
848 		if (!i915_vma_is_pinned(ce->state)) {
849 			GEM_TRACE_ERR("%s: Unpinned context:%llx in pending[%zd]\n",
850 				      engine->name,
851 				      ce->timeline->fence_context,
852 				      port - execlists->pending);
853 			ok = false;
854 			goto unlock;
855 		}
856 
857 		if (!i915_vma_is_pinned(ce->ring->vma)) {
858 			GEM_TRACE_ERR("%s: Unpinned ring:%llx in pending[%zd]\n",
859 				      engine->name,
860 				      ce->timeline->fence_context,
861 				      port - execlists->pending);
862 			ok = false;
863 			goto unlock;
864 		}
865 
866 unlock:
867 		spin_unlock_irqrestore(&rq->lock, flags);
868 		if (!ok)
869 			return false;
870 	}
871 
872 	return ce;
873 }
874 
execlists_submit_ports(struct intel_engine_cs * engine)875 static void execlists_submit_ports(struct intel_engine_cs *engine)
876 {
877 	struct intel_engine_execlists *execlists = &engine->execlists;
878 	unsigned int n;
879 
880 	GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));
881 
882 	/*
883 	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
884 	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
885 	 * not be relinquished until the device is idle (see
886 	 * i915_gem_idle_work_handler()). As a precaution, we make sure
887 	 * that all ELSP are drained i.e. we have processed the CSB,
888 	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
889 	 */
890 	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
891 
892 	/*
893 	 * ELSQ note: the submit queue is not cleared after being submitted
894 	 * to the HW so we need to make sure we always clean it up. This is
895 	 * currently ensured by the fact that we always write the same number
896 	 * of elsq entries, keep this in mind before changing the loop below.
897 	 */
898 	for (n = execlists_num_ports(execlists); n--; ) {
899 		struct i915_request *rq = execlists->pending[n];
900 
901 		write_desc(execlists,
902 			   rq ? execlists_update_context(rq) : 0,
903 			   n);
904 	}
905 
906 	/* we need to manually load the submit queue */
907 	if (execlists->ctrl_reg)
908 		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
909 }
910 
ctx_single_port_submission(const struct intel_context * ce)911 static bool ctx_single_port_submission(const struct intel_context *ce)
912 {
913 	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
914 		intel_context_force_single_submission(ce));
915 }
916 
can_merge_ctx(const struct intel_context * prev,const struct intel_context * next)917 static bool can_merge_ctx(const struct intel_context *prev,
918 			  const struct intel_context *next)
919 {
920 	if (prev != next)
921 		return false;
922 
923 	if (ctx_single_port_submission(prev))
924 		return false;
925 
926 	return true;
927 }
928 
i915_request_flags(const struct i915_request * rq)929 static unsigned long i915_request_flags(const struct i915_request *rq)
930 {
931 	return READ_ONCE(rq->fence.flags);
932 }
933 
can_merge_rq(const struct i915_request * prev,const struct i915_request * next)934 static bool can_merge_rq(const struct i915_request *prev,
935 			 const struct i915_request *next)
936 {
937 	GEM_BUG_ON(prev == next);
938 	GEM_BUG_ON(!assert_priority_queue(prev, next));
939 
940 	/*
941 	 * We do not submit known completed requests. Therefore if the next
942 	 * request is already completed, we can pretend to merge it in
943 	 * with the previous context (and we will skip updating the ELSP
944 	 * and tracking). Thus hopefully keeping the ELSP full with active
945 	 * contexts, despite the best efforts of preempt-to-busy to confuse
946 	 * us.
947 	 */
948 	if (__i915_request_is_complete(next))
949 		return true;
950 
951 	if (unlikely((i915_request_flags(prev) | i915_request_flags(next)) &
952 		     (BIT(I915_FENCE_FLAG_NOPREEMPT) |
953 		      BIT(I915_FENCE_FLAG_SENTINEL))))
954 		return false;
955 
956 	if (!can_merge_ctx(prev->context, next->context))
957 		return false;
958 
959 	GEM_BUG_ON(i915_seqno_passed(prev->fence.seqno, next->fence.seqno));
960 	return true;
961 }
962 
virtual_matches(const struct virtual_engine * ve,const struct i915_request * rq,const struct intel_engine_cs * engine)963 static bool virtual_matches(const struct virtual_engine *ve,
964 			    const struct i915_request *rq,
965 			    const struct intel_engine_cs *engine)
966 {
967 	const struct intel_engine_cs *inflight;
968 
969 	if (!rq)
970 		return false;
971 
972 	if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
973 		return false;
974 
975 	/*
976 	 * We track when the HW has completed saving the context image
977 	 * (i.e. when we have seen the final CS event switching out of
978 	 * the context) and must not overwrite the context image before
979 	 * then. This restricts us to only using the active engine
980 	 * while the previous virtualized request is inflight (so
981 	 * we reuse the register offsets). This is a very small
982 	 * hystersis on the greedy seelction algorithm.
983 	 */
984 	inflight = intel_context_inflight(&ve->context);
985 	if (inflight && inflight != engine)
986 		return false;
987 
988 	return true;
989 }
990 
991 static struct virtual_engine *
first_virtual_engine(struct intel_engine_cs * engine)992 first_virtual_engine(struct intel_engine_cs *engine)
993 {
994 	struct intel_engine_execlists *el = &engine->execlists;
995 	struct rb_node *rb = rb_first_cached(&el->virtual);
996 
997 	while (rb) {
998 		struct virtual_engine *ve =
999 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
1000 		struct i915_request *rq = READ_ONCE(ve->request);
1001 
1002 		/* lazily cleanup after another engine handled rq */
1003 		if (!rq || !virtual_matches(ve, rq, engine)) {
1004 			rb_erase_cached(rb, &el->virtual);
1005 			RB_CLEAR_NODE(rb);
1006 			rb = rb_first_cached(&el->virtual);
1007 			continue;
1008 		}
1009 
1010 		return ve;
1011 	}
1012 
1013 	return NULL;
1014 }
1015 
virtual_xfer_context(struct virtual_engine * ve,struct intel_engine_cs * engine)1016 static void virtual_xfer_context(struct virtual_engine *ve,
1017 				 struct intel_engine_cs *engine)
1018 {
1019 	unsigned int n;
1020 
1021 	if (likely(engine == ve->siblings[0]))
1022 		return;
1023 
1024 	GEM_BUG_ON(READ_ONCE(ve->context.inflight));
1025 	if (!intel_engine_has_relative_mmio(engine))
1026 		lrc_update_offsets(&ve->context, engine);
1027 
1028 	/*
1029 	 * Move the bound engine to the top of the list for
1030 	 * future execution. We then kick this tasklet first
1031 	 * before checking others, so that we preferentially
1032 	 * reuse this set of bound registers.
1033 	 */
1034 	for (n = 1; n < ve->num_siblings; n++) {
1035 		if (ve->siblings[n] == engine) {
1036 			swap(ve->siblings[n], ve->siblings[0]);
1037 			break;
1038 		}
1039 	}
1040 }
1041 
defer_request(struct i915_request * rq,struct list_head * const pl)1042 static void defer_request(struct i915_request *rq, struct list_head * const pl)
1043 {
1044 	LIST_HEAD(list);
1045 
1046 	/*
1047 	 * We want to move the interrupted request to the back of
1048 	 * the round-robin list (i.e. its priority level), but
1049 	 * in doing so, we must then move all requests that were in
1050 	 * flight and were waiting for the interrupted request to
1051 	 * be run after it again.
1052 	 */
1053 	do {
1054 		struct i915_dependency *p;
1055 
1056 		GEM_BUG_ON(i915_request_is_active(rq));
1057 		list_move_tail(&rq->sched.link, pl);
1058 
1059 		for_each_waiter(p, rq) {
1060 			struct i915_request *w =
1061 				container_of(p->waiter, typeof(*w), sched);
1062 
1063 			if (p->flags & I915_DEPENDENCY_WEAK)
1064 				continue;
1065 
1066 			/* Leave semaphores spinning on the other engines */
1067 			if (w->engine != rq->engine)
1068 				continue;
1069 
1070 			/* No waiter should start before its signaler */
1071 			GEM_BUG_ON(i915_request_has_initial_breadcrumb(w) &&
1072 				   __i915_request_has_started(w) &&
1073 				   !__i915_request_is_complete(rq));
1074 
1075 			if (!i915_request_is_ready(w))
1076 				continue;
1077 
1078 			if (rq_prio(w) < rq_prio(rq))
1079 				continue;
1080 
1081 			GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
1082 			GEM_BUG_ON(i915_request_is_active(w));
1083 			list_move_tail(&w->sched.link, &list);
1084 		}
1085 
1086 		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
1087 	} while (rq);
1088 }
1089 
defer_active(struct intel_engine_cs * engine)1090 static void defer_active(struct intel_engine_cs *engine)
1091 {
1092 	struct i915_request *rq;
1093 
1094 	rq = __unwind_incomplete_requests(engine);
1095 	if (!rq)
1096 		return;
1097 
1098 	defer_request(rq, i915_sched_lookup_priolist(engine, rq_prio(rq)));
1099 }
1100 
1101 static bool
timeslice_yield(const struct intel_engine_execlists * el,const struct i915_request * rq)1102 timeslice_yield(const struct intel_engine_execlists *el,
1103 		const struct i915_request *rq)
1104 {
1105 	/*
1106 	 * Once bitten, forever smitten!
1107 	 *
1108 	 * If the active context ever busy-waited on a semaphore,
1109 	 * it will be treated as a hog until the end of its timeslice (i.e.
1110 	 * until it is scheduled out and replaced by a new submission,
1111 	 * possibly even its own lite-restore). The HW only sends an interrupt
1112 	 * on the first miss, and we do know if that semaphore has been
1113 	 * signaled, or even if it is now stuck on another semaphore. Play
1114 	 * safe, yield if it might be stuck -- it will be given a fresh
1115 	 * timeslice in the near future.
1116 	 */
1117 	return rq->context->lrc.ccid == READ_ONCE(el->yield);
1118 }
1119 
needs_timeslice(const struct intel_engine_cs * engine,const struct i915_request * rq)1120 static bool needs_timeslice(const struct intel_engine_cs *engine,
1121 			    const struct i915_request *rq)
1122 {
1123 	if (!intel_engine_has_timeslices(engine))
1124 		return false;
1125 
1126 	/* If not currently active, or about to switch, wait for next event */
1127 	if (!rq || __i915_request_is_complete(rq))
1128 		return false;
1129 
1130 	/* We do not need to start the timeslice until after the ACK */
1131 	if (READ_ONCE(engine->execlists.pending[0]))
1132 		return false;
1133 
1134 	/* If ELSP[1] is occupied, always check to see if worth slicing */
1135 	if (!list_is_last_rcu(&rq->sched.link, &engine->active.requests)) {
1136 		ENGINE_TRACE(engine, "timeslice required for second inflight context\n");
1137 		return true;
1138 	}
1139 
1140 	/* Otherwise, ELSP[0] is by itself, but may be waiting in the queue */
1141 	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root)) {
1142 		ENGINE_TRACE(engine, "timeslice required for queue\n");
1143 		return true;
1144 	}
1145 
1146 	if (!RB_EMPTY_ROOT(&engine->execlists.virtual.rb_root)) {
1147 		ENGINE_TRACE(engine, "timeslice required for virtual\n");
1148 		return true;
1149 	}
1150 
1151 	return false;
1152 }
1153 
1154 static bool
timeslice_expired(struct intel_engine_cs * engine,const struct i915_request * rq)1155 timeslice_expired(struct intel_engine_cs *engine, const struct i915_request *rq)
1156 {
1157 	const struct intel_engine_execlists *el = &engine->execlists;
1158 
1159 	if (i915_request_has_nopreempt(rq) && __i915_request_has_started(rq))
1160 		return false;
1161 
1162 	if (!needs_timeslice(engine, rq))
1163 		return false;
1164 
1165 	return timer_expired(&el->timer) || timeslice_yield(el, rq);
1166 }
1167 
timeslice(const struct intel_engine_cs * engine)1168 static unsigned long timeslice(const struct intel_engine_cs *engine)
1169 {
1170 	return READ_ONCE(engine->props.timeslice_duration_ms);
1171 }
1172 
start_timeslice(struct intel_engine_cs * engine)1173 static void start_timeslice(struct intel_engine_cs *engine)
1174 {
1175 	struct intel_engine_execlists *el = &engine->execlists;
1176 	unsigned long duration;
1177 
1178 	/* Disable the timer if there is nothing to switch to */
1179 	duration = 0;
1180 	if (needs_timeslice(engine, *el->active)) {
1181 		/* Avoid continually prolonging an active timeslice */
1182 		if (timer_active(&el->timer)) {
1183 			/*
1184 			 * If we just submitted a new ELSP after an old
1185 			 * context, that context may have already consumed
1186 			 * its timeslice, so recheck.
1187 			 */
1188 			if (!timer_pending(&el->timer))
1189 				tasklet_hi_schedule(&el->tasklet);
1190 			return;
1191 		}
1192 
1193 		duration = timeslice(engine);
1194 	}
1195 
1196 	set_timer_ms(&el->timer, duration);
1197 }
1198 
record_preemption(struct intel_engine_execlists * execlists)1199 static void record_preemption(struct intel_engine_execlists *execlists)
1200 {
1201 	(void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
1202 }
1203 
active_preempt_timeout(struct intel_engine_cs * engine,const struct i915_request * rq)1204 static unsigned long active_preempt_timeout(struct intel_engine_cs *engine,
1205 					    const struct i915_request *rq)
1206 {
1207 	if (!rq)
1208 		return 0;
1209 
1210 	/* Force a fast reset for terminated contexts (ignoring sysfs!) */
1211 	if (unlikely(intel_context_is_banned(rq->context) || bad_request(rq)))
1212 		return 1;
1213 
1214 	return READ_ONCE(engine->props.preempt_timeout_ms);
1215 }
1216 
set_preempt_timeout(struct intel_engine_cs * engine,const struct i915_request * rq)1217 static void set_preempt_timeout(struct intel_engine_cs *engine,
1218 				const struct i915_request *rq)
1219 {
1220 	if (!intel_engine_has_preempt_reset(engine))
1221 		return;
1222 
1223 	set_timer_ms(&engine->execlists.preempt,
1224 		     active_preempt_timeout(engine, rq));
1225 }
1226 
completed(const struct i915_request * rq)1227 static bool completed(const struct i915_request *rq)
1228 {
1229 	if (i915_request_has_sentinel(rq))
1230 		return false;
1231 
1232 	return __i915_request_is_complete(rq);
1233 }
1234 
execlists_dequeue(struct intel_engine_cs * engine)1235 static void execlists_dequeue(struct intel_engine_cs *engine)
1236 {
1237 	struct intel_engine_execlists * const execlists = &engine->execlists;
1238 	struct i915_request **port = execlists->pending;
1239 	struct i915_request ** const last_port = port + execlists->port_mask;
1240 	struct i915_request *last, * const *active;
1241 	struct virtual_engine *ve;
1242 	struct rb_node *rb;
1243 	bool submit = false;
1244 
1245 	/*
1246 	 * Hardware submission is through 2 ports. Conceptually each port
1247 	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
1248 	 * static for a context, and unique to each, so we only execute
1249 	 * requests belonging to a single context from each ring. RING_HEAD
1250 	 * is maintained by the CS in the context image, it marks the place
1251 	 * where it got up to last time, and through RING_TAIL we tell the CS
1252 	 * where we want to execute up to this time.
1253 	 *
1254 	 * In this list the requests are in order of execution. Consecutive
1255 	 * requests from the same context are adjacent in the ringbuffer. We
1256 	 * can combine these requests into a single RING_TAIL update:
1257 	 *
1258 	 *              RING_HEAD...req1...req2
1259 	 *                                    ^- RING_TAIL
1260 	 * since to execute req2 the CS must first execute req1.
1261 	 *
1262 	 * Our goal then is to point each port to the end of a consecutive
1263 	 * sequence of requests as being the most optimal (fewest wake ups
1264 	 * and context switches) submission.
1265 	 */
1266 
1267 	spin_lock(&engine->active.lock);
1268 
1269 	/*
1270 	 * If the queue is higher priority than the last
1271 	 * request in the currently active context, submit afresh.
1272 	 * We will resubmit again afterwards in case we need to split
1273 	 * the active context to interject the preemption request,
1274 	 * i.e. we will retrigger preemption following the ack in case
1275 	 * of trouble.
1276 	 *
1277 	 */
1278 	active = execlists->active;
1279 	while ((last = *active) && completed(last))
1280 		active++;
1281 
1282 	if (last) {
1283 		if (need_preempt(engine, last)) {
1284 			ENGINE_TRACE(engine,
1285 				     "preempting last=%llx:%lld, prio=%d, hint=%d\n",
1286 				     last->fence.context,
1287 				     last->fence.seqno,
1288 				     last->sched.attr.priority,
1289 				     execlists->queue_priority_hint);
1290 			record_preemption(execlists);
1291 
1292 			/*
1293 			 * Don't let the RING_HEAD advance past the breadcrumb
1294 			 * as we unwind (and until we resubmit) so that we do
1295 			 * not accidentally tell it to go backwards.
1296 			 */
1297 			ring_set_paused(engine, 1);
1298 
1299 			/*
1300 			 * Note that we have not stopped the GPU at this point,
1301 			 * so we are unwinding the incomplete requests as they
1302 			 * remain inflight and so by the time we do complete
1303 			 * the preemption, some of the unwound requests may
1304 			 * complete!
1305 			 */
1306 			__unwind_incomplete_requests(engine);
1307 
1308 			last = NULL;
1309 		} else if (timeslice_expired(engine, last)) {
1310 			ENGINE_TRACE(engine,
1311 				     "expired:%s last=%llx:%lld, prio=%d, hint=%d, yield?=%s\n",
1312 				     yesno(timer_expired(&execlists->timer)),
1313 				     last->fence.context, last->fence.seqno,
1314 				     rq_prio(last),
1315 				     execlists->queue_priority_hint,
1316 				     yesno(timeslice_yield(execlists, last)));
1317 
1318 			/*
1319 			 * Consume this timeslice; ensure we start a new one.
1320 			 *
1321 			 * The timeslice expired, and we will unwind the
1322 			 * running contexts and recompute the next ELSP.
1323 			 * If that submit will be the same pair of contexts
1324 			 * (due to dependency ordering), we will skip the
1325 			 * submission. If we don't cancel the timer now,
1326 			 * we will see that the timer has expired and
1327 			 * reschedule the tasklet; continually until the
1328 			 * next context switch or other preeemption event.
1329 			 *
1330 			 * Since we have decided to reschedule based on
1331 			 * consumption of this timeslice, if we submit the
1332 			 * same context again, grant it a full timeslice.
1333 			 */
1334 			cancel_timer(&execlists->timer);
1335 			ring_set_paused(engine, 1);
1336 			defer_active(engine);
1337 
1338 			/*
1339 			 * Unlike for preemption, if we rewind and continue
1340 			 * executing the same context as previously active,
1341 			 * the order of execution will remain the same and
1342 			 * the tail will only advance. We do not need to
1343 			 * force a full context restore, as a lite-restore
1344 			 * is sufficient to resample the monotonic TAIL.
1345 			 *
1346 			 * If we switch to any other context, similarly we
1347 			 * will not rewind TAIL of current context, and
1348 			 * normal save/restore will preserve state and allow
1349 			 * us to later continue executing the same request.
1350 			 */
1351 			last = NULL;
1352 		} else {
1353 			/*
1354 			 * Otherwise if we already have a request pending
1355 			 * for execution after the current one, we can
1356 			 * just wait until the next CS event before
1357 			 * queuing more. In either case we will force a
1358 			 * lite-restore preemption event, but if we wait
1359 			 * we hopefully coalesce several updates into a single
1360 			 * submission.
1361 			 */
1362 			if (active[1]) {
1363 				/*
1364 				 * Even if ELSP[1] is occupied and not worthy
1365 				 * of timeslices, our queue might be.
1366 				 */
1367 				spin_unlock(&engine->active.lock);
1368 				return;
1369 			}
1370 		}
1371 	}
1372 
1373 	/* XXX virtual is always taking precedence */
1374 	while ((ve = first_virtual_engine(engine))) {
1375 		struct i915_request *rq;
1376 
1377 		spin_lock(&ve->base.active.lock);
1378 
1379 		rq = ve->request;
1380 		if (unlikely(!virtual_matches(ve, rq, engine)))
1381 			goto unlock; /* lost the race to a sibling */
1382 
1383 		GEM_BUG_ON(rq->engine != &ve->base);
1384 		GEM_BUG_ON(rq->context != &ve->context);
1385 
1386 		if (unlikely(rq_prio(rq) < queue_prio(execlists))) {
1387 			spin_unlock(&ve->base.active.lock);
1388 			break;
1389 		}
1390 
1391 		if (last && !can_merge_rq(last, rq)) {
1392 			spin_unlock(&ve->base.active.lock);
1393 			spin_unlock(&engine->active.lock);
1394 			return; /* leave this for another sibling */
1395 		}
1396 
1397 		ENGINE_TRACE(engine,
1398 			     "virtual rq=%llx:%lld%s, new engine? %s\n",
1399 			     rq->fence.context,
1400 			     rq->fence.seqno,
1401 			     __i915_request_is_complete(rq) ? "!" :
1402 			     __i915_request_has_started(rq) ? "*" :
1403 			     "",
1404 			     yesno(engine != ve->siblings[0]));
1405 
1406 		WRITE_ONCE(ve->request, NULL);
1407 		WRITE_ONCE(ve->base.execlists.queue_priority_hint, INT_MIN);
1408 
1409 		rb = &ve->nodes[engine->id].rb;
1410 		rb_erase_cached(rb, &execlists->virtual);
1411 		RB_CLEAR_NODE(rb);
1412 
1413 		GEM_BUG_ON(!(rq->execution_mask & engine->mask));
1414 		WRITE_ONCE(rq->engine, engine);
1415 
1416 		if (__i915_request_submit(rq)) {
1417 			/*
1418 			 * Only after we confirm that we will submit
1419 			 * this request (i.e. it has not already
1420 			 * completed), do we want to update the context.
1421 			 *
1422 			 * This serves two purposes. It avoids
1423 			 * unnecessary work if we are resubmitting an
1424 			 * already completed request after timeslicing.
1425 			 * But more importantly, it prevents us altering
1426 			 * ve->siblings[] on an idle context, where
1427 			 * we may be using ve->siblings[] in
1428 			 * virtual_context_enter / virtual_context_exit.
1429 			 */
1430 			virtual_xfer_context(ve, engine);
1431 			GEM_BUG_ON(ve->siblings[0] != engine);
1432 
1433 			submit = true;
1434 			last = rq;
1435 		}
1436 
1437 		i915_request_put(rq);
1438 unlock:
1439 		spin_unlock(&ve->base.active.lock);
1440 
1441 		/*
1442 		 * Hmm, we have a bunch of virtual engine requests,
1443 		 * but the first one was already completed (thanks
1444 		 * preempt-to-busy!). Keep looking at the veng queue
1445 		 * until we have no more relevant requests (i.e.
1446 		 * the normal submit queue has higher priority).
1447 		 */
1448 		if (submit)
1449 			break;
1450 	}
1451 
1452 	while ((rb = rb_first_cached(&execlists->queue))) {
1453 		struct i915_priolist *p = to_priolist(rb);
1454 		struct i915_request *rq, *rn;
1455 
1456 		priolist_for_each_request_consume(rq, rn, p) {
1457 			bool merge = true;
1458 
1459 			/*
1460 			 * Can we combine this request with the current port?
1461 			 * It has to be the same context/ringbuffer and not
1462 			 * have any exceptions (e.g. GVT saying never to
1463 			 * combine contexts).
1464 			 *
1465 			 * If we can combine the requests, we can execute both
1466 			 * by updating the RING_TAIL to point to the end of the
1467 			 * second request, and so we never need to tell the
1468 			 * hardware about the first.
1469 			 */
1470 			if (last && !can_merge_rq(last, rq)) {
1471 				/*
1472 				 * If we are on the second port and cannot
1473 				 * combine this request with the last, then we
1474 				 * are done.
1475 				 */
1476 				if (port == last_port)
1477 					goto done;
1478 
1479 				/*
1480 				 * We must not populate both ELSP[] with the
1481 				 * same LRCA, i.e. we must submit 2 different
1482 				 * contexts if we submit 2 ELSP.
1483 				 */
1484 				if (last->context == rq->context)
1485 					goto done;
1486 
1487 				if (i915_request_has_sentinel(last))
1488 					goto done;
1489 
1490 				/*
1491 				 * We avoid submitting virtual requests into
1492 				 * the secondary ports so that we can migrate
1493 				 * the request immediately to another engine
1494 				 * rather than wait for the primary request.
1495 				 */
1496 				if (rq->execution_mask != engine->mask)
1497 					goto done;
1498 
1499 				/*
1500 				 * If GVT overrides us we only ever submit
1501 				 * port[0], leaving port[1] empty. Note that we
1502 				 * also have to be careful that we don't queue
1503 				 * the same context (even though a different
1504 				 * request) to the second port.
1505 				 */
1506 				if (ctx_single_port_submission(last->context) ||
1507 				    ctx_single_port_submission(rq->context))
1508 					goto done;
1509 
1510 				merge = false;
1511 			}
1512 
1513 			if (__i915_request_submit(rq)) {
1514 				if (!merge) {
1515 					*port++ = i915_request_get(last);
1516 					last = NULL;
1517 				}
1518 
1519 				GEM_BUG_ON(last &&
1520 					   !can_merge_ctx(last->context,
1521 							  rq->context));
1522 				GEM_BUG_ON(last &&
1523 					   i915_seqno_passed(last->fence.seqno,
1524 							     rq->fence.seqno));
1525 
1526 				submit = true;
1527 				last = rq;
1528 			}
1529 		}
1530 
1531 		rb_erase_cached(&p->node, &execlists->queue);
1532 		i915_priolist_free(p);
1533 	}
1534 done:
1535 	*port++ = i915_request_get(last);
1536 
1537 	/*
1538 	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
1539 	 *
1540 	 * We choose the priority hint such that if we add a request of greater
1541 	 * priority than this, we kick the submission tasklet to decide on
1542 	 * the right order of submitting the requests to hardware. We must
1543 	 * also be prepared to reorder requests as they are in-flight on the
1544 	 * HW. We derive the priority hint then as the first "hole" in
1545 	 * the HW submission ports and if there are no available slots,
1546 	 * the priority of the lowest executing request, i.e. last.
1547 	 *
1548 	 * When we do receive a higher priority request ready to run from the
1549 	 * user, see queue_request(), the priority hint is bumped to that
1550 	 * request triggering preemption on the next dequeue (or subsequent
1551 	 * interrupt for secondary ports).
1552 	 */
1553 	execlists->queue_priority_hint = queue_prio(execlists);
1554 	spin_unlock(&engine->active.lock);
1555 
1556 	/*
1557 	 * We can skip poking the HW if we ended up with exactly the same set
1558 	 * of requests as currently running, e.g. trying to timeslice a pair
1559 	 * of ordered contexts.
1560 	 */
1561 	if (submit &&
1562 	    memcmp(active,
1563 		   execlists->pending,
1564 		   (port - execlists->pending) * sizeof(*port))) {
1565 		*port = NULL;
1566 		while (port-- != execlists->pending)
1567 			execlists_schedule_in(*port, port - execlists->pending);
1568 
1569 		WRITE_ONCE(execlists->yield, -1);
1570 		set_preempt_timeout(engine, *active);
1571 		execlists_submit_ports(engine);
1572 	} else {
1573 		ring_set_paused(engine, 0);
1574 		while (port-- != execlists->pending)
1575 			i915_request_put(*port);
1576 		*execlists->pending = NULL;
1577 	}
1578 }
1579 
execlists_dequeue_irq(struct intel_engine_cs * engine)1580 static void execlists_dequeue_irq(struct intel_engine_cs *engine)
1581 {
1582 	local_irq_disable(); /* Suspend interrupts across request submission */
1583 	execlists_dequeue(engine);
1584 	local_irq_enable(); /* flush irq_work (e.g. breadcrumb enabling) */
1585 }
1586 
clear_ports(struct i915_request ** ports,int count)1587 static void clear_ports(struct i915_request **ports, int count)
1588 {
1589 	memset_p((void **)ports, NULL, count);
1590 }
1591 
1592 static void
copy_ports(struct i915_request ** dst,struct i915_request ** src,int count)1593 copy_ports(struct i915_request **dst, struct i915_request **src, int count)
1594 {
1595 	/* A memcpy_p() would be very useful here! */
1596 	while (count--)
1597 		WRITE_ONCE(*dst++, *src++); /* avoid write tearing */
1598 }
1599 
1600 static struct i915_request **
cancel_port_requests(struct intel_engine_execlists * const execlists,struct i915_request ** inactive)1601 cancel_port_requests(struct intel_engine_execlists * const execlists,
1602 		     struct i915_request **inactive)
1603 {
1604 	struct i915_request * const *port;
1605 
1606 	for (port = execlists->pending; *port; port++)
1607 		*inactive++ = *port;
1608 	clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending));
1609 
1610 	/* Mark the end of active before we overwrite *active */
1611 	for (port = xchg(&execlists->active, execlists->pending); *port; port++)
1612 		*inactive++ = *port;
1613 	clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight));
1614 
1615 	smp_wmb(); /* complete the seqlock for execlists_active() */
1616 	WRITE_ONCE(execlists->active, execlists->inflight);
1617 
1618 	/* Having cancelled all outstanding process_csb(), stop their timers */
1619 	GEM_BUG_ON(execlists->pending[0]);
1620 	cancel_timer(&execlists->timer);
1621 	cancel_timer(&execlists->preempt);
1622 
1623 	return inactive;
1624 }
1625 
invalidate_csb_entries(const u64 * first,const u64 * last)1626 static void invalidate_csb_entries(const u64 *first, const u64 *last)
1627 {
1628 	clflush((void *)first);
1629 	clflush((void *)last);
1630 }
1631 
1632 /*
1633  * Starting with Gen12, the status has a new format:
1634  *
1635  *     bit  0:     switched to new queue
1636  *     bit  1:     reserved
1637  *     bit  2:     semaphore wait mode (poll or signal), only valid when
1638  *                 switch detail is set to "wait on semaphore"
1639  *     bits 3-5:   engine class
1640  *     bits 6-11:  engine instance
1641  *     bits 12-14: reserved
1642  *     bits 15-25: sw context id of the lrc the GT switched to
1643  *     bits 26-31: sw counter of the lrc the GT switched to
1644  *     bits 32-35: context switch detail
1645  *                  - 0: ctx complete
1646  *                  - 1: wait on sync flip
1647  *                  - 2: wait on vblank
1648  *                  - 3: wait on scanline
1649  *                  - 4: wait on semaphore
1650  *                  - 5: context preempted (not on SEMAPHORE_WAIT or
1651  *                       WAIT_FOR_EVENT)
1652  *     bit  36:    reserved
1653  *     bits 37-43: wait detail (for switch detail 1 to 4)
1654  *     bits 44-46: reserved
1655  *     bits 47-57: sw context id of the lrc the GT switched away from
1656  *     bits 58-63: sw counter of the lrc the GT switched away from
1657  */
gen12_csb_parse(const u64 csb)1658 static bool gen12_csb_parse(const u64 csb)
1659 {
1660 	bool ctx_away_valid = GEN12_CSB_CTX_VALID(upper_32_bits(csb));
1661 	bool new_queue =
1662 		lower_32_bits(csb) & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE;
1663 
1664 	/*
1665 	 * The context switch detail is not guaranteed to be 5 when a preemption
1666 	 * occurs, so we can't just check for that. The check below works for
1667 	 * all the cases we care about, including preemptions of WAIT
1668 	 * instructions and lite-restore. Preempt-to-idle via the CTRL register
1669 	 * would require some extra handling, but we don't support that.
1670 	 */
1671 	if (!ctx_away_valid || new_queue) {
1672 		GEM_BUG_ON(!GEN12_CSB_CTX_VALID(lower_32_bits(csb)));
1673 		return true;
1674 	}
1675 
1676 	/*
1677 	 * switch detail = 5 is covered by the case above and we do not expect a
1678 	 * context switch on an unsuccessful wait instruction since we always
1679 	 * use polling mode.
1680 	 */
1681 	GEM_BUG_ON(GEN12_CTX_SWITCH_DETAIL(upper_32_bits(csb)));
1682 	return false;
1683 }
1684 
gen8_csb_parse(const u64 csb)1685 static bool gen8_csb_parse(const u64 csb)
1686 {
1687 	return csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED);
1688 }
1689 
1690 static noinline u64
wa_csb_read(const struct intel_engine_cs * engine,u64 * const csb)1691 wa_csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1692 {
1693 	u64 entry;
1694 
1695 	/*
1696 	 * Reading from the HWSP has one particular advantage: we can detect
1697 	 * a stale entry. Since the write into HWSP is broken, we have no reason
1698 	 * to trust the HW at all, the mmio entry may equally be unordered, so
1699 	 * we prefer the path that is self-checking and as a last resort,
1700 	 * return the mmio value.
1701 	 *
1702 	 * tgl,dg1:HSDES#22011327657
1703 	 */
1704 	preempt_disable();
1705 	if (wait_for_atomic_us((entry = READ_ONCE(*csb)) != -1, 10)) {
1706 		int idx = csb - engine->execlists.csb_status;
1707 		int status;
1708 
1709 		status = GEN8_EXECLISTS_STATUS_BUF;
1710 		if (idx >= 6) {
1711 			status = GEN11_EXECLISTS_STATUS_BUF2;
1712 			idx -= 6;
1713 		}
1714 		status += sizeof(u64) * idx;
1715 
1716 		entry = intel_uncore_read64(engine->uncore,
1717 					    _MMIO(engine->mmio_base + status));
1718 	}
1719 	preempt_enable();
1720 
1721 	return entry;
1722 }
1723 
csb_read(const struct intel_engine_cs * engine,u64 * const csb)1724 static u64 csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1725 {
1726 	u64 entry = READ_ONCE(*csb);
1727 
1728 	/*
1729 	 * Unfortunately, the GPU does not always serialise its write
1730 	 * of the CSB entries before its write of the CSB pointer, at least
1731 	 * from the perspective of the CPU, using what is known as a Global
1732 	 * Observation Point. We may read a new CSB tail pointer, but then
1733 	 * read the stale CSB entries, causing us to misinterpret the
1734 	 * context-switch events, and eventually declare the GPU hung.
1735 	 *
1736 	 * icl:HSDES#1806554093
1737 	 * tgl:HSDES#22011248461
1738 	 */
1739 	if (unlikely(entry == -1))
1740 		entry = wa_csb_read(engine, csb);
1741 
1742 	/* Consume this entry so that we can spot its future reuse. */
1743 	WRITE_ONCE(*csb, -1);
1744 
1745 	/* ELSP is an implicit wmb() before the GPU wraps and overwrites csb */
1746 	return entry;
1747 }
1748 
new_timeslice(struct intel_engine_execlists * el)1749 static void new_timeslice(struct intel_engine_execlists *el)
1750 {
1751 	/* By cancelling, we will start afresh in start_timeslice() */
1752 	cancel_timer(&el->timer);
1753 }
1754 
1755 static struct i915_request **
process_csb(struct intel_engine_cs * engine,struct i915_request ** inactive)1756 process_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
1757 {
1758 	struct intel_engine_execlists * const execlists = &engine->execlists;
1759 	u64 * const buf = execlists->csb_status;
1760 	const u8 num_entries = execlists->csb_size;
1761 	struct i915_request **prev;
1762 	u8 head, tail;
1763 
1764 	/*
1765 	 * As we modify our execlists state tracking we require exclusive
1766 	 * access. Either we are inside the tasklet, or the tasklet is disabled
1767 	 * and we assume that is only inside the reset paths and so serialised.
1768 	 */
1769 	GEM_BUG_ON(!tasklet_is_locked(&execlists->tasklet) &&
1770 		   !reset_in_progress(execlists));
1771 	GEM_BUG_ON(!intel_engine_in_execlists_submission_mode(engine));
1772 
1773 	/*
1774 	 * Note that csb_write, csb_status may be either in HWSP or mmio.
1775 	 * When reading from the csb_write mmio register, we have to be
1776 	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
1777 	 * the low 4bits. As it happens we know the next 4bits are always
1778 	 * zero and so we can simply masked off the low u8 of the register
1779 	 * and treat it identically to reading from the HWSP (without having
1780 	 * to use explicit shifting and masking, and probably bifurcating
1781 	 * the code to handle the legacy mmio read).
1782 	 */
1783 	head = execlists->csb_head;
1784 	tail = READ_ONCE(*execlists->csb_write);
1785 	if (unlikely(head == tail))
1786 		return inactive;
1787 
1788 	/*
1789 	 * We will consume all events from HW, or at least pretend to.
1790 	 *
1791 	 * The sequence of events from the HW is deterministic, and derived
1792 	 * from our writes to the ELSP, with a smidgen of variability for
1793 	 * the arrival of the asynchronous requests wrt to the inflight
1794 	 * execution. If the HW sends an event that does not correspond with
1795 	 * the one we are expecting, we have to abandon all hope as we lose
1796 	 * all tracking of what the engine is actually executing. We will
1797 	 * only detect we are out of sequence with the HW when we get an
1798 	 * 'impossible' event because we have already drained our own
1799 	 * preemption/promotion queue. If this occurs, we know that we likely
1800 	 * lost track of execution earlier and must unwind and restart, the
1801 	 * simplest way is by stop processing the event queue and force the
1802 	 * engine to reset.
1803 	 */
1804 	execlists->csb_head = tail;
1805 	ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail);
1806 
1807 	/*
1808 	 * Hopefully paired with a wmb() in HW!
1809 	 *
1810 	 * We must complete the read of the write pointer before any reads
1811 	 * from the CSB, so that we do not see stale values. Without an rmb
1812 	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
1813 	 * we perform the READ_ONCE(*csb_write).
1814 	 */
1815 	rmb();
1816 
1817 	/* Remember who was last running under the timer */
1818 	prev = inactive;
1819 	*prev = NULL;
1820 
1821 	do {
1822 		bool promote;
1823 		u64 csb;
1824 
1825 		if (++head == num_entries)
1826 			head = 0;
1827 
1828 		/*
1829 		 * We are flying near dragons again.
1830 		 *
1831 		 * We hold a reference to the request in execlist_port[]
1832 		 * but no more than that. We are operating in softirq
1833 		 * context and so cannot hold any mutex or sleep. That
1834 		 * prevents us stopping the requests we are processing
1835 		 * in port[] from being retired simultaneously (the
1836 		 * breadcrumb will be complete before we see the
1837 		 * context-switch). As we only hold the reference to the
1838 		 * request, any pointer chasing underneath the request
1839 		 * is subject to a potential use-after-free. Thus we
1840 		 * store all of the bookkeeping within port[] as
1841 		 * required, and avoid using unguarded pointers beneath
1842 		 * request itself. The same applies to the atomic
1843 		 * status notifier.
1844 		 */
1845 
1846 		csb = csb_read(engine, buf + head);
1847 		ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n",
1848 			     head, upper_32_bits(csb), lower_32_bits(csb));
1849 
1850 		if (INTEL_GEN(engine->i915) >= 12)
1851 			promote = gen12_csb_parse(csb);
1852 		else
1853 			promote = gen8_csb_parse(csb);
1854 		if (promote) {
1855 			struct i915_request * const *old = execlists->active;
1856 
1857 			if (GEM_WARN_ON(!*execlists->pending)) {
1858 				execlists->error_interrupt |= ERROR_CSB;
1859 				break;
1860 			}
1861 
1862 			ring_set_paused(engine, 0);
1863 
1864 			/* Point active to the new ELSP; prevent overwriting */
1865 			WRITE_ONCE(execlists->active, execlists->pending);
1866 			smp_wmb(); /* notify execlists_active() */
1867 
1868 			/* cancel old inflight, prepare for switch */
1869 			trace_ports(execlists, "preempted", old);
1870 			while (*old)
1871 				*inactive++ = *old++;
1872 
1873 			/* switch pending to inflight */
1874 			GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
1875 			copy_ports(execlists->inflight,
1876 				   execlists->pending,
1877 				   execlists_num_ports(execlists));
1878 			smp_wmb(); /* complete the seqlock */
1879 			WRITE_ONCE(execlists->active, execlists->inflight);
1880 
1881 			/* XXX Magic delay for tgl */
1882 			ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
1883 
1884 			WRITE_ONCE(execlists->pending[0], NULL);
1885 		} else {
1886 			if (GEM_WARN_ON(!*execlists->active)) {
1887 				execlists->error_interrupt |= ERROR_CSB;
1888 				break;
1889 			}
1890 
1891 			/* port0 completed, advanced to port1 */
1892 			trace_ports(execlists, "completed", execlists->active);
1893 
1894 			/*
1895 			 * We rely on the hardware being strongly
1896 			 * ordered, that the breadcrumb write is
1897 			 * coherent (visible from the CPU) before the
1898 			 * user interrupt is processed. One might assume
1899 			 * that the breadcrumb write being before the
1900 			 * user interrupt and the CS event for the context
1901 			 * switch would therefore be before the CS event
1902 			 * itself...
1903 			 */
1904 			if (GEM_SHOW_DEBUG() &&
1905 			    !__i915_request_is_complete(*execlists->active)) {
1906 				struct i915_request *rq = *execlists->active;
1907 				const u32 *regs __maybe_unused =
1908 					rq->context->lrc_reg_state;
1909 
1910 				ENGINE_TRACE(engine,
1911 					     "context completed before request!\n");
1912 				ENGINE_TRACE(engine,
1913 					     "ring:{start:0x%08x, head:%04x, tail:%04x, ctl:%08x, mode:%08x}\n",
1914 					     ENGINE_READ(engine, RING_START),
1915 					     ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR,
1916 					     ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR,
1917 					     ENGINE_READ(engine, RING_CTL),
1918 					     ENGINE_READ(engine, RING_MI_MODE));
1919 				ENGINE_TRACE(engine,
1920 					     "rq:{start:%08x, head:%04x, tail:%04x, seqno:%llx:%d, hwsp:%d}, ",
1921 					     i915_ggtt_offset(rq->ring->vma),
1922 					     rq->head, rq->tail,
1923 					     rq->fence.context,
1924 					     lower_32_bits(rq->fence.seqno),
1925 					     hwsp_seqno(rq));
1926 				ENGINE_TRACE(engine,
1927 					     "ctx:{start:%08x, head:%04x, tail:%04x}, ",
1928 					     regs[CTX_RING_START],
1929 					     regs[CTX_RING_HEAD],
1930 					     regs[CTX_RING_TAIL]);
1931 			}
1932 
1933 			*inactive++ = *execlists->active++;
1934 
1935 			GEM_BUG_ON(execlists->active - execlists->inflight >
1936 				   execlists_num_ports(execlists));
1937 		}
1938 	} while (head != tail);
1939 
1940 	/*
1941 	 * Gen11 has proven to fail wrt global observation point between
1942 	 * entry and tail update, failing on the ordering and thus
1943 	 * we see an old entry in the context status buffer.
1944 	 *
1945 	 * Forcibly evict out entries for the next gpu csb update,
1946 	 * to increase the odds that we get a fresh entries with non
1947 	 * working hardware. The cost for doing so comes out mostly with
1948 	 * the wash as hardware, working or not, will need to do the
1949 	 * invalidation before.
1950 	 */
1951 	invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
1952 
1953 	/*
1954 	 * We assume that any event reflects a change in context flow
1955 	 * and merits a fresh timeslice. We reinstall the timer after
1956 	 * inspecting the queue to see if we need to resumbit.
1957 	 */
1958 	if (*prev != *execlists->active) /* elide lite-restores */
1959 		new_timeslice(execlists);
1960 
1961 	return inactive;
1962 }
1963 
post_process_csb(struct i915_request ** port,struct i915_request ** last)1964 static void post_process_csb(struct i915_request **port,
1965 			     struct i915_request **last)
1966 {
1967 	while (port != last)
1968 		execlists_schedule_out(*port++);
1969 }
1970 
__execlists_hold(struct i915_request * rq)1971 static void __execlists_hold(struct i915_request *rq)
1972 {
1973 	LIST_HEAD(list);
1974 
1975 	do {
1976 		struct i915_dependency *p;
1977 
1978 		if (i915_request_is_active(rq))
1979 			__i915_request_unsubmit(rq);
1980 
1981 		clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1982 		list_move_tail(&rq->sched.link, &rq->engine->active.hold);
1983 		i915_request_set_hold(rq);
1984 		RQ_TRACE(rq, "on hold\n");
1985 
1986 		for_each_waiter(p, rq) {
1987 			struct i915_request *w =
1988 				container_of(p->waiter, typeof(*w), sched);
1989 
1990 			if (p->flags & I915_DEPENDENCY_WEAK)
1991 				continue;
1992 
1993 			/* Leave semaphores spinning on the other engines */
1994 			if (w->engine != rq->engine)
1995 				continue;
1996 
1997 			if (!i915_request_is_ready(w))
1998 				continue;
1999 
2000 			if (__i915_request_is_complete(w))
2001 				continue;
2002 
2003 			if (i915_request_on_hold(w))
2004 				continue;
2005 
2006 			list_move_tail(&w->sched.link, &list);
2007 		}
2008 
2009 		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2010 	} while (rq);
2011 }
2012 
execlists_hold(struct intel_engine_cs * engine,struct i915_request * rq)2013 static bool execlists_hold(struct intel_engine_cs *engine,
2014 			   struct i915_request *rq)
2015 {
2016 	if (i915_request_on_hold(rq))
2017 		return false;
2018 
2019 	spin_lock_irq(&engine->active.lock);
2020 
2021 	if (__i915_request_is_complete(rq)) { /* too late! */
2022 		rq = NULL;
2023 		goto unlock;
2024 	}
2025 
2026 	/*
2027 	 * Transfer this request onto the hold queue to prevent it
2028 	 * being resumbitted to HW (and potentially completed) before we have
2029 	 * released it. Since we may have already submitted following
2030 	 * requests, we need to remove those as well.
2031 	 */
2032 	GEM_BUG_ON(i915_request_on_hold(rq));
2033 	GEM_BUG_ON(rq->engine != engine);
2034 	__execlists_hold(rq);
2035 	GEM_BUG_ON(list_empty(&engine->active.hold));
2036 
2037 unlock:
2038 	spin_unlock_irq(&engine->active.lock);
2039 	return rq;
2040 }
2041 
hold_request(const struct i915_request * rq)2042 static bool hold_request(const struct i915_request *rq)
2043 {
2044 	struct i915_dependency *p;
2045 	bool result = false;
2046 
2047 	/*
2048 	 * If one of our ancestors is on hold, we must also be on hold,
2049 	 * otherwise we will bypass it and execute before it.
2050 	 */
2051 	rcu_read_lock();
2052 	for_each_signaler(p, rq) {
2053 		const struct i915_request *s =
2054 			container_of(p->signaler, typeof(*s), sched);
2055 
2056 		if (s->engine != rq->engine)
2057 			continue;
2058 
2059 		result = i915_request_on_hold(s);
2060 		if (result)
2061 			break;
2062 	}
2063 	rcu_read_unlock();
2064 
2065 	return result;
2066 }
2067 
__execlists_unhold(struct i915_request * rq)2068 static void __execlists_unhold(struct i915_request *rq)
2069 {
2070 	LIST_HEAD(list);
2071 
2072 	do {
2073 		struct i915_dependency *p;
2074 
2075 		RQ_TRACE(rq, "hold release\n");
2076 
2077 		GEM_BUG_ON(!i915_request_on_hold(rq));
2078 		GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
2079 
2080 		i915_request_clear_hold(rq);
2081 		list_move_tail(&rq->sched.link,
2082 			       i915_sched_lookup_priolist(rq->engine,
2083 							  rq_prio(rq)));
2084 		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2085 
2086 		/* Also release any children on this engine that are ready */
2087 		for_each_waiter(p, rq) {
2088 			struct i915_request *w =
2089 				container_of(p->waiter, typeof(*w), sched);
2090 
2091 			if (p->flags & I915_DEPENDENCY_WEAK)
2092 				continue;
2093 
2094 			/* Propagate any change in error status */
2095 			if (rq->fence.error)
2096 				i915_request_set_error_once(w, rq->fence.error);
2097 
2098 			if (w->engine != rq->engine)
2099 				continue;
2100 
2101 			if (!i915_request_on_hold(w))
2102 				continue;
2103 
2104 			/* Check that no other parents are also on hold */
2105 			if (hold_request(w))
2106 				continue;
2107 
2108 			list_move_tail(&w->sched.link, &list);
2109 		}
2110 
2111 		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2112 	} while (rq);
2113 }
2114 
execlists_unhold(struct intel_engine_cs * engine,struct i915_request * rq)2115 static void execlists_unhold(struct intel_engine_cs *engine,
2116 			     struct i915_request *rq)
2117 {
2118 	spin_lock_irq(&engine->active.lock);
2119 
2120 	/*
2121 	 * Move this request back to the priority queue, and all of its
2122 	 * children and grandchildren that were suspended along with it.
2123 	 */
2124 	__execlists_unhold(rq);
2125 
2126 	if (rq_prio(rq) > engine->execlists.queue_priority_hint) {
2127 		engine->execlists.queue_priority_hint = rq_prio(rq);
2128 		tasklet_hi_schedule(&engine->execlists.tasklet);
2129 	}
2130 
2131 	spin_unlock_irq(&engine->active.lock);
2132 }
2133 
2134 struct execlists_capture {
2135 	struct work_struct work;
2136 	struct i915_request *rq;
2137 	struct i915_gpu_coredump *error;
2138 };
2139 
execlists_capture_work(struct work_struct * work)2140 static void execlists_capture_work(struct work_struct *work)
2141 {
2142 	struct execlists_capture *cap = container_of(work, typeof(*cap), work);
2143 	const gfp_t gfp = GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
2144 	struct intel_engine_cs *engine = cap->rq->engine;
2145 	struct intel_gt_coredump *gt = cap->error->gt;
2146 	struct intel_engine_capture_vma *vma;
2147 
2148 	/* Compress all the objects attached to the request, slow! */
2149 	vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp);
2150 	if (vma) {
2151 		struct i915_vma_compress *compress =
2152 			i915_vma_capture_prepare(gt);
2153 
2154 		intel_engine_coredump_add_vma(gt->engine, vma, compress);
2155 		i915_vma_capture_finish(gt, compress);
2156 	}
2157 
2158 	gt->simulated = gt->engine->simulated;
2159 	cap->error->simulated = gt->simulated;
2160 
2161 	/* Publish the error state, and announce it to the world */
2162 	i915_error_state_store(cap->error);
2163 	i915_gpu_coredump_put(cap->error);
2164 
2165 	/* Return this request and all that depend upon it for signaling */
2166 	execlists_unhold(engine, cap->rq);
2167 	i915_request_put(cap->rq);
2168 
2169 	kfree(cap);
2170 }
2171 
capture_regs(struct intel_engine_cs * engine)2172 static struct execlists_capture *capture_regs(struct intel_engine_cs *engine)
2173 {
2174 	const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
2175 	struct execlists_capture *cap;
2176 
2177 	cap = kmalloc(sizeof(*cap), gfp);
2178 	if (!cap)
2179 		return NULL;
2180 
2181 	cap->error = i915_gpu_coredump_alloc(engine->i915, gfp);
2182 	if (!cap->error)
2183 		goto err_cap;
2184 
2185 	cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp);
2186 	if (!cap->error->gt)
2187 		goto err_gpu;
2188 
2189 	cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp);
2190 	if (!cap->error->gt->engine)
2191 		goto err_gt;
2192 
2193 	cap->error->gt->engine->hung = true;
2194 
2195 	return cap;
2196 
2197 err_gt:
2198 	kfree(cap->error->gt);
2199 err_gpu:
2200 	kfree(cap->error);
2201 err_cap:
2202 	kfree(cap);
2203 	return NULL;
2204 }
2205 
2206 static struct i915_request *
active_context(struct intel_engine_cs * engine,u32 ccid)2207 active_context(struct intel_engine_cs *engine, u32 ccid)
2208 {
2209 	const struct intel_engine_execlists * const el = &engine->execlists;
2210 	struct i915_request * const *port, *rq;
2211 
2212 	/*
2213 	 * Use the most recent result from process_csb(), but just in case
2214 	 * we trigger an error (via interrupt) before the first CS event has
2215 	 * been written, peek at the next submission.
2216 	 */
2217 
2218 	for (port = el->active; (rq = *port); port++) {
2219 		if (rq->context->lrc.ccid == ccid) {
2220 			ENGINE_TRACE(engine,
2221 				     "ccid:%x found at active:%zd\n",
2222 				     ccid, port - el->active);
2223 			return rq;
2224 		}
2225 	}
2226 
2227 	for (port = el->pending; (rq = *port); port++) {
2228 		if (rq->context->lrc.ccid == ccid) {
2229 			ENGINE_TRACE(engine,
2230 				     "ccid:%x found at pending:%zd\n",
2231 				     ccid, port - el->pending);
2232 			return rq;
2233 		}
2234 	}
2235 
2236 	ENGINE_TRACE(engine, "ccid:%x not found\n", ccid);
2237 	return NULL;
2238 }
2239 
active_ccid(struct intel_engine_cs * engine)2240 static u32 active_ccid(struct intel_engine_cs *engine)
2241 {
2242 	return ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI);
2243 }
2244 
execlists_capture(struct intel_engine_cs * engine)2245 static void execlists_capture(struct intel_engine_cs *engine)
2246 {
2247 	struct execlists_capture *cap;
2248 
2249 	if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR))
2250 		return;
2251 
2252 	/*
2253 	 * We need to _quickly_ capture the engine state before we reset.
2254 	 * We are inside an atomic section (softirq) here and we are delaying
2255 	 * the forced preemption event.
2256 	 */
2257 	cap = capture_regs(engine);
2258 	if (!cap)
2259 		return;
2260 
2261 	spin_lock_irq(&engine->active.lock);
2262 	cap->rq = active_context(engine, active_ccid(engine));
2263 	if (cap->rq) {
2264 		cap->rq = active_request(cap->rq->context->timeline, cap->rq);
2265 		cap->rq = i915_request_get_rcu(cap->rq);
2266 	}
2267 	spin_unlock_irq(&engine->active.lock);
2268 	if (!cap->rq)
2269 		goto err_free;
2270 
2271 	/*
2272 	 * Remove the request from the execlists queue, and take ownership
2273 	 * of the request. We pass it to our worker who will _slowly_ compress
2274 	 * all the pages the _user_ requested for debugging their batch, after
2275 	 * which we return it to the queue for signaling.
2276 	 *
2277 	 * By removing them from the execlists queue, we also remove the
2278 	 * requests from being processed by __unwind_incomplete_requests()
2279 	 * during the intel_engine_reset(), and so they will *not* be replayed
2280 	 * afterwards.
2281 	 *
2282 	 * Note that because we have not yet reset the engine at this point,
2283 	 * it is possible for the request that we have identified as being
2284 	 * guilty, did in fact complete and we will then hit an arbitration
2285 	 * point allowing the outstanding preemption to succeed. The likelihood
2286 	 * of that is very low (as capturing of the engine registers should be
2287 	 * fast enough to run inside an irq-off atomic section!), so we will
2288 	 * simply hold that request accountable for being non-preemptible
2289 	 * long enough to force the reset.
2290 	 */
2291 	if (!execlists_hold(engine, cap->rq))
2292 		goto err_rq;
2293 
2294 	INIT_WORK(&cap->work, execlists_capture_work);
2295 	schedule_work(&cap->work);
2296 	return;
2297 
2298 err_rq:
2299 	i915_request_put(cap->rq);
2300 err_free:
2301 	i915_gpu_coredump_put(cap->error);
2302 	kfree(cap);
2303 }
2304 
execlists_reset(struct intel_engine_cs * engine,const char * msg)2305 static void execlists_reset(struct intel_engine_cs *engine, const char *msg)
2306 {
2307 	const unsigned int bit = I915_RESET_ENGINE + engine->id;
2308 	unsigned long *lock = &engine->gt->reset.flags;
2309 
2310 	if (!intel_has_reset_engine(engine->gt))
2311 		return;
2312 
2313 	if (test_and_set_bit(bit, lock))
2314 		return;
2315 
2316 	ENGINE_TRACE(engine, "reset for %s\n", msg);
2317 
2318 	/* Mark this tasklet as disabled to avoid waiting for it to complete */
2319 	tasklet_disable_nosync(&engine->execlists.tasklet);
2320 
2321 	ring_set_paused(engine, 1); /* Freeze the current request in place */
2322 	execlists_capture(engine);
2323 	intel_engine_reset(engine, msg);
2324 
2325 	tasklet_enable(&engine->execlists.tasklet);
2326 	clear_and_wake_up_bit(bit, lock);
2327 }
2328 
preempt_timeout(const struct intel_engine_cs * const engine)2329 static bool preempt_timeout(const struct intel_engine_cs *const engine)
2330 {
2331 	const struct timer_list *t = &engine->execlists.preempt;
2332 
2333 	if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT)
2334 		return false;
2335 
2336 	if (!timer_expired(t))
2337 		return false;
2338 
2339 	return engine->execlists.pending[0];
2340 }
2341 
2342 /*
2343  * Check the unread Context Status Buffers and manage the submission of new
2344  * contexts to the ELSP accordingly.
2345  */
execlists_submission_tasklet(struct tasklet_struct * t)2346 static void execlists_submission_tasklet(struct tasklet_struct *t)
2347 {
2348 	struct intel_engine_cs * const engine =
2349 		from_tasklet(engine, t, execlists.tasklet);
2350 	struct i915_request *post[2 * EXECLIST_MAX_PORTS];
2351 	struct i915_request **inactive;
2352 
2353 	rcu_read_lock();
2354 	inactive = process_csb(engine, post);
2355 	GEM_BUG_ON(inactive - post > ARRAY_SIZE(post));
2356 
2357 	if (unlikely(preempt_timeout(engine))) {
2358 		cancel_timer(&engine->execlists.preempt);
2359 		engine->execlists.error_interrupt |= ERROR_PREEMPT;
2360 	}
2361 
2362 	if (unlikely(READ_ONCE(engine->execlists.error_interrupt))) {
2363 		const char *msg;
2364 
2365 		/* Generate the error message in priority wrt to the user! */
2366 		if (engine->execlists.error_interrupt & GENMASK(15, 0))
2367 			msg = "CS error"; /* thrown by a user payload */
2368 		else if (engine->execlists.error_interrupt & ERROR_CSB)
2369 			msg = "invalid CSB event";
2370 		else if (engine->execlists.error_interrupt & ERROR_PREEMPT)
2371 			msg = "preemption time out";
2372 		else
2373 			msg = "internal error";
2374 
2375 		engine->execlists.error_interrupt = 0;
2376 		execlists_reset(engine, msg);
2377 	}
2378 
2379 	if (!engine->execlists.pending[0]) {
2380 		execlists_dequeue_irq(engine);
2381 		start_timeslice(engine);
2382 	}
2383 
2384 	post_process_csb(post, inactive);
2385 	rcu_read_unlock();
2386 }
2387 
__execlists_kick(struct intel_engine_execlists * execlists)2388 static void __execlists_kick(struct intel_engine_execlists *execlists)
2389 {
2390 	/* Kick the tasklet for some interrupt coalescing and reset handling */
2391 	tasklet_hi_schedule(&execlists->tasklet);
2392 }
2393 
2394 #define execlists_kick(t, member) \
2395 	__execlists_kick(container_of(t, struct intel_engine_execlists, member))
2396 
execlists_timeslice(struct timer_list * timer)2397 static void execlists_timeslice(struct timer_list *timer)
2398 {
2399 	execlists_kick(timer, timer);
2400 }
2401 
execlists_preempt(struct timer_list * timer)2402 static void execlists_preempt(struct timer_list *timer)
2403 {
2404 	execlists_kick(timer, preempt);
2405 }
2406 
queue_request(struct intel_engine_cs * engine,struct i915_request * rq)2407 static void queue_request(struct intel_engine_cs *engine,
2408 			  struct i915_request *rq)
2409 {
2410 	GEM_BUG_ON(!list_empty(&rq->sched.link));
2411 	list_add_tail(&rq->sched.link,
2412 		      i915_sched_lookup_priolist(engine, rq_prio(rq)));
2413 	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2414 }
2415 
submit_queue(struct intel_engine_cs * engine,const struct i915_request * rq)2416 static bool submit_queue(struct intel_engine_cs *engine,
2417 			 const struct i915_request *rq)
2418 {
2419 	struct intel_engine_execlists *execlists = &engine->execlists;
2420 
2421 	if (rq_prio(rq) <= execlists->queue_priority_hint)
2422 		return false;
2423 
2424 	execlists->queue_priority_hint = rq_prio(rq);
2425 	return true;
2426 }
2427 
ancestor_on_hold(const struct intel_engine_cs * engine,const struct i915_request * rq)2428 static bool ancestor_on_hold(const struct intel_engine_cs *engine,
2429 			     const struct i915_request *rq)
2430 {
2431 	GEM_BUG_ON(i915_request_on_hold(rq));
2432 	return !list_empty(&engine->active.hold) && hold_request(rq);
2433 }
2434 
execlists_submit_request(struct i915_request * request)2435 static void execlists_submit_request(struct i915_request *request)
2436 {
2437 	struct intel_engine_cs *engine = request->engine;
2438 	unsigned long flags;
2439 
2440 	/* Will be called from irq-context when using foreign fences. */
2441 	spin_lock_irqsave(&engine->active.lock, flags);
2442 
2443 	if (unlikely(ancestor_on_hold(engine, request))) {
2444 		RQ_TRACE(request, "ancestor on hold\n");
2445 		list_add_tail(&request->sched.link, &engine->active.hold);
2446 		i915_request_set_hold(request);
2447 	} else {
2448 		queue_request(engine, request);
2449 
2450 		GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
2451 		GEM_BUG_ON(list_empty(&request->sched.link));
2452 
2453 		if (submit_queue(engine, request))
2454 			__execlists_kick(&engine->execlists);
2455 	}
2456 
2457 	spin_unlock_irqrestore(&engine->active.lock, flags);
2458 }
2459 
2460 static int
__execlists_context_pre_pin(struct intel_context * ce,struct intel_engine_cs * engine,struct i915_gem_ww_ctx * ww,void ** vaddr)2461 __execlists_context_pre_pin(struct intel_context *ce,
2462 			    struct intel_engine_cs *engine,
2463 			    struct i915_gem_ww_ctx *ww, void **vaddr)
2464 {
2465 	int err;
2466 
2467 	err = lrc_pre_pin(ce, engine, ww, vaddr);
2468 	if (err)
2469 		return err;
2470 
2471 	if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags)) {
2472 		lrc_init_state(ce, engine, *vaddr);
2473 
2474 		 __i915_gem_object_flush_map(ce->state->obj, 0, engine->context_size);
2475 	}
2476 
2477 	return 0;
2478 }
2479 
execlists_context_pre_pin(struct intel_context * ce,struct i915_gem_ww_ctx * ww,void ** vaddr)2480 static int execlists_context_pre_pin(struct intel_context *ce,
2481 				     struct i915_gem_ww_ctx *ww,
2482 				     void **vaddr)
2483 {
2484 	return __execlists_context_pre_pin(ce, ce->engine, ww, vaddr);
2485 }
2486 
execlists_context_pin(struct intel_context * ce,void * vaddr)2487 static int execlists_context_pin(struct intel_context *ce, void *vaddr)
2488 {
2489 	return lrc_pin(ce, ce->engine, vaddr);
2490 }
2491 
execlists_context_alloc(struct intel_context * ce)2492 static int execlists_context_alloc(struct intel_context *ce)
2493 {
2494 	return lrc_alloc(ce, ce->engine);
2495 }
2496 
2497 static const struct intel_context_ops execlists_context_ops = {
2498 	.flags = COPS_HAS_INFLIGHT,
2499 
2500 	.alloc = execlists_context_alloc,
2501 
2502 	.pre_pin = execlists_context_pre_pin,
2503 	.pin = execlists_context_pin,
2504 	.unpin = lrc_unpin,
2505 	.post_unpin = lrc_post_unpin,
2506 
2507 	.enter = intel_context_enter_engine,
2508 	.exit = intel_context_exit_engine,
2509 
2510 	.reset = lrc_reset,
2511 	.destroy = lrc_destroy,
2512 };
2513 
emit_pdps(struct i915_request * rq)2514 static int emit_pdps(struct i915_request *rq)
2515 {
2516 	const struct intel_engine_cs * const engine = rq->engine;
2517 	struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(rq->context->vm);
2518 	int err, i;
2519 	u32 *cs;
2520 
2521 	GEM_BUG_ON(intel_vgpu_active(rq->engine->i915));
2522 
2523 	/*
2524 	 * Beware ye of the dragons, this sequence is magic!
2525 	 *
2526 	 * Small changes to this sequence can cause anything from
2527 	 * GPU hangs to forcewake errors and machine lockups!
2528 	 */
2529 
2530 	cs = intel_ring_begin(rq, 2);
2531 	if (IS_ERR(cs))
2532 		return PTR_ERR(cs);
2533 
2534 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2535 	*cs++ = MI_NOOP;
2536 	intel_ring_advance(rq, cs);
2537 
2538 	/* Flush any residual operations from the context load */
2539 	err = engine->emit_flush(rq, EMIT_FLUSH);
2540 	if (err)
2541 		return err;
2542 
2543 	/* Magic required to prevent forcewake errors! */
2544 	err = engine->emit_flush(rq, EMIT_INVALIDATE);
2545 	if (err)
2546 		return err;
2547 
2548 	cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
2549 	if (IS_ERR(cs))
2550 		return PTR_ERR(cs);
2551 
2552 	/* Ensure the LRI have landed before we invalidate & continue */
2553 	*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
2554 	for (i = GEN8_3LVL_PDPES; i--; ) {
2555 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
2556 		u32 base = engine->mmio_base;
2557 
2558 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
2559 		*cs++ = upper_32_bits(pd_daddr);
2560 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
2561 		*cs++ = lower_32_bits(pd_daddr);
2562 	}
2563 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2564 	intel_ring_advance(rq, cs);
2565 
2566 	intel_ring_advance(rq, cs);
2567 
2568 	return 0;
2569 }
2570 
execlists_request_alloc(struct i915_request * request)2571 static int execlists_request_alloc(struct i915_request *request)
2572 {
2573 	int ret;
2574 
2575 	GEM_BUG_ON(!intel_context_is_pinned(request->context));
2576 
2577 	/*
2578 	 * Flush enough space to reduce the likelihood of waiting after
2579 	 * we start building the request - in which case we will just
2580 	 * have to repeat work.
2581 	 */
2582 	request->reserved_space += EXECLISTS_REQUEST_SIZE;
2583 
2584 	/*
2585 	 * Note that after this point, we have committed to using
2586 	 * this request as it is being used to both track the
2587 	 * state of engine initialisation and liveness of the
2588 	 * golden renderstate above. Think twice before you try
2589 	 * to cancel/unwind this request now.
2590 	 */
2591 
2592 	if (!i915_vm_is_4lvl(request->context->vm)) {
2593 		ret = emit_pdps(request);
2594 		if (ret)
2595 			return ret;
2596 	}
2597 
2598 	/* Unconditionally invalidate GPU caches and TLBs. */
2599 	ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
2600 	if (ret)
2601 		return ret;
2602 
2603 	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
2604 	return 0;
2605 }
2606 
reset_csb_pointers(struct intel_engine_cs * engine)2607 static void reset_csb_pointers(struct intel_engine_cs *engine)
2608 {
2609 	struct intel_engine_execlists * const execlists = &engine->execlists;
2610 	const unsigned int reset_value = execlists->csb_size - 1;
2611 
2612 	ring_set_paused(engine, 0);
2613 
2614 	/*
2615 	 * Sometimes Icelake forgets to reset its pointers on a GPU reset.
2616 	 * Bludgeon them with a mmio update to be sure.
2617 	 */
2618 	ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2619 		     0xffff << 16 | reset_value << 8 | reset_value);
2620 	ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2621 
2622 	/*
2623 	 * After a reset, the HW starts writing into CSB entry [0]. We
2624 	 * therefore have to set our HEAD pointer back one entry so that
2625 	 * the *first* entry we check is entry 0. To complicate this further,
2626 	 * as we don't wait for the first interrupt after reset, we have to
2627 	 * fake the HW write to point back to the last entry so that our
2628 	 * inline comparison of our cached head position against the last HW
2629 	 * write works even before the first interrupt.
2630 	 */
2631 	execlists->csb_head = reset_value;
2632 	WRITE_ONCE(*execlists->csb_write, reset_value);
2633 	wmb(); /* Make sure this is visible to HW (paranoia?) */
2634 
2635 	/* Check that the GPU does indeed update the CSB entries! */
2636 	memset(execlists->csb_status, -1, (reset_value + 1) * sizeof(u64));
2637 	invalidate_csb_entries(&execlists->csb_status[0],
2638 			       &execlists->csb_status[reset_value]);
2639 
2640 	/* Once more for luck and our trusty paranoia */
2641 	ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2642 		     0xffff << 16 | reset_value << 8 | reset_value);
2643 	ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2644 
2645 	GEM_BUG_ON(READ_ONCE(*execlists->csb_write) != reset_value);
2646 }
2647 
sanitize_hwsp(struct intel_engine_cs * engine)2648 static void sanitize_hwsp(struct intel_engine_cs *engine)
2649 {
2650 	struct intel_timeline *tl;
2651 
2652 	list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
2653 		intel_timeline_reset_seqno(tl);
2654 }
2655 
execlists_sanitize(struct intel_engine_cs * engine)2656 static void execlists_sanitize(struct intel_engine_cs *engine)
2657 {
2658 	GEM_BUG_ON(execlists_active(&engine->execlists));
2659 
2660 	/*
2661 	 * Poison residual state on resume, in case the suspend didn't!
2662 	 *
2663 	 * We have to assume that across suspend/resume (or other loss
2664 	 * of control) that the contents of our pinned buffers has been
2665 	 * lost, replaced by garbage. Since this doesn't always happen,
2666 	 * let's poison such state so that we more quickly spot when
2667 	 * we falsely assume it has been preserved.
2668 	 */
2669 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
2670 		memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
2671 
2672 	reset_csb_pointers(engine);
2673 
2674 	/*
2675 	 * The kernel_context HWSP is stored in the status_page. As above,
2676 	 * that may be lost on resume/initialisation, and so we need to
2677 	 * reset the value in the HWSP.
2678 	 */
2679 	sanitize_hwsp(engine);
2680 
2681 	/* And scrub the dirty cachelines for the HWSP */
2682 	clflush_cache_range(engine->status_page.addr, PAGE_SIZE);
2683 }
2684 
enable_error_interrupt(struct intel_engine_cs * engine)2685 static void enable_error_interrupt(struct intel_engine_cs *engine)
2686 {
2687 	u32 status;
2688 
2689 	engine->execlists.error_interrupt = 0;
2690 	ENGINE_WRITE(engine, RING_EMR, ~0u);
2691 	ENGINE_WRITE(engine, RING_EIR, ~0u); /* clear all existing errors */
2692 
2693 	status = ENGINE_READ(engine, RING_ESR);
2694 	if (unlikely(status)) {
2695 		drm_err(&engine->i915->drm,
2696 			"engine '%s' resumed still in error: %08x\n",
2697 			engine->name, status);
2698 		__intel_gt_reset(engine->gt, engine->mask);
2699 	}
2700 
2701 	/*
2702 	 * On current gen8+, we have 2 signals to play with
2703 	 *
2704 	 * - I915_ERROR_INSTUCTION (bit 0)
2705 	 *
2706 	 *    Generate an error if the command parser encounters an invalid
2707 	 *    instruction
2708 	 *
2709 	 *    This is a fatal error.
2710 	 *
2711 	 * - CP_PRIV (bit 2)
2712 	 *
2713 	 *    Generate an error on privilege violation (where the CP replaces
2714 	 *    the instruction with a no-op). This also fires for writes into
2715 	 *    read-only scratch pages.
2716 	 *
2717 	 *    This is a non-fatal error, parsing continues.
2718 	 *
2719 	 * * there are a few others defined for odd HW that we do not use
2720 	 *
2721 	 * Since CP_PRIV fires for cases where we have chosen to ignore the
2722 	 * error (as the HW is validating and suppressing the mistakes), we
2723 	 * only unmask the instruction error bit.
2724 	 */
2725 	ENGINE_WRITE(engine, RING_EMR, ~I915_ERROR_INSTRUCTION);
2726 }
2727 
enable_execlists(struct intel_engine_cs * engine)2728 static void enable_execlists(struct intel_engine_cs *engine)
2729 {
2730 	u32 mode;
2731 
2732 	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
2733 
2734 	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
2735 
2736 	if (INTEL_GEN(engine->i915) >= 11)
2737 		mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
2738 	else
2739 		mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
2740 	ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
2741 
2742 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
2743 
2744 	ENGINE_WRITE_FW(engine,
2745 			RING_HWS_PGA,
2746 			i915_ggtt_offset(engine->status_page.vma));
2747 	ENGINE_POSTING_READ(engine, RING_HWS_PGA);
2748 
2749 	enable_error_interrupt(engine);
2750 }
2751 
execlists_resume(struct intel_engine_cs * engine)2752 static int execlists_resume(struct intel_engine_cs *engine)
2753 {
2754 	intel_mocs_init_engine(engine);
2755 	intel_breadcrumbs_reset(engine->breadcrumbs);
2756 
2757 	enable_execlists(engine);
2758 
2759 	return 0;
2760 }
2761 
execlists_reset_prepare(struct intel_engine_cs * engine)2762 static void execlists_reset_prepare(struct intel_engine_cs *engine)
2763 {
2764 	struct intel_engine_execlists * const execlists = &engine->execlists;
2765 
2766 	ENGINE_TRACE(engine, "depth<-%d\n",
2767 		     atomic_read(&execlists->tasklet.count));
2768 
2769 	/*
2770 	 * Prevent request submission to the hardware until we have
2771 	 * completed the reset in i915_gem_reset_finish(). If a request
2772 	 * is completed by one engine, it may then queue a request
2773 	 * to a second via its execlists->tasklet *just* as we are
2774 	 * calling engine->resume() and also writing the ELSP.
2775 	 * Turning off the execlists->tasklet until the reset is over
2776 	 * prevents the race.
2777 	 */
2778 	__tasklet_disable_sync_once(&execlists->tasklet);
2779 	GEM_BUG_ON(!reset_in_progress(execlists));
2780 
2781 	/*
2782 	 * We stop engines, otherwise we might get failed reset and a
2783 	 * dead gpu (on elk). Also as modern gpu as kbl can suffer
2784 	 * from system hang if batchbuffer is progressing when
2785 	 * the reset is issued, regardless of READY_TO_RESET ack.
2786 	 * Thus assume it is best to stop engines on all gens
2787 	 * where we have a gpu reset.
2788 	 *
2789 	 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
2790 	 *
2791 	 * FIXME: Wa for more modern gens needs to be validated
2792 	 */
2793 	ring_set_paused(engine, 1);
2794 	intel_engine_stop_cs(engine);
2795 
2796 	engine->execlists.reset_ccid = active_ccid(engine);
2797 }
2798 
2799 static struct i915_request **
reset_csb(struct intel_engine_cs * engine,struct i915_request ** inactive)2800 reset_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
2801 {
2802 	struct intel_engine_execlists * const execlists = &engine->execlists;
2803 
2804 	mb(); /* paranoia: read the CSB pointers from after the reset */
2805 	clflush(execlists->csb_write);
2806 	mb();
2807 
2808 	inactive = process_csb(engine, inactive); /* drain preemption events */
2809 
2810 	/* Following the reset, we need to reload the CSB read/write pointers */
2811 	reset_csb_pointers(engine);
2812 
2813 	return inactive;
2814 }
2815 
2816 static void
execlists_reset_active(struct intel_engine_cs * engine,bool stalled)2817 execlists_reset_active(struct intel_engine_cs *engine, bool stalled)
2818 {
2819 	struct intel_context *ce;
2820 	struct i915_request *rq;
2821 	u32 head;
2822 
2823 	/*
2824 	 * Save the currently executing context, even if we completed
2825 	 * its request, it was still running at the time of the
2826 	 * reset and will have been clobbered.
2827 	 */
2828 	rq = active_context(engine, engine->execlists.reset_ccid);
2829 	if (!rq)
2830 		return;
2831 
2832 	ce = rq->context;
2833 	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
2834 
2835 	if (__i915_request_is_complete(rq)) {
2836 		/* Idle context; tidy up the ring so we can restart afresh */
2837 		head = intel_ring_wrap(ce->ring, rq->tail);
2838 		goto out_replay;
2839 	}
2840 
2841 	/* We still have requests in-flight; the engine should be active */
2842 	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
2843 
2844 	/* Context has requests still in-flight; it should not be idle! */
2845 	GEM_BUG_ON(i915_active_is_idle(&ce->active));
2846 
2847 	rq = active_request(ce->timeline, rq);
2848 	head = intel_ring_wrap(ce->ring, rq->head);
2849 	GEM_BUG_ON(head == ce->ring->tail);
2850 
2851 	/*
2852 	 * If this request hasn't started yet, e.g. it is waiting on a
2853 	 * semaphore, we need to avoid skipping the request or else we
2854 	 * break the signaling chain. However, if the context is corrupt
2855 	 * the request will not restart and we will be stuck with a wedged
2856 	 * device. It is quite often the case that if we issue a reset
2857 	 * while the GPU is loading the context image, that the context
2858 	 * image becomes corrupt.
2859 	 *
2860 	 * Otherwise, if we have not started yet, the request should replay
2861 	 * perfectly and we do not need to flag the result as being erroneous.
2862 	 */
2863 	if (!__i915_request_has_started(rq))
2864 		goto out_replay;
2865 
2866 	/*
2867 	 * If the request was innocent, we leave the request in the ELSP
2868 	 * and will try to replay it on restarting. The context image may
2869 	 * have been corrupted by the reset, in which case we may have
2870 	 * to service a new GPU hang, but more likely we can continue on
2871 	 * without impact.
2872 	 *
2873 	 * If the request was guilty, we presume the context is corrupt
2874 	 * and have to at least restore the RING register in the context
2875 	 * image back to the expected values to skip over the guilty request.
2876 	 */
2877 	__i915_request_reset(rq, stalled);
2878 
2879 	/*
2880 	 * We want a simple context + ring to execute the breadcrumb update.
2881 	 * We cannot rely on the context being intact across the GPU hang,
2882 	 * so clear it and rebuild just what we need for the breadcrumb.
2883 	 * All pending requests for this context will be zapped, and any
2884 	 * future request will be after userspace has had the opportunity
2885 	 * to recreate its own state.
2886 	 */
2887 out_replay:
2888 	ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n",
2889 		     head, ce->ring->tail);
2890 	lrc_reset_regs(ce, engine);
2891 	ce->lrc.lrca = lrc_update_regs(ce, engine, head);
2892 }
2893 
execlists_reset_csb(struct intel_engine_cs * engine,bool stalled)2894 static void execlists_reset_csb(struct intel_engine_cs *engine, bool stalled)
2895 {
2896 	struct intel_engine_execlists * const execlists = &engine->execlists;
2897 	struct i915_request *post[2 * EXECLIST_MAX_PORTS];
2898 	struct i915_request **inactive;
2899 
2900 	rcu_read_lock();
2901 	inactive = reset_csb(engine, post);
2902 
2903 	execlists_reset_active(engine, true);
2904 
2905 	inactive = cancel_port_requests(execlists, inactive);
2906 	post_process_csb(post, inactive);
2907 	rcu_read_unlock();
2908 }
2909 
execlists_reset_rewind(struct intel_engine_cs * engine,bool stalled)2910 static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled)
2911 {
2912 	unsigned long flags;
2913 
2914 	ENGINE_TRACE(engine, "\n");
2915 
2916 	/* Process the csb, find the guilty context and throw away */
2917 	execlists_reset_csb(engine, stalled);
2918 
2919 	/* Push back any incomplete requests for replay after the reset. */
2920 	rcu_read_lock();
2921 	spin_lock_irqsave(&engine->active.lock, flags);
2922 	__unwind_incomplete_requests(engine);
2923 	spin_unlock_irqrestore(&engine->active.lock, flags);
2924 	rcu_read_unlock();
2925 }
2926 
nop_submission_tasklet(struct tasklet_struct * t)2927 static void nop_submission_tasklet(struct tasklet_struct *t)
2928 {
2929 	struct intel_engine_cs * const engine =
2930 		from_tasklet(engine, t, execlists.tasklet);
2931 
2932 	/* The driver is wedged; don't process any more events. */
2933 	WRITE_ONCE(engine->execlists.queue_priority_hint, INT_MIN);
2934 }
2935 
execlists_reset_cancel(struct intel_engine_cs * engine)2936 static void execlists_reset_cancel(struct intel_engine_cs *engine)
2937 {
2938 	struct intel_engine_execlists * const execlists = &engine->execlists;
2939 	struct i915_request *rq, *rn;
2940 	struct rb_node *rb;
2941 	unsigned long flags;
2942 
2943 	ENGINE_TRACE(engine, "\n");
2944 
2945 	/*
2946 	 * Before we call engine->cancel_requests(), we should have exclusive
2947 	 * access to the submission state. This is arranged for us by the
2948 	 * caller disabling the interrupt generation, the tasklet and other
2949 	 * threads that may then access the same state, giving us a free hand
2950 	 * to reset state. However, we still need to let lockdep be aware that
2951 	 * we know this state may be accessed in hardirq context, so we
2952 	 * disable the irq around this manipulation and we want to keep
2953 	 * the spinlock focused on its duties and not accidentally conflate
2954 	 * coverage to the submission's irq state. (Similarly, although we
2955 	 * shouldn't need to disable irq around the manipulation of the
2956 	 * submission's irq state, we also wish to remind ourselves that
2957 	 * it is irq state.)
2958 	 */
2959 	execlists_reset_csb(engine, true);
2960 
2961 	rcu_read_lock();
2962 	spin_lock_irqsave(&engine->active.lock, flags);
2963 
2964 	/* Mark all executing requests as skipped. */
2965 	list_for_each_entry(rq, &engine->active.requests, sched.link)
2966 		i915_request_put(i915_request_mark_eio(rq));
2967 	intel_engine_signal_breadcrumbs(engine);
2968 
2969 	/* Flush the queued requests to the timeline list (for retiring). */
2970 	while ((rb = rb_first_cached(&execlists->queue))) {
2971 		struct i915_priolist *p = to_priolist(rb);
2972 
2973 		priolist_for_each_request_consume(rq, rn, p) {
2974 			if (i915_request_mark_eio(rq)) {
2975 				__i915_request_submit(rq);
2976 				i915_request_put(rq);
2977 			}
2978 		}
2979 
2980 		rb_erase_cached(&p->node, &execlists->queue);
2981 		i915_priolist_free(p);
2982 	}
2983 
2984 	/* On-hold requests will be flushed to timeline upon their release */
2985 	list_for_each_entry(rq, &engine->active.hold, sched.link)
2986 		i915_request_put(i915_request_mark_eio(rq));
2987 
2988 	/* Cancel all attached virtual engines */
2989 	while ((rb = rb_first_cached(&execlists->virtual))) {
2990 		struct virtual_engine *ve =
2991 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
2992 
2993 		rb_erase_cached(rb, &execlists->virtual);
2994 		RB_CLEAR_NODE(rb);
2995 
2996 		spin_lock(&ve->base.active.lock);
2997 		rq = fetch_and_zero(&ve->request);
2998 		if (rq) {
2999 			if (i915_request_mark_eio(rq)) {
3000 				rq->engine = engine;
3001 				__i915_request_submit(rq);
3002 				i915_request_put(rq);
3003 			}
3004 			i915_request_put(rq);
3005 
3006 			ve->base.execlists.queue_priority_hint = INT_MIN;
3007 		}
3008 		spin_unlock(&ve->base.active.lock);
3009 	}
3010 
3011 	/* Remaining _unready_ requests will be nop'ed when submitted */
3012 
3013 	execlists->queue_priority_hint = INT_MIN;
3014 	execlists->queue = RB_ROOT_CACHED;
3015 
3016 	GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
3017 	execlists->tasklet.callback = nop_submission_tasklet;
3018 
3019 	spin_unlock_irqrestore(&engine->active.lock, flags);
3020 	rcu_read_unlock();
3021 }
3022 
execlists_reset_finish(struct intel_engine_cs * engine)3023 static void execlists_reset_finish(struct intel_engine_cs *engine)
3024 {
3025 	struct intel_engine_execlists * const execlists = &engine->execlists;
3026 
3027 	/*
3028 	 * After a GPU reset, we may have requests to replay. Do so now while
3029 	 * we still have the forcewake to be sure that the GPU is not allowed
3030 	 * to sleep before we restart and reload a context.
3031 	 *
3032 	 * If the GPU reset fails, the engine may still be alive with requests
3033 	 * inflight. We expect those to complete, or for the device to be
3034 	 * reset as the next level of recovery, and as a final resort we
3035 	 * will declare the device wedged.
3036 	 */
3037 	GEM_BUG_ON(!reset_in_progress(execlists));
3038 
3039 	/* And kick in case we missed a new request submission. */
3040 	if (__tasklet_enable(&execlists->tasklet))
3041 		__execlists_kick(execlists);
3042 
3043 	ENGINE_TRACE(engine, "depth->%d\n",
3044 		     atomic_read(&execlists->tasklet.count));
3045 }
3046 
gen8_logical_ring_enable_irq(struct intel_engine_cs * engine)3047 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
3048 {
3049 	ENGINE_WRITE(engine, RING_IMR,
3050 		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
3051 	ENGINE_POSTING_READ(engine, RING_IMR);
3052 }
3053 
gen8_logical_ring_disable_irq(struct intel_engine_cs * engine)3054 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
3055 {
3056 	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
3057 }
3058 
execlists_park(struct intel_engine_cs * engine)3059 static void execlists_park(struct intel_engine_cs *engine)
3060 {
3061 	cancel_timer(&engine->execlists.timer);
3062 	cancel_timer(&engine->execlists.preempt);
3063 }
3064 
can_preempt(struct intel_engine_cs * engine)3065 static bool can_preempt(struct intel_engine_cs *engine)
3066 {
3067 	if (INTEL_GEN(engine->i915) > 8)
3068 		return true;
3069 
3070 	/* GPGPU on bdw requires extra w/a; not implemented */
3071 	return engine->class != RENDER_CLASS;
3072 }
3073 
execlists_set_default_submission(struct intel_engine_cs * engine)3074 static void execlists_set_default_submission(struct intel_engine_cs *engine)
3075 {
3076 	engine->submit_request = execlists_submit_request;
3077 	engine->schedule = i915_schedule;
3078 	engine->execlists.tasklet.callback = execlists_submission_tasklet;
3079 
3080 	engine->reset.prepare = execlists_reset_prepare;
3081 	engine->reset.rewind = execlists_reset_rewind;
3082 	engine->reset.cancel = execlists_reset_cancel;
3083 	engine->reset.finish = execlists_reset_finish;
3084 
3085 	engine->park = execlists_park;
3086 	engine->unpark = NULL;
3087 
3088 	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
3089 	if (!intel_vgpu_active(engine->i915)) {
3090 		engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
3091 		if (can_preempt(engine)) {
3092 			engine->flags |= I915_ENGINE_HAS_PREEMPTION;
3093 			if (IS_ACTIVE(CONFIG_DRM_I915_TIMESLICE_DURATION))
3094 				engine->flags |= I915_ENGINE_HAS_TIMESLICES;
3095 		}
3096 	}
3097 
3098 	if (intel_engine_has_preemption(engine))
3099 		engine->emit_bb_start = gen8_emit_bb_start;
3100 	else
3101 		engine->emit_bb_start = gen8_emit_bb_start_noarb;
3102 }
3103 
execlists_shutdown(struct intel_engine_cs * engine)3104 static void execlists_shutdown(struct intel_engine_cs *engine)
3105 {
3106 	/* Synchronise with residual timers and any softirq they raise */
3107 	del_timer_sync(&engine->execlists.timer);
3108 	del_timer_sync(&engine->execlists.preempt);
3109 	tasklet_kill(&engine->execlists.tasklet);
3110 }
3111 
execlists_release(struct intel_engine_cs * engine)3112 static void execlists_release(struct intel_engine_cs *engine)
3113 {
3114 	engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
3115 
3116 	execlists_shutdown(engine);
3117 
3118 	intel_engine_cleanup_common(engine);
3119 	lrc_fini_wa_ctx(engine);
3120 }
3121 
3122 static void
logical_ring_default_vfuncs(struct intel_engine_cs * engine)3123 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
3124 {
3125 	/* Default vfuncs which can be overridden by each engine. */
3126 
3127 	engine->resume = execlists_resume;
3128 
3129 	engine->cops = &execlists_context_ops;
3130 	engine->request_alloc = execlists_request_alloc;
3131 
3132 	engine->emit_flush = gen8_emit_flush_xcs;
3133 	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
3134 	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
3135 	if (INTEL_GEN(engine->i915) >= 12) {
3136 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
3137 		engine->emit_flush = gen12_emit_flush_xcs;
3138 	}
3139 	engine->set_default_submission = execlists_set_default_submission;
3140 
3141 	if (INTEL_GEN(engine->i915) < 11) {
3142 		engine->irq_enable = gen8_logical_ring_enable_irq;
3143 		engine->irq_disable = gen8_logical_ring_disable_irq;
3144 	} else {
3145 		/*
3146 		 * TODO: On Gen11 interrupt masks need to be clear
3147 		 * to allow C6 entry. Keep interrupts enabled at
3148 		 * and take the hit of generating extra interrupts
3149 		 * until a more refined solution exists.
3150 		 */
3151 	}
3152 }
3153 
logical_ring_default_irqs(struct intel_engine_cs * engine)3154 static void logical_ring_default_irqs(struct intel_engine_cs *engine)
3155 {
3156 	unsigned int shift = 0;
3157 
3158 	if (INTEL_GEN(engine->i915) < 11) {
3159 		const u8 irq_shifts[] = {
3160 			[RCS0]  = GEN8_RCS_IRQ_SHIFT,
3161 			[BCS0]  = GEN8_BCS_IRQ_SHIFT,
3162 			[VCS0]  = GEN8_VCS0_IRQ_SHIFT,
3163 			[VCS1]  = GEN8_VCS1_IRQ_SHIFT,
3164 			[VECS0] = GEN8_VECS_IRQ_SHIFT,
3165 		};
3166 
3167 		shift = irq_shifts[engine->id];
3168 	}
3169 
3170 	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
3171 	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
3172 	engine->irq_keep_mask |= GT_CS_MASTER_ERROR_INTERRUPT << shift;
3173 	engine->irq_keep_mask |= GT_WAIT_SEMAPHORE_INTERRUPT << shift;
3174 }
3175 
rcs_submission_override(struct intel_engine_cs * engine)3176 static void rcs_submission_override(struct intel_engine_cs *engine)
3177 {
3178 	switch (INTEL_GEN(engine->i915)) {
3179 	case 12:
3180 		engine->emit_flush = gen12_emit_flush_rcs;
3181 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
3182 		break;
3183 	case 11:
3184 		engine->emit_flush = gen11_emit_flush_rcs;
3185 		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
3186 		break;
3187 	default:
3188 		engine->emit_flush = gen8_emit_flush_rcs;
3189 		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
3190 		break;
3191 	}
3192 }
3193 
intel_execlists_submission_setup(struct intel_engine_cs * engine)3194 int intel_execlists_submission_setup(struct intel_engine_cs *engine)
3195 {
3196 	struct intel_engine_execlists * const execlists = &engine->execlists;
3197 	struct drm_i915_private *i915 = engine->i915;
3198 	struct intel_uncore *uncore = engine->uncore;
3199 	u32 base = engine->mmio_base;
3200 
3201 	tasklet_setup(&engine->execlists.tasklet, execlists_submission_tasklet);
3202 	timer_setup(&engine->execlists.timer, execlists_timeslice, 0);
3203 	timer_setup(&engine->execlists.preempt, execlists_preempt, 0);
3204 
3205 	logical_ring_default_vfuncs(engine);
3206 	logical_ring_default_irqs(engine);
3207 
3208 	if (engine->class == RENDER_CLASS)
3209 		rcs_submission_override(engine);
3210 
3211 	lrc_init_wa_ctx(engine);
3212 
3213 	if (HAS_LOGICAL_RING_ELSQ(i915)) {
3214 		execlists->submit_reg = uncore->regs +
3215 			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
3216 		execlists->ctrl_reg = uncore->regs +
3217 			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
3218 	} else {
3219 		execlists->submit_reg = uncore->regs +
3220 			i915_mmio_reg_offset(RING_ELSP(base));
3221 	}
3222 
3223 	execlists->csb_status =
3224 		(u64 *)&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
3225 
3226 	execlists->csb_write =
3227 		&engine->status_page.addr[intel_hws_csb_write_index(i915)];
3228 
3229 	if (INTEL_GEN(i915) < 11)
3230 		execlists->csb_size = GEN8_CSB_ENTRIES;
3231 	else
3232 		execlists->csb_size = GEN11_CSB_ENTRIES;
3233 
3234 	engine->context_tag = GENMASK(BITS_PER_LONG - 2, 0);
3235 	if (INTEL_GEN(engine->i915) >= 11) {
3236 		execlists->ccid |= engine->instance << (GEN11_ENGINE_INSTANCE_SHIFT - 32);
3237 		execlists->ccid |= engine->class << (GEN11_ENGINE_CLASS_SHIFT - 32);
3238 	}
3239 
3240 	/* Finally, take ownership and responsibility for cleanup! */
3241 	engine->sanitize = execlists_sanitize;
3242 	engine->release = execlists_release;
3243 
3244 	return 0;
3245 }
3246 
virtual_queue(struct virtual_engine * ve)3247 static struct list_head *virtual_queue(struct virtual_engine *ve)
3248 {
3249 	return &ve->base.execlists.default_priolist.requests;
3250 }
3251 
rcu_virtual_context_destroy(struct work_struct * wrk)3252 static void rcu_virtual_context_destroy(struct work_struct *wrk)
3253 {
3254 	struct virtual_engine *ve =
3255 		container_of(wrk, typeof(*ve), rcu.work);
3256 	unsigned int n;
3257 
3258 	GEM_BUG_ON(ve->context.inflight);
3259 
3260 	/* Preempt-to-busy may leave a stale request behind. */
3261 	if (unlikely(ve->request)) {
3262 		struct i915_request *old;
3263 
3264 		spin_lock_irq(&ve->base.active.lock);
3265 
3266 		old = fetch_and_zero(&ve->request);
3267 		if (old) {
3268 			GEM_BUG_ON(!__i915_request_is_complete(old));
3269 			__i915_request_submit(old);
3270 			i915_request_put(old);
3271 		}
3272 
3273 		spin_unlock_irq(&ve->base.active.lock);
3274 	}
3275 
3276 	/*
3277 	 * Flush the tasklet in case it is still running on another core.
3278 	 *
3279 	 * This needs to be done before we remove ourselves from the siblings'
3280 	 * rbtrees as in the case it is running in parallel, it may reinsert
3281 	 * the rb_node into a sibling.
3282 	 */
3283 	tasklet_kill(&ve->base.execlists.tasklet);
3284 
3285 	/* Decouple ourselves from the siblings, no more access allowed. */
3286 	for (n = 0; n < ve->num_siblings; n++) {
3287 		struct intel_engine_cs *sibling = ve->siblings[n];
3288 		struct rb_node *node = &ve->nodes[sibling->id].rb;
3289 
3290 		if (RB_EMPTY_NODE(node))
3291 			continue;
3292 
3293 		spin_lock_irq(&sibling->active.lock);
3294 
3295 		/* Detachment is lazily performed in the execlists tasklet */
3296 		if (!RB_EMPTY_NODE(node))
3297 			rb_erase_cached(node, &sibling->execlists.virtual);
3298 
3299 		spin_unlock_irq(&sibling->active.lock);
3300 	}
3301 	GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet));
3302 	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3303 
3304 	lrc_fini(&ve->context);
3305 	intel_context_fini(&ve->context);
3306 
3307 	intel_breadcrumbs_free(ve->base.breadcrumbs);
3308 	intel_engine_free_request_pool(&ve->base);
3309 
3310 	kfree(ve->bonds);
3311 	kfree(ve);
3312 }
3313 
virtual_context_destroy(struct kref * kref)3314 static void virtual_context_destroy(struct kref *kref)
3315 {
3316 	struct virtual_engine *ve =
3317 		container_of(kref, typeof(*ve), context.ref);
3318 
3319 	GEM_BUG_ON(!list_empty(&ve->context.signals));
3320 
3321 	/*
3322 	 * When destroying the virtual engine, we have to be aware that
3323 	 * it may still be in use from an hardirq/softirq context causing
3324 	 * the resubmission of a completed request (background completion
3325 	 * due to preempt-to-busy). Before we can free the engine, we need
3326 	 * to flush the submission code and tasklets that are still potentially
3327 	 * accessing the engine. Flushing the tasklets requires process context,
3328 	 * and since we can guard the resubmit onto the engine with an RCU read
3329 	 * lock, we can delegate the free of the engine to an RCU worker.
3330 	 */
3331 	INIT_RCU_WORK(&ve->rcu, rcu_virtual_context_destroy);
3332 	queue_rcu_work(system_wq, &ve->rcu);
3333 }
3334 
virtual_engine_initial_hint(struct virtual_engine * ve)3335 static void virtual_engine_initial_hint(struct virtual_engine *ve)
3336 {
3337 	int swp;
3338 
3339 	/*
3340 	 * Pick a random sibling on starting to help spread the load around.
3341 	 *
3342 	 * New contexts are typically created with exactly the same order
3343 	 * of siblings, and often started in batches. Due to the way we iterate
3344 	 * the array of sibling when submitting requests, sibling[0] is
3345 	 * prioritised for dequeuing. If we make sure that sibling[0] is fairly
3346 	 * randomised across the system, we also help spread the load by the
3347 	 * first engine we inspect being different each time.
3348 	 *
3349 	 * NB This does not force us to execute on this engine, it will just
3350 	 * typically be the first we inspect for submission.
3351 	 */
3352 	swp = prandom_u32_max(ve->num_siblings);
3353 	if (swp)
3354 		swap(ve->siblings[swp], ve->siblings[0]);
3355 }
3356 
virtual_context_alloc(struct intel_context * ce)3357 static int virtual_context_alloc(struct intel_context *ce)
3358 {
3359 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3360 
3361 	return lrc_alloc(ce, ve->siblings[0]);
3362 }
3363 
virtual_context_pre_pin(struct intel_context * ce,struct i915_gem_ww_ctx * ww,void ** vaddr)3364 static int virtual_context_pre_pin(struct intel_context *ce,
3365 				   struct i915_gem_ww_ctx *ww,
3366 				   void **vaddr)
3367 {
3368 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3369 
3370 	 /* Note: we must use a real engine class for setting up reg state */
3371 	return __execlists_context_pre_pin(ce, ve->siblings[0], ww, vaddr);
3372 }
3373 
virtual_context_pin(struct intel_context * ce,void * vaddr)3374 static int virtual_context_pin(struct intel_context *ce, void *vaddr)
3375 {
3376 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3377 
3378 	return lrc_pin(ce, ve->siblings[0], vaddr);
3379 }
3380 
virtual_context_enter(struct intel_context * ce)3381 static void virtual_context_enter(struct intel_context *ce)
3382 {
3383 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3384 	unsigned int n;
3385 
3386 	for (n = 0; n < ve->num_siblings; n++)
3387 		intel_engine_pm_get(ve->siblings[n]);
3388 
3389 	intel_timeline_enter(ce->timeline);
3390 }
3391 
virtual_context_exit(struct intel_context * ce)3392 static void virtual_context_exit(struct intel_context *ce)
3393 {
3394 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3395 	unsigned int n;
3396 
3397 	intel_timeline_exit(ce->timeline);
3398 
3399 	for (n = 0; n < ve->num_siblings; n++)
3400 		intel_engine_pm_put(ve->siblings[n]);
3401 }
3402 
3403 static const struct intel_context_ops virtual_context_ops = {
3404 	.flags = COPS_HAS_INFLIGHT,
3405 
3406 	.alloc = virtual_context_alloc,
3407 
3408 	.pre_pin = virtual_context_pre_pin,
3409 	.pin = virtual_context_pin,
3410 	.unpin = lrc_unpin,
3411 	.post_unpin = lrc_post_unpin,
3412 
3413 	.enter = virtual_context_enter,
3414 	.exit = virtual_context_exit,
3415 
3416 	.destroy = virtual_context_destroy,
3417 };
3418 
virtual_submission_mask(struct virtual_engine * ve)3419 static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
3420 {
3421 	struct i915_request *rq;
3422 	intel_engine_mask_t mask;
3423 
3424 	rq = READ_ONCE(ve->request);
3425 	if (!rq)
3426 		return 0;
3427 
3428 	/* The rq is ready for submission; rq->execution_mask is now stable. */
3429 	mask = rq->execution_mask;
3430 	if (unlikely(!mask)) {
3431 		/* Invalid selection, submit to a random engine in error */
3432 		i915_request_set_error_once(rq, -ENODEV);
3433 		mask = ve->siblings[0]->mask;
3434 	}
3435 
3436 	ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n",
3437 		     rq->fence.context, rq->fence.seqno,
3438 		     mask, ve->base.execlists.queue_priority_hint);
3439 
3440 	return mask;
3441 }
3442 
virtual_submission_tasklet(struct tasklet_struct * t)3443 static void virtual_submission_tasklet(struct tasklet_struct *t)
3444 {
3445 	struct virtual_engine * const ve =
3446 		from_tasklet(ve, t, base.execlists.tasklet);
3447 	const int prio = READ_ONCE(ve->base.execlists.queue_priority_hint);
3448 	intel_engine_mask_t mask;
3449 	unsigned int n;
3450 
3451 	rcu_read_lock();
3452 	mask = virtual_submission_mask(ve);
3453 	rcu_read_unlock();
3454 	if (unlikely(!mask))
3455 		return;
3456 
3457 	for (n = 0; n < ve->num_siblings; n++) {
3458 		struct intel_engine_cs *sibling = READ_ONCE(ve->siblings[n]);
3459 		struct ve_node * const node = &ve->nodes[sibling->id];
3460 		struct rb_node **parent, *rb;
3461 		bool first;
3462 
3463 		if (!READ_ONCE(ve->request))
3464 			break; /* already handled by a sibling's tasklet */
3465 
3466 		spin_lock_irq(&sibling->active.lock);
3467 
3468 		if (unlikely(!(mask & sibling->mask))) {
3469 			if (!RB_EMPTY_NODE(&node->rb)) {
3470 				rb_erase_cached(&node->rb,
3471 						&sibling->execlists.virtual);
3472 				RB_CLEAR_NODE(&node->rb);
3473 			}
3474 
3475 			goto unlock_engine;
3476 		}
3477 
3478 		if (unlikely(!RB_EMPTY_NODE(&node->rb))) {
3479 			/*
3480 			 * Cheat and avoid rebalancing the tree if we can
3481 			 * reuse this node in situ.
3482 			 */
3483 			first = rb_first_cached(&sibling->execlists.virtual) ==
3484 				&node->rb;
3485 			if (prio == node->prio || (prio > node->prio && first))
3486 				goto submit_engine;
3487 
3488 			rb_erase_cached(&node->rb, &sibling->execlists.virtual);
3489 		}
3490 
3491 		rb = NULL;
3492 		first = true;
3493 		parent = &sibling->execlists.virtual.rb_root.rb_node;
3494 		while (*parent) {
3495 			struct ve_node *other;
3496 
3497 			rb = *parent;
3498 			other = rb_entry(rb, typeof(*other), rb);
3499 			if (prio > other->prio) {
3500 				parent = &rb->rb_left;
3501 			} else {
3502 				parent = &rb->rb_right;
3503 				first = false;
3504 			}
3505 		}
3506 
3507 		rb_link_node(&node->rb, rb, parent);
3508 		rb_insert_color_cached(&node->rb,
3509 				       &sibling->execlists.virtual,
3510 				       first);
3511 
3512 submit_engine:
3513 		GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
3514 		node->prio = prio;
3515 		if (first && prio > sibling->execlists.queue_priority_hint)
3516 			tasklet_hi_schedule(&sibling->execlists.tasklet);
3517 
3518 unlock_engine:
3519 		spin_unlock_irq(&sibling->active.lock);
3520 
3521 		if (intel_context_inflight(&ve->context))
3522 			break;
3523 	}
3524 }
3525 
virtual_submit_request(struct i915_request * rq)3526 static void virtual_submit_request(struct i915_request *rq)
3527 {
3528 	struct virtual_engine *ve = to_virtual_engine(rq->engine);
3529 	unsigned long flags;
3530 
3531 	ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n",
3532 		     rq->fence.context,
3533 		     rq->fence.seqno);
3534 
3535 	GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
3536 
3537 	spin_lock_irqsave(&ve->base.active.lock, flags);
3538 
3539 	/* By the time we resubmit a request, it may be completed */
3540 	if (__i915_request_is_complete(rq)) {
3541 		__i915_request_submit(rq);
3542 		goto unlock;
3543 	}
3544 
3545 	if (ve->request) { /* background completion from preempt-to-busy */
3546 		GEM_BUG_ON(!__i915_request_is_complete(ve->request));
3547 		__i915_request_submit(ve->request);
3548 		i915_request_put(ve->request);
3549 	}
3550 
3551 	ve->base.execlists.queue_priority_hint = rq_prio(rq);
3552 	ve->request = i915_request_get(rq);
3553 
3554 	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3555 	list_move_tail(&rq->sched.link, virtual_queue(ve));
3556 
3557 	tasklet_hi_schedule(&ve->base.execlists.tasklet);
3558 
3559 unlock:
3560 	spin_unlock_irqrestore(&ve->base.active.lock, flags);
3561 }
3562 
3563 static struct ve_bond *
virtual_find_bond(struct virtual_engine * ve,const struct intel_engine_cs * master)3564 virtual_find_bond(struct virtual_engine *ve,
3565 		  const struct intel_engine_cs *master)
3566 {
3567 	int i;
3568 
3569 	for (i = 0; i < ve->num_bonds; i++) {
3570 		if (ve->bonds[i].master == master)
3571 			return &ve->bonds[i];
3572 	}
3573 
3574 	return NULL;
3575 }
3576 
3577 static void
virtual_bond_execute(struct i915_request * rq,struct dma_fence * signal)3578 virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal)
3579 {
3580 	struct virtual_engine *ve = to_virtual_engine(rq->engine);
3581 	intel_engine_mask_t allowed, exec;
3582 	struct ve_bond *bond;
3583 
3584 	allowed = ~to_request(signal)->engine->mask;
3585 
3586 	bond = virtual_find_bond(ve, to_request(signal)->engine);
3587 	if (bond)
3588 		allowed &= bond->sibling_mask;
3589 
3590 	/* Restrict the bonded request to run on only the available engines */
3591 	exec = READ_ONCE(rq->execution_mask);
3592 	while (!try_cmpxchg(&rq->execution_mask, &exec, exec & allowed))
3593 		;
3594 
3595 	/* Prevent the master from being re-run on the bonded engines */
3596 	to_request(signal)->execution_mask &= ~allowed;
3597 }
3598 
3599 struct intel_context *
intel_execlists_create_virtual(struct intel_engine_cs ** siblings,unsigned int count)3600 intel_execlists_create_virtual(struct intel_engine_cs **siblings,
3601 			       unsigned int count)
3602 {
3603 	struct virtual_engine *ve;
3604 	unsigned int n;
3605 	int err;
3606 
3607 	if (count == 0)
3608 		return ERR_PTR(-EINVAL);
3609 
3610 	if (count == 1)
3611 		return intel_context_create(siblings[0]);
3612 
3613 	ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
3614 	if (!ve)
3615 		return ERR_PTR(-ENOMEM);
3616 
3617 	ve->base.i915 = siblings[0]->i915;
3618 	ve->base.gt = siblings[0]->gt;
3619 	ve->base.uncore = siblings[0]->uncore;
3620 	ve->base.id = -1;
3621 
3622 	ve->base.class = OTHER_CLASS;
3623 	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
3624 	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3625 	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3626 
3627 	/*
3628 	 * The decision on whether to submit a request using semaphores
3629 	 * depends on the saturated state of the engine. We only compute
3630 	 * this during HW submission of the request, and we need for this
3631 	 * state to be globally applied to all requests being submitted
3632 	 * to this engine. Virtual engines encompass more than one physical
3633 	 * engine and so we cannot accurately tell in advance if one of those
3634 	 * engines is already saturated and so cannot afford to use a semaphore
3635 	 * and be pessimized in priority for doing so -- if we are the only
3636 	 * context using semaphores after all other clients have stopped, we
3637 	 * will be starved on the saturated system. Such a global switch for
3638 	 * semaphores is less than ideal, but alas is the current compromise.
3639 	 */
3640 	ve->base.saturated = ALL_ENGINES;
3641 
3642 	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
3643 
3644 	intel_engine_init_active(&ve->base, ENGINE_VIRTUAL);
3645 	intel_engine_init_execlists(&ve->base);
3646 
3647 	ve->base.cops = &virtual_context_ops;
3648 	ve->base.request_alloc = execlists_request_alloc;
3649 
3650 	ve->base.schedule = i915_schedule;
3651 	ve->base.submit_request = virtual_submit_request;
3652 	ve->base.bond_execute = virtual_bond_execute;
3653 
3654 	INIT_LIST_HEAD(virtual_queue(ve));
3655 	ve->base.execlists.queue_priority_hint = INT_MIN;
3656 	tasklet_setup(&ve->base.execlists.tasklet, virtual_submission_tasklet);
3657 
3658 	intel_context_init(&ve->context, &ve->base);
3659 
3660 	ve->base.breadcrumbs = intel_breadcrumbs_create(NULL);
3661 	if (!ve->base.breadcrumbs) {
3662 		err = -ENOMEM;
3663 		goto err_put;
3664 	}
3665 
3666 	for (n = 0; n < count; n++) {
3667 		struct intel_engine_cs *sibling = siblings[n];
3668 
3669 		GEM_BUG_ON(!is_power_of_2(sibling->mask));
3670 		if (sibling->mask & ve->base.mask) {
3671 			DRM_DEBUG("duplicate %s entry in load balancer\n",
3672 				  sibling->name);
3673 			err = -EINVAL;
3674 			goto err_put;
3675 		}
3676 
3677 		/*
3678 		 * The virtual engine implementation is tightly coupled to
3679 		 * the execlists backend -- we push out request directly
3680 		 * into a tree inside each physical engine. We could support
3681 		 * layering if we handle cloning of the requests and
3682 		 * submitting a copy into each backend.
3683 		 */
3684 		if (sibling->execlists.tasklet.callback !=
3685 		    execlists_submission_tasklet) {
3686 			err = -ENODEV;
3687 			goto err_put;
3688 		}
3689 
3690 		GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
3691 		RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
3692 
3693 		ve->siblings[ve->num_siblings++] = sibling;
3694 		ve->base.mask |= sibling->mask;
3695 
3696 		/*
3697 		 * All physical engines must be compatible for their emission
3698 		 * functions (as we build the instructions during request
3699 		 * construction and do not alter them before submission
3700 		 * on the physical engine). We use the engine class as a guide
3701 		 * here, although that could be refined.
3702 		 */
3703 		if (ve->base.class != OTHER_CLASS) {
3704 			if (ve->base.class != sibling->class) {
3705 				DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
3706 					  sibling->class, ve->base.class);
3707 				err = -EINVAL;
3708 				goto err_put;
3709 			}
3710 			continue;
3711 		}
3712 
3713 		ve->base.class = sibling->class;
3714 		ve->base.uabi_class = sibling->uabi_class;
3715 		snprintf(ve->base.name, sizeof(ve->base.name),
3716 			 "v%dx%d", ve->base.class, count);
3717 		ve->base.context_size = sibling->context_size;
3718 
3719 		ve->base.emit_bb_start = sibling->emit_bb_start;
3720 		ve->base.emit_flush = sibling->emit_flush;
3721 		ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
3722 		ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
3723 		ve->base.emit_fini_breadcrumb_dw =
3724 			sibling->emit_fini_breadcrumb_dw;
3725 
3726 		ve->base.flags = sibling->flags;
3727 	}
3728 
3729 	ve->base.flags |= I915_ENGINE_IS_VIRTUAL;
3730 
3731 	virtual_engine_initial_hint(ve);
3732 	return &ve->context;
3733 
3734 err_put:
3735 	intel_context_put(&ve->context);
3736 	return ERR_PTR(err);
3737 }
3738 
3739 struct intel_context *
intel_execlists_clone_virtual(struct intel_engine_cs * src)3740 intel_execlists_clone_virtual(struct intel_engine_cs *src)
3741 {
3742 	struct virtual_engine *se = to_virtual_engine(src);
3743 	struct intel_context *dst;
3744 
3745 	dst = intel_execlists_create_virtual(se->siblings,
3746 					     se->num_siblings);
3747 	if (IS_ERR(dst))
3748 		return dst;
3749 
3750 	if (se->num_bonds) {
3751 		struct virtual_engine *de = to_virtual_engine(dst->engine);
3752 
3753 		de->bonds = kmemdup(se->bonds,
3754 				    sizeof(*se->bonds) * se->num_bonds,
3755 				    GFP_KERNEL);
3756 		if (!de->bonds) {
3757 			intel_context_put(dst);
3758 			return ERR_PTR(-ENOMEM);
3759 		}
3760 
3761 		de->num_bonds = se->num_bonds;
3762 	}
3763 
3764 	return dst;
3765 }
3766 
intel_virtual_engine_attach_bond(struct intel_engine_cs * engine,const struct intel_engine_cs * master,const struct intel_engine_cs * sibling)3767 int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine,
3768 				     const struct intel_engine_cs *master,
3769 				     const struct intel_engine_cs *sibling)
3770 {
3771 	struct virtual_engine *ve = to_virtual_engine(engine);
3772 	struct ve_bond *bond;
3773 	int n;
3774 
3775 	/* Sanity check the sibling is part of the virtual engine */
3776 	for (n = 0; n < ve->num_siblings; n++)
3777 		if (sibling == ve->siblings[n])
3778 			break;
3779 	if (n == ve->num_siblings)
3780 		return -EINVAL;
3781 
3782 	bond = virtual_find_bond(ve, master);
3783 	if (bond) {
3784 		bond->sibling_mask |= sibling->mask;
3785 		return 0;
3786 	}
3787 
3788 	bond = krealloc(ve->bonds,
3789 			sizeof(*bond) * (ve->num_bonds + 1),
3790 			GFP_KERNEL);
3791 	if (!bond)
3792 		return -ENOMEM;
3793 
3794 	bond[ve->num_bonds].master = master;
3795 	bond[ve->num_bonds].sibling_mask = sibling->mask;
3796 
3797 	ve->bonds = bond;
3798 	ve->num_bonds++;
3799 
3800 	return 0;
3801 }
3802 
intel_execlists_show_requests(struct intel_engine_cs * engine,struct drm_printer * m,void (* show_request)(struct drm_printer * m,const struct i915_request * rq,const char * prefix,int indent),unsigned int max)3803 void intel_execlists_show_requests(struct intel_engine_cs *engine,
3804 				   struct drm_printer *m,
3805 				   void (*show_request)(struct drm_printer *m,
3806 							const struct i915_request *rq,
3807 							const char *prefix,
3808 							int indent),
3809 				   unsigned int max)
3810 {
3811 	const struct intel_engine_execlists *execlists = &engine->execlists;
3812 	struct i915_request *rq, *last;
3813 	unsigned long flags;
3814 	unsigned int count;
3815 	struct rb_node *rb;
3816 
3817 	spin_lock_irqsave(&engine->active.lock, flags);
3818 
3819 	last = NULL;
3820 	count = 0;
3821 	list_for_each_entry(rq, &engine->active.requests, sched.link) {
3822 		if (count++ < max - 1)
3823 			show_request(m, rq, "\t\t", 0);
3824 		else
3825 			last = rq;
3826 	}
3827 	if (last) {
3828 		if (count > max) {
3829 			drm_printf(m,
3830 				   "\t\t...skipping %d executing requests...\n",
3831 				   count - max);
3832 		}
3833 		show_request(m, last, "\t\t", 0);
3834 	}
3835 
3836 	if (execlists->queue_priority_hint != INT_MIN)
3837 		drm_printf(m, "\t\tQueue priority hint: %d\n",
3838 			   READ_ONCE(execlists->queue_priority_hint));
3839 
3840 	last = NULL;
3841 	count = 0;
3842 	for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
3843 		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
3844 
3845 		priolist_for_each_request(rq, p) {
3846 			if (count++ < max - 1)
3847 				show_request(m, rq, "\t\t", 0);
3848 			else
3849 				last = rq;
3850 		}
3851 	}
3852 	if (last) {
3853 		if (count > max) {
3854 			drm_printf(m,
3855 				   "\t\t...skipping %d queued requests...\n",
3856 				   count - max);
3857 		}
3858 		show_request(m, last, "\t\t", 0);
3859 	}
3860 
3861 	last = NULL;
3862 	count = 0;
3863 	for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
3864 		struct virtual_engine *ve =
3865 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3866 		struct i915_request *rq = READ_ONCE(ve->request);
3867 
3868 		if (rq) {
3869 			if (count++ < max - 1)
3870 				show_request(m, rq, "\t\t", 0);
3871 			else
3872 				last = rq;
3873 		}
3874 	}
3875 	if (last) {
3876 		if (count > max) {
3877 			drm_printf(m,
3878 				   "\t\t...skipping %d virtual requests...\n",
3879 				   count - max);
3880 		}
3881 		show_request(m, last, "\t\t", 0);
3882 	}
3883 
3884 	spin_unlock_irqrestore(&engine->active.lock, flags);
3885 }
3886 
3887 bool
intel_engine_in_execlists_submission_mode(const struct intel_engine_cs * engine)3888 intel_engine_in_execlists_submission_mode(const struct intel_engine_cs *engine)
3889 {
3890 	return engine->set_default_submission ==
3891 	       execlists_set_default_submission;
3892 }
3893 
3894 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3895 #include "selftest_execlists.c"
3896 #endif
3897