1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Support for Versatile FPGA-based IRQ controllers
4  */
5 #include <linux/bitops.h>
6 #include <linux/irq.h>
7 #include <linux/io.h>
8 #include <linux/irqchip.h>
9 #include <linux/irqchip/chained_irq.h>
10 #include <linux/irqchip/versatile-fpga.h>
11 #include <linux/irqdomain.h>
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/of_address.h>
15 #include <linux/of_irq.h>
16 
17 #include <asm/exception.h>
18 #include <asm/mach/irq.h>
19 
20 #define IRQ_STATUS		0x00
21 #define IRQ_RAW_STATUS		0x04
22 #define IRQ_ENABLE_SET		0x08
23 #define IRQ_ENABLE_CLEAR	0x0c
24 #define INT_SOFT_SET		0x10
25 #define INT_SOFT_CLEAR		0x14
26 #define FIQ_STATUS		0x20
27 #define FIQ_RAW_STATUS		0x24
28 #define FIQ_ENABLE		0x28
29 #define FIQ_ENABLE_SET		0x28
30 #define FIQ_ENABLE_CLEAR	0x2C
31 
32 #define PIC_ENABLES             0x20	/* set interrupt pass through bits */
33 
34 /**
35  * struct fpga_irq_data - irq data container for the FPGA IRQ controller
36  * @base: memory offset in virtual memory
37  * @chip: chip container for this instance
38  * @domain: IRQ domain for this instance
39  * @valid: mask for valid IRQs on this controller
40  * @used_irqs: number of active IRQs on this controller
41  */
42 struct fpga_irq_data {
43 	void __iomem *base;
44 	struct irq_chip chip;
45 	u32 valid;
46 	struct irq_domain *domain;
47 	u8 used_irqs;
48 };
49 
50 /* we cannot allocate memory when the controllers are initially registered */
51 static struct fpga_irq_data fpga_irq_devices[CONFIG_VERSATILE_FPGA_IRQ_NR];
52 static int fpga_irq_id;
53 
fpga_irq_mask(struct irq_data * d)54 static void fpga_irq_mask(struct irq_data *d)
55 {
56 	struct fpga_irq_data *f = irq_data_get_irq_chip_data(d);
57 	u32 mask = 1 << d->hwirq;
58 
59 	writel(mask, f->base + IRQ_ENABLE_CLEAR);
60 }
61 
fpga_irq_unmask(struct irq_data * d)62 static void fpga_irq_unmask(struct irq_data *d)
63 {
64 	struct fpga_irq_data *f = irq_data_get_irq_chip_data(d);
65 	u32 mask = 1 << d->hwirq;
66 
67 	writel(mask, f->base + IRQ_ENABLE_SET);
68 }
69 
fpga_irq_handle(struct irq_desc * desc)70 static void fpga_irq_handle(struct irq_desc *desc)
71 {
72 	struct irq_chip *chip = irq_desc_get_chip(desc);
73 	struct fpga_irq_data *f = irq_desc_get_handler_data(desc);
74 	u32 status;
75 
76 	chained_irq_enter(chip, desc);
77 
78 	status = readl(f->base + IRQ_STATUS);
79 	if (status == 0) {
80 		do_bad_IRQ(desc);
81 		goto out;
82 	}
83 
84 	do {
85 		unsigned int irq = ffs(status) - 1;
86 
87 		status &= ~(1 << irq);
88 		generic_handle_irq(irq_find_mapping(f->domain, irq));
89 	} while (status);
90 
91 out:
92 	chained_irq_exit(chip, desc);
93 }
94 
95 /*
96  * Handle each interrupt in a single FPGA IRQ controller.  Returns non-zero
97  * if we've handled at least one interrupt.  This does a single read of the
98  * status register and handles all interrupts in order from LSB first.
99  */
handle_one_fpga(struct fpga_irq_data * f,struct pt_regs * regs)100 static int handle_one_fpga(struct fpga_irq_data *f, struct pt_regs *regs)
101 {
102 	int handled = 0;
103 	int irq;
104 	u32 status;
105 
106 	while ((status  = readl(f->base + IRQ_STATUS))) {
107 		irq = ffs(status) - 1;
108 		handle_domain_irq(f->domain, irq, regs);
109 		handled = 1;
110 	}
111 
112 	return handled;
113 }
114 
115 /*
116  * Keep iterating over all registered FPGA IRQ controllers until there are
117  * no pending interrupts.
118  */
fpga_handle_irq(struct pt_regs * regs)119 asmlinkage void __exception_irq_entry fpga_handle_irq(struct pt_regs *regs)
120 {
121 	int i, handled;
122 
123 	do {
124 		for (i = 0, handled = 0; i < fpga_irq_id; ++i)
125 			handled |= handle_one_fpga(&fpga_irq_devices[i], regs);
126 	} while (handled);
127 }
128 
fpga_irqdomain_map(struct irq_domain * d,unsigned int irq,irq_hw_number_t hwirq)129 static int fpga_irqdomain_map(struct irq_domain *d, unsigned int irq,
130 		irq_hw_number_t hwirq)
131 {
132 	struct fpga_irq_data *f = d->host_data;
133 
134 	/* Skip invalid IRQs, only register handlers for the real ones */
135 	if (!(f->valid & BIT(hwirq)))
136 		return -EPERM;
137 	irq_set_chip_data(irq, f);
138 	irq_set_chip_and_handler(irq, &f->chip,
139 				handle_level_irq);
140 	irq_set_probe(irq);
141 	return 0;
142 }
143 
144 static const struct irq_domain_ops fpga_irqdomain_ops = {
145 	.map = fpga_irqdomain_map,
146 	.xlate = irq_domain_xlate_onetwocell,
147 };
148 
fpga_irq_init(void __iomem * base,const char * name,int irq_start,int parent_irq,u32 valid,struct device_node * node)149 void __init fpga_irq_init(void __iomem *base, const char *name, int irq_start,
150 			  int parent_irq, u32 valid, struct device_node *node)
151 {
152 	struct fpga_irq_data *f;
153 	int i;
154 
155 	if (fpga_irq_id >= ARRAY_SIZE(fpga_irq_devices)) {
156 		pr_err("%s: too few FPGA IRQ controllers, increase CONFIG_VERSATILE_FPGA_IRQ_NR\n", __func__);
157 		return;
158 	}
159 	f = &fpga_irq_devices[fpga_irq_id];
160 	f->base = base;
161 	f->chip.name = name;
162 	f->chip.irq_ack = fpga_irq_mask;
163 	f->chip.irq_mask = fpga_irq_mask;
164 	f->chip.irq_unmask = fpga_irq_unmask;
165 	f->valid = valid;
166 
167 	if (parent_irq != -1) {
168 		irq_set_chained_handler_and_data(parent_irq, fpga_irq_handle,
169 						 f);
170 	}
171 
172 	/* This will also allocate irq descriptors */
173 	f->domain = irq_domain_add_simple(node, fls(valid), irq_start,
174 					  &fpga_irqdomain_ops, f);
175 
176 	/* This will allocate all valid descriptors in the linear case */
177 	for (i = 0; i < fls(valid); i++)
178 		if (valid & BIT(i)) {
179 			if (!irq_start)
180 				irq_create_mapping(f->domain, i);
181 			f->used_irqs++;
182 		}
183 
184 	pr_info("FPGA IRQ chip %d \"%s\" @ %p, %u irqs",
185 		fpga_irq_id, name, base, f->used_irqs);
186 	if (parent_irq != -1)
187 		pr_cont(", parent IRQ: %d\n", parent_irq);
188 	else
189 		pr_cont("\n");
190 
191 	fpga_irq_id++;
192 }
193 
194 #ifdef CONFIG_OF
fpga_irq_of_init(struct device_node * node,struct device_node * parent)195 int __init fpga_irq_of_init(struct device_node *node,
196 			    struct device_node *parent)
197 {
198 	void __iomem *base;
199 	u32 clear_mask;
200 	u32 valid_mask;
201 	int parent_irq;
202 
203 	if (WARN_ON(!node))
204 		return -ENODEV;
205 
206 	base = of_iomap(node, 0);
207 	WARN(!base, "unable to map fpga irq registers\n");
208 
209 	if (of_property_read_u32(node, "clear-mask", &clear_mask))
210 		clear_mask = 0;
211 
212 	if (of_property_read_u32(node, "valid-mask", &valid_mask))
213 		valid_mask = 0;
214 
215 	writel(clear_mask, base + IRQ_ENABLE_CLEAR);
216 	writel(clear_mask, base + FIQ_ENABLE_CLEAR);
217 
218 	/* Some chips are cascaded from a parent IRQ */
219 	parent_irq = irq_of_parse_and_map(node, 0);
220 	if (!parent_irq) {
221 		set_handle_irq(fpga_handle_irq);
222 		parent_irq = -1;
223 	}
224 
225 	fpga_irq_init(base, node->name, 0, parent_irq, valid_mask, node);
226 
227 	/*
228 	 * On Versatile AB/PB, some secondary interrupts have a direct
229 	 * pass-thru to the primary controller for IRQs 20 and 22-31 which need
230 	 * to be enabled. See section 3.10 of the Versatile AB user guide.
231 	 */
232 	if (of_device_is_compatible(node, "arm,versatile-sic"))
233 		writel(0xffd00000, base + PIC_ENABLES);
234 
235 	return 0;
236 }
237 IRQCHIP_DECLARE(arm_fpga, "arm,versatile-fpga-irq", fpga_irq_of_init);
238 IRQCHIP_DECLARE(arm_fpga_sic, "arm,versatile-sic", fpga_irq_of_init);
239 IRQCHIP_DECLARE(ox810se_rps, "oxsemi,ox810se-rps-irq", fpga_irq_of_init);
240 #endif
241