1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved.
4 * Copyright(c) 2006 - 2007 Chris Snook <csnook@redhat.com>
5 * Copyright(c) 2006 - 2008 Jay Cliburn <jcliburn@gmail.com>
6 *
7 * Derived from Intel e1000 driver
8 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
9 *
10 * Contact Information:
11 * Xiong Huang <xiong.huang@atheros.com>
12 * Jie Yang <jie.yang@atheros.com>
13 * Chris Snook <csnook@redhat.com>
14 * Jay Cliburn <jcliburn@gmail.com>
15 *
16 * This version is adapted from the Attansic reference driver.
17 *
18 * TODO:
19 * Add more ethtool functions.
20 * Fix abstruse irq enable/disable condition described here:
21 * http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2
22 *
23 * NEEDS TESTING:
24 * VLAN
25 * multicast
26 * promiscuous mode
27 * interrupt coalescing
28 * SMP torture testing
29 */
30
31 #include <linux/atomic.h>
32 #include <asm/byteorder.h>
33
34 #include <linux/compiler.h>
35 #include <linux/crc32.h>
36 #include <linux/delay.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/etherdevice.h>
39 #include <linux/hardirq.h>
40 #include <linux/if_ether.h>
41 #include <linux/if_vlan.h>
42 #include <linux/in.h>
43 #include <linux/interrupt.h>
44 #include <linux/ip.h>
45 #include <linux/irqflags.h>
46 #include <linux/irqreturn.h>
47 #include <linux/jiffies.h>
48 #include <linux/mii.h>
49 #include <linux/module.h>
50 #include <linux/net.h>
51 #include <linux/netdevice.h>
52 #include <linux/pci.h>
53 #include <linux/pci_ids.h>
54 #include <linux/pm.h>
55 #include <linux/skbuff.h>
56 #include <linux/slab.h>
57 #include <linux/spinlock.h>
58 #include <linux/string.h>
59 #include <linux/tcp.h>
60 #include <linux/timer.h>
61 #include <linux/types.h>
62 #include <linux/workqueue.h>
63
64 #include <net/checksum.h>
65
66 #include "atl1.h"
67
68 MODULE_AUTHOR("Xiong Huang <xiong.huang@atheros.com>, "
69 "Chris Snook <csnook@redhat.com>, "
70 "Jay Cliburn <jcliburn@gmail.com>");
71 MODULE_LICENSE("GPL");
72
73 /* Temporary hack for merging atl1 and atl2 */
74 #include "atlx.c"
75
76 static const struct ethtool_ops atl1_ethtool_ops;
77
78 /*
79 * This is the only thing that needs to be changed to adjust the
80 * maximum number of ports that the driver can manage.
81 */
82 #define ATL1_MAX_NIC 4
83
84 #define OPTION_UNSET -1
85 #define OPTION_DISABLED 0
86 #define OPTION_ENABLED 1
87
88 #define ATL1_PARAM_INIT { [0 ... ATL1_MAX_NIC] = OPTION_UNSET }
89
90 /*
91 * Interrupt Moderate Timer in units of 2 us
92 *
93 * Valid Range: 10-65535
94 *
95 * Default Value: 100 (200us)
96 */
97 static int int_mod_timer[ATL1_MAX_NIC+1] = ATL1_PARAM_INIT;
98 static unsigned int num_int_mod_timer;
99 module_param_array_named(int_mod_timer, int_mod_timer, int,
100 &num_int_mod_timer, 0);
101 MODULE_PARM_DESC(int_mod_timer, "Interrupt moderator timer");
102
103 #define DEFAULT_INT_MOD_CNT 100 /* 200us */
104 #define MAX_INT_MOD_CNT 65000
105 #define MIN_INT_MOD_CNT 50
106
107 struct atl1_option {
108 enum { enable_option, range_option, list_option } type;
109 char *name;
110 char *err;
111 int def;
112 union {
113 struct { /* range_option info */
114 int min;
115 int max;
116 } r;
117 struct { /* list_option info */
118 int nr;
119 struct atl1_opt_list {
120 int i;
121 char *str;
122 } *p;
123 } l;
124 } arg;
125 };
126
atl1_validate_option(int * value,struct atl1_option * opt,struct pci_dev * pdev)127 static int atl1_validate_option(int *value, struct atl1_option *opt,
128 struct pci_dev *pdev)
129 {
130 if (*value == OPTION_UNSET) {
131 *value = opt->def;
132 return 0;
133 }
134
135 switch (opt->type) {
136 case enable_option:
137 switch (*value) {
138 case OPTION_ENABLED:
139 dev_info(&pdev->dev, "%s enabled\n", opt->name);
140 return 0;
141 case OPTION_DISABLED:
142 dev_info(&pdev->dev, "%s disabled\n", opt->name);
143 return 0;
144 }
145 break;
146 case range_option:
147 if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
148 dev_info(&pdev->dev, "%s set to %i\n", opt->name,
149 *value);
150 return 0;
151 }
152 break;
153 case list_option:{
154 int i;
155 struct atl1_opt_list *ent;
156
157 for (i = 0; i < opt->arg.l.nr; i++) {
158 ent = &opt->arg.l.p[i];
159 if (*value == ent->i) {
160 if (ent->str[0] != '\0')
161 dev_info(&pdev->dev, "%s\n",
162 ent->str);
163 return 0;
164 }
165 }
166 }
167 break;
168
169 default:
170 break;
171 }
172
173 dev_info(&pdev->dev, "invalid %s specified (%i) %s\n",
174 opt->name, *value, opt->err);
175 *value = opt->def;
176 return -1;
177 }
178
179 /**
180 * atl1_check_options - Range Checking for Command Line Parameters
181 * @adapter: board private structure
182 *
183 * This routine checks all command line parameters for valid user
184 * input. If an invalid value is given, or if no user specified
185 * value exists, a default value is used. The final value is stored
186 * in a variable in the adapter structure.
187 */
atl1_check_options(struct atl1_adapter * adapter)188 static void atl1_check_options(struct atl1_adapter *adapter)
189 {
190 struct pci_dev *pdev = adapter->pdev;
191 int bd = adapter->bd_number;
192 if (bd >= ATL1_MAX_NIC) {
193 dev_notice(&pdev->dev, "no configuration for board#%i\n", bd);
194 dev_notice(&pdev->dev, "using defaults for all values\n");
195 }
196 { /* Interrupt Moderate Timer */
197 struct atl1_option opt = {
198 .type = range_option,
199 .name = "Interrupt Moderator Timer",
200 .err = "using default of "
201 __MODULE_STRING(DEFAULT_INT_MOD_CNT),
202 .def = DEFAULT_INT_MOD_CNT,
203 .arg = {.r = {.min = MIN_INT_MOD_CNT,
204 .max = MAX_INT_MOD_CNT} }
205 };
206 int val;
207 if (num_int_mod_timer > bd) {
208 val = int_mod_timer[bd];
209 atl1_validate_option(&val, &opt, pdev);
210 adapter->imt = (u16) val;
211 } else
212 adapter->imt = (u16) (opt.def);
213 }
214 }
215
216 /*
217 * atl1_pci_tbl - PCI Device ID Table
218 */
219 static const struct pci_device_id atl1_pci_tbl[] = {
220 {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1)},
221 /* required last entry */
222 {0,}
223 };
224 MODULE_DEVICE_TABLE(pci, atl1_pci_tbl);
225
226 static const u32 atl1_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
227 NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP;
228
229 static int debug = -1;
230 module_param(debug, int, 0);
231 MODULE_PARM_DESC(debug, "Message level (0=none,...,16=all)");
232
233 /*
234 * Reset the transmit and receive units; mask and clear all interrupts.
235 * hw - Struct containing variables accessed by shared code
236 * return : 0 or idle status (if error)
237 */
atl1_reset_hw(struct atl1_hw * hw)238 static s32 atl1_reset_hw(struct atl1_hw *hw)
239 {
240 struct pci_dev *pdev = hw->back->pdev;
241 struct atl1_adapter *adapter = hw->back;
242 u32 icr;
243 int i;
244
245 /*
246 * Clear Interrupt mask to stop board from generating
247 * interrupts & Clear any pending interrupt events
248 */
249 /*
250 * atlx_irq_disable(adapter);
251 * iowrite32(0xffffffff, hw->hw_addr + REG_ISR);
252 */
253
254 /*
255 * Issue Soft Reset to the MAC. This will reset the chip's
256 * transmit, receive, DMA. It will not effect
257 * the current PCI configuration. The global reset bit is self-
258 * clearing, and should clear within a microsecond.
259 */
260 iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL);
261 ioread32(hw->hw_addr + REG_MASTER_CTRL);
262
263 iowrite16(1, hw->hw_addr + REG_PHY_ENABLE);
264 ioread16(hw->hw_addr + REG_PHY_ENABLE);
265
266 /* delay about 1ms */
267 msleep(1);
268
269 /* Wait at least 10ms for All module to be Idle */
270 for (i = 0; i < 10; i++) {
271 icr = ioread32(hw->hw_addr + REG_IDLE_STATUS);
272 if (!icr)
273 break;
274 /* delay 1 ms */
275 msleep(1);
276 /* FIXME: still the right way to do this? */
277 cpu_relax();
278 }
279
280 if (icr) {
281 if (netif_msg_hw(adapter))
282 dev_dbg(&pdev->dev, "ICR = 0x%x\n", icr);
283 return icr;
284 }
285
286 return 0;
287 }
288
289 /* function about EEPROM
290 *
291 * check_eeprom_exist
292 * return 0 if eeprom exist
293 */
atl1_check_eeprom_exist(struct atl1_hw * hw)294 static int atl1_check_eeprom_exist(struct atl1_hw *hw)
295 {
296 u32 value;
297 value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
298 if (value & SPI_FLASH_CTRL_EN_VPD) {
299 value &= ~SPI_FLASH_CTRL_EN_VPD;
300 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
301 }
302
303 value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST);
304 return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
305 }
306
atl1_read_eeprom(struct atl1_hw * hw,u32 offset,u32 * p_value)307 static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value)
308 {
309 int i;
310 u32 control;
311
312 if (offset & 3)
313 /* address do not align */
314 return false;
315
316 iowrite32(0, hw->hw_addr + REG_VPD_DATA);
317 control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
318 iowrite32(control, hw->hw_addr + REG_VPD_CAP);
319 ioread32(hw->hw_addr + REG_VPD_CAP);
320
321 for (i = 0; i < 10; i++) {
322 msleep(2);
323 control = ioread32(hw->hw_addr + REG_VPD_CAP);
324 if (control & VPD_CAP_VPD_FLAG)
325 break;
326 }
327 if (control & VPD_CAP_VPD_FLAG) {
328 *p_value = ioread32(hw->hw_addr + REG_VPD_DATA);
329 return true;
330 }
331 /* timeout */
332 return false;
333 }
334
335 /*
336 * Reads the value from a PHY register
337 * hw - Struct containing variables accessed by shared code
338 * reg_addr - address of the PHY register to read
339 */
atl1_read_phy_reg(struct atl1_hw * hw,u16 reg_addr,u16 * phy_data)340 static s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data)
341 {
342 u32 val;
343 int i;
344
345 val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
346 MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 <<
347 MDIO_CLK_SEL_SHIFT;
348 iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
349 ioread32(hw->hw_addr + REG_MDIO_CTRL);
350
351 for (i = 0; i < MDIO_WAIT_TIMES; i++) {
352 udelay(2);
353 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
354 if (!(val & (MDIO_START | MDIO_BUSY)))
355 break;
356 }
357 if (!(val & (MDIO_START | MDIO_BUSY))) {
358 *phy_data = (u16) val;
359 return 0;
360 }
361 return ATLX_ERR_PHY;
362 }
363
364 #define CUSTOM_SPI_CS_SETUP 2
365 #define CUSTOM_SPI_CLK_HI 2
366 #define CUSTOM_SPI_CLK_LO 2
367 #define CUSTOM_SPI_CS_HOLD 2
368 #define CUSTOM_SPI_CS_HI 3
369
atl1_spi_read(struct atl1_hw * hw,u32 addr,u32 * buf)370 static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf)
371 {
372 int i;
373 u32 value;
374
375 iowrite32(0, hw->hw_addr + REG_SPI_DATA);
376 iowrite32(addr, hw->hw_addr + REG_SPI_ADDR);
377
378 value = SPI_FLASH_CTRL_WAIT_READY |
379 (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
380 SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI &
381 SPI_FLASH_CTRL_CLK_HI_MASK) <<
382 SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO &
383 SPI_FLASH_CTRL_CLK_LO_MASK) <<
384 SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD &
385 SPI_FLASH_CTRL_CS_HOLD_MASK) <<
386 SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI &
387 SPI_FLASH_CTRL_CS_HI_MASK) <<
388 SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) <<
389 SPI_FLASH_CTRL_INS_SHIFT;
390
391 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
392
393 value |= SPI_FLASH_CTRL_START;
394 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
395 ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
396
397 for (i = 0; i < 10; i++) {
398 msleep(1);
399 value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
400 if (!(value & SPI_FLASH_CTRL_START))
401 break;
402 }
403
404 if (value & SPI_FLASH_CTRL_START)
405 return false;
406
407 *buf = ioread32(hw->hw_addr + REG_SPI_DATA);
408
409 return true;
410 }
411
412 /*
413 * get_permanent_address
414 * return 0 if get valid mac address,
415 */
atl1_get_permanent_address(struct atl1_hw * hw)416 static int atl1_get_permanent_address(struct atl1_hw *hw)
417 {
418 u32 addr[2];
419 u32 i, control;
420 u16 reg;
421 u8 eth_addr[ETH_ALEN];
422 bool key_valid;
423
424 if (is_valid_ether_addr(hw->perm_mac_addr))
425 return 0;
426
427 /* init */
428 addr[0] = addr[1] = 0;
429
430 if (!atl1_check_eeprom_exist(hw)) {
431 reg = 0;
432 key_valid = false;
433 /* Read out all EEPROM content */
434 i = 0;
435 while (1) {
436 if (atl1_read_eeprom(hw, i + 0x100, &control)) {
437 if (key_valid) {
438 if (reg == REG_MAC_STA_ADDR)
439 addr[0] = control;
440 else if (reg == (REG_MAC_STA_ADDR + 4))
441 addr[1] = control;
442 key_valid = false;
443 } else if ((control & 0xff) == 0x5A) {
444 key_valid = true;
445 reg = (u16) (control >> 16);
446 } else
447 break;
448 } else
449 /* read error */
450 break;
451 i += 4;
452 }
453
454 *(u32 *) ð_addr[2] = swab32(addr[0]);
455 *(u16 *) ð_addr[0] = swab16(*(u16 *) &addr[1]);
456 if (is_valid_ether_addr(eth_addr)) {
457 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
458 return 0;
459 }
460 }
461
462 /* see if SPI FLAGS exist ? */
463 addr[0] = addr[1] = 0;
464 reg = 0;
465 key_valid = false;
466 i = 0;
467 while (1) {
468 if (atl1_spi_read(hw, i + 0x1f000, &control)) {
469 if (key_valid) {
470 if (reg == REG_MAC_STA_ADDR)
471 addr[0] = control;
472 else if (reg == (REG_MAC_STA_ADDR + 4))
473 addr[1] = control;
474 key_valid = false;
475 } else if ((control & 0xff) == 0x5A) {
476 key_valid = true;
477 reg = (u16) (control >> 16);
478 } else
479 /* data end */
480 break;
481 } else
482 /* read error */
483 break;
484 i += 4;
485 }
486
487 *(u32 *) ð_addr[2] = swab32(addr[0]);
488 *(u16 *) ð_addr[0] = swab16(*(u16 *) &addr[1]);
489 if (is_valid_ether_addr(eth_addr)) {
490 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
491 return 0;
492 }
493
494 /*
495 * On some motherboards, the MAC address is written by the
496 * BIOS directly to the MAC register during POST, and is
497 * not stored in eeprom. If all else thus far has failed
498 * to fetch the permanent MAC address, try reading it directly.
499 */
500 addr[0] = ioread32(hw->hw_addr + REG_MAC_STA_ADDR);
501 addr[1] = ioread16(hw->hw_addr + (REG_MAC_STA_ADDR + 4));
502 *(u32 *) ð_addr[2] = swab32(addr[0]);
503 *(u16 *) ð_addr[0] = swab16(*(u16 *) &addr[1]);
504 if (is_valid_ether_addr(eth_addr)) {
505 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
506 return 0;
507 }
508
509 return 1;
510 }
511
512 /*
513 * Reads the adapter's MAC address from the EEPROM
514 * hw - Struct containing variables accessed by shared code
515 */
atl1_read_mac_addr(struct atl1_hw * hw)516 static s32 atl1_read_mac_addr(struct atl1_hw *hw)
517 {
518 s32 ret = 0;
519 u16 i;
520
521 if (atl1_get_permanent_address(hw)) {
522 eth_random_addr(hw->perm_mac_addr);
523 ret = 1;
524 }
525
526 for (i = 0; i < ETH_ALEN; i++)
527 hw->mac_addr[i] = hw->perm_mac_addr[i];
528 return ret;
529 }
530
531 /*
532 * Hashes an address to determine its location in the multicast table
533 * hw - Struct containing variables accessed by shared code
534 * mc_addr - the multicast address to hash
535 *
536 * atl1_hash_mc_addr
537 * purpose
538 * set hash value for a multicast address
539 * hash calcu processing :
540 * 1. calcu 32bit CRC for multicast address
541 * 2. reverse crc with MSB to LSB
542 */
atl1_hash_mc_addr(struct atl1_hw * hw,u8 * mc_addr)543 static u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr)
544 {
545 u32 crc32, value = 0;
546 int i;
547
548 crc32 = ether_crc_le(6, mc_addr);
549 for (i = 0; i < 32; i++)
550 value |= (((crc32 >> i) & 1) << (31 - i));
551
552 return value;
553 }
554
555 /*
556 * Sets the bit in the multicast table corresponding to the hash value.
557 * hw - Struct containing variables accessed by shared code
558 * hash_value - Multicast address hash value
559 */
atl1_hash_set(struct atl1_hw * hw,u32 hash_value)560 static void atl1_hash_set(struct atl1_hw *hw, u32 hash_value)
561 {
562 u32 hash_bit, hash_reg;
563 u32 mta;
564
565 /*
566 * The HASH Table is a register array of 2 32-bit registers.
567 * It is treated like an array of 64 bits. We want to set
568 * bit BitArray[hash_value]. So we figure out what register
569 * the bit is in, read it, OR in the new bit, then write
570 * back the new value. The register is determined by the
571 * upper 7 bits of the hash value and the bit within that
572 * register are determined by the lower 5 bits of the value.
573 */
574 hash_reg = (hash_value >> 31) & 0x1;
575 hash_bit = (hash_value >> 26) & 0x1F;
576 mta = ioread32((hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
577 mta |= (1 << hash_bit);
578 iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
579 }
580
581 /*
582 * Writes a value to a PHY register
583 * hw - Struct containing variables accessed by shared code
584 * reg_addr - address of the PHY register to write
585 * data - data to write to the PHY
586 */
atl1_write_phy_reg(struct atl1_hw * hw,u32 reg_addr,u16 phy_data)587 static s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data)
588 {
589 int i;
590 u32 val;
591
592 val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
593 (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
594 MDIO_SUP_PREAMBLE |
595 MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
596 iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
597 ioread32(hw->hw_addr + REG_MDIO_CTRL);
598
599 for (i = 0; i < MDIO_WAIT_TIMES; i++) {
600 udelay(2);
601 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
602 if (!(val & (MDIO_START | MDIO_BUSY)))
603 break;
604 }
605
606 if (!(val & (MDIO_START | MDIO_BUSY)))
607 return 0;
608
609 return ATLX_ERR_PHY;
610 }
611
612 /*
613 * Make L001's PHY out of Power Saving State (bug)
614 * hw - Struct containing variables accessed by shared code
615 * when power on, L001's PHY always on Power saving State
616 * (Gigabit Link forbidden)
617 */
atl1_phy_leave_power_saving(struct atl1_hw * hw)618 static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw)
619 {
620 s32 ret;
621 ret = atl1_write_phy_reg(hw, 29, 0x0029);
622 if (ret)
623 return ret;
624 return atl1_write_phy_reg(hw, 30, 0);
625 }
626
627 /*
628 * Resets the PHY and make all config validate
629 * hw - Struct containing variables accessed by shared code
630 *
631 * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
632 */
atl1_phy_reset(struct atl1_hw * hw)633 static s32 atl1_phy_reset(struct atl1_hw *hw)
634 {
635 struct pci_dev *pdev = hw->back->pdev;
636 struct atl1_adapter *adapter = hw->back;
637 s32 ret_val;
638 u16 phy_data;
639
640 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
641 hw->media_type == MEDIA_TYPE_1000M_FULL)
642 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
643 else {
644 switch (hw->media_type) {
645 case MEDIA_TYPE_100M_FULL:
646 phy_data =
647 MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
648 MII_CR_RESET;
649 break;
650 case MEDIA_TYPE_100M_HALF:
651 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
652 break;
653 case MEDIA_TYPE_10M_FULL:
654 phy_data =
655 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
656 break;
657 default:
658 /* MEDIA_TYPE_10M_HALF: */
659 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
660 break;
661 }
662 }
663
664 ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data);
665 if (ret_val) {
666 u32 val;
667 int i;
668 /* pcie serdes link may be down! */
669 if (netif_msg_hw(adapter))
670 dev_dbg(&pdev->dev, "pcie phy link down\n");
671
672 for (i = 0; i < 25; i++) {
673 msleep(1);
674 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
675 if (!(val & (MDIO_START | MDIO_BUSY)))
676 break;
677 }
678
679 if ((val & (MDIO_START | MDIO_BUSY)) != 0) {
680 if (netif_msg_hw(adapter))
681 dev_warn(&pdev->dev,
682 "pcie link down at least 25ms\n");
683 return ret_val;
684 }
685 }
686 return 0;
687 }
688
689 /*
690 * Configures PHY autoneg and flow control advertisement settings
691 * hw - Struct containing variables accessed by shared code
692 */
atl1_phy_setup_autoneg_adv(struct atl1_hw * hw)693 static s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw)
694 {
695 s32 ret_val;
696 s16 mii_autoneg_adv_reg;
697 s16 mii_1000t_ctrl_reg;
698
699 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
700 mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
701
702 /* Read the MII 1000Base-T Control Register (Address 9). */
703 mii_1000t_ctrl_reg = MII_ATLX_CR_1000T_DEFAULT_CAP_MASK;
704
705 /*
706 * First we clear all the 10/100 mb speed bits in the Auto-Neg
707 * Advertisement Register (Address 4) and the 1000 mb speed bits in
708 * the 1000Base-T Control Register (Address 9).
709 */
710 mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
711 mii_1000t_ctrl_reg &= ~MII_ATLX_CR_1000T_SPEED_MASK;
712
713 /*
714 * Need to parse media_type and set up
715 * the appropriate PHY registers.
716 */
717 switch (hw->media_type) {
718 case MEDIA_TYPE_AUTO_SENSOR:
719 mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS |
720 MII_AR_10T_FD_CAPS |
721 MII_AR_100TX_HD_CAPS |
722 MII_AR_100TX_FD_CAPS);
723 mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
724 break;
725
726 case MEDIA_TYPE_1000M_FULL:
727 mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
728 break;
729
730 case MEDIA_TYPE_100M_FULL:
731 mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
732 break;
733
734 case MEDIA_TYPE_100M_HALF:
735 mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
736 break;
737
738 case MEDIA_TYPE_10M_FULL:
739 mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
740 break;
741
742 default:
743 mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
744 break;
745 }
746
747 /* flow control fixed to enable all */
748 mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
749
750 hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
751 hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
752
753 ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
754 if (ret_val)
755 return ret_val;
756
757 ret_val = atl1_write_phy_reg(hw, MII_ATLX_CR, mii_1000t_ctrl_reg);
758 if (ret_val)
759 return ret_val;
760
761 return 0;
762 }
763
764 /*
765 * Configures link settings.
766 * hw - Struct containing variables accessed by shared code
767 * Assumes the hardware has previously been reset and the
768 * transmitter and receiver are not enabled.
769 */
atl1_setup_link(struct atl1_hw * hw)770 static s32 atl1_setup_link(struct atl1_hw *hw)
771 {
772 struct pci_dev *pdev = hw->back->pdev;
773 struct atl1_adapter *adapter = hw->back;
774 s32 ret_val;
775
776 /*
777 * Options:
778 * PHY will advertise value(s) parsed from
779 * autoneg_advertised and fc
780 * no matter what autoneg is , We will not wait link result.
781 */
782 ret_val = atl1_phy_setup_autoneg_adv(hw);
783 if (ret_val) {
784 if (netif_msg_link(adapter))
785 dev_dbg(&pdev->dev,
786 "error setting up autonegotiation\n");
787 return ret_val;
788 }
789 /* SW.Reset , En-Auto-Neg if needed */
790 ret_val = atl1_phy_reset(hw);
791 if (ret_val) {
792 if (netif_msg_link(adapter))
793 dev_dbg(&pdev->dev, "error resetting phy\n");
794 return ret_val;
795 }
796 hw->phy_configured = true;
797 return ret_val;
798 }
799
atl1_init_flash_opcode(struct atl1_hw * hw)800 static void atl1_init_flash_opcode(struct atl1_hw *hw)
801 {
802 if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
803 /* Atmel */
804 hw->flash_vendor = 0;
805
806 /* Init OP table */
807 iowrite8(flash_table[hw->flash_vendor].cmd_program,
808 hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM);
809 iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase,
810 hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE);
811 iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase,
812 hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE);
813 iowrite8(flash_table[hw->flash_vendor].cmd_rdid,
814 hw->hw_addr + REG_SPI_FLASH_OP_RDID);
815 iowrite8(flash_table[hw->flash_vendor].cmd_wren,
816 hw->hw_addr + REG_SPI_FLASH_OP_WREN);
817 iowrite8(flash_table[hw->flash_vendor].cmd_rdsr,
818 hw->hw_addr + REG_SPI_FLASH_OP_RDSR);
819 iowrite8(flash_table[hw->flash_vendor].cmd_wrsr,
820 hw->hw_addr + REG_SPI_FLASH_OP_WRSR);
821 iowrite8(flash_table[hw->flash_vendor].cmd_read,
822 hw->hw_addr + REG_SPI_FLASH_OP_READ);
823 }
824
825 /*
826 * Performs basic configuration of the adapter.
827 * hw - Struct containing variables accessed by shared code
828 * Assumes that the controller has previously been reset and is in a
829 * post-reset uninitialized state. Initializes multicast table,
830 * and Calls routines to setup link
831 * Leaves the transmit and receive units disabled and uninitialized.
832 */
atl1_init_hw(struct atl1_hw * hw)833 static s32 atl1_init_hw(struct atl1_hw *hw)
834 {
835 u32 ret_val = 0;
836
837 /* Zero out the Multicast HASH table */
838 iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE);
839 /* clear the old settings from the multicast hash table */
840 iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2));
841
842 atl1_init_flash_opcode(hw);
843
844 if (!hw->phy_configured) {
845 /* enable GPHY LinkChange Interrupt */
846 ret_val = atl1_write_phy_reg(hw, 18, 0xC00);
847 if (ret_val)
848 return ret_val;
849 /* make PHY out of power-saving state */
850 ret_val = atl1_phy_leave_power_saving(hw);
851 if (ret_val)
852 return ret_val;
853 /* Call a subroutine to configure the link */
854 ret_val = atl1_setup_link(hw);
855 }
856 return ret_val;
857 }
858
859 /*
860 * Detects the current speed and duplex settings of the hardware.
861 * hw - Struct containing variables accessed by shared code
862 * speed - Speed of the connection
863 * duplex - Duplex setting of the connection
864 */
atl1_get_speed_and_duplex(struct atl1_hw * hw,u16 * speed,u16 * duplex)865 static s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex)
866 {
867 struct pci_dev *pdev = hw->back->pdev;
868 struct atl1_adapter *adapter = hw->back;
869 s32 ret_val;
870 u16 phy_data;
871
872 /* ; --- Read PHY Specific Status Register (17) */
873 ret_val = atl1_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
874 if (ret_val)
875 return ret_val;
876
877 if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
878 return ATLX_ERR_PHY_RES;
879
880 switch (phy_data & MII_ATLX_PSSR_SPEED) {
881 case MII_ATLX_PSSR_1000MBS:
882 *speed = SPEED_1000;
883 break;
884 case MII_ATLX_PSSR_100MBS:
885 *speed = SPEED_100;
886 break;
887 case MII_ATLX_PSSR_10MBS:
888 *speed = SPEED_10;
889 break;
890 default:
891 if (netif_msg_hw(adapter))
892 dev_dbg(&pdev->dev, "error getting speed\n");
893 return ATLX_ERR_PHY_SPEED;
894 }
895 if (phy_data & MII_ATLX_PSSR_DPLX)
896 *duplex = FULL_DUPLEX;
897 else
898 *duplex = HALF_DUPLEX;
899
900 return 0;
901 }
902
atl1_set_mac_addr(struct atl1_hw * hw)903 static void atl1_set_mac_addr(struct atl1_hw *hw)
904 {
905 u32 value;
906 /*
907 * 00-0B-6A-F6-00-DC
908 * 0: 6AF600DC 1: 000B
909 * low dword
910 */
911 value = (((u32) hw->mac_addr[2]) << 24) |
912 (((u32) hw->mac_addr[3]) << 16) |
913 (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5]));
914 iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
915 /* high dword */
916 value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
917 iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2));
918 }
919
920 /**
921 * atl1_sw_init - Initialize general software structures (struct atl1_adapter)
922 * @adapter: board private structure to initialize
923 *
924 * atl1_sw_init initializes the Adapter private data structure.
925 * Fields are initialized based on PCI device information and
926 * OS network device settings (MTU size).
927 */
atl1_sw_init(struct atl1_adapter * adapter)928 static int atl1_sw_init(struct atl1_adapter *adapter)
929 {
930 struct atl1_hw *hw = &adapter->hw;
931 struct net_device *netdev = adapter->netdev;
932
933 hw->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
934 hw->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
935
936 adapter->wol = 0;
937 device_set_wakeup_enable(&adapter->pdev->dev, false);
938 adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7;
939 adapter->ict = 50000; /* 100ms */
940 adapter->link_speed = SPEED_0; /* hardware init */
941 adapter->link_duplex = FULL_DUPLEX;
942
943 hw->phy_configured = false;
944 hw->preamble_len = 7;
945 hw->ipgt = 0x60;
946 hw->min_ifg = 0x50;
947 hw->ipgr1 = 0x40;
948 hw->ipgr2 = 0x60;
949 hw->max_retry = 0xf;
950 hw->lcol = 0x37;
951 hw->jam_ipg = 7;
952 hw->rfd_burst = 8;
953 hw->rrd_burst = 8;
954 hw->rfd_fetch_gap = 1;
955 hw->rx_jumbo_th = adapter->rx_buffer_len / 8;
956 hw->rx_jumbo_lkah = 1;
957 hw->rrd_ret_timer = 16;
958 hw->tpd_burst = 4;
959 hw->tpd_fetch_th = 16;
960 hw->txf_burst = 0x100;
961 hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3;
962 hw->tpd_fetch_gap = 1;
963 hw->rcb_value = atl1_rcb_64;
964 hw->dma_ord = atl1_dma_ord_enh;
965 hw->dmar_block = atl1_dma_req_256;
966 hw->dmaw_block = atl1_dma_req_256;
967 hw->cmb_rrd = 4;
968 hw->cmb_tpd = 4;
969 hw->cmb_rx_timer = 1; /* about 2us */
970 hw->cmb_tx_timer = 1; /* about 2us */
971 hw->smb_timer = 100000; /* about 200ms */
972
973 spin_lock_init(&adapter->lock);
974 spin_lock_init(&adapter->mb_lock);
975
976 return 0;
977 }
978
mdio_read(struct net_device * netdev,int phy_id,int reg_num)979 static int mdio_read(struct net_device *netdev, int phy_id, int reg_num)
980 {
981 struct atl1_adapter *adapter = netdev_priv(netdev);
982 u16 result;
983
984 atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result);
985
986 return result;
987 }
988
mdio_write(struct net_device * netdev,int phy_id,int reg_num,int val)989 static void mdio_write(struct net_device *netdev, int phy_id, int reg_num,
990 int val)
991 {
992 struct atl1_adapter *adapter = netdev_priv(netdev);
993
994 atl1_write_phy_reg(&adapter->hw, reg_num, val);
995 }
996
atl1_mii_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)997 static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
998 {
999 struct atl1_adapter *adapter = netdev_priv(netdev);
1000 unsigned long flags;
1001 int retval;
1002
1003 if (!netif_running(netdev))
1004 return -EINVAL;
1005
1006 spin_lock_irqsave(&adapter->lock, flags);
1007 retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL);
1008 spin_unlock_irqrestore(&adapter->lock, flags);
1009
1010 return retval;
1011 }
1012
1013 /**
1014 * atl1_setup_mem_resources - allocate Tx / RX descriptor resources
1015 * @adapter: board private structure
1016 *
1017 * Return 0 on success, negative on failure
1018 */
atl1_setup_ring_resources(struct atl1_adapter * adapter)1019 static s32 atl1_setup_ring_resources(struct atl1_adapter *adapter)
1020 {
1021 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1022 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1023 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1024 struct atl1_ring_header *ring_header = &adapter->ring_header;
1025 struct pci_dev *pdev = adapter->pdev;
1026 int size;
1027 u8 offset = 0;
1028
1029 size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count);
1030 tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL);
1031 if (unlikely(!tpd_ring->buffer_info)) {
1032 if (netif_msg_drv(adapter))
1033 dev_err(&pdev->dev, "kzalloc failed , size = D%d\n",
1034 size);
1035 goto err_nomem;
1036 }
1037 rfd_ring->buffer_info =
1038 (tpd_ring->buffer_info + tpd_ring->count);
1039
1040 /*
1041 * real ring DMA buffer
1042 * each ring/block may need up to 8 bytes for alignment, hence the
1043 * additional 40 bytes tacked onto the end.
1044 */
1045 ring_header->size =
1046 sizeof(struct tx_packet_desc) * tpd_ring->count
1047 + sizeof(struct rx_free_desc) * rfd_ring->count
1048 + sizeof(struct rx_return_desc) * rrd_ring->count
1049 + sizeof(struct coals_msg_block)
1050 + sizeof(struct stats_msg_block)
1051 + 40;
1052
1053 ring_header->desc = dma_alloc_coherent(&pdev->dev, ring_header->size,
1054 &ring_header->dma, GFP_KERNEL);
1055 if (unlikely(!ring_header->desc)) {
1056 if (netif_msg_drv(adapter))
1057 dev_err(&pdev->dev, "dma_alloc_coherent failed\n");
1058 goto err_nomem;
1059 }
1060
1061 /* init TPD ring */
1062 tpd_ring->dma = ring_header->dma;
1063 offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0;
1064 tpd_ring->dma += offset;
1065 tpd_ring->desc = (u8 *) ring_header->desc + offset;
1066 tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count;
1067
1068 /* init RFD ring */
1069 rfd_ring->dma = tpd_ring->dma + tpd_ring->size;
1070 offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0;
1071 rfd_ring->dma += offset;
1072 rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset);
1073 rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count;
1074
1075
1076 /* init RRD ring */
1077 rrd_ring->dma = rfd_ring->dma + rfd_ring->size;
1078 offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0;
1079 rrd_ring->dma += offset;
1080 rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset);
1081 rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count;
1082
1083
1084 /* init CMB */
1085 adapter->cmb.dma = rrd_ring->dma + rrd_ring->size;
1086 offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0;
1087 adapter->cmb.dma += offset;
1088 adapter->cmb.cmb = (struct coals_msg_block *)
1089 ((u8 *) rrd_ring->desc + (rrd_ring->size + offset));
1090
1091 /* init SMB */
1092 adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block);
1093 offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0;
1094 adapter->smb.dma += offset;
1095 adapter->smb.smb = (struct stats_msg_block *)
1096 ((u8 *) adapter->cmb.cmb +
1097 (sizeof(struct coals_msg_block) + offset));
1098
1099 return 0;
1100
1101 err_nomem:
1102 kfree(tpd_ring->buffer_info);
1103 return -ENOMEM;
1104 }
1105
atl1_init_ring_ptrs(struct atl1_adapter * adapter)1106 static void atl1_init_ring_ptrs(struct atl1_adapter *adapter)
1107 {
1108 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1109 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1110 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1111
1112 atomic_set(&tpd_ring->next_to_use, 0);
1113 atomic_set(&tpd_ring->next_to_clean, 0);
1114
1115 rfd_ring->next_to_clean = 0;
1116 atomic_set(&rfd_ring->next_to_use, 0);
1117
1118 rrd_ring->next_to_use = 0;
1119 atomic_set(&rrd_ring->next_to_clean, 0);
1120 }
1121
1122 /**
1123 * atl1_clean_rx_ring - Free RFD Buffers
1124 * @adapter: board private structure
1125 */
atl1_clean_rx_ring(struct atl1_adapter * adapter)1126 static void atl1_clean_rx_ring(struct atl1_adapter *adapter)
1127 {
1128 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1129 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1130 struct atl1_buffer *buffer_info;
1131 struct pci_dev *pdev = adapter->pdev;
1132 unsigned long size;
1133 unsigned int i;
1134
1135 /* Free all the Rx ring sk_buffs */
1136 for (i = 0; i < rfd_ring->count; i++) {
1137 buffer_info = &rfd_ring->buffer_info[i];
1138 if (buffer_info->dma) {
1139 dma_unmap_page(&pdev->dev, buffer_info->dma,
1140 buffer_info->length, DMA_FROM_DEVICE);
1141 buffer_info->dma = 0;
1142 }
1143 if (buffer_info->skb) {
1144 dev_kfree_skb(buffer_info->skb);
1145 buffer_info->skb = NULL;
1146 }
1147 }
1148
1149 size = sizeof(struct atl1_buffer) * rfd_ring->count;
1150 memset(rfd_ring->buffer_info, 0, size);
1151
1152 /* Zero out the descriptor ring */
1153 memset(rfd_ring->desc, 0, rfd_ring->size);
1154
1155 rfd_ring->next_to_clean = 0;
1156 atomic_set(&rfd_ring->next_to_use, 0);
1157
1158 rrd_ring->next_to_use = 0;
1159 atomic_set(&rrd_ring->next_to_clean, 0);
1160 }
1161
1162 /**
1163 * atl1_clean_tx_ring - Free Tx Buffers
1164 * @adapter: board private structure
1165 */
atl1_clean_tx_ring(struct atl1_adapter * adapter)1166 static void atl1_clean_tx_ring(struct atl1_adapter *adapter)
1167 {
1168 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1169 struct atl1_buffer *buffer_info;
1170 struct pci_dev *pdev = adapter->pdev;
1171 unsigned long size;
1172 unsigned int i;
1173
1174 /* Free all the Tx ring sk_buffs */
1175 for (i = 0; i < tpd_ring->count; i++) {
1176 buffer_info = &tpd_ring->buffer_info[i];
1177 if (buffer_info->dma) {
1178 dma_unmap_page(&pdev->dev, buffer_info->dma,
1179 buffer_info->length, DMA_TO_DEVICE);
1180 buffer_info->dma = 0;
1181 }
1182 }
1183
1184 for (i = 0; i < tpd_ring->count; i++) {
1185 buffer_info = &tpd_ring->buffer_info[i];
1186 if (buffer_info->skb) {
1187 dev_kfree_skb_any(buffer_info->skb);
1188 buffer_info->skb = NULL;
1189 }
1190 }
1191
1192 size = sizeof(struct atl1_buffer) * tpd_ring->count;
1193 memset(tpd_ring->buffer_info, 0, size);
1194
1195 /* Zero out the descriptor ring */
1196 memset(tpd_ring->desc, 0, tpd_ring->size);
1197
1198 atomic_set(&tpd_ring->next_to_use, 0);
1199 atomic_set(&tpd_ring->next_to_clean, 0);
1200 }
1201
1202 /**
1203 * atl1_free_ring_resources - Free Tx / RX descriptor Resources
1204 * @adapter: board private structure
1205 *
1206 * Free all transmit software resources
1207 */
atl1_free_ring_resources(struct atl1_adapter * adapter)1208 static void atl1_free_ring_resources(struct atl1_adapter *adapter)
1209 {
1210 struct pci_dev *pdev = adapter->pdev;
1211 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1212 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1213 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1214 struct atl1_ring_header *ring_header = &adapter->ring_header;
1215
1216 atl1_clean_tx_ring(adapter);
1217 atl1_clean_rx_ring(adapter);
1218
1219 kfree(tpd_ring->buffer_info);
1220 dma_free_coherent(&pdev->dev, ring_header->size, ring_header->desc,
1221 ring_header->dma);
1222
1223 tpd_ring->buffer_info = NULL;
1224 tpd_ring->desc = NULL;
1225 tpd_ring->dma = 0;
1226
1227 rfd_ring->buffer_info = NULL;
1228 rfd_ring->desc = NULL;
1229 rfd_ring->dma = 0;
1230
1231 rrd_ring->desc = NULL;
1232 rrd_ring->dma = 0;
1233
1234 adapter->cmb.dma = 0;
1235 adapter->cmb.cmb = NULL;
1236
1237 adapter->smb.dma = 0;
1238 adapter->smb.smb = NULL;
1239 }
1240
atl1_setup_mac_ctrl(struct atl1_adapter * adapter)1241 static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter)
1242 {
1243 u32 value;
1244 struct atl1_hw *hw = &adapter->hw;
1245 struct net_device *netdev = adapter->netdev;
1246 /* Config MAC CTRL Register */
1247 value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN;
1248 /* duplex */
1249 if (FULL_DUPLEX == adapter->link_duplex)
1250 value |= MAC_CTRL_DUPLX;
1251 /* speed */
1252 value |= ((u32) ((SPEED_1000 == adapter->link_speed) ?
1253 MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) <<
1254 MAC_CTRL_SPEED_SHIFT);
1255 /* flow control */
1256 value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
1257 /* PAD & CRC */
1258 value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1259 /* preamble length */
1260 value |= (((u32) adapter->hw.preamble_len
1261 & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
1262 /* vlan */
1263 __atlx_vlan_mode(netdev->features, &value);
1264 /* rx checksum
1265 if (adapter->rx_csum)
1266 value |= MAC_CTRL_RX_CHKSUM_EN;
1267 */
1268 /* filter mode */
1269 value |= MAC_CTRL_BC_EN;
1270 if (netdev->flags & IFF_PROMISC)
1271 value |= MAC_CTRL_PROMIS_EN;
1272 else if (netdev->flags & IFF_ALLMULTI)
1273 value |= MAC_CTRL_MC_ALL_EN;
1274 /* value |= MAC_CTRL_LOOPBACK; */
1275 iowrite32(value, hw->hw_addr + REG_MAC_CTRL);
1276 }
1277
atl1_check_link(struct atl1_adapter * adapter)1278 static u32 atl1_check_link(struct atl1_adapter *adapter)
1279 {
1280 struct atl1_hw *hw = &adapter->hw;
1281 struct net_device *netdev = adapter->netdev;
1282 u32 ret_val;
1283 u16 speed, duplex, phy_data;
1284 int reconfig = 0;
1285
1286 /* MII_BMSR must read twice */
1287 atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1288 atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1289 if (!(phy_data & BMSR_LSTATUS)) {
1290 /* link down */
1291 if (netif_carrier_ok(netdev)) {
1292 /* old link state: Up */
1293 if (netif_msg_link(adapter))
1294 dev_info(&adapter->pdev->dev, "link is down\n");
1295 adapter->link_speed = SPEED_0;
1296 netif_carrier_off(netdev);
1297 }
1298 return 0;
1299 }
1300
1301 /* Link Up */
1302 ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
1303 if (ret_val)
1304 return ret_val;
1305
1306 switch (hw->media_type) {
1307 case MEDIA_TYPE_1000M_FULL:
1308 if (speed != SPEED_1000 || duplex != FULL_DUPLEX)
1309 reconfig = 1;
1310 break;
1311 case MEDIA_TYPE_100M_FULL:
1312 if (speed != SPEED_100 || duplex != FULL_DUPLEX)
1313 reconfig = 1;
1314 break;
1315 case MEDIA_TYPE_100M_HALF:
1316 if (speed != SPEED_100 || duplex != HALF_DUPLEX)
1317 reconfig = 1;
1318 break;
1319 case MEDIA_TYPE_10M_FULL:
1320 if (speed != SPEED_10 || duplex != FULL_DUPLEX)
1321 reconfig = 1;
1322 break;
1323 case MEDIA_TYPE_10M_HALF:
1324 if (speed != SPEED_10 || duplex != HALF_DUPLEX)
1325 reconfig = 1;
1326 break;
1327 }
1328
1329 /* link result is our setting */
1330 if (!reconfig) {
1331 if (adapter->link_speed != speed ||
1332 adapter->link_duplex != duplex) {
1333 adapter->link_speed = speed;
1334 adapter->link_duplex = duplex;
1335 atl1_setup_mac_ctrl(adapter);
1336 if (netif_msg_link(adapter))
1337 dev_info(&adapter->pdev->dev,
1338 "%s link is up %d Mbps %s\n",
1339 netdev->name, adapter->link_speed,
1340 adapter->link_duplex == FULL_DUPLEX ?
1341 "full duplex" : "half duplex");
1342 }
1343 if (!netif_carrier_ok(netdev)) {
1344 /* Link down -> Up */
1345 netif_carrier_on(netdev);
1346 }
1347 return 0;
1348 }
1349
1350 /* change original link status */
1351 if (netif_carrier_ok(netdev)) {
1352 adapter->link_speed = SPEED_0;
1353 netif_carrier_off(netdev);
1354 netif_stop_queue(netdev);
1355 }
1356
1357 if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR &&
1358 hw->media_type != MEDIA_TYPE_1000M_FULL) {
1359 switch (hw->media_type) {
1360 case MEDIA_TYPE_100M_FULL:
1361 phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
1362 MII_CR_RESET;
1363 break;
1364 case MEDIA_TYPE_100M_HALF:
1365 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
1366 break;
1367 case MEDIA_TYPE_10M_FULL:
1368 phy_data =
1369 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
1370 break;
1371 default:
1372 /* MEDIA_TYPE_10M_HALF: */
1373 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
1374 break;
1375 }
1376 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
1377 return 0;
1378 }
1379
1380 /* auto-neg, insert timer to re-config phy */
1381 if (!adapter->phy_timer_pending) {
1382 adapter->phy_timer_pending = true;
1383 mod_timer(&adapter->phy_config_timer,
1384 round_jiffies(jiffies + 3 * HZ));
1385 }
1386
1387 return 0;
1388 }
1389
set_flow_ctrl_old(struct atl1_adapter * adapter)1390 static void set_flow_ctrl_old(struct atl1_adapter *adapter)
1391 {
1392 u32 hi, lo, value;
1393
1394 /* RFD Flow Control */
1395 value = adapter->rfd_ring.count;
1396 hi = value / 16;
1397 if (hi < 2)
1398 hi = 2;
1399 lo = value * 7 / 8;
1400
1401 value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1402 ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1403 iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1404
1405 /* RRD Flow Control */
1406 value = adapter->rrd_ring.count;
1407 lo = value / 16;
1408 hi = value * 7 / 8;
1409 if (lo < 2)
1410 lo = 2;
1411 value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1412 ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1413 iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1414 }
1415
set_flow_ctrl_new(struct atl1_hw * hw)1416 static void set_flow_ctrl_new(struct atl1_hw *hw)
1417 {
1418 u32 hi, lo, value;
1419
1420 /* RXF Flow Control */
1421 value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN);
1422 lo = value / 16;
1423 if (lo < 192)
1424 lo = 192;
1425 hi = value * 7 / 8;
1426 if (hi < lo)
1427 hi = lo + 16;
1428 value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1429 ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1430 iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1431
1432 /* RRD Flow Control */
1433 value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN);
1434 lo = value / 8;
1435 hi = value * 7 / 8;
1436 if (lo < 2)
1437 lo = 2;
1438 if (hi < lo)
1439 hi = lo + 3;
1440 value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1441 ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1442 iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1443 }
1444
1445 /**
1446 * atl1_configure - Configure Transmit&Receive Unit after Reset
1447 * @adapter: board private structure
1448 *
1449 * Configure the Tx /Rx unit of the MAC after a reset.
1450 */
atl1_configure(struct atl1_adapter * adapter)1451 static u32 atl1_configure(struct atl1_adapter *adapter)
1452 {
1453 struct atl1_hw *hw = &adapter->hw;
1454 u32 value;
1455
1456 /* clear interrupt status */
1457 iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR);
1458
1459 /* set MAC Address */
1460 value = (((u32) hw->mac_addr[2]) << 24) |
1461 (((u32) hw->mac_addr[3]) << 16) |
1462 (((u32) hw->mac_addr[4]) << 8) |
1463 (((u32) hw->mac_addr[5]));
1464 iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
1465 value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
1466 iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4));
1467
1468 /* tx / rx ring */
1469
1470 /* HI base address */
1471 iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32),
1472 hw->hw_addr + REG_DESC_BASE_ADDR_HI);
1473 /* LO base address */
1474 iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL),
1475 hw->hw_addr + REG_DESC_RFD_ADDR_LO);
1476 iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL),
1477 hw->hw_addr + REG_DESC_RRD_ADDR_LO);
1478 iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL),
1479 hw->hw_addr + REG_DESC_TPD_ADDR_LO);
1480 iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL),
1481 hw->hw_addr + REG_DESC_CMB_ADDR_LO);
1482 iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL),
1483 hw->hw_addr + REG_DESC_SMB_ADDR_LO);
1484
1485 /* element count */
1486 value = adapter->rrd_ring.count;
1487 value <<= 16;
1488 value += adapter->rfd_ring.count;
1489 iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE);
1490 iowrite32(adapter->tpd_ring.count, hw->hw_addr +
1491 REG_DESC_TPD_RING_SIZE);
1492
1493 /* Load Ptr */
1494 iowrite32(1, hw->hw_addr + REG_LOAD_PTR);
1495
1496 /* config Mailbox */
1497 value = ((atomic_read(&adapter->tpd_ring.next_to_use)
1498 & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) |
1499 ((atomic_read(&adapter->rrd_ring.next_to_clean)
1500 & MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) |
1501 ((atomic_read(&adapter->rfd_ring.next_to_use)
1502 & MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT);
1503 iowrite32(value, hw->hw_addr + REG_MAILBOX);
1504
1505 /* config IPG/IFG */
1506 value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK)
1507 << MAC_IPG_IFG_IPGT_SHIFT) |
1508 (((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK)
1509 << MAC_IPG_IFG_MIFG_SHIFT) |
1510 (((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK)
1511 << MAC_IPG_IFG_IPGR1_SHIFT) |
1512 (((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK)
1513 << MAC_IPG_IFG_IPGR2_SHIFT);
1514 iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG);
1515
1516 /* config Half-Duplex Control */
1517 value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
1518 (((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK)
1519 << MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
1520 MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
1521 (0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
1522 (((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK)
1523 << MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
1524 iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL);
1525
1526 /* set Interrupt Moderator Timer */
1527 iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT);
1528 iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL);
1529
1530 /* set Interrupt Clear Timer */
1531 iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER);
1532
1533 /* set max frame size hw will accept */
1534 iowrite32(hw->max_frame_size, hw->hw_addr + REG_MTU);
1535
1536 /* jumbo size & rrd retirement timer */
1537 value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK)
1538 << RXQ_JMBOSZ_TH_SHIFT) |
1539 (((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK)
1540 << RXQ_JMBO_LKAH_SHIFT) |
1541 (((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK)
1542 << RXQ_RRD_TIMER_SHIFT);
1543 iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM);
1544
1545 /* Flow Control */
1546 switch (hw->dev_rev) {
1547 case 0x8001:
1548 case 0x9001:
1549 case 0x9002:
1550 case 0x9003:
1551 set_flow_ctrl_old(adapter);
1552 break;
1553 default:
1554 set_flow_ctrl_new(hw);
1555 break;
1556 }
1557
1558 /* config TXQ */
1559 value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK)
1560 << TXQ_CTRL_TPD_BURST_NUM_SHIFT) |
1561 (((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK)
1562 << TXQ_CTRL_TXF_BURST_NUM_SHIFT) |
1563 (((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK)
1564 << TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE |
1565 TXQ_CTRL_EN;
1566 iowrite32(value, hw->hw_addr + REG_TXQ_CTRL);
1567
1568 /* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */
1569 value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK)
1570 << TX_JUMBO_TASK_TH_SHIFT) |
1571 (((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK)
1572 << TX_TPD_MIN_IPG_SHIFT);
1573 iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG);
1574
1575 /* config RXQ */
1576 value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK)
1577 << RXQ_CTRL_RFD_BURST_NUM_SHIFT) |
1578 (((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK)
1579 << RXQ_CTRL_RRD_BURST_THRESH_SHIFT) |
1580 (((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK)
1581 << RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) | RXQ_CTRL_CUT_THRU_EN |
1582 RXQ_CTRL_EN;
1583 iowrite32(value, hw->hw_addr + REG_RXQ_CTRL);
1584
1585 /* config DMA Engine */
1586 value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
1587 << DMA_CTRL_DMAR_BURST_LEN_SHIFT) |
1588 ((((u32) hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
1589 << DMA_CTRL_DMAW_BURST_LEN_SHIFT) | DMA_CTRL_DMAR_EN |
1590 DMA_CTRL_DMAW_EN;
1591 value |= (u32) hw->dma_ord;
1592 if (atl1_rcb_128 == hw->rcb_value)
1593 value |= DMA_CTRL_RCB_VALUE;
1594 iowrite32(value, hw->hw_addr + REG_DMA_CTRL);
1595
1596 /* config CMB / SMB */
1597 value = (hw->cmb_tpd > adapter->tpd_ring.count) ?
1598 hw->cmb_tpd : adapter->tpd_ring.count;
1599 value <<= 16;
1600 value |= hw->cmb_rrd;
1601 iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH);
1602 value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16);
1603 iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER);
1604 iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER);
1605
1606 /* --- enable CMB / SMB */
1607 value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN;
1608 iowrite32(value, hw->hw_addr + REG_CSMB_CTRL);
1609
1610 value = ioread32(adapter->hw.hw_addr + REG_ISR);
1611 if (unlikely((value & ISR_PHY_LINKDOWN) != 0))
1612 value = 1; /* config failed */
1613 else
1614 value = 0;
1615
1616 /* clear all interrupt status */
1617 iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR);
1618 iowrite32(0, adapter->hw.hw_addr + REG_ISR);
1619 return value;
1620 }
1621
1622 /*
1623 * atl1_pcie_patch - Patch for PCIE module
1624 */
atl1_pcie_patch(struct atl1_adapter * adapter)1625 static void atl1_pcie_patch(struct atl1_adapter *adapter)
1626 {
1627 u32 value;
1628
1629 /* much vendor magic here */
1630 value = 0x6500;
1631 iowrite32(value, adapter->hw.hw_addr + 0x12FC);
1632 /* pcie flow control mode change */
1633 value = ioread32(adapter->hw.hw_addr + 0x1008);
1634 value |= 0x8000;
1635 iowrite32(value, adapter->hw.hw_addr + 0x1008);
1636 }
1637
1638 /*
1639 * When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400
1640 * on PCI Command register is disable.
1641 * The function enable this bit.
1642 * Brackett, 2006/03/15
1643 */
atl1_via_workaround(struct atl1_adapter * adapter)1644 static void atl1_via_workaround(struct atl1_adapter *adapter)
1645 {
1646 unsigned long value;
1647
1648 value = ioread16(adapter->hw.hw_addr + PCI_COMMAND);
1649 if (value & PCI_COMMAND_INTX_DISABLE)
1650 value &= ~PCI_COMMAND_INTX_DISABLE;
1651 iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND);
1652 }
1653
atl1_inc_smb(struct atl1_adapter * adapter)1654 static void atl1_inc_smb(struct atl1_adapter *adapter)
1655 {
1656 struct net_device *netdev = adapter->netdev;
1657 struct stats_msg_block *smb = adapter->smb.smb;
1658
1659 u64 new_rx_errors = smb->rx_frag +
1660 smb->rx_fcs_err +
1661 smb->rx_len_err +
1662 smb->rx_sz_ov +
1663 smb->rx_rxf_ov +
1664 smb->rx_rrd_ov +
1665 smb->rx_align_err;
1666 u64 new_tx_errors = smb->tx_late_col +
1667 smb->tx_abort_col +
1668 smb->tx_underrun +
1669 smb->tx_trunc;
1670
1671 /* Fill out the OS statistics structure */
1672 adapter->soft_stats.rx_packets += smb->rx_ok + new_rx_errors;
1673 adapter->soft_stats.tx_packets += smb->tx_ok + new_tx_errors;
1674 adapter->soft_stats.rx_bytes += smb->rx_byte_cnt;
1675 adapter->soft_stats.tx_bytes += smb->tx_byte_cnt;
1676 adapter->soft_stats.multicast += smb->rx_mcast;
1677 adapter->soft_stats.collisions += smb->tx_1_col +
1678 smb->tx_2_col +
1679 smb->tx_late_col +
1680 smb->tx_abort_col;
1681
1682 /* Rx Errors */
1683 adapter->soft_stats.rx_errors += new_rx_errors;
1684 adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov;
1685 adapter->soft_stats.rx_length_errors += smb->rx_len_err;
1686 adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err;
1687 adapter->soft_stats.rx_frame_errors += smb->rx_align_err;
1688
1689 adapter->soft_stats.rx_pause += smb->rx_pause;
1690 adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov;
1691 adapter->soft_stats.rx_trunc += smb->rx_sz_ov;
1692
1693 /* Tx Errors */
1694 adapter->soft_stats.tx_errors += new_tx_errors;
1695 adapter->soft_stats.tx_fifo_errors += smb->tx_underrun;
1696 adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col;
1697 adapter->soft_stats.tx_window_errors += smb->tx_late_col;
1698
1699 adapter->soft_stats.excecol += smb->tx_abort_col;
1700 adapter->soft_stats.deffer += smb->tx_defer;
1701 adapter->soft_stats.scc += smb->tx_1_col;
1702 adapter->soft_stats.mcc += smb->tx_2_col;
1703 adapter->soft_stats.latecol += smb->tx_late_col;
1704 adapter->soft_stats.tx_underrun += smb->tx_underrun;
1705 adapter->soft_stats.tx_trunc += smb->tx_trunc;
1706 adapter->soft_stats.tx_pause += smb->tx_pause;
1707
1708 netdev->stats.rx_bytes = adapter->soft_stats.rx_bytes;
1709 netdev->stats.tx_bytes = adapter->soft_stats.tx_bytes;
1710 netdev->stats.multicast = adapter->soft_stats.multicast;
1711 netdev->stats.collisions = adapter->soft_stats.collisions;
1712 netdev->stats.rx_errors = adapter->soft_stats.rx_errors;
1713 netdev->stats.rx_length_errors =
1714 adapter->soft_stats.rx_length_errors;
1715 netdev->stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors;
1716 netdev->stats.rx_frame_errors =
1717 adapter->soft_stats.rx_frame_errors;
1718 netdev->stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors;
1719 netdev->stats.rx_dropped = adapter->soft_stats.rx_rrd_ov;
1720 netdev->stats.tx_errors = adapter->soft_stats.tx_errors;
1721 netdev->stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors;
1722 netdev->stats.tx_aborted_errors =
1723 adapter->soft_stats.tx_aborted_errors;
1724 netdev->stats.tx_window_errors =
1725 adapter->soft_stats.tx_window_errors;
1726 netdev->stats.tx_carrier_errors =
1727 adapter->soft_stats.tx_carrier_errors;
1728
1729 netdev->stats.rx_packets = adapter->soft_stats.rx_packets;
1730 netdev->stats.tx_packets = adapter->soft_stats.tx_packets;
1731 }
1732
atl1_update_mailbox(struct atl1_adapter * adapter)1733 static void atl1_update_mailbox(struct atl1_adapter *adapter)
1734 {
1735 unsigned long flags;
1736 u32 tpd_next_to_use;
1737 u32 rfd_next_to_use;
1738 u32 rrd_next_to_clean;
1739 u32 value;
1740
1741 spin_lock_irqsave(&adapter->mb_lock, flags);
1742
1743 tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
1744 rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use);
1745 rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean);
1746
1747 value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
1748 MB_RFD_PROD_INDX_SHIFT) |
1749 ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
1750 MB_RRD_CONS_INDX_SHIFT) |
1751 ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
1752 MB_TPD_PROD_INDX_SHIFT);
1753 iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
1754
1755 spin_unlock_irqrestore(&adapter->mb_lock, flags);
1756 }
1757
atl1_clean_alloc_flag(struct atl1_adapter * adapter,struct rx_return_desc * rrd,u16 offset)1758 static void atl1_clean_alloc_flag(struct atl1_adapter *adapter,
1759 struct rx_return_desc *rrd, u16 offset)
1760 {
1761 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1762
1763 while (rfd_ring->next_to_clean != (rrd->buf_indx + offset)) {
1764 rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced = 0;
1765 if (++rfd_ring->next_to_clean == rfd_ring->count) {
1766 rfd_ring->next_to_clean = 0;
1767 }
1768 }
1769 }
1770
atl1_update_rfd_index(struct atl1_adapter * adapter,struct rx_return_desc * rrd)1771 static void atl1_update_rfd_index(struct atl1_adapter *adapter,
1772 struct rx_return_desc *rrd)
1773 {
1774 u16 num_buf;
1775
1776 num_buf = (rrd->xsz.xsum_sz.pkt_size + adapter->rx_buffer_len - 1) /
1777 adapter->rx_buffer_len;
1778 if (rrd->num_buf == num_buf)
1779 /* clean alloc flag for bad rrd */
1780 atl1_clean_alloc_flag(adapter, rrd, num_buf);
1781 }
1782
atl1_rx_checksum(struct atl1_adapter * adapter,struct rx_return_desc * rrd,struct sk_buff * skb)1783 static void atl1_rx_checksum(struct atl1_adapter *adapter,
1784 struct rx_return_desc *rrd, struct sk_buff *skb)
1785 {
1786 struct pci_dev *pdev = adapter->pdev;
1787
1788 /*
1789 * The L1 hardware contains a bug that erroneously sets the
1790 * PACKET_FLAG_ERR and ERR_FLAG_L4_CHKSUM bits whenever a
1791 * fragmented IP packet is received, even though the packet
1792 * is perfectly valid and its checksum is correct. There's
1793 * no way to distinguish between one of these good packets
1794 * and a packet that actually contains a TCP/UDP checksum
1795 * error, so all we can do is allow it to be handed up to
1796 * the higher layers and let it be sorted out there.
1797 */
1798
1799 skb_checksum_none_assert(skb);
1800
1801 if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
1802 if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC |
1803 ERR_FLAG_CODE | ERR_FLAG_OV)) {
1804 adapter->hw_csum_err++;
1805 if (netif_msg_rx_err(adapter))
1806 dev_printk(KERN_DEBUG, &pdev->dev,
1807 "rx checksum error\n");
1808 return;
1809 }
1810 }
1811
1812 /* not IPv4 */
1813 if (!(rrd->pkt_flg & PACKET_FLAG_IPV4))
1814 /* checksum is invalid, but it's not an IPv4 pkt, so ok */
1815 return;
1816
1817 /* IPv4 packet */
1818 if (likely(!(rrd->err_flg &
1819 (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) {
1820 skb->ip_summed = CHECKSUM_UNNECESSARY;
1821 adapter->hw_csum_good++;
1822 return;
1823 }
1824 }
1825
1826 /**
1827 * atl1_alloc_rx_buffers - Replace used receive buffers
1828 * @adapter: address of board private structure
1829 */
atl1_alloc_rx_buffers(struct atl1_adapter * adapter)1830 static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter)
1831 {
1832 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1833 struct pci_dev *pdev = adapter->pdev;
1834 struct page *page;
1835 unsigned long offset;
1836 struct atl1_buffer *buffer_info, *next_info;
1837 struct sk_buff *skb;
1838 u16 num_alloc = 0;
1839 u16 rfd_next_to_use, next_next;
1840 struct rx_free_desc *rfd_desc;
1841
1842 next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use);
1843 if (++next_next == rfd_ring->count)
1844 next_next = 0;
1845 buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1846 next_info = &rfd_ring->buffer_info[next_next];
1847
1848 while (!buffer_info->alloced && !next_info->alloced) {
1849 if (buffer_info->skb) {
1850 buffer_info->alloced = 1;
1851 goto next;
1852 }
1853
1854 rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use);
1855
1856 skb = netdev_alloc_skb_ip_align(adapter->netdev,
1857 adapter->rx_buffer_len);
1858 if (unlikely(!skb)) {
1859 /* Better luck next round */
1860 adapter->soft_stats.rx_dropped++;
1861 break;
1862 }
1863
1864 buffer_info->alloced = 1;
1865 buffer_info->skb = skb;
1866 buffer_info->length = (u16) adapter->rx_buffer_len;
1867 page = virt_to_page(skb->data);
1868 offset = offset_in_page(skb->data);
1869 buffer_info->dma = dma_map_page(&pdev->dev, page, offset,
1870 adapter->rx_buffer_len,
1871 DMA_FROM_DEVICE);
1872 rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
1873 rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len);
1874 rfd_desc->coalese = 0;
1875
1876 next:
1877 rfd_next_to_use = next_next;
1878 if (unlikely(++next_next == rfd_ring->count))
1879 next_next = 0;
1880
1881 buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1882 next_info = &rfd_ring->buffer_info[next_next];
1883 num_alloc++;
1884 }
1885
1886 if (num_alloc) {
1887 /*
1888 * Force memory writes to complete before letting h/w
1889 * know there are new descriptors to fetch. (Only
1890 * applicable for weak-ordered memory model archs,
1891 * such as IA-64).
1892 */
1893 wmb();
1894 atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use);
1895 }
1896 return num_alloc;
1897 }
1898
atl1_intr_rx(struct atl1_adapter * adapter,int budget)1899 static int atl1_intr_rx(struct atl1_adapter *adapter, int budget)
1900 {
1901 int i, count;
1902 u16 length;
1903 u16 rrd_next_to_clean;
1904 u32 value;
1905 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1906 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1907 struct atl1_buffer *buffer_info;
1908 struct rx_return_desc *rrd;
1909 struct sk_buff *skb;
1910
1911 count = 0;
1912
1913 rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean);
1914
1915 while (count < budget) {
1916 rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean);
1917 i = 1;
1918 if (likely(rrd->xsz.valid)) { /* packet valid */
1919 chk_rrd:
1920 /* check rrd status */
1921 if (likely(rrd->num_buf == 1))
1922 goto rrd_ok;
1923 else if (netif_msg_rx_err(adapter)) {
1924 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1925 "unexpected RRD buffer count\n");
1926 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1927 "rx_buf_len = %d\n",
1928 adapter->rx_buffer_len);
1929 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1930 "RRD num_buf = %d\n",
1931 rrd->num_buf);
1932 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1933 "RRD pkt_len = %d\n",
1934 rrd->xsz.xsum_sz.pkt_size);
1935 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1936 "RRD pkt_flg = 0x%08X\n",
1937 rrd->pkt_flg);
1938 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1939 "RRD err_flg = 0x%08X\n",
1940 rrd->err_flg);
1941 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1942 "RRD vlan_tag = 0x%08X\n",
1943 rrd->vlan_tag);
1944 }
1945
1946 /* rrd seems to be bad */
1947 if (unlikely(i-- > 0)) {
1948 /* rrd may not be DMAed completely */
1949 udelay(1);
1950 goto chk_rrd;
1951 }
1952 /* bad rrd */
1953 if (netif_msg_rx_err(adapter))
1954 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1955 "bad RRD\n");
1956 /* see if update RFD index */
1957 if (rrd->num_buf > 1)
1958 atl1_update_rfd_index(adapter, rrd);
1959
1960 /* update rrd */
1961 rrd->xsz.valid = 0;
1962 if (++rrd_next_to_clean == rrd_ring->count)
1963 rrd_next_to_clean = 0;
1964 count++;
1965 continue;
1966 } else { /* current rrd still not be updated */
1967
1968 break;
1969 }
1970 rrd_ok:
1971 /* clean alloc flag for bad rrd */
1972 atl1_clean_alloc_flag(adapter, rrd, 0);
1973
1974 buffer_info = &rfd_ring->buffer_info[rrd->buf_indx];
1975 if (++rfd_ring->next_to_clean == rfd_ring->count)
1976 rfd_ring->next_to_clean = 0;
1977
1978 /* update rrd next to clean */
1979 if (++rrd_next_to_clean == rrd_ring->count)
1980 rrd_next_to_clean = 0;
1981 count++;
1982
1983 if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
1984 if (!(rrd->err_flg &
1985 (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM
1986 | ERR_FLAG_LEN))) {
1987 /* packet error, don't need upstream */
1988 buffer_info->alloced = 0;
1989 rrd->xsz.valid = 0;
1990 continue;
1991 }
1992 }
1993
1994 /* Good Receive */
1995 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1996 buffer_info->length, DMA_FROM_DEVICE);
1997 buffer_info->dma = 0;
1998 skb = buffer_info->skb;
1999 length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size);
2000
2001 skb_put(skb, length - ETH_FCS_LEN);
2002
2003 /* Receive Checksum Offload */
2004 atl1_rx_checksum(adapter, rrd, skb);
2005 skb->protocol = eth_type_trans(skb, adapter->netdev);
2006
2007 if (rrd->pkt_flg & PACKET_FLAG_VLAN_INS) {
2008 u16 vlan_tag = (rrd->vlan_tag >> 4) |
2009 ((rrd->vlan_tag & 7) << 13) |
2010 ((rrd->vlan_tag & 8) << 9);
2011
2012 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
2013 }
2014 netif_receive_skb(skb);
2015
2016 /* let protocol layer free skb */
2017 buffer_info->skb = NULL;
2018 buffer_info->alloced = 0;
2019 rrd->xsz.valid = 0;
2020 }
2021
2022 atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean);
2023
2024 atl1_alloc_rx_buffers(adapter);
2025
2026 /* update mailbox ? */
2027 if (count) {
2028 u32 tpd_next_to_use;
2029 u32 rfd_next_to_use;
2030
2031 spin_lock(&adapter->mb_lock);
2032
2033 tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
2034 rfd_next_to_use =
2035 atomic_read(&adapter->rfd_ring.next_to_use);
2036 rrd_next_to_clean =
2037 atomic_read(&adapter->rrd_ring.next_to_clean);
2038 value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
2039 MB_RFD_PROD_INDX_SHIFT) |
2040 ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
2041 MB_RRD_CONS_INDX_SHIFT) |
2042 ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
2043 MB_TPD_PROD_INDX_SHIFT);
2044 iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
2045 spin_unlock(&adapter->mb_lock);
2046 }
2047
2048 return count;
2049 }
2050
atl1_intr_tx(struct atl1_adapter * adapter)2051 static int atl1_intr_tx(struct atl1_adapter *adapter)
2052 {
2053 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2054 struct atl1_buffer *buffer_info;
2055 u16 sw_tpd_next_to_clean;
2056 u16 cmb_tpd_next_to_clean;
2057 int count = 0;
2058
2059 sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2060 cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx);
2061
2062 while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) {
2063 buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean];
2064 if (buffer_info->dma) {
2065 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
2066 buffer_info->length, DMA_TO_DEVICE);
2067 buffer_info->dma = 0;
2068 }
2069
2070 if (buffer_info->skb) {
2071 dev_consume_skb_irq(buffer_info->skb);
2072 buffer_info->skb = NULL;
2073 }
2074
2075 if (++sw_tpd_next_to_clean == tpd_ring->count)
2076 sw_tpd_next_to_clean = 0;
2077
2078 count++;
2079 }
2080 atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean);
2081
2082 if (netif_queue_stopped(adapter->netdev) &&
2083 netif_carrier_ok(adapter->netdev))
2084 netif_wake_queue(adapter->netdev);
2085
2086 return count;
2087 }
2088
atl1_tpd_avail(struct atl1_tpd_ring * tpd_ring)2089 static u16 atl1_tpd_avail(struct atl1_tpd_ring *tpd_ring)
2090 {
2091 u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2092 u16 next_to_use = atomic_read(&tpd_ring->next_to_use);
2093 return (next_to_clean > next_to_use) ?
2094 next_to_clean - next_to_use - 1 :
2095 tpd_ring->count + next_to_clean - next_to_use - 1;
2096 }
2097
atl1_tso(struct atl1_adapter * adapter,struct sk_buff * skb,struct tx_packet_desc * ptpd)2098 static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb,
2099 struct tx_packet_desc *ptpd)
2100 {
2101 u8 hdr_len, ip_off;
2102 u32 real_len;
2103
2104 if (skb_shinfo(skb)->gso_size) {
2105 int err;
2106
2107 err = skb_cow_head(skb, 0);
2108 if (err < 0)
2109 return err;
2110
2111 if (skb->protocol == htons(ETH_P_IP)) {
2112 struct iphdr *iph = ip_hdr(skb);
2113
2114 real_len = (((unsigned char *)iph - skb->data) +
2115 ntohs(iph->tot_len));
2116 if (real_len < skb->len)
2117 pskb_trim(skb, real_len);
2118 hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
2119 if (skb->len == hdr_len) {
2120 iph->check = 0;
2121 tcp_hdr(skb)->check =
2122 ~csum_tcpudp_magic(iph->saddr,
2123 iph->daddr, tcp_hdrlen(skb),
2124 IPPROTO_TCP, 0);
2125 ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2126 TPD_IPHL_SHIFT;
2127 ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2128 TPD_TCPHDRLEN_MASK) <<
2129 TPD_TCPHDRLEN_SHIFT;
2130 ptpd->word3 |= 1 << TPD_IP_CSUM_SHIFT;
2131 ptpd->word3 |= 1 << TPD_TCP_CSUM_SHIFT;
2132 return 1;
2133 }
2134
2135 iph->check = 0;
2136 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2137 iph->daddr, 0, IPPROTO_TCP, 0);
2138 ip_off = (unsigned char *)iph -
2139 (unsigned char *) skb_network_header(skb);
2140 if (ip_off == 8) /* 802.3-SNAP frame */
2141 ptpd->word3 |= 1 << TPD_ETHTYPE_SHIFT;
2142 else if (ip_off != 0)
2143 return -2;
2144
2145 ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2146 TPD_IPHL_SHIFT;
2147 ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2148 TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT;
2149 ptpd->word3 |= (skb_shinfo(skb)->gso_size &
2150 TPD_MSS_MASK) << TPD_MSS_SHIFT;
2151 ptpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT;
2152 return 3;
2153 }
2154 }
2155 return 0;
2156 }
2157
atl1_tx_csum(struct atl1_adapter * adapter,struct sk_buff * skb,struct tx_packet_desc * ptpd)2158 static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb,
2159 struct tx_packet_desc *ptpd)
2160 {
2161 u8 css, cso;
2162
2163 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2164 css = skb_checksum_start_offset(skb);
2165 cso = css + (u8) skb->csum_offset;
2166 if (unlikely(css & 0x1)) {
2167 /* L1 hardware requires an even number here */
2168 if (netif_msg_tx_err(adapter))
2169 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2170 "payload offset not an even number\n");
2171 return -1;
2172 }
2173 ptpd->word3 |= (css & TPD_PLOADOFFSET_MASK) <<
2174 TPD_PLOADOFFSET_SHIFT;
2175 ptpd->word3 |= (cso & TPD_CCSUMOFFSET_MASK) <<
2176 TPD_CCSUMOFFSET_SHIFT;
2177 ptpd->word3 |= 1 << TPD_CUST_CSUM_EN_SHIFT;
2178 return true;
2179 }
2180 return 0;
2181 }
2182
atl1_tx_map(struct atl1_adapter * adapter,struct sk_buff * skb,struct tx_packet_desc * ptpd)2183 static void atl1_tx_map(struct atl1_adapter *adapter, struct sk_buff *skb,
2184 struct tx_packet_desc *ptpd)
2185 {
2186 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2187 struct atl1_buffer *buffer_info;
2188 u16 buf_len = skb->len;
2189 struct page *page;
2190 unsigned long offset;
2191 unsigned int nr_frags;
2192 unsigned int f;
2193 int retval;
2194 u16 next_to_use;
2195 u16 data_len;
2196 u8 hdr_len;
2197
2198 buf_len -= skb->data_len;
2199 nr_frags = skb_shinfo(skb)->nr_frags;
2200 next_to_use = atomic_read(&tpd_ring->next_to_use);
2201 buffer_info = &tpd_ring->buffer_info[next_to_use];
2202 BUG_ON(buffer_info->skb);
2203 /* put skb in last TPD */
2204 buffer_info->skb = NULL;
2205
2206 retval = (ptpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK;
2207 if (retval) {
2208 /* TSO */
2209 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2210 buffer_info->length = hdr_len;
2211 page = virt_to_page(skb->data);
2212 offset = offset_in_page(skb->data);
2213 buffer_info->dma = dma_map_page(&adapter->pdev->dev, page,
2214 offset, hdr_len,
2215 DMA_TO_DEVICE);
2216
2217 if (++next_to_use == tpd_ring->count)
2218 next_to_use = 0;
2219
2220 if (buf_len > hdr_len) {
2221 int i, nseg;
2222
2223 data_len = buf_len - hdr_len;
2224 nseg = (data_len + ATL1_MAX_TX_BUF_LEN - 1) /
2225 ATL1_MAX_TX_BUF_LEN;
2226 for (i = 0; i < nseg; i++) {
2227 buffer_info =
2228 &tpd_ring->buffer_info[next_to_use];
2229 buffer_info->skb = NULL;
2230 buffer_info->length =
2231 (ATL1_MAX_TX_BUF_LEN >=
2232 data_len) ? ATL1_MAX_TX_BUF_LEN : data_len;
2233 data_len -= buffer_info->length;
2234 page = virt_to_page(skb->data +
2235 (hdr_len + i * ATL1_MAX_TX_BUF_LEN));
2236 offset = offset_in_page(skb->data +
2237 (hdr_len + i * ATL1_MAX_TX_BUF_LEN));
2238 buffer_info->dma = dma_map_page(&adapter->pdev->dev,
2239 page, offset,
2240 buffer_info->length,
2241 DMA_TO_DEVICE);
2242 if (++next_to_use == tpd_ring->count)
2243 next_to_use = 0;
2244 }
2245 }
2246 } else {
2247 /* not TSO */
2248 buffer_info->length = buf_len;
2249 page = virt_to_page(skb->data);
2250 offset = offset_in_page(skb->data);
2251 buffer_info->dma = dma_map_page(&adapter->pdev->dev, page,
2252 offset, buf_len,
2253 DMA_TO_DEVICE);
2254 if (++next_to_use == tpd_ring->count)
2255 next_to_use = 0;
2256 }
2257
2258 for (f = 0; f < nr_frags; f++) {
2259 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2260 u16 i, nseg;
2261
2262 buf_len = skb_frag_size(frag);
2263
2264 nseg = (buf_len + ATL1_MAX_TX_BUF_LEN - 1) /
2265 ATL1_MAX_TX_BUF_LEN;
2266 for (i = 0; i < nseg; i++) {
2267 buffer_info = &tpd_ring->buffer_info[next_to_use];
2268 BUG_ON(buffer_info->skb);
2269
2270 buffer_info->skb = NULL;
2271 buffer_info->length = (buf_len > ATL1_MAX_TX_BUF_LEN) ?
2272 ATL1_MAX_TX_BUF_LEN : buf_len;
2273 buf_len -= buffer_info->length;
2274 buffer_info->dma = skb_frag_dma_map(&adapter->pdev->dev,
2275 frag, i * ATL1_MAX_TX_BUF_LEN,
2276 buffer_info->length, DMA_TO_DEVICE);
2277
2278 if (++next_to_use == tpd_ring->count)
2279 next_to_use = 0;
2280 }
2281 }
2282
2283 /* last tpd's buffer-info */
2284 buffer_info->skb = skb;
2285 }
2286
atl1_tx_queue(struct atl1_adapter * adapter,u16 count,struct tx_packet_desc * ptpd)2287 static void atl1_tx_queue(struct atl1_adapter *adapter, u16 count,
2288 struct tx_packet_desc *ptpd)
2289 {
2290 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2291 struct atl1_buffer *buffer_info;
2292 struct tx_packet_desc *tpd;
2293 u16 j;
2294 u32 val;
2295 u16 next_to_use = (u16) atomic_read(&tpd_ring->next_to_use);
2296
2297 for (j = 0; j < count; j++) {
2298 buffer_info = &tpd_ring->buffer_info[next_to_use];
2299 tpd = ATL1_TPD_DESC(&adapter->tpd_ring, next_to_use);
2300 if (tpd != ptpd)
2301 memcpy(tpd, ptpd, sizeof(struct tx_packet_desc));
2302 tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
2303 tpd->word2 &= ~(TPD_BUFLEN_MASK << TPD_BUFLEN_SHIFT);
2304 tpd->word2 |= (cpu_to_le16(buffer_info->length) &
2305 TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT;
2306
2307 /*
2308 * if this is the first packet in a TSO chain, set
2309 * TPD_HDRFLAG, otherwise, clear it.
2310 */
2311 val = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) &
2312 TPD_SEGMENT_EN_MASK;
2313 if (val) {
2314 if (!j)
2315 tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT;
2316 else
2317 tpd->word3 &= ~(1 << TPD_HDRFLAG_SHIFT);
2318 }
2319
2320 if (j == (count - 1))
2321 tpd->word3 |= 1 << TPD_EOP_SHIFT;
2322
2323 if (++next_to_use == tpd_ring->count)
2324 next_to_use = 0;
2325 }
2326 /*
2327 * Force memory writes to complete before letting h/w
2328 * know there are new descriptors to fetch. (Only
2329 * applicable for weak-ordered memory model archs,
2330 * such as IA-64).
2331 */
2332 wmb();
2333
2334 atomic_set(&tpd_ring->next_to_use, next_to_use);
2335 }
2336
atl1_xmit_frame(struct sk_buff * skb,struct net_device * netdev)2337 static netdev_tx_t atl1_xmit_frame(struct sk_buff *skb,
2338 struct net_device *netdev)
2339 {
2340 struct atl1_adapter *adapter = netdev_priv(netdev);
2341 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2342 int len;
2343 int tso;
2344 int count = 1;
2345 int ret_val;
2346 struct tx_packet_desc *ptpd;
2347 u16 vlan_tag;
2348 unsigned int nr_frags = 0;
2349 unsigned int mss = 0;
2350 unsigned int f;
2351 unsigned int proto_hdr_len;
2352
2353 len = skb_headlen(skb);
2354
2355 if (unlikely(skb->len <= 0)) {
2356 dev_kfree_skb_any(skb);
2357 return NETDEV_TX_OK;
2358 }
2359
2360 nr_frags = skb_shinfo(skb)->nr_frags;
2361 for (f = 0; f < nr_frags; f++) {
2362 unsigned int f_size = skb_frag_size(&skb_shinfo(skb)->frags[f]);
2363 count += (f_size + ATL1_MAX_TX_BUF_LEN - 1) /
2364 ATL1_MAX_TX_BUF_LEN;
2365 }
2366
2367 mss = skb_shinfo(skb)->gso_size;
2368 if (mss) {
2369 if (skb->protocol == htons(ETH_P_IP)) {
2370 proto_hdr_len = (skb_transport_offset(skb) +
2371 tcp_hdrlen(skb));
2372 if (unlikely(proto_hdr_len > len)) {
2373 dev_kfree_skb_any(skb);
2374 return NETDEV_TX_OK;
2375 }
2376 /* need additional TPD ? */
2377 if (proto_hdr_len != len)
2378 count += (len - proto_hdr_len +
2379 ATL1_MAX_TX_BUF_LEN - 1) /
2380 ATL1_MAX_TX_BUF_LEN;
2381 }
2382 }
2383
2384 if (atl1_tpd_avail(&adapter->tpd_ring) < count) {
2385 /* not enough descriptors */
2386 netif_stop_queue(netdev);
2387 if (netif_msg_tx_queued(adapter))
2388 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2389 "tx busy\n");
2390 return NETDEV_TX_BUSY;
2391 }
2392
2393 ptpd = ATL1_TPD_DESC(tpd_ring,
2394 (u16) atomic_read(&tpd_ring->next_to_use));
2395 memset(ptpd, 0, sizeof(struct tx_packet_desc));
2396
2397 if (skb_vlan_tag_present(skb)) {
2398 vlan_tag = skb_vlan_tag_get(skb);
2399 vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) |
2400 ((vlan_tag >> 9) & 0x8);
2401 ptpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT;
2402 ptpd->word2 |= (vlan_tag & TPD_VLANTAG_MASK) <<
2403 TPD_VLANTAG_SHIFT;
2404 }
2405
2406 tso = atl1_tso(adapter, skb, ptpd);
2407 if (tso < 0) {
2408 dev_kfree_skb_any(skb);
2409 return NETDEV_TX_OK;
2410 }
2411
2412 if (!tso) {
2413 ret_val = atl1_tx_csum(adapter, skb, ptpd);
2414 if (ret_val < 0) {
2415 dev_kfree_skb_any(skb);
2416 return NETDEV_TX_OK;
2417 }
2418 }
2419
2420 atl1_tx_map(adapter, skb, ptpd);
2421 atl1_tx_queue(adapter, count, ptpd);
2422 atl1_update_mailbox(adapter);
2423 return NETDEV_TX_OK;
2424 }
2425
atl1_rings_clean(struct napi_struct * napi,int budget)2426 static int atl1_rings_clean(struct napi_struct *napi, int budget)
2427 {
2428 struct atl1_adapter *adapter = container_of(napi, struct atl1_adapter, napi);
2429 int work_done = atl1_intr_rx(adapter, budget);
2430
2431 if (atl1_intr_tx(adapter))
2432 work_done = budget;
2433
2434 /* Let's come again to process some more packets */
2435 if (work_done >= budget)
2436 return work_done;
2437
2438 napi_complete_done(napi, work_done);
2439 /* re-enable Interrupt */
2440 if (likely(adapter->int_enabled))
2441 atlx_imr_set(adapter, IMR_NORMAL_MASK);
2442 return work_done;
2443 }
2444
atl1_sched_rings_clean(struct atl1_adapter * adapter)2445 static inline int atl1_sched_rings_clean(struct atl1_adapter* adapter)
2446 {
2447 if (!napi_schedule_prep(&adapter->napi))
2448 /* It is possible in case even the RX/TX ints are disabled via IMR
2449 * register the ISR bits are set anyway (but do not produce IRQ).
2450 * To handle such situation the napi functions used to check is
2451 * something scheduled or not.
2452 */
2453 return 0;
2454
2455 __napi_schedule(&adapter->napi);
2456
2457 /*
2458 * Disable RX/TX ints via IMR register if it is
2459 * allowed. NAPI handler must reenable them in same
2460 * way.
2461 */
2462 if (!adapter->int_enabled)
2463 return 1;
2464
2465 atlx_imr_set(adapter, IMR_NORXTX_MASK);
2466 return 1;
2467 }
2468
2469 /**
2470 * atl1_intr - Interrupt Handler
2471 * @irq: interrupt number
2472 * @data: pointer to a network interface device structure
2473 */
atl1_intr(int irq,void * data)2474 static irqreturn_t atl1_intr(int irq, void *data)
2475 {
2476 struct atl1_adapter *adapter = netdev_priv(data);
2477 u32 status;
2478
2479 status = adapter->cmb.cmb->int_stats;
2480 if (!status)
2481 return IRQ_NONE;
2482
2483 /* clear CMB interrupt status at once,
2484 * but leave rx/tx interrupt status in case it should be dropped
2485 * only if rx/tx processing queued. In other case interrupt
2486 * can be lost.
2487 */
2488 adapter->cmb.cmb->int_stats = status & (ISR_CMB_TX | ISR_CMB_RX);
2489
2490 if (status & ISR_GPHY) /* clear phy status */
2491 atlx_clear_phy_int(adapter);
2492
2493 /* clear ISR status, and Enable CMB DMA/Disable Interrupt */
2494 iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR);
2495
2496 /* check if SMB intr */
2497 if (status & ISR_SMB)
2498 atl1_inc_smb(adapter);
2499
2500 /* check if PCIE PHY Link down */
2501 if (status & ISR_PHY_LINKDOWN) {
2502 if (netif_msg_intr(adapter))
2503 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2504 "pcie phy link down %x\n", status);
2505 if (netif_running(adapter->netdev)) { /* reset MAC */
2506 atlx_irq_disable(adapter);
2507 schedule_work(&adapter->reset_dev_task);
2508 return IRQ_HANDLED;
2509 }
2510 }
2511
2512 /* check if DMA read/write error ? */
2513 if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
2514 if (netif_msg_intr(adapter))
2515 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2516 "pcie DMA r/w error (status = 0x%x)\n",
2517 status);
2518 atlx_irq_disable(adapter);
2519 schedule_work(&adapter->reset_dev_task);
2520 return IRQ_HANDLED;
2521 }
2522
2523 /* link event */
2524 if (status & ISR_GPHY) {
2525 adapter->soft_stats.tx_carrier_errors++;
2526 atl1_check_for_link(adapter);
2527 }
2528
2529 /* transmit or receive event */
2530 if (status & (ISR_CMB_TX | ISR_CMB_RX) &&
2531 atl1_sched_rings_clean(adapter))
2532 adapter->cmb.cmb->int_stats = adapter->cmb.cmb->int_stats &
2533 ~(ISR_CMB_TX | ISR_CMB_RX);
2534
2535 /* rx exception */
2536 if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN |
2537 ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
2538 ISR_HOST_RRD_OV))) {
2539 if (netif_msg_intr(adapter))
2540 dev_printk(KERN_DEBUG,
2541 &adapter->pdev->dev,
2542 "rx exception, ISR = 0x%x\n",
2543 status);
2544 atl1_sched_rings_clean(adapter);
2545 }
2546
2547 /* re-enable Interrupt */
2548 iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR);
2549 return IRQ_HANDLED;
2550 }
2551
2552
2553 /**
2554 * atl1_phy_config - Timer Call-back
2555 * @t: timer_list containing pointer to netdev cast into an unsigned long
2556 */
atl1_phy_config(struct timer_list * t)2557 static void atl1_phy_config(struct timer_list *t)
2558 {
2559 struct atl1_adapter *adapter = from_timer(adapter, t,
2560 phy_config_timer);
2561 struct atl1_hw *hw = &adapter->hw;
2562 unsigned long flags;
2563
2564 spin_lock_irqsave(&adapter->lock, flags);
2565 adapter->phy_timer_pending = false;
2566 atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
2567 atl1_write_phy_reg(hw, MII_ATLX_CR, hw->mii_1000t_ctrl_reg);
2568 atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN);
2569 spin_unlock_irqrestore(&adapter->lock, flags);
2570 }
2571
2572 /*
2573 * Orphaned vendor comment left intact here:
2574 * <vendor comment>
2575 * If TPD Buffer size equal to 0, PCIE DMAR_TO_INT
2576 * will assert. We do soft reset <0x1400=1> according
2577 * with the SPEC. BUT, it seemes that PCIE or DMA
2578 * state-machine will not be reset. DMAR_TO_INT will
2579 * assert again and again.
2580 * </vendor comment>
2581 */
2582
atl1_reset(struct atl1_adapter * adapter)2583 static int atl1_reset(struct atl1_adapter *adapter)
2584 {
2585 int ret;
2586 ret = atl1_reset_hw(&adapter->hw);
2587 if (ret)
2588 return ret;
2589 return atl1_init_hw(&adapter->hw);
2590 }
2591
atl1_up(struct atl1_adapter * adapter)2592 static s32 atl1_up(struct atl1_adapter *adapter)
2593 {
2594 struct net_device *netdev = adapter->netdev;
2595 int err;
2596 int irq_flags = 0;
2597
2598 /* hardware has been reset, we need to reload some things */
2599 atlx_set_multi(netdev);
2600 atl1_init_ring_ptrs(adapter);
2601 atlx_restore_vlan(adapter);
2602 err = atl1_alloc_rx_buffers(adapter);
2603 if (unlikely(!err))
2604 /* no RX BUFFER allocated */
2605 return -ENOMEM;
2606
2607 if (unlikely(atl1_configure(adapter))) {
2608 err = -EIO;
2609 goto err_up;
2610 }
2611
2612 err = pci_enable_msi(adapter->pdev);
2613 if (err) {
2614 if (netif_msg_ifup(adapter))
2615 dev_info(&adapter->pdev->dev,
2616 "Unable to enable MSI: %d\n", err);
2617 irq_flags |= IRQF_SHARED;
2618 }
2619
2620 err = request_irq(adapter->pdev->irq, atl1_intr, irq_flags,
2621 netdev->name, netdev);
2622 if (unlikely(err))
2623 goto err_up;
2624
2625 napi_enable(&adapter->napi);
2626 atlx_irq_enable(adapter);
2627 atl1_check_link(adapter);
2628 netif_start_queue(netdev);
2629 return 0;
2630
2631 err_up:
2632 pci_disable_msi(adapter->pdev);
2633 /* free rx_buffers */
2634 atl1_clean_rx_ring(adapter);
2635 return err;
2636 }
2637
atl1_down(struct atl1_adapter * adapter)2638 static void atl1_down(struct atl1_adapter *adapter)
2639 {
2640 struct net_device *netdev = adapter->netdev;
2641
2642 napi_disable(&adapter->napi);
2643 netif_stop_queue(netdev);
2644 del_timer_sync(&adapter->phy_config_timer);
2645 adapter->phy_timer_pending = false;
2646
2647 atlx_irq_disable(adapter);
2648 free_irq(adapter->pdev->irq, netdev);
2649 pci_disable_msi(adapter->pdev);
2650 atl1_reset_hw(&adapter->hw);
2651 adapter->cmb.cmb->int_stats = 0;
2652
2653 adapter->link_speed = SPEED_0;
2654 adapter->link_duplex = -1;
2655 netif_carrier_off(netdev);
2656
2657 atl1_clean_tx_ring(adapter);
2658 atl1_clean_rx_ring(adapter);
2659 }
2660
atl1_reset_dev_task(struct work_struct * work)2661 static void atl1_reset_dev_task(struct work_struct *work)
2662 {
2663 struct atl1_adapter *adapter =
2664 container_of(work, struct atl1_adapter, reset_dev_task);
2665 struct net_device *netdev = adapter->netdev;
2666
2667 netif_device_detach(netdev);
2668 atl1_down(adapter);
2669 atl1_up(adapter);
2670 netif_device_attach(netdev);
2671 }
2672
2673 /**
2674 * atl1_change_mtu - Change the Maximum Transfer Unit
2675 * @netdev: network interface device structure
2676 * @new_mtu: new value for maximum frame size
2677 *
2678 * Returns 0 on success, negative on failure
2679 */
atl1_change_mtu(struct net_device * netdev,int new_mtu)2680 static int atl1_change_mtu(struct net_device *netdev, int new_mtu)
2681 {
2682 struct atl1_adapter *adapter = netdev_priv(netdev);
2683 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
2684
2685 adapter->hw.max_frame_size = max_frame;
2686 adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3;
2687 adapter->rx_buffer_len = (max_frame + 7) & ~7;
2688 adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8;
2689
2690 netdev->mtu = new_mtu;
2691 if (netif_running(netdev)) {
2692 atl1_down(adapter);
2693 atl1_up(adapter);
2694 }
2695
2696 return 0;
2697 }
2698
2699 /**
2700 * atl1_open - Called when a network interface is made active
2701 * @netdev: network interface device structure
2702 *
2703 * Returns 0 on success, negative value on failure
2704 *
2705 * The open entry point is called when a network interface is made
2706 * active by the system (IFF_UP). At this point all resources needed
2707 * for transmit and receive operations are allocated, the interrupt
2708 * handler is registered with the OS, the watchdog timer is started,
2709 * and the stack is notified that the interface is ready.
2710 */
atl1_open(struct net_device * netdev)2711 static int atl1_open(struct net_device *netdev)
2712 {
2713 struct atl1_adapter *adapter = netdev_priv(netdev);
2714 int err;
2715
2716 netif_carrier_off(netdev);
2717
2718 /* allocate transmit descriptors */
2719 err = atl1_setup_ring_resources(adapter);
2720 if (err)
2721 return err;
2722
2723 err = atl1_up(adapter);
2724 if (err)
2725 goto err_up;
2726
2727 return 0;
2728
2729 err_up:
2730 atl1_reset(adapter);
2731 return err;
2732 }
2733
2734 /**
2735 * atl1_close - Disables a network interface
2736 * @netdev: network interface device structure
2737 *
2738 * Returns 0, this is not allowed to fail
2739 *
2740 * The close entry point is called when an interface is de-activated
2741 * by the OS. The hardware is still under the drivers control, but
2742 * needs to be disabled. A global MAC reset is issued to stop the
2743 * hardware, and all transmit and receive resources are freed.
2744 */
atl1_close(struct net_device * netdev)2745 static int atl1_close(struct net_device *netdev)
2746 {
2747 struct atl1_adapter *adapter = netdev_priv(netdev);
2748 atl1_down(adapter);
2749 atl1_free_ring_resources(adapter);
2750 return 0;
2751 }
2752
2753 #ifdef CONFIG_PM_SLEEP
atl1_suspend(struct device * dev)2754 static int atl1_suspend(struct device *dev)
2755 {
2756 struct net_device *netdev = dev_get_drvdata(dev);
2757 struct atl1_adapter *adapter = netdev_priv(netdev);
2758 struct atl1_hw *hw = &adapter->hw;
2759 u32 ctrl = 0;
2760 u32 wufc = adapter->wol;
2761 u32 val;
2762 u16 speed;
2763 u16 duplex;
2764
2765 netif_device_detach(netdev);
2766 if (netif_running(netdev))
2767 atl1_down(adapter);
2768
2769 atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2770 atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2771 val = ctrl & BMSR_LSTATUS;
2772 if (val)
2773 wufc &= ~ATLX_WUFC_LNKC;
2774 if (!wufc)
2775 goto disable_wol;
2776
2777 if (val) {
2778 val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
2779 if (val) {
2780 if (netif_msg_ifdown(adapter))
2781 dev_printk(KERN_DEBUG, dev,
2782 "error getting speed/duplex\n");
2783 goto disable_wol;
2784 }
2785
2786 ctrl = 0;
2787
2788 /* enable magic packet WOL */
2789 if (wufc & ATLX_WUFC_MAG)
2790 ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
2791 iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2792 ioread32(hw->hw_addr + REG_WOL_CTRL);
2793
2794 /* configure the mac */
2795 ctrl = MAC_CTRL_RX_EN;
2796 ctrl |= ((u32)((speed == SPEED_1000) ? MAC_CTRL_SPEED_1000 :
2797 MAC_CTRL_SPEED_10_100) << MAC_CTRL_SPEED_SHIFT);
2798 if (duplex == FULL_DUPLEX)
2799 ctrl |= MAC_CTRL_DUPLX;
2800 ctrl |= (((u32)adapter->hw.preamble_len &
2801 MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
2802 __atlx_vlan_mode(netdev->features, &ctrl);
2803 if (wufc & ATLX_WUFC_MAG)
2804 ctrl |= MAC_CTRL_BC_EN;
2805 iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL);
2806 ioread32(hw->hw_addr + REG_MAC_CTRL);
2807
2808 /* poke the PHY */
2809 ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2810 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2811 iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2812 ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2813 } else {
2814 ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
2815 iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2816 ioread32(hw->hw_addr + REG_WOL_CTRL);
2817 iowrite32(0, hw->hw_addr + REG_MAC_CTRL);
2818 ioread32(hw->hw_addr + REG_MAC_CTRL);
2819 hw->phy_configured = false;
2820 }
2821
2822 return 0;
2823
2824 disable_wol:
2825 iowrite32(0, hw->hw_addr + REG_WOL_CTRL);
2826 ioread32(hw->hw_addr + REG_WOL_CTRL);
2827 ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2828 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2829 iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2830 ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2831 hw->phy_configured = false;
2832
2833 return 0;
2834 }
2835
atl1_resume(struct device * dev)2836 static int atl1_resume(struct device *dev)
2837 {
2838 struct net_device *netdev = dev_get_drvdata(dev);
2839 struct atl1_adapter *adapter = netdev_priv(netdev);
2840
2841 iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL);
2842
2843 atl1_reset_hw(&adapter->hw);
2844
2845 if (netif_running(netdev)) {
2846 adapter->cmb.cmb->int_stats = 0;
2847 atl1_up(adapter);
2848 }
2849 netif_device_attach(netdev);
2850
2851 return 0;
2852 }
2853 #endif
2854
2855 static SIMPLE_DEV_PM_OPS(atl1_pm_ops, atl1_suspend, atl1_resume);
2856
atl1_shutdown(struct pci_dev * pdev)2857 static void atl1_shutdown(struct pci_dev *pdev)
2858 {
2859 struct net_device *netdev = pci_get_drvdata(pdev);
2860 struct atl1_adapter *adapter = netdev_priv(netdev);
2861
2862 #ifdef CONFIG_PM_SLEEP
2863 atl1_suspend(&pdev->dev);
2864 #endif
2865 pci_wake_from_d3(pdev, adapter->wol);
2866 pci_set_power_state(pdev, PCI_D3hot);
2867 }
2868
2869 #ifdef CONFIG_NET_POLL_CONTROLLER
atl1_poll_controller(struct net_device * netdev)2870 static void atl1_poll_controller(struct net_device *netdev)
2871 {
2872 disable_irq(netdev->irq);
2873 atl1_intr(netdev->irq, netdev);
2874 enable_irq(netdev->irq);
2875 }
2876 #endif
2877
2878 static const struct net_device_ops atl1_netdev_ops = {
2879 .ndo_open = atl1_open,
2880 .ndo_stop = atl1_close,
2881 .ndo_start_xmit = atl1_xmit_frame,
2882 .ndo_set_rx_mode = atlx_set_multi,
2883 .ndo_validate_addr = eth_validate_addr,
2884 .ndo_set_mac_address = atl1_set_mac,
2885 .ndo_change_mtu = atl1_change_mtu,
2886 .ndo_fix_features = atlx_fix_features,
2887 .ndo_set_features = atlx_set_features,
2888 .ndo_do_ioctl = atlx_ioctl,
2889 .ndo_tx_timeout = atlx_tx_timeout,
2890 #ifdef CONFIG_NET_POLL_CONTROLLER
2891 .ndo_poll_controller = atl1_poll_controller,
2892 #endif
2893 };
2894
2895 /**
2896 * atl1_probe - Device Initialization Routine
2897 * @pdev: PCI device information struct
2898 * @ent: entry in atl1_pci_tbl
2899 *
2900 * Returns 0 on success, negative on failure
2901 *
2902 * atl1_probe initializes an adapter identified by a pci_dev structure.
2903 * The OS initialization, configuring of the adapter private structure,
2904 * and a hardware reset occur.
2905 */
atl1_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2906 static int atl1_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2907 {
2908 struct net_device *netdev;
2909 struct atl1_adapter *adapter;
2910 static int cards_found = 0;
2911 int err;
2912
2913 err = pci_enable_device(pdev);
2914 if (err)
2915 return err;
2916
2917 /*
2918 * The atl1 chip can DMA to 64-bit addresses, but it uses a single
2919 * shared register for the high 32 bits, so only a single, aligned,
2920 * 4 GB physical address range can be used at a time.
2921 *
2922 * Supporting 64-bit DMA on this hardware is more trouble than it's
2923 * worth. It is far easier to limit to 32-bit DMA than update
2924 * various kernel subsystems to support the mechanics required by a
2925 * fixed-high-32-bit system.
2926 */
2927 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2928 if (err) {
2929 dev_err(&pdev->dev, "no usable DMA configuration\n");
2930 goto err_dma;
2931 }
2932 /*
2933 * Mark all PCI regions associated with PCI device
2934 * pdev as being reserved by owner atl1_driver_name
2935 */
2936 err = pci_request_regions(pdev, ATLX_DRIVER_NAME);
2937 if (err)
2938 goto err_request_regions;
2939
2940 /*
2941 * Enables bus-mastering on the device and calls
2942 * pcibios_set_master to do the needed arch specific settings
2943 */
2944 pci_set_master(pdev);
2945
2946 netdev = alloc_etherdev(sizeof(struct atl1_adapter));
2947 if (!netdev) {
2948 err = -ENOMEM;
2949 goto err_alloc_etherdev;
2950 }
2951 SET_NETDEV_DEV(netdev, &pdev->dev);
2952
2953 pci_set_drvdata(pdev, netdev);
2954 adapter = netdev_priv(netdev);
2955 adapter->netdev = netdev;
2956 adapter->pdev = pdev;
2957 adapter->hw.back = adapter;
2958 adapter->msg_enable = netif_msg_init(debug, atl1_default_msg);
2959
2960 adapter->hw.hw_addr = pci_iomap(pdev, 0, 0);
2961 if (!adapter->hw.hw_addr) {
2962 err = -EIO;
2963 goto err_pci_iomap;
2964 }
2965 /* get device revision number */
2966 adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr +
2967 (REG_MASTER_CTRL + 2));
2968
2969 /* set default ring resource counts */
2970 adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD;
2971 adapter->tpd_ring.count = ATL1_DEFAULT_TPD;
2972
2973 adapter->mii.dev = netdev;
2974 adapter->mii.mdio_read = mdio_read;
2975 adapter->mii.mdio_write = mdio_write;
2976 adapter->mii.phy_id_mask = 0x1f;
2977 adapter->mii.reg_num_mask = 0x1f;
2978
2979 netdev->netdev_ops = &atl1_netdev_ops;
2980 netdev->watchdog_timeo = 5 * HZ;
2981 netif_napi_add(netdev, &adapter->napi, atl1_rings_clean, 64);
2982
2983 netdev->ethtool_ops = &atl1_ethtool_ops;
2984 adapter->bd_number = cards_found;
2985
2986 /* setup the private structure */
2987 err = atl1_sw_init(adapter);
2988 if (err)
2989 goto err_common;
2990
2991 netdev->features = NETIF_F_HW_CSUM;
2992 netdev->features |= NETIF_F_SG;
2993 netdev->features |= (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX);
2994
2995 netdev->hw_features = NETIF_F_HW_CSUM | NETIF_F_SG | NETIF_F_TSO |
2996 NETIF_F_HW_VLAN_CTAG_RX;
2997
2998 /* is this valid? see atl1_setup_mac_ctrl() */
2999 netdev->features |= NETIF_F_RXCSUM;
3000
3001 /* MTU range: 42 - 10218 */
3002 netdev->min_mtu = ETH_ZLEN - (ETH_HLEN + VLAN_HLEN);
3003 netdev->max_mtu = MAX_JUMBO_FRAME_SIZE -
3004 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
3005
3006 /*
3007 * patch for some L1 of old version,
3008 * the final version of L1 may not need these
3009 * patches
3010 */
3011 /* atl1_pcie_patch(adapter); */
3012
3013 /* really reset GPHY core */
3014 iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3015
3016 /*
3017 * reset the controller to
3018 * put the device in a known good starting state
3019 */
3020 if (atl1_reset_hw(&adapter->hw)) {
3021 err = -EIO;
3022 goto err_common;
3023 }
3024
3025 /* copy the MAC address out of the EEPROM */
3026 if (atl1_read_mac_addr(&adapter->hw)) {
3027 /* mark random mac */
3028 netdev->addr_assign_type = NET_ADDR_RANDOM;
3029 }
3030 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
3031
3032 if (!is_valid_ether_addr(netdev->dev_addr)) {
3033 err = -EIO;
3034 goto err_common;
3035 }
3036
3037 atl1_check_options(adapter);
3038
3039 /* pre-init the MAC, and setup link */
3040 err = atl1_init_hw(&adapter->hw);
3041 if (err) {
3042 err = -EIO;
3043 goto err_common;
3044 }
3045
3046 atl1_pcie_patch(adapter);
3047 /* assume we have no link for now */
3048 netif_carrier_off(netdev);
3049
3050 timer_setup(&adapter->phy_config_timer, atl1_phy_config, 0);
3051 adapter->phy_timer_pending = false;
3052
3053 INIT_WORK(&adapter->reset_dev_task, atl1_reset_dev_task);
3054
3055 INIT_WORK(&adapter->link_chg_task, atlx_link_chg_task);
3056
3057 err = register_netdev(netdev);
3058 if (err)
3059 goto err_common;
3060
3061 cards_found++;
3062 atl1_via_workaround(adapter);
3063 return 0;
3064
3065 err_common:
3066 pci_iounmap(pdev, adapter->hw.hw_addr);
3067 err_pci_iomap:
3068 free_netdev(netdev);
3069 err_alloc_etherdev:
3070 pci_release_regions(pdev);
3071 err_dma:
3072 err_request_regions:
3073 pci_disable_device(pdev);
3074 return err;
3075 }
3076
3077 /**
3078 * atl1_remove - Device Removal Routine
3079 * @pdev: PCI device information struct
3080 *
3081 * atl1_remove is called by the PCI subsystem to alert the driver
3082 * that it should release a PCI device. The could be caused by a
3083 * Hot-Plug event, or because the driver is going to be removed from
3084 * memory.
3085 */
atl1_remove(struct pci_dev * pdev)3086 static void atl1_remove(struct pci_dev *pdev)
3087 {
3088 struct net_device *netdev = pci_get_drvdata(pdev);
3089 struct atl1_adapter *adapter;
3090 /* Device not available. Return. */
3091 if (!netdev)
3092 return;
3093
3094 adapter = netdev_priv(netdev);
3095
3096 /*
3097 * Some atl1 boards lack persistent storage for their MAC, and get it
3098 * from the BIOS during POST. If we've been messing with the MAC
3099 * address, we need to save the permanent one.
3100 */
3101 if (!ether_addr_equal_unaligned(adapter->hw.mac_addr,
3102 adapter->hw.perm_mac_addr)) {
3103 memcpy(adapter->hw.mac_addr, adapter->hw.perm_mac_addr,
3104 ETH_ALEN);
3105 atl1_set_mac_addr(&adapter->hw);
3106 }
3107
3108 iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3109 unregister_netdev(netdev);
3110 pci_iounmap(pdev, adapter->hw.hw_addr);
3111 pci_release_regions(pdev);
3112 free_netdev(netdev);
3113 pci_disable_device(pdev);
3114 }
3115
3116 static struct pci_driver atl1_driver = {
3117 .name = ATLX_DRIVER_NAME,
3118 .id_table = atl1_pci_tbl,
3119 .probe = atl1_probe,
3120 .remove = atl1_remove,
3121 .shutdown = atl1_shutdown,
3122 .driver.pm = &atl1_pm_ops,
3123 };
3124
3125 struct atl1_stats {
3126 char stat_string[ETH_GSTRING_LEN];
3127 int sizeof_stat;
3128 int stat_offset;
3129 };
3130
3131 #define ATL1_STAT(m) \
3132 sizeof(((struct atl1_adapter *)0)->m), offsetof(struct atl1_adapter, m)
3133
3134 static struct atl1_stats atl1_gstrings_stats[] = {
3135 {"rx_packets", ATL1_STAT(soft_stats.rx_packets)},
3136 {"tx_packets", ATL1_STAT(soft_stats.tx_packets)},
3137 {"rx_bytes", ATL1_STAT(soft_stats.rx_bytes)},
3138 {"tx_bytes", ATL1_STAT(soft_stats.tx_bytes)},
3139 {"rx_errors", ATL1_STAT(soft_stats.rx_errors)},
3140 {"tx_errors", ATL1_STAT(soft_stats.tx_errors)},
3141 {"multicast", ATL1_STAT(soft_stats.multicast)},
3142 {"collisions", ATL1_STAT(soft_stats.collisions)},
3143 {"rx_length_errors", ATL1_STAT(soft_stats.rx_length_errors)},
3144 {"rx_over_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3145 {"rx_crc_errors", ATL1_STAT(soft_stats.rx_crc_errors)},
3146 {"rx_frame_errors", ATL1_STAT(soft_stats.rx_frame_errors)},
3147 {"rx_fifo_errors", ATL1_STAT(soft_stats.rx_fifo_errors)},
3148 {"rx_missed_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3149 {"tx_aborted_errors", ATL1_STAT(soft_stats.tx_aborted_errors)},
3150 {"tx_carrier_errors", ATL1_STAT(soft_stats.tx_carrier_errors)},
3151 {"tx_fifo_errors", ATL1_STAT(soft_stats.tx_fifo_errors)},
3152 {"tx_window_errors", ATL1_STAT(soft_stats.tx_window_errors)},
3153 {"tx_abort_exce_coll", ATL1_STAT(soft_stats.excecol)},
3154 {"tx_abort_late_coll", ATL1_STAT(soft_stats.latecol)},
3155 {"tx_deferred_ok", ATL1_STAT(soft_stats.deffer)},
3156 {"tx_single_coll_ok", ATL1_STAT(soft_stats.scc)},
3157 {"tx_multi_coll_ok", ATL1_STAT(soft_stats.mcc)},
3158 {"tx_underrun", ATL1_STAT(soft_stats.tx_underrun)},
3159 {"tx_trunc", ATL1_STAT(soft_stats.tx_trunc)},
3160 {"tx_pause", ATL1_STAT(soft_stats.tx_pause)},
3161 {"rx_pause", ATL1_STAT(soft_stats.rx_pause)},
3162 {"rx_rrd_ov", ATL1_STAT(soft_stats.rx_rrd_ov)},
3163 {"rx_trunc", ATL1_STAT(soft_stats.rx_trunc)}
3164 };
3165
atl1_get_ethtool_stats(struct net_device * netdev,struct ethtool_stats * stats,u64 * data)3166 static void atl1_get_ethtool_stats(struct net_device *netdev,
3167 struct ethtool_stats *stats, u64 *data)
3168 {
3169 struct atl1_adapter *adapter = netdev_priv(netdev);
3170 int i;
3171 char *p;
3172
3173 for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3174 p = (char *)adapter+atl1_gstrings_stats[i].stat_offset;
3175 data[i] = (atl1_gstrings_stats[i].sizeof_stat ==
3176 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
3177 }
3178
3179 }
3180
atl1_get_sset_count(struct net_device * netdev,int sset)3181 static int atl1_get_sset_count(struct net_device *netdev, int sset)
3182 {
3183 switch (sset) {
3184 case ETH_SS_STATS:
3185 return ARRAY_SIZE(atl1_gstrings_stats);
3186 default:
3187 return -EOPNOTSUPP;
3188 }
3189 }
3190
atl1_get_link_ksettings(struct net_device * netdev,struct ethtool_link_ksettings * cmd)3191 static int atl1_get_link_ksettings(struct net_device *netdev,
3192 struct ethtool_link_ksettings *cmd)
3193 {
3194 struct atl1_adapter *adapter = netdev_priv(netdev);
3195 struct atl1_hw *hw = &adapter->hw;
3196 u32 supported, advertising;
3197
3198 supported = (SUPPORTED_10baseT_Half |
3199 SUPPORTED_10baseT_Full |
3200 SUPPORTED_100baseT_Half |
3201 SUPPORTED_100baseT_Full |
3202 SUPPORTED_1000baseT_Full |
3203 SUPPORTED_Autoneg | SUPPORTED_TP);
3204 advertising = ADVERTISED_TP;
3205 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3206 hw->media_type == MEDIA_TYPE_1000M_FULL) {
3207 advertising |= ADVERTISED_Autoneg;
3208 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR) {
3209 advertising |= ADVERTISED_Autoneg;
3210 advertising |=
3211 (ADVERTISED_10baseT_Half |
3212 ADVERTISED_10baseT_Full |
3213 ADVERTISED_100baseT_Half |
3214 ADVERTISED_100baseT_Full |
3215 ADVERTISED_1000baseT_Full);
3216 } else
3217 advertising |= (ADVERTISED_1000baseT_Full);
3218 }
3219 cmd->base.port = PORT_TP;
3220 cmd->base.phy_address = 0;
3221
3222 if (netif_carrier_ok(adapter->netdev)) {
3223 u16 link_speed, link_duplex;
3224 atl1_get_speed_and_duplex(hw, &link_speed, &link_duplex);
3225 cmd->base.speed = link_speed;
3226 if (link_duplex == FULL_DUPLEX)
3227 cmd->base.duplex = DUPLEX_FULL;
3228 else
3229 cmd->base.duplex = DUPLEX_HALF;
3230 } else {
3231 cmd->base.speed = SPEED_UNKNOWN;
3232 cmd->base.duplex = DUPLEX_UNKNOWN;
3233 }
3234 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3235 hw->media_type == MEDIA_TYPE_1000M_FULL)
3236 cmd->base.autoneg = AUTONEG_ENABLE;
3237 else
3238 cmd->base.autoneg = AUTONEG_DISABLE;
3239
3240 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
3241 supported);
3242 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
3243 advertising);
3244
3245 return 0;
3246 }
3247
atl1_set_link_ksettings(struct net_device * netdev,const struct ethtool_link_ksettings * cmd)3248 static int atl1_set_link_ksettings(struct net_device *netdev,
3249 const struct ethtool_link_ksettings *cmd)
3250 {
3251 struct atl1_adapter *adapter = netdev_priv(netdev);
3252 struct atl1_hw *hw = &adapter->hw;
3253 u16 phy_data;
3254 int ret_val = 0;
3255 u16 old_media_type = hw->media_type;
3256
3257 if (netif_running(adapter->netdev)) {
3258 if (netif_msg_link(adapter))
3259 dev_dbg(&adapter->pdev->dev,
3260 "ethtool shutting down adapter\n");
3261 atl1_down(adapter);
3262 }
3263
3264 if (cmd->base.autoneg == AUTONEG_ENABLE)
3265 hw->media_type = MEDIA_TYPE_AUTO_SENSOR;
3266 else {
3267 u32 speed = cmd->base.speed;
3268 if (speed == SPEED_1000) {
3269 if (cmd->base.duplex != DUPLEX_FULL) {
3270 if (netif_msg_link(adapter))
3271 dev_warn(&adapter->pdev->dev,
3272 "1000M half is invalid\n");
3273 ret_val = -EINVAL;
3274 goto exit_sset;
3275 }
3276 hw->media_type = MEDIA_TYPE_1000M_FULL;
3277 } else if (speed == SPEED_100) {
3278 if (cmd->base.duplex == DUPLEX_FULL)
3279 hw->media_type = MEDIA_TYPE_100M_FULL;
3280 else
3281 hw->media_type = MEDIA_TYPE_100M_HALF;
3282 } else {
3283 if (cmd->base.duplex == DUPLEX_FULL)
3284 hw->media_type = MEDIA_TYPE_10M_FULL;
3285 else
3286 hw->media_type = MEDIA_TYPE_10M_HALF;
3287 }
3288 }
3289
3290 if (atl1_phy_setup_autoneg_adv(hw)) {
3291 ret_val = -EINVAL;
3292 if (netif_msg_link(adapter))
3293 dev_warn(&adapter->pdev->dev,
3294 "invalid ethtool speed/duplex setting\n");
3295 goto exit_sset;
3296 }
3297 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3298 hw->media_type == MEDIA_TYPE_1000M_FULL)
3299 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3300 else {
3301 switch (hw->media_type) {
3302 case MEDIA_TYPE_100M_FULL:
3303 phy_data =
3304 MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
3305 MII_CR_RESET;
3306 break;
3307 case MEDIA_TYPE_100M_HALF:
3308 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3309 break;
3310 case MEDIA_TYPE_10M_FULL:
3311 phy_data =
3312 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
3313 break;
3314 default:
3315 /* MEDIA_TYPE_10M_HALF: */
3316 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3317 break;
3318 }
3319 }
3320 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3321 exit_sset:
3322 if (ret_val)
3323 hw->media_type = old_media_type;
3324
3325 if (netif_running(adapter->netdev)) {
3326 if (netif_msg_link(adapter))
3327 dev_dbg(&adapter->pdev->dev,
3328 "ethtool starting adapter\n");
3329 atl1_up(adapter);
3330 } else if (!ret_val) {
3331 if (netif_msg_link(adapter))
3332 dev_dbg(&adapter->pdev->dev,
3333 "ethtool resetting adapter\n");
3334 atl1_reset(adapter);
3335 }
3336 return ret_val;
3337 }
3338
atl1_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * drvinfo)3339 static void atl1_get_drvinfo(struct net_device *netdev,
3340 struct ethtool_drvinfo *drvinfo)
3341 {
3342 struct atl1_adapter *adapter = netdev_priv(netdev);
3343
3344 strlcpy(drvinfo->driver, ATLX_DRIVER_NAME, sizeof(drvinfo->driver));
3345 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
3346 sizeof(drvinfo->bus_info));
3347 }
3348
atl1_get_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)3349 static void atl1_get_wol(struct net_device *netdev,
3350 struct ethtool_wolinfo *wol)
3351 {
3352 struct atl1_adapter *adapter = netdev_priv(netdev);
3353
3354 wol->supported = WAKE_MAGIC;
3355 wol->wolopts = 0;
3356 if (adapter->wol & ATLX_WUFC_MAG)
3357 wol->wolopts |= WAKE_MAGIC;
3358 }
3359
atl1_set_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)3360 static int atl1_set_wol(struct net_device *netdev,
3361 struct ethtool_wolinfo *wol)
3362 {
3363 struct atl1_adapter *adapter = netdev_priv(netdev);
3364
3365 if (wol->wolopts & (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
3366 WAKE_ARP | WAKE_MAGICSECURE))
3367 return -EOPNOTSUPP;
3368 adapter->wol = 0;
3369 if (wol->wolopts & WAKE_MAGIC)
3370 adapter->wol |= ATLX_WUFC_MAG;
3371
3372 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
3373
3374 return 0;
3375 }
3376
atl1_get_msglevel(struct net_device * netdev)3377 static u32 atl1_get_msglevel(struct net_device *netdev)
3378 {
3379 struct atl1_adapter *adapter = netdev_priv(netdev);
3380 return adapter->msg_enable;
3381 }
3382
atl1_set_msglevel(struct net_device * netdev,u32 value)3383 static void atl1_set_msglevel(struct net_device *netdev, u32 value)
3384 {
3385 struct atl1_adapter *adapter = netdev_priv(netdev);
3386 adapter->msg_enable = value;
3387 }
3388
atl1_get_regs_len(struct net_device * netdev)3389 static int atl1_get_regs_len(struct net_device *netdev)
3390 {
3391 return ATL1_REG_COUNT * sizeof(u32);
3392 }
3393
atl1_get_regs(struct net_device * netdev,struct ethtool_regs * regs,void * p)3394 static void atl1_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
3395 void *p)
3396 {
3397 struct atl1_adapter *adapter = netdev_priv(netdev);
3398 struct atl1_hw *hw = &adapter->hw;
3399 unsigned int i;
3400 u32 *regbuf = p;
3401
3402 for (i = 0; i < ATL1_REG_COUNT; i++) {
3403 /*
3404 * This switch statement avoids reserved regions
3405 * of register space.
3406 */
3407 switch (i) {
3408 case 6 ... 9:
3409 case 14:
3410 case 29 ... 31:
3411 case 34 ... 63:
3412 case 75 ... 127:
3413 case 136 ... 1023:
3414 case 1027 ... 1087:
3415 case 1091 ... 1151:
3416 case 1194 ... 1195:
3417 case 1200 ... 1201:
3418 case 1206 ... 1213:
3419 case 1216 ... 1279:
3420 case 1290 ... 1311:
3421 case 1323 ... 1343:
3422 case 1358 ... 1359:
3423 case 1368 ... 1375:
3424 case 1378 ... 1383:
3425 case 1388 ... 1391:
3426 case 1393 ... 1395:
3427 case 1402 ... 1403:
3428 case 1410 ... 1471:
3429 case 1522 ... 1535:
3430 /* reserved region; don't read it */
3431 regbuf[i] = 0;
3432 break;
3433 default:
3434 /* unreserved region */
3435 regbuf[i] = ioread32(hw->hw_addr + (i * sizeof(u32)));
3436 }
3437 }
3438 }
3439
atl1_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring)3440 static void atl1_get_ringparam(struct net_device *netdev,
3441 struct ethtool_ringparam *ring)
3442 {
3443 struct atl1_adapter *adapter = netdev_priv(netdev);
3444 struct atl1_tpd_ring *txdr = &adapter->tpd_ring;
3445 struct atl1_rfd_ring *rxdr = &adapter->rfd_ring;
3446
3447 ring->rx_max_pending = ATL1_MAX_RFD;
3448 ring->tx_max_pending = ATL1_MAX_TPD;
3449 ring->rx_pending = rxdr->count;
3450 ring->tx_pending = txdr->count;
3451 }
3452
atl1_set_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring)3453 static int atl1_set_ringparam(struct net_device *netdev,
3454 struct ethtool_ringparam *ring)
3455 {
3456 struct atl1_adapter *adapter = netdev_priv(netdev);
3457 struct atl1_tpd_ring *tpdr = &adapter->tpd_ring;
3458 struct atl1_rrd_ring *rrdr = &adapter->rrd_ring;
3459 struct atl1_rfd_ring *rfdr = &adapter->rfd_ring;
3460
3461 struct atl1_tpd_ring tpd_old, tpd_new;
3462 struct atl1_rfd_ring rfd_old, rfd_new;
3463 struct atl1_rrd_ring rrd_old, rrd_new;
3464 struct atl1_ring_header rhdr_old, rhdr_new;
3465 struct atl1_smb smb;
3466 struct atl1_cmb cmb;
3467 int err;
3468
3469 tpd_old = adapter->tpd_ring;
3470 rfd_old = adapter->rfd_ring;
3471 rrd_old = adapter->rrd_ring;
3472 rhdr_old = adapter->ring_header;
3473
3474 if (netif_running(adapter->netdev))
3475 atl1_down(adapter);
3476
3477 rfdr->count = (u16) max(ring->rx_pending, (u32) ATL1_MIN_RFD);
3478 rfdr->count = rfdr->count > ATL1_MAX_RFD ? ATL1_MAX_RFD :
3479 rfdr->count;
3480 rfdr->count = (rfdr->count + 3) & ~3;
3481 rrdr->count = rfdr->count;
3482
3483 tpdr->count = (u16) max(ring->tx_pending, (u32) ATL1_MIN_TPD);
3484 tpdr->count = tpdr->count > ATL1_MAX_TPD ? ATL1_MAX_TPD :
3485 tpdr->count;
3486 tpdr->count = (tpdr->count + 3) & ~3;
3487
3488 if (netif_running(adapter->netdev)) {
3489 /* try to get new resources before deleting old */
3490 err = atl1_setup_ring_resources(adapter);
3491 if (err)
3492 goto err_setup_ring;
3493
3494 /*
3495 * save the new, restore the old in order to free it,
3496 * then restore the new back again
3497 */
3498
3499 rfd_new = adapter->rfd_ring;
3500 rrd_new = adapter->rrd_ring;
3501 tpd_new = adapter->tpd_ring;
3502 rhdr_new = adapter->ring_header;
3503 adapter->rfd_ring = rfd_old;
3504 adapter->rrd_ring = rrd_old;
3505 adapter->tpd_ring = tpd_old;
3506 adapter->ring_header = rhdr_old;
3507 /*
3508 * Save SMB and CMB, since atl1_free_ring_resources
3509 * will clear them.
3510 */
3511 smb = adapter->smb;
3512 cmb = adapter->cmb;
3513 atl1_free_ring_resources(adapter);
3514 adapter->rfd_ring = rfd_new;
3515 adapter->rrd_ring = rrd_new;
3516 adapter->tpd_ring = tpd_new;
3517 adapter->ring_header = rhdr_new;
3518 adapter->smb = smb;
3519 adapter->cmb = cmb;
3520
3521 err = atl1_up(adapter);
3522 if (err)
3523 return err;
3524 }
3525 return 0;
3526
3527 err_setup_ring:
3528 adapter->rfd_ring = rfd_old;
3529 adapter->rrd_ring = rrd_old;
3530 adapter->tpd_ring = tpd_old;
3531 adapter->ring_header = rhdr_old;
3532 atl1_up(adapter);
3533 return err;
3534 }
3535
atl1_get_pauseparam(struct net_device * netdev,struct ethtool_pauseparam * epause)3536 static void atl1_get_pauseparam(struct net_device *netdev,
3537 struct ethtool_pauseparam *epause)
3538 {
3539 struct atl1_adapter *adapter = netdev_priv(netdev);
3540 struct atl1_hw *hw = &adapter->hw;
3541
3542 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3543 hw->media_type == MEDIA_TYPE_1000M_FULL) {
3544 epause->autoneg = AUTONEG_ENABLE;
3545 } else {
3546 epause->autoneg = AUTONEG_DISABLE;
3547 }
3548 epause->rx_pause = 1;
3549 epause->tx_pause = 1;
3550 }
3551
atl1_set_pauseparam(struct net_device * netdev,struct ethtool_pauseparam * epause)3552 static int atl1_set_pauseparam(struct net_device *netdev,
3553 struct ethtool_pauseparam *epause)
3554 {
3555 struct atl1_adapter *adapter = netdev_priv(netdev);
3556 struct atl1_hw *hw = &adapter->hw;
3557
3558 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3559 hw->media_type == MEDIA_TYPE_1000M_FULL) {
3560 epause->autoneg = AUTONEG_ENABLE;
3561 } else {
3562 epause->autoneg = AUTONEG_DISABLE;
3563 }
3564
3565 epause->rx_pause = 1;
3566 epause->tx_pause = 1;
3567
3568 return 0;
3569 }
3570
atl1_get_strings(struct net_device * netdev,u32 stringset,u8 * data)3571 static void atl1_get_strings(struct net_device *netdev, u32 stringset,
3572 u8 *data)
3573 {
3574 u8 *p = data;
3575 int i;
3576
3577 switch (stringset) {
3578 case ETH_SS_STATS:
3579 for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3580 memcpy(p, atl1_gstrings_stats[i].stat_string,
3581 ETH_GSTRING_LEN);
3582 p += ETH_GSTRING_LEN;
3583 }
3584 break;
3585 }
3586 }
3587
atl1_nway_reset(struct net_device * netdev)3588 static int atl1_nway_reset(struct net_device *netdev)
3589 {
3590 struct atl1_adapter *adapter = netdev_priv(netdev);
3591 struct atl1_hw *hw = &adapter->hw;
3592
3593 if (netif_running(netdev)) {
3594 u16 phy_data;
3595 atl1_down(adapter);
3596
3597 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3598 hw->media_type == MEDIA_TYPE_1000M_FULL) {
3599 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3600 } else {
3601 switch (hw->media_type) {
3602 case MEDIA_TYPE_100M_FULL:
3603 phy_data = MII_CR_FULL_DUPLEX |
3604 MII_CR_SPEED_100 | MII_CR_RESET;
3605 break;
3606 case MEDIA_TYPE_100M_HALF:
3607 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3608 break;
3609 case MEDIA_TYPE_10M_FULL:
3610 phy_data = MII_CR_FULL_DUPLEX |
3611 MII_CR_SPEED_10 | MII_CR_RESET;
3612 break;
3613 default:
3614 /* MEDIA_TYPE_10M_HALF */
3615 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3616 }
3617 }
3618 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3619 atl1_up(adapter);
3620 }
3621 return 0;
3622 }
3623
3624 static const struct ethtool_ops atl1_ethtool_ops = {
3625 .get_drvinfo = atl1_get_drvinfo,
3626 .get_wol = atl1_get_wol,
3627 .set_wol = atl1_set_wol,
3628 .get_msglevel = atl1_get_msglevel,
3629 .set_msglevel = atl1_set_msglevel,
3630 .get_regs_len = atl1_get_regs_len,
3631 .get_regs = atl1_get_regs,
3632 .get_ringparam = atl1_get_ringparam,
3633 .set_ringparam = atl1_set_ringparam,
3634 .get_pauseparam = atl1_get_pauseparam,
3635 .set_pauseparam = atl1_set_pauseparam,
3636 .get_link = ethtool_op_get_link,
3637 .get_strings = atl1_get_strings,
3638 .nway_reset = atl1_nway_reset,
3639 .get_ethtool_stats = atl1_get_ethtool_stats,
3640 .get_sset_count = atl1_get_sset_count,
3641 .get_link_ksettings = atl1_get_link_ksettings,
3642 .set_link_ksettings = atl1_set_link_ksettings,
3643 };
3644
3645 module_pci_driver(atl1_driver);
3646