1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
4 *
5 * Copyright (c) 2009-2010 Micrel, Inc.
6 * Tristram Ha <Tristram.Ha@micrel.com>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/ioport.h>
16 #include <linux/pci.h>
17 #include <linux/proc_fs.h>
18 #include <linux/mii.h>
19 #include <linux/platform_device.h>
20 #include <linux/ethtool.h>
21 #include <linux/etherdevice.h>
22 #include <linux/in.h>
23 #include <linux/ip.h>
24 #include <linux/if_vlan.h>
25 #include <linux/crc32.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28
29
30 /* DMA Registers */
31
32 #define KS_DMA_TX_CTRL 0x0000
33 #define DMA_TX_ENABLE 0x00000001
34 #define DMA_TX_CRC_ENABLE 0x00000002
35 #define DMA_TX_PAD_ENABLE 0x00000004
36 #define DMA_TX_LOOPBACK 0x00000100
37 #define DMA_TX_FLOW_ENABLE 0x00000200
38 #define DMA_TX_CSUM_IP 0x00010000
39 #define DMA_TX_CSUM_TCP 0x00020000
40 #define DMA_TX_CSUM_UDP 0x00040000
41 #define DMA_TX_BURST_SIZE 0x3F000000
42
43 #define KS_DMA_RX_CTRL 0x0004
44 #define DMA_RX_ENABLE 0x00000001
45 #define KS884X_DMA_RX_MULTICAST 0x00000002
46 #define DMA_RX_PROMISCUOUS 0x00000004
47 #define DMA_RX_ERROR 0x00000008
48 #define DMA_RX_UNICAST 0x00000010
49 #define DMA_RX_ALL_MULTICAST 0x00000020
50 #define DMA_RX_BROADCAST 0x00000040
51 #define DMA_RX_FLOW_ENABLE 0x00000200
52 #define DMA_RX_CSUM_IP 0x00010000
53 #define DMA_RX_CSUM_TCP 0x00020000
54 #define DMA_RX_CSUM_UDP 0x00040000
55 #define DMA_RX_BURST_SIZE 0x3F000000
56
57 #define DMA_BURST_SHIFT 24
58 #define DMA_BURST_DEFAULT 8
59
60 #define KS_DMA_TX_START 0x0008
61 #define KS_DMA_RX_START 0x000C
62 #define DMA_START 0x00000001
63
64 #define KS_DMA_TX_ADDR 0x0010
65 #define KS_DMA_RX_ADDR 0x0014
66
67 #define DMA_ADDR_LIST_MASK 0xFFFFFFFC
68 #define DMA_ADDR_LIST_SHIFT 2
69
70 /* MTR0 */
71 #define KS884X_MULTICAST_0_OFFSET 0x0020
72 #define KS884X_MULTICAST_1_OFFSET 0x0021
73 #define KS884X_MULTICAST_2_OFFSET 0x0022
74 #define KS884x_MULTICAST_3_OFFSET 0x0023
75 /* MTR1 */
76 #define KS884X_MULTICAST_4_OFFSET 0x0024
77 #define KS884X_MULTICAST_5_OFFSET 0x0025
78 #define KS884X_MULTICAST_6_OFFSET 0x0026
79 #define KS884X_MULTICAST_7_OFFSET 0x0027
80
81 /* Interrupt Registers */
82
83 /* INTEN */
84 #define KS884X_INTERRUPTS_ENABLE 0x0028
85 /* INTST */
86 #define KS884X_INTERRUPTS_STATUS 0x002C
87
88 #define KS884X_INT_RX_STOPPED 0x02000000
89 #define KS884X_INT_TX_STOPPED 0x04000000
90 #define KS884X_INT_RX_OVERRUN 0x08000000
91 #define KS884X_INT_TX_EMPTY 0x10000000
92 #define KS884X_INT_RX 0x20000000
93 #define KS884X_INT_TX 0x40000000
94 #define KS884X_INT_PHY 0x80000000
95
96 #define KS884X_INT_RX_MASK \
97 (KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
98 #define KS884X_INT_TX_MASK \
99 (KS884X_INT_TX | KS884X_INT_TX_EMPTY)
100 #define KS884X_INT_MASK (KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
101
102 /* MAC Additional Station Address */
103
104 /* MAAL0 */
105 #define KS_ADD_ADDR_0_LO 0x0080
106 /* MAAH0 */
107 #define KS_ADD_ADDR_0_HI 0x0084
108 /* MAAL1 */
109 #define KS_ADD_ADDR_1_LO 0x0088
110 /* MAAH1 */
111 #define KS_ADD_ADDR_1_HI 0x008C
112 /* MAAL2 */
113 #define KS_ADD_ADDR_2_LO 0x0090
114 /* MAAH2 */
115 #define KS_ADD_ADDR_2_HI 0x0094
116 /* MAAL3 */
117 #define KS_ADD_ADDR_3_LO 0x0098
118 /* MAAH3 */
119 #define KS_ADD_ADDR_3_HI 0x009C
120 /* MAAL4 */
121 #define KS_ADD_ADDR_4_LO 0x00A0
122 /* MAAH4 */
123 #define KS_ADD_ADDR_4_HI 0x00A4
124 /* MAAL5 */
125 #define KS_ADD_ADDR_5_LO 0x00A8
126 /* MAAH5 */
127 #define KS_ADD_ADDR_5_HI 0x00AC
128 /* MAAL6 */
129 #define KS_ADD_ADDR_6_LO 0x00B0
130 /* MAAH6 */
131 #define KS_ADD_ADDR_6_HI 0x00B4
132 /* MAAL7 */
133 #define KS_ADD_ADDR_7_LO 0x00B8
134 /* MAAH7 */
135 #define KS_ADD_ADDR_7_HI 0x00BC
136 /* MAAL8 */
137 #define KS_ADD_ADDR_8_LO 0x00C0
138 /* MAAH8 */
139 #define KS_ADD_ADDR_8_HI 0x00C4
140 /* MAAL9 */
141 #define KS_ADD_ADDR_9_LO 0x00C8
142 /* MAAH9 */
143 #define KS_ADD_ADDR_9_HI 0x00CC
144 /* MAAL10 */
145 #define KS_ADD_ADDR_A_LO 0x00D0
146 /* MAAH10 */
147 #define KS_ADD_ADDR_A_HI 0x00D4
148 /* MAAL11 */
149 #define KS_ADD_ADDR_B_LO 0x00D8
150 /* MAAH11 */
151 #define KS_ADD_ADDR_B_HI 0x00DC
152 /* MAAL12 */
153 #define KS_ADD_ADDR_C_LO 0x00E0
154 /* MAAH12 */
155 #define KS_ADD_ADDR_C_HI 0x00E4
156 /* MAAL13 */
157 #define KS_ADD_ADDR_D_LO 0x00E8
158 /* MAAH13 */
159 #define KS_ADD_ADDR_D_HI 0x00EC
160 /* MAAL14 */
161 #define KS_ADD_ADDR_E_LO 0x00F0
162 /* MAAH14 */
163 #define KS_ADD_ADDR_E_HI 0x00F4
164 /* MAAL15 */
165 #define KS_ADD_ADDR_F_LO 0x00F8
166 /* MAAH15 */
167 #define KS_ADD_ADDR_F_HI 0x00FC
168
169 #define ADD_ADDR_HI_MASK 0x0000FFFF
170 #define ADD_ADDR_ENABLE 0x80000000
171 #define ADD_ADDR_INCR 8
172
173 /* Miscellaneous Registers */
174
175 /* MARL */
176 #define KS884X_ADDR_0_OFFSET 0x0200
177 #define KS884X_ADDR_1_OFFSET 0x0201
178 /* MARM */
179 #define KS884X_ADDR_2_OFFSET 0x0202
180 #define KS884X_ADDR_3_OFFSET 0x0203
181 /* MARH */
182 #define KS884X_ADDR_4_OFFSET 0x0204
183 #define KS884X_ADDR_5_OFFSET 0x0205
184
185 /* OBCR */
186 #define KS884X_BUS_CTRL_OFFSET 0x0210
187
188 #define BUS_SPEED_125_MHZ 0x0000
189 #define BUS_SPEED_62_5_MHZ 0x0001
190 #define BUS_SPEED_41_66_MHZ 0x0002
191 #define BUS_SPEED_25_MHZ 0x0003
192
193 /* EEPCR */
194 #define KS884X_EEPROM_CTRL_OFFSET 0x0212
195
196 #define EEPROM_CHIP_SELECT 0x0001
197 #define EEPROM_SERIAL_CLOCK 0x0002
198 #define EEPROM_DATA_OUT 0x0004
199 #define EEPROM_DATA_IN 0x0008
200 #define EEPROM_ACCESS_ENABLE 0x0010
201
202 /* MBIR */
203 #define KS884X_MEM_INFO_OFFSET 0x0214
204
205 #define RX_MEM_TEST_FAILED 0x0008
206 #define RX_MEM_TEST_FINISHED 0x0010
207 #define TX_MEM_TEST_FAILED 0x0800
208 #define TX_MEM_TEST_FINISHED 0x1000
209
210 /* GCR */
211 #define KS884X_GLOBAL_CTRL_OFFSET 0x0216
212 #define GLOBAL_SOFTWARE_RESET 0x0001
213
214 #define KS8841_POWER_MANAGE_OFFSET 0x0218
215
216 /* WFCR */
217 #define KS8841_WOL_CTRL_OFFSET 0x021A
218 #define KS8841_WOL_MAGIC_ENABLE 0x0080
219 #define KS8841_WOL_FRAME3_ENABLE 0x0008
220 #define KS8841_WOL_FRAME2_ENABLE 0x0004
221 #define KS8841_WOL_FRAME1_ENABLE 0x0002
222 #define KS8841_WOL_FRAME0_ENABLE 0x0001
223
224 /* WF0 */
225 #define KS8841_WOL_FRAME_CRC_OFFSET 0x0220
226 #define KS8841_WOL_FRAME_BYTE0_OFFSET 0x0224
227 #define KS8841_WOL_FRAME_BYTE2_OFFSET 0x0228
228
229 /* IACR */
230 #define KS884X_IACR_P 0x04A0
231 #define KS884X_IACR_OFFSET KS884X_IACR_P
232
233 /* IADR1 */
234 #define KS884X_IADR1_P 0x04A2
235 #define KS884X_IADR2_P 0x04A4
236 #define KS884X_IADR3_P 0x04A6
237 #define KS884X_IADR4_P 0x04A8
238 #define KS884X_IADR5_P 0x04AA
239
240 #define KS884X_ACC_CTRL_SEL_OFFSET KS884X_IACR_P
241 #define KS884X_ACC_CTRL_INDEX_OFFSET (KS884X_ACC_CTRL_SEL_OFFSET + 1)
242
243 #define KS884X_ACC_DATA_0_OFFSET KS884X_IADR4_P
244 #define KS884X_ACC_DATA_1_OFFSET (KS884X_ACC_DATA_0_OFFSET + 1)
245 #define KS884X_ACC_DATA_2_OFFSET KS884X_IADR5_P
246 #define KS884X_ACC_DATA_3_OFFSET (KS884X_ACC_DATA_2_OFFSET + 1)
247 #define KS884X_ACC_DATA_4_OFFSET KS884X_IADR2_P
248 #define KS884X_ACC_DATA_5_OFFSET (KS884X_ACC_DATA_4_OFFSET + 1)
249 #define KS884X_ACC_DATA_6_OFFSET KS884X_IADR3_P
250 #define KS884X_ACC_DATA_7_OFFSET (KS884X_ACC_DATA_6_OFFSET + 1)
251 #define KS884X_ACC_DATA_8_OFFSET KS884X_IADR1_P
252
253 /* P1MBCR */
254 #define KS884X_P1MBCR_P 0x04D0
255 #define KS884X_P1MBSR_P 0x04D2
256 #define KS884X_PHY1ILR_P 0x04D4
257 #define KS884X_PHY1IHR_P 0x04D6
258 #define KS884X_P1ANAR_P 0x04D8
259 #define KS884X_P1ANLPR_P 0x04DA
260
261 /* P2MBCR */
262 #define KS884X_P2MBCR_P 0x04E0
263 #define KS884X_P2MBSR_P 0x04E2
264 #define KS884X_PHY2ILR_P 0x04E4
265 #define KS884X_PHY2IHR_P 0x04E6
266 #define KS884X_P2ANAR_P 0x04E8
267 #define KS884X_P2ANLPR_P 0x04EA
268
269 #define KS884X_PHY_1_CTRL_OFFSET KS884X_P1MBCR_P
270 #define PHY_CTRL_INTERVAL (KS884X_P2MBCR_P - KS884X_P1MBCR_P)
271
272 #define KS884X_PHY_CTRL_OFFSET 0x00
273
274 /* Mode Control Register */
275 #define PHY_REG_CTRL 0
276
277 #define PHY_RESET 0x8000
278 #define PHY_LOOPBACK 0x4000
279 #define PHY_SPEED_100MBIT 0x2000
280 #define PHY_AUTO_NEG_ENABLE 0x1000
281 #define PHY_POWER_DOWN 0x0800
282 #define PHY_MII_DISABLE 0x0400
283 #define PHY_AUTO_NEG_RESTART 0x0200
284 #define PHY_FULL_DUPLEX 0x0100
285 #define PHY_COLLISION_TEST 0x0080
286 #define PHY_HP_MDIX 0x0020
287 #define PHY_FORCE_MDIX 0x0010
288 #define PHY_AUTO_MDIX_DISABLE 0x0008
289 #define PHY_REMOTE_FAULT_DISABLE 0x0004
290 #define PHY_TRANSMIT_DISABLE 0x0002
291 #define PHY_LED_DISABLE 0x0001
292
293 #define KS884X_PHY_STATUS_OFFSET 0x02
294
295 /* Mode Status Register */
296 #define PHY_REG_STATUS 1
297
298 #define PHY_100BT4_CAPABLE 0x8000
299 #define PHY_100BTX_FD_CAPABLE 0x4000
300 #define PHY_100BTX_CAPABLE 0x2000
301 #define PHY_10BT_FD_CAPABLE 0x1000
302 #define PHY_10BT_CAPABLE 0x0800
303 #define PHY_MII_SUPPRESS_CAPABLE 0x0040
304 #define PHY_AUTO_NEG_ACKNOWLEDGE 0x0020
305 #define PHY_REMOTE_FAULT 0x0010
306 #define PHY_AUTO_NEG_CAPABLE 0x0008
307 #define PHY_LINK_STATUS 0x0004
308 #define PHY_JABBER_DETECT 0x0002
309 #define PHY_EXTENDED_CAPABILITY 0x0001
310
311 #define KS884X_PHY_ID_1_OFFSET 0x04
312 #define KS884X_PHY_ID_2_OFFSET 0x06
313
314 /* PHY Identifier Registers */
315 #define PHY_REG_ID_1 2
316 #define PHY_REG_ID_2 3
317
318 #define KS884X_PHY_AUTO_NEG_OFFSET 0x08
319
320 /* Auto-Negotiation Advertisement Register */
321 #define PHY_REG_AUTO_NEGOTIATION 4
322
323 #define PHY_AUTO_NEG_NEXT_PAGE 0x8000
324 #define PHY_AUTO_NEG_REMOTE_FAULT 0x2000
325 /* Not supported. */
326 #define PHY_AUTO_NEG_ASYM_PAUSE 0x0800
327 #define PHY_AUTO_NEG_SYM_PAUSE 0x0400
328 #define PHY_AUTO_NEG_100BT4 0x0200
329 #define PHY_AUTO_NEG_100BTX_FD 0x0100
330 #define PHY_AUTO_NEG_100BTX 0x0080
331 #define PHY_AUTO_NEG_10BT_FD 0x0040
332 #define PHY_AUTO_NEG_10BT 0x0020
333 #define PHY_AUTO_NEG_SELECTOR 0x001F
334 #define PHY_AUTO_NEG_802_3 0x0001
335
336 #define PHY_AUTO_NEG_PAUSE (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE)
337
338 #define KS884X_PHY_REMOTE_CAP_OFFSET 0x0A
339
340 /* Auto-Negotiation Link Partner Ability Register */
341 #define PHY_REG_REMOTE_CAPABILITY 5
342
343 #define PHY_REMOTE_NEXT_PAGE 0x8000
344 #define PHY_REMOTE_ACKNOWLEDGE 0x4000
345 #define PHY_REMOTE_REMOTE_FAULT 0x2000
346 #define PHY_REMOTE_SYM_PAUSE 0x0400
347 #define PHY_REMOTE_100BTX_FD 0x0100
348 #define PHY_REMOTE_100BTX 0x0080
349 #define PHY_REMOTE_10BT_FD 0x0040
350 #define PHY_REMOTE_10BT 0x0020
351
352 /* P1VCT */
353 #define KS884X_P1VCT_P 0x04F0
354 #define KS884X_P1PHYCTRL_P 0x04F2
355
356 /* P2VCT */
357 #define KS884X_P2VCT_P 0x04F4
358 #define KS884X_P2PHYCTRL_P 0x04F6
359
360 #define KS884X_PHY_SPECIAL_OFFSET KS884X_P1VCT_P
361 #define PHY_SPECIAL_INTERVAL (KS884X_P2VCT_P - KS884X_P1VCT_P)
362
363 #define KS884X_PHY_LINK_MD_OFFSET 0x00
364
365 #define PHY_START_CABLE_DIAG 0x8000
366 #define PHY_CABLE_DIAG_RESULT 0x6000
367 #define PHY_CABLE_STAT_NORMAL 0x0000
368 #define PHY_CABLE_STAT_OPEN 0x2000
369 #define PHY_CABLE_STAT_SHORT 0x4000
370 #define PHY_CABLE_STAT_FAILED 0x6000
371 #define PHY_CABLE_10M_SHORT 0x1000
372 #define PHY_CABLE_FAULT_COUNTER 0x01FF
373
374 #define KS884X_PHY_PHY_CTRL_OFFSET 0x02
375
376 #define PHY_STAT_REVERSED_POLARITY 0x0020
377 #define PHY_STAT_MDIX 0x0010
378 #define PHY_FORCE_LINK 0x0008
379 #define PHY_POWER_SAVING_DISABLE 0x0004
380 #define PHY_REMOTE_LOOPBACK 0x0002
381
382 /* SIDER */
383 #define KS884X_SIDER_P 0x0400
384 #define KS884X_CHIP_ID_OFFSET KS884X_SIDER_P
385 #define KS884X_FAMILY_ID_OFFSET (KS884X_CHIP_ID_OFFSET + 1)
386
387 #define REG_FAMILY_ID 0x88
388
389 #define REG_CHIP_ID_41 0x8810
390 #define REG_CHIP_ID_42 0x8800
391
392 #define KS884X_CHIP_ID_MASK_41 0xFF10
393 #define KS884X_CHIP_ID_MASK 0xFFF0
394 #define KS884X_CHIP_ID_SHIFT 4
395 #define KS884X_REVISION_MASK 0x000E
396 #define KS884X_REVISION_SHIFT 1
397 #define KS8842_START 0x0001
398
399 #define CHIP_IP_41_M 0x8810
400 #define CHIP_IP_42_M 0x8800
401 #define CHIP_IP_61_M 0x8890
402 #define CHIP_IP_62_M 0x8880
403
404 #define CHIP_IP_41_P 0x8850
405 #define CHIP_IP_42_P 0x8840
406 #define CHIP_IP_61_P 0x88D0
407 #define CHIP_IP_62_P 0x88C0
408
409 /* SGCR1 */
410 #define KS8842_SGCR1_P 0x0402
411 #define KS8842_SWITCH_CTRL_1_OFFSET KS8842_SGCR1_P
412
413 #define SWITCH_PASS_ALL 0x8000
414 #define SWITCH_TX_FLOW_CTRL 0x2000
415 #define SWITCH_RX_FLOW_CTRL 0x1000
416 #define SWITCH_CHECK_LENGTH 0x0800
417 #define SWITCH_AGING_ENABLE 0x0400
418 #define SWITCH_FAST_AGING 0x0200
419 #define SWITCH_AGGR_BACKOFF 0x0100
420 #define SWITCH_PASS_PAUSE 0x0008
421 #define SWITCH_LINK_AUTO_AGING 0x0001
422
423 /* SGCR2 */
424 #define KS8842_SGCR2_P 0x0404
425 #define KS8842_SWITCH_CTRL_2_OFFSET KS8842_SGCR2_P
426
427 #define SWITCH_VLAN_ENABLE 0x8000
428 #define SWITCH_IGMP_SNOOP 0x4000
429 #define IPV6_MLD_SNOOP_ENABLE 0x2000
430 #define IPV6_MLD_SNOOP_OPTION 0x1000
431 #define PRIORITY_SCHEME_SELECT 0x0800
432 #define SWITCH_MIRROR_RX_TX 0x0100
433 #define UNICAST_VLAN_BOUNDARY 0x0080
434 #define MULTICAST_STORM_DISABLE 0x0040
435 #define SWITCH_BACK_PRESSURE 0x0020
436 #define FAIR_FLOW_CTRL 0x0010
437 #define NO_EXC_COLLISION_DROP 0x0008
438 #define SWITCH_HUGE_PACKET 0x0004
439 #define SWITCH_LEGAL_PACKET 0x0002
440 #define SWITCH_BUF_RESERVE 0x0001
441
442 /* SGCR3 */
443 #define KS8842_SGCR3_P 0x0406
444 #define KS8842_SWITCH_CTRL_3_OFFSET KS8842_SGCR3_P
445
446 #define BROADCAST_STORM_RATE_LO 0xFF00
447 #define SWITCH_REPEATER 0x0080
448 #define SWITCH_HALF_DUPLEX 0x0040
449 #define SWITCH_FLOW_CTRL 0x0020
450 #define SWITCH_10_MBIT 0x0010
451 #define SWITCH_REPLACE_NULL_VID 0x0008
452 #define BROADCAST_STORM_RATE_HI 0x0007
453
454 #define BROADCAST_STORM_RATE 0x07FF
455
456 /* SGCR4 */
457 #define KS8842_SGCR4_P 0x0408
458
459 /* SGCR5 */
460 #define KS8842_SGCR5_P 0x040A
461 #define KS8842_SWITCH_CTRL_5_OFFSET KS8842_SGCR5_P
462
463 #define LED_MODE 0x8200
464 #define LED_SPEED_DUPLEX_ACT 0x0000
465 #define LED_SPEED_DUPLEX_LINK_ACT 0x8000
466 #define LED_DUPLEX_10_100 0x0200
467
468 /* SGCR6 */
469 #define KS8842_SGCR6_P 0x0410
470 #define KS8842_SWITCH_CTRL_6_OFFSET KS8842_SGCR6_P
471
472 #define KS8842_PRIORITY_MASK 3
473 #define KS8842_PRIORITY_SHIFT 2
474
475 /* SGCR7 */
476 #define KS8842_SGCR7_P 0x0412
477 #define KS8842_SWITCH_CTRL_7_OFFSET KS8842_SGCR7_P
478
479 #define SWITCH_UNK_DEF_PORT_ENABLE 0x0008
480 #define SWITCH_UNK_DEF_PORT_3 0x0004
481 #define SWITCH_UNK_DEF_PORT_2 0x0002
482 #define SWITCH_UNK_DEF_PORT_1 0x0001
483
484 /* MACAR1 */
485 #define KS8842_MACAR1_P 0x0470
486 #define KS8842_MACAR2_P 0x0472
487 #define KS8842_MACAR3_P 0x0474
488 #define KS8842_MAC_ADDR_1_OFFSET KS8842_MACAR1_P
489 #define KS8842_MAC_ADDR_0_OFFSET (KS8842_MAC_ADDR_1_OFFSET + 1)
490 #define KS8842_MAC_ADDR_3_OFFSET KS8842_MACAR2_P
491 #define KS8842_MAC_ADDR_2_OFFSET (KS8842_MAC_ADDR_3_OFFSET + 1)
492 #define KS8842_MAC_ADDR_5_OFFSET KS8842_MACAR3_P
493 #define KS8842_MAC_ADDR_4_OFFSET (KS8842_MAC_ADDR_5_OFFSET + 1)
494
495 /* TOSR1 */
496 #define KS8842_TOSR1_P 0x0480
497 #define KS8842_TOSR2_P 0x0482
498 #define KS8842_TOSR3_P 0x0484
499 #define KS8842_TOSR4_P 0x0486
500 #define KS8842_TOSR5_P 0x0488
501 #define KS8842_TOSR6_P 0x048A
502 #define KS8842_TOSR7_P 0x0490
503 #define KS8842_TOSR8_P 0x0492
504 #define KS8842_TOS_1_OFFSET KS8842_TOSR1_P
505 #define KS8842_TOS_2_OFFSET KS8842_TOSR2_P
506 #define KS8842_TOS_3_OFFSET KS8842_TOSR3_P
507 #define KS8842_TOS_4_OFFSET KS8842_TOSR4_P
508 #define KS8842_TOS_5_OFFSET KS8842_TOSR5_P
509 #define KS8842_TOS_6_OFFSET KS8842_TOSR6_P
510
511 #define KS8842_TOS_7_OFFSET KS8842_TOSR7_P
512 #define KS8842_TOS_8_OFFSET KS8842_TOSR8_P
513
514 /* P1CR1 */
515 #define KS8842_P1CR1_P 0x0500
516 #define KS8842_P1CR2_P 0x0502
517 #define KS8842_P1VIDR_P 0x0504
518 #define KS8842_P1CR3_P 0x0506
519 #define KS8842_P1IRCR_P 0x0508
520 #define KS8842_P1ERCR_P 0x050A
521 #define KS884X_P1SCSLMD_P 0x0510
522 #define KS884X_P1CR4_P 0x0512
523 #define KS884X_P1SR_P 0x0514
524
525 /* P2CR1 */
526 #define KS8842_P2CR1_P 0x0520
527 #define KS8842_P2CR2_P 0x0522
528 #define KS8842_P2VIDR_P 0x0524
529 #define KS8842_P2CR3_P 0x0526
530 #define KS8842_P2IRCR_P 0x0528
531 #define KS8842_P2ERCR_P 0x052A
532 #define KS884X_P2SCSLMD_P 0x0530
533 #define KS884X_P2CR4_P 0x0532
534 #define KS884X_P2SR_P 0x0534
535
536 /* P3CR1 */
537 #define KS8842_P3CR1_P 0x0540
538 #define KS8842_P3CR2_P 0x0542
539 #define KS8842_P3VIDR_P 0x0544
540 #define KS8842_P3CR3_P 0x0546
541 #define KS8842_P3IRCR_P 0x0548
542 #define KS8842_P3ERCR_P 0x054A
543
544 #define KS8842_PORT_1_CTRL_1 KS8842_P1CR1_P
545 #define KS8842_PORT_2_CTRL_1 KS8842_P2CR1_P
546 #define KS8842_PORT_3_CTRL_1 KS8842_P3CR1_P
547
548 #define PORT_CTRL_ADDR(port, addr) \
549 (addr = KS8842_PORT_1_CTRL_1 + (port) * \
550 (KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
551
552 #define KS8842_PORT_CTRL_1_OFFSET 0x00
553
554 #define PORT_BROADCAST_STORM 0x0080
555 #define PORT_DIFFSERV_ENABLE 0x0040
556 #define PORT_802_1P_ENABLE 0x0020
557 #define PORT_BASED_PRIORITY_MASK 0x0018
558 #define PORT_BASED_PRIORITY_BASE 0x0003
559 #define PORT_BASED_PRIORITY_SHIFT 3
560 #define PORT_BASED_PRIORITY_0 0x0000
561 #define PORT_BASED_PRIORITY_1 0x0008
562 #define PORT_BASED_PRIORITY_2 0x0010
563 #define PORT_BASED_PRIORITY_3 0x0018
564 #define PORT_INSERT_TAG 0x0004
565 #define PORT_REMOVE_TAG 0x0002
566 #define PORT_PRIO_QUEUE_ENABLE 0x0001
567
568 #define KS8842_PORT_CTRL_2_OFFSET 0x02
569
570 #define PORT_INGRESS_VLAN_FILTER 0x4000
571 #define PORT_DISCARD_NON_VID 0x2000
572 #define PORT_FORCE_FLOW_CTRL 0x1000
573 #define PORT_BACK_PRESSURE 0x0800
574 #define PORT_TX_ENABLE 0x0400
575 #define PORT_RX_ENABLE 0x0200
576 #define PORT_LEARN_DISABLE 0x0100
577 #define PORT_MIRROR_SNIFFER 0x0080
578 #define PORT_MIRROR_RX 0x0040
579 #define PORT_MIRROR_TX 0x0020
580 #define PORT_USER_PRIORITY_CEILING 0x0008
581 #define PORT_VLAN_MEMBERSHIP 0x0007
582
583 #define KS8842_PORT_CTRL_VID_OFFSET 0x04
584
585 #define PORT_DEFAULT_VID 0x0001
586
587 #define KS8842_PORT_CTRL_3_OFFSET 0x06
588
589 #define PORT_INGRESS_LIMIT_MODE 0x000C
590 #define PORT_INGRESS_ALL 0x0000
591 #define PORT_INGRESS_UNICAST 0x0004
592 #define PORT_INGRESS_MULTICAST 0x0008
593 #define PORT_INGRESS_BROADCAST 0x000C
594 #define PORT_COUNT_IFG 0x0002
595 #define PORT_COUNT_PREAMBLE 0x0001
596
597 #define KS8842_PORT_IN_RATE_OFFSET 0x08
598 #define KS8842_PORT_OUT_RATE_OFFSET 0x0A
599
600 #define PORT_PRIORITY_RATE 0x0F
601 #define PORT_PRIORITY_RATE_SHIFT 4
602
603 #define KS884X_PORT_LINK_MD 0x10
604
605 #define PORT_CABLE_10M_SHORT 0x8000
606 #define PORT_CABLE_DIAG_RESULT 0x6000
607 #define PORT_CABLE_STAT_NORMAL 0x0000
608 #define PORT_CABLE_STAT_OPEN 0x2000
609 #define PORT_CABLE_STAT_SHORT 0x4000
610 #define PORT_CABLE_STAT_FAILED 0x6000
611 #define PORT_START_CABLE_DIAG 0x1000
612 #define PORT_FORCE_LINK 0x0800
613 #define PORT_POWER_SAVING_DISABLE 0x0400
614 #define PORT_PHY_REMOTE_LOOPBACK 0x0200
615 #define PORT_CABLE_FAULT_COUNTER 0x01FF
616
617 #define KS884X_PORT_CTRL_4_OFFSET 0x12
618
619 #define PORT_LED_OFF 0x8000
620 #define PORT_TX_DISABLE 0x4000
621 #define PORT_AUTO_NEG_RESTART 0x2000
622 #define PORT_REMOTE_FAULT_DISABLE 0x1000
623 #define PORT_POWER_DOWN 0x0800
624 #define PORT_AUTO_MDIX_DISABLE 0x0400
625 #define PORT_FORCE_MDIX 0x0200
626 #define PORT_LOOPBACK 0x0100
627 #define PORT_AUTO_NEG_ENABLE 0x0080
628 #define PORT_FORCE_100_MBIT 0x0040
629 #define PORT_FORCE_FULL_DUPLEX 0x0020
630 #define PORT_AUTO_NEG_SYM_PAUSE 0x0010
631 #define PORT_AUTO_NEG_100BTX_FD 0x0008
632 #define PORT_AUTO_NEG_100BTX 0x0004
633 #define PORT_AUTO_NEG_10BT_FD 0x0002
634 #define PORT_AUTO_NEG_10BT 0x0001
635
636 #define KS884X_PORT_STATUS_OFFSET 0x14
637
638 #define PORT_HP_MDIX 0x8000
639 #define PORT_REVERSED_POLARITY 0x2000
640 #define PORT_RX_FLOW_CTRL 0x0800
641 #define PORT_TX_FLOW_CTRL 0x1000
642 #define PORT_STATUS_SPEED_100MBIT 0x0400
643 #define PORT_STATUS_FULL_DUPLEX 0x0200
644 #define PORT_REMOTE_FAULT 0x0100
645 #define PORT_MDIX_STATUS 0x0080
646 #define PORT_AUTO_NEG_COMPLETE 0x0040
647 #define PORT_STATUS_LINK_GOOD 0x0020
648 #define PORT_REMOTE_SYM_PAUSE 0x0010
649 #define PORT_REMOTE_100BTX_FD 0x0008
650 #define PORT_REMOTE_100BTX 0x0004
651 #define PORT_REMOTE_10BT_FD 0x0002
652 #define PORT_REMOTE_10BT 0x0001
653
654 /*
655 #define STATIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF
656 #define STATIC_MAC_TABLE_FWD_PORTS 00-00070000-00000000
657 #define STATIC_MAC_TABLE_VALID 00-00080000-00000000
658 #define STATIC_MAC_TABLE_OVERRIDE 00-00100000-00000000
659 #define STATIC_MAC_TABLE_USE_FID 00-00200000-00000000
660 #define STATIC_MAC_TABLE_FID 00-03C00000-00000000
661 */
662
663 #define STATIC_MAC_TABLE_ADDR 0x0000FFFF
664 #define STATIC_MAC_TABLE_FWD_PORTS 0x00070000
665 #define STATIC_MAC_TABLE_VALID 0x00080000
666 #define STATIC_MAC_TABLE_OVERRIDE 0x00100000
667 #define STATIC_MAC_TABLE_USE_FID 0x00200000
668 #define STATIC_MAC_TABLE_FID 0x03C00000
669
670 #define STATIC_MAC_FWD_PORTS_SHIFT 16
671 #define STATIC_MAC_FID_SHIFT 22
672
673 /*
674 #define VLAN_TABLE_VID 00-00000000-00000FFF
675 #define VLAN_TABLE_FID 00-00000000-0000F000
676 #define VLAN_TABLE_MEMBERSHIP 00-00000000-00070000
677 #define VLAN_TABLE_VALID 00-00000000-00080000
678 */
679
680 #define VLAN_TABLE_VID 0x00000FFF
681 #define VLAN_TABLE_FID 0x0000F000
682 #define VLAN_TABLE_MEMBERSHIP 0x00070000
683 #define VLAN_TABLE_VALID 0x00080000
684
685 #define VLAN_TABLE_FID_SHIFT 12
686 #define VLAN_TABLE_MEMBERSHIP_SHIFT 16
687
688 /*
689 #define DYNAMIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF
690 #define DYNAMIC_MAC_TABLE_FID 00-000F0000-00000000
691 #define DYNAMIC_MAC_TABLE_SRC_PORT 00-00300000-00000000
692 #define DYNAMIC_MAC_TABLE_TIMESTAMP 00-00C00000-00000000
693 #define DYNAMIC_MAC_TABLE_ENTRIES 03-FF000000-00000000
694 #define DYNAMIC_MAC_TABLE_MAC_EMPTY 04-00000000-00000000
695 #define DYNAMIC_MAC_TABLE_RESERVED 78-00000000-00000000
696 #define DYNAMIC_MAC_TABLE_NOT_READY 80-00000000-00000000
697 */
698
699 #define DYNAMIC_MAC_TABLE_ADDR 0x0000FFFF
700 #define DYNAMIC_MAC_TABLE_FID 0x000F0000
701 #define DYNAMIC_MAC_TABLE_SRC_PORT 0x00300000
702 #define DYNAMIC_MAC_TABLE_TIMESTAMP 0x00C00000
703 #define DYNAMIC_MAC_TABLE_ENTRIES 0xFF000000
704
705 #define DYNAMIC_MAC_TABLE_ENTRIES_H 0x03
706 #define DYNAMIC_MAC_TABLE_MAC_EMPTY 0x04
707 #define DYNAMIC_MAC_TABLE_RESERVED 0x78
708 #define DYNAMIC_MAC_TABLE_NOT_READY 0x80
709
710 #define DYNAMIC_MAC_FID_SHIFT 16
711 #define DYNAMIC_MAC_SRC_PORT_SHIFT 20
712 #define DYNAMIC_MAC_TIMESTAMP_SHIFT 22
713 #define DYNAMIC_MAC_ENTRIES_SHIFT 24
714 #define DYNAMIC_MAC_ENTRIES_H_SHIFT 8
715
716 /*
717 #define MIB_COUNTER_VALUE 00-00000000-3FFFFFFF
718 #define MIB_COUNTER_VALID 00-00000000-40000000
719 #define MIB_COUNTER_OVERFLOW 00-00000000-80000000
720 */
721
722 #define MIB_COUNTER_VALUE 0x3FFFFFFF
723 #define MIB_COUNTER_VALID 0x40000000
724 #define MIB_COUNTER_OVERFLOW 0x80000000
725
726 #define MIB_PACKET_DROPPED 0x0000FFFF
727
728 #define KS_MIB_PACKET_DROPPED_TX_0 0x100
729 #define KS_MIB_PACKET_DROPPED_TX_1 0x101
730 #define KS_MIB_PACKET_DROPPED_TX 0x102
731 #define KS_MIB_PACKET_DROPPED_RX_0 0x103
732 #define KS_MIB_PACKET_DROPPED_RX_1 0x104
733 #define KS_MIB_PACKET_DROPPED_RX 0x105
734
735 /* Change default LED mode. */
736 #define SET_DEFAULT_LED LED_SPEED_DUPLEX_ACT
737
738 #define MAC_ADDR_ORDER(i) (ETH_ALEN - 1 - (i))
739
740 #define MAX_ETHERNET_BODY_SIZE 1500
741 #define ETHERNET_HEADER_SIZE (14 + VLAN_HLEN)
742
743 #define MAX_ETHERNET_PACKET_SIZE \
744 (MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
745
746 #define REGULAR_RX_BUF_SIZE (MAX_ETHERNET_PACKET_SIZE + 4)
747 #define MAX_RX_BUF_SIZE (1912 + 4)
748
749 #define ADDITIONAL_ENTRIES 16
750 #define MAX_MULTICAST_LIST 32
751
752 #define HW_MULTICAST_SIZE 8
753
754 #define HW_TO_DEV_PORT(port) (port - 1)
755
756 enum {
757 media_connected,
758 media_disconnected
759 };
760
761 enum {
762 OID_COUNTER_UNKOWN,
763
764 OID_COUNTER_FIRST,
765
766 /* total transmit errors */
767 OID_COUNTER_XMIT_ERROR,
768
769 /* total receive errors */
770 OID_COUNTER_RCV_ERROR,
771
772 OID_COUNTER_LAST
773 };
774
775 /*
776 * Hardware descriptor definitions
777 */
778
779 #define DESC_ALIGNMENT 16
780 #define BUFFER_ALIGNMENT 8
781
782 #define NUM_OF_RX_DESC 64
783 #define NUM_OF_TX_DESC 64
784
785 #define KS_DESC_RX_FRAME_LEN 0x000007FF
786 #define KS_DESC_RX_FRAME_TYPE 0x00008000
787 #define KS_DESC_RX_ERROR_CRC 0x00010000
788 #define KS_DESC_RX_ERROR_RUNT 0x00020000
789 #define KS_DESC_RX_ERROR_TOO_LONG 0x00040000
790 #define KS_DESC_RX_ERROR_PHY 0x00080000
791 #define KS884X_DESC_RX_PORT_MASK 0x00300000
792 #define KS_DESC_RX_MULTICAST 0x01000000
793 #define KS_DESC_RX_ERROR 0x02000000
794 #define KS_DESC_RX_ERROR_CSUM_UDP 0x04000000
795 #define KS_DESC_RX_ERROR_CSUM_TCP 0x08000000
796 #define KS_DESC_RX_ERROR_CSUM_IP 0x10000000
797 #define KS_DESC_RX_LAST 0x20000000
798 #define KS_DESC_RX_FIRST 0x40000000
799 #define KS_DESC_RX_ERROR_COND \
800 (KS_DESC_RX_ERROR_CRC | \
801 KS_DESC_RX_ERROR_RUNT | \
802 KS_DESC_RX_ERROR_PHY | \
803 KS_DESC_RX_ERROR_TOO_LONG)
804
805 #define KS_DESC_HW_OWNED 0x80000000
806
807 #define KS_DESC_BUF_SIZE 0x000007FF
808 #define KS884X_DESC_TX_PORT_MASK 0x00300000
809 #define KS_DESC_END_OF_RING 0x02000000
810 #define KS_DESC_TX_CSUM_GEN_UDP 0x04000000
811 #define KS_DESC_TX_CSUM_GEN_TCP 0x08000000
812 #define KS_DESC_TX_CSUM_GEN_IP 0x10000000
813 #define KS_DESC_TX_LAST 0x20000000
814 #define KS_DESC_TX_FIRST 0x40000000
815 #define KS_DESC_TX_INTERRUPT 0x80000000
816
817 #define KS_DESC_PORT_SHIFT 20
818
819 #define KS_DESC_RX_MASK (KS_DESC_BUF_SIZE)
820
821 #define KS_DESC_TX_MASK \
822 (KS_DESC_TX_INTERRUPT | \
823 KS_DESC_TX_FIRST | \
824 KS_DESC_TX_LAST | \
825 KS_DESC_TX_CSUM_GEN_IP | \
826 KS_DESC_TX_CSUM_GEN_TCP | \
827 KS_DESC_TX_CSUM_GEN_UDP | \
828 KS_DESC_BUF_SIZE)
829
830 struct ksz_desc_rx_stat {
831 #ifdef __BIG_ENDIAN_BITFIELD
832 u32 hw_owned:1;
833 u32 first_desc:1;
834 u32 last_desc:1;
835 u32 csum_err_ip:1;
836 u32 csum_err_tcp:1;
837 u32 csum_err_udp:1;
838 u32 error:1;
839 u32 multicast:1;
840 u32 src_port:4;
841 u32 err_phy:1;
842 u32 err_too_long:1;
843 u32 err_runt:1;
844 u32 err_crc:1;
845 u32 frame_type:1;
846 u32 reserved1:4;
847 u32 frame_len:11;
848 #else
849 u32 frame_len:11;
850 u32 reserved1:4;
851 u32 frame_type:1;
852 u32 err_crc:1;
853 u32 err_runt:1;
854 u32 err_too_long:1;
855 u32 err_phy:1;
856 u32 src_port:4;
857 u32 multicast:1;
858 u32 error:1;
859 u32 csum_err_udp:1;
860 u32 csum_err_tcp:1;
861 u32 csum_err_ip:1;
862 u32 last_desc:1;
863 u32 first_desc:1;
864 u32 hw_owned:1;
865 #endif
866 };
867
868 struct ksz_desc_tx_stat {
869 #ifdef __BIG_ENDIAN_BITFIELD
870 u32 hw_owned:1;
871 u32 reserved1:31;
872 #else
873 u32 reserved1:31;
874 u32 hw_owned:1;
875 #endif
876 };
877
878 struct ksz_desc_rx_buf {
879 #ifdef __BIG_ENDIAN_BITFIELD
880 u32 reserved4:6;
881 u32 end_of_ring:1;
882 u32 reserved3:14;
883 u32 buf_size:11;
884 #else
885 u32 buf_size:11;
886 u32 reserved3:14;
887 u32 end_of_ring:1;
888 u32 reserved4:6;
889 #endif
890 };
891
892 struct ksz_desc_tx_buf {
893 #ifdef __BIG_ENDIAN_BITFIELD
894 u32 intr:1;
895 u32 first_seg:1;
896 u32 last_seg:1;
897 u32 csum_gen_ip:1;
898 u32 csum_gen_tcp:1;
899 u32 csum_gen_udp:1;
900 u32 end_of_ring:1;
901 u32 reserved4:1;
902 u32 dest_port:4;
903 u32 reserved3:9;
904 u32 buf_size:11;
905 #else
906 u32 buf_size:11;
907 u32 reserved3:9;
908 u32 dest_port:4;
909 u32 reserved4:1;
910 u32 end_of_ring:1;
911 u32 csum_gen_udp:1;
912 u32 csum_gen_tcp:1;
913 u32 csum_gen_ip:1;
914 u32 last_seg:1;
915 u32 first_seg:1;
916 u32 intr:1;
917 #endif
918 };
919
920 union desc_stat {
921 struct ksz_desc_rx_stat rx;
922 struct ksz_desc_tx_stat tx;
923 u32 data;
924 };
925
926 union desc_buf {
927 struct ksz_desc_rx_buf rx;
928 struct ksz_desc_tx_buf tx;
929 u32 data;
930 };
931
932 /**
933 * struct ksz_hw_desc - Hardware descriptor data structure
934 * @ctrl: Descriptor control value.
935 * @buf: Descriptor buffer value.
936 * @addr: Physical address of memory buffer.
937 * @next: Pointer to next hardware descriptor.
938 */
939 struct ksz_hw_desc {
940 union desc_stat ctrl;
941 union desc_buf buf;
942 u32 addr;
943 u32 next;
944 };
945
946 /**
947 * struct ksz_sw_desc - Software descriptor data structure
948 * @ctrl: Descriptor control value.
949 * @buf: Descriptor buffer value.
950 * @buf_size: Current buffers size value in hardware descriptor.
951 */
952 struct ksz_sw_desc {
953 union desc_stat ctrl;
954 union desc_buf buf;
955 u32 buf_size;
956 };
957
958 /**
959 * struct ksz_dma_buf - OS dependent DMA buffer data structure
960 * @skb: Associated socket buffer.
961 * @dma: Associated physical DMA address.
962 * @len: Actual len used.
963 */
964 struct ksz_dma_buf {
965 struct sk_buff *skb;
966 dma_addr_t dma;
967 int len;
968 };
969
970 /**
971 * struct ksz_desc - Descriptor structure
972 * @phw: Hardware descriptor pointer to uncached physical memory.
973 * @sw: Cached memory to hold hardware descriptor values for
974 * manipulation.
975 * @dma_buf: Operating system dependent data structure to hold physical
976 * memory buffer allocation information.
977 */
978 struct ksz_desc {
979 struct ksz_hw_desc *phw;
980 struct ksz_sw_desc sw;
981 struct ksz_dma_buf dma_buf;
982 };
983
984 #define DMA_BUFFER(desc) ((struct ksz_dma_buf *)(&(desc)->dma_buf))
985
986 /**
987 * struct ksz_desc_info - Descriptor information data structure
988 * @ring: First descriptor in the ring.
989 * @cur: Current descriptor being manipulated.
990 * @ring_virt: First hardware descriptor in the ring.
991 * @ring_phys: The physical address of the first descriptor of the ring.
992 * @size: Size of hardware descriptor.
993 * @alloc: Number of descriptors allocated.
994 * @avail: Number of descriptors available for use.
995 * @last: Index for last descriptor released to hardware.
996 * @next: Index for next descriptor available for use.
997 * @mask: Mask for index wrapping.
998 */
999 struct ksz_desc_info {
1000 struct ksz_desc *ring;
1001 struct ksz_desc *cur;
1002 struct ksz_hw_desc *ring_virt;
1003 u32 ring_phys;
1004 int size;
1005 int alloc;
1006 int avail;
1007 int last;
1008 int next;
1009 int mask;
1010 };
1011
1012 /*
1013 * KSZ8842 switch definitions
1014 */
1015
1016 enum {
1017 TABLE_STATIC_MAC = 0,
1018 TABLE_VLAN,
1019 TABLE_DYNAMIC_MAC,
1020 TABLE_MIB
1021 };
1022
1023 #define LEARNED_MAC_TABLE_ENTRIES 1024
1024 #define STATIC_MAC_TABLE_ENTRIES 8
1025
1026 /**
1027 * struct ksz_mac_table - Static MAC table data structure
1028 * @mac_addr: MAC address to filter.
1029 * @vid: VID value.
1030 * @fid: FID value.
1031 * @ports: Port membership.
1032 * @override: Override setting.
1033 * @use_fid: FID use setting.
1034 * @valid: Valid setting indicating the entry is being used.
1035 */
1036 struct ksz_mac_table {
1037 u8 mac_addr[ETH_ALEN];
1038 u16 vid;
1039 u8 fid;
1040 u8 ports;
1041 u8 override:1;
1042 u8 use_fid:1;
1043 u8 valid:1;
1044 };
1045
1046 #define VLAN_TABLE_ENTRIES 16
1047
1048 /**
1049 * struct ksz_vlan_table - VLAN table data structure
1050 * @vid: VID value.
1051 * @fid: FID value.
1052 * @member: Port membership.
1053 */
1054 struct ksz_vlan_table {
1055 u16 vid;
1056 u8 fid;
1057 u8 member;
1058 };
1059
1060 #define DIFFSERV_ENTRIES 64
1061 #define PRIO_802_1P_ENTRIES 8
1062 #define PRIO_QUEUES 4
1063
1064 #define SWITCH_PORT_NUM 2
1065 #define TOTAL_PORT_NUM (SWITCH_PORT_NUM + 1)
1066 #define HOST_MASK (1 << SWITCH_PORT_NUM)
1067 #define PORT_MASK 7
1068
1069 #define MAIN_PORT 0
1070 #define OTHER_PORT 1
1071 #define HOST_PORT SWITCH_PORT_NUM
1072
1073 #define PORT_COUNTER_NUM 0x20
1074 #define TOTAL_PORT_COUNTER_NUM (PORT_COUNTER_NUM + 2)
1075
1076 #define MIB_COUNTER_RX_LO_PRIORITY 0x00
1077 #define MIB_COUNTER_RX_HI_PRIORITY 0x01
1078 #define MIB_COUNTER_RX_UNDERSIZE 0x02
1079 #define MIB_COUNTER_RX_FRAGMENT 0x03
1080 #define MIB_COUNTER_RX_OVERSIZE 0x04
1081 #define MIB_COUNTER_RX_JABBER 0x05
1082 #define MIB_COUNTER_RX_SYMBOL_ERR 0x06
1083 #define MIB_COUNTER_RX_CRC_ERR 0x07
1084 #define MIB_COUNTER_RX_ALIGNMENT_ERR 0x08
1085 #define MIB_COUNTER_RX_CTRL_8808 0x09
1086 #define MIB_COUNTER_RX_PAUSE 0x0A
1087 #define MIB_COUNTER_RX_BROADCAST 0x0B
1088 #define MIB_COUNTER_RX_MULTICAST 0x0C
1089 #define MIB_COUNTER_RX_UNICAST 0x0D
1090 #define MIB_COUNTER_RX_OCTET_64 0x0E
1091 #define MIB_COUNTER_RX_OCTET_65_127 0x0F
1092 #define MIB_COUNTER_RX_OCTET_128_255 0x10
1093 #define MIB_COUNTER_RX_OCTET_256_511 0x11
1094 #define MIB_COUNTER_RX_OCTET_512_1023 0x12
1095 #define MIB_COUNTER_RX_OCTET_1024_1522 0x13
1096 #define MIB_COUNTER_TX_LO_PRIORITY 0x14
1097 #define MIB_COUNTER_TX_HI_PRIORITY 0x15
1098 #define MIB_COUNTER_TX_LATE_COLLISION 0x16
1099 #define MIB_COUNTER_TX_PAUSE 0x17
1100 #define MIB_COUNTER_TX_BROADCAST 0x18
1101 #define MIB_COUNTER_TX_MULTICAST 0x19
1102 #define MIB_COUNTER_TX_UNICAST 0x1A
1103 #define MIB_COUNTER_TX_DEFERRED 0x1B
1104 #define MIB_COUNTER_TX_TOTAL_COLLISION 0x1C
1105 #define MIB_COUNTER_TX_EXCESS_COLLISION 0x1D
1106 #define MIB_COUNTER_TX_SINGLE_COLLISION 0x1E
1107 #define MIB_COUNTER_TX_MULTI_COLLISION 0x1F
1108
1109 #define MIB_COUNTER_RX_DROPPED_PACKET 0x20
1110 #define MIB_COUNTER_TX_DROPPED_PACKET 0x21
1111
1112 /**
1113 * struct ksz_port_mib - Port MIB data structure
1114 * @cnt_ptr: Current pointer to MIB counter index.
1115 * @link_down: Indication the link has just gone down.
1116 * @state: Connection status of the port.
1117 * @mib_start: The starting counter index. Some ports do not start at 0.
1118 * @counter: 64-bit MIB counter value.
1119 * @dropped: Temporary buffer to remember last read packet dropped values.
1120 *
1121 * MIB counters needs to be read periodically so that counters do not get
1122 * overflowed and give incorrect values. A right balance is needed to
1123 * satisfy this condition and not waste too much CPU time.
1124 *
1125 * It is pointless to read MIB counters when the port is disconnected. The
1126 * @state provides the connection status so that MIB counters are read only
1127 * when the port is connected. The @link_down indicates the port is just
1128 * disconnected so that all MIB counters are read one last time to update the
1129 * information.
1130 */
1131 struct ksz_port_mib {
1132 u8 cnt_ptr;
1133 u8 link_down;
1134 u8 state;
1135 u8 mib_start;
1136
1137 u64 counter[TOTAL_PORT_COUNTER_NUM];
1138 u32 dropped[2];
1139 };
1140
1141 /**
1142 * struct ksz_port_cfg - Port configuration data structure
1143 * @vid: VID value.
1144 * @member: Port membership.
1145 * @port_prio: Port priority.
1146 * @rx_rate: Receive priority rate.
1147 * @tx_rate: Transmit priority rate.
1148 * @stp_state: Current Spanning Tree Protocol state.
1149 */
1150 struct ksz_port_cfg {
1151 u16 vid;
1152 u8 member;
1153 u8 port_prio;
1154 u32 rx_rate[PRIO_QUEUES];
1155 u32 tx_rate[PRIO_QUEUES];
1156 int stp_state;
1157 };
1158
1159 /**
1160 * struct ksz_switch - KSZ8842 switch data structure
1161 * @mac_table: MAC table entries information.
1162 * @vlan_table: VLAN table entries information.
1163 * @port_cfg: Port configuration information.
1164 * @diffserv: DiffServ priority settings. Possible values from 6-bit of ToS
1165 * (bit7 ~ bit2) field.
1166 * @p_802_1p: 802.1P priority settings. Possible values from 3-bit of 802.1p
1167 * Tag priority field.
1168 * @br_addr: Bridge address. Used for STP.
1169 * @other_addr: Other MAC address. Used for multiple network device mode.
1170 * @broad_per: Broadcast storm percentage.
1171 * @member: Current port membership. Used for STP.
1172 */
1173 struct ksz_switch {
1174 struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1175 struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1176 struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1177
1178 u8 diffserv[DIFFSERV_ENTRIES];
1179 u8 p_802_1p[PRIO_802_1P_ENTRIES];
1180
1181 u8 br_addr[ETH_ALEN];
1182 u8 other_addr[ETH_ALEN];
1183
1184 u8 broad_per;
1185 u8 member;
1186 };
1187
1188 #define TX_RATE_UNIT 10000
1189
1190 /**
1191 * struct ksz_port_info - Port information data structure
1192 * @state: Connection status of the port.
1193 * @tx_rate: Transmit rate divided by 10000 to get Mbit.
1194 * @duplex: Duplex mode.
1195 * @advertised: Advertised auto-negotiation setting. Used to determine link.
1196 * @partner: Auto-negotiation partner setting. Used to determine link.
1197 * @port_id: Port index to access actual hardware register.
1198 * @pdev: Pointer to OS dependent network device.
1199 */
1200 struct ksz_port_info {
1201 uint state;
1202 uint tx_rate;
1203 u8 duplex;
1204 u8 advertised;
1205 u8 partner;
1206 u8 port_id;
1207 void *pdev;
1208 };
1209
1210 #define MAX_TX_HELD_SIZE 52000
1211
1212 /* Hardware features and bug fixes. */
1213 #define LINK_INT_WORKING (1 << 0)
1214 #define SMALL_PACKET_TX_BUG (1 << 1)
1215 #define HALF_DUPLEX_SIGNAL_BUG (1 << 2)
1216 #define RX_HUGE_FRAME (1 << 4)
1217 #define STP_SUPPORT (1 << 8)
1218
1219 /* Software overrides. */
1220 #define PAUSE_FLOW_CTRL (1 << 0)
1221 #define FAST_AGING (1 << 1)
1222
1223 /**
1224 * struct ksz_hw - KSZ884X hardware data structure
1225 * @io: Virtual address assigned.
1226 * @ksz_switch: Pointer to KSZ8842 switch.
1227 * @port_info: Port information.
1228 * @port_mib: Port MIB information.
1229 * @dev_count: Number of network devices this hardware supports.
1230 * @dst_ports: Destination ports in switch for transmission.
1231 * @id: Hardware ID. Used for display only.
1232 * @mib_cnt: Number of MIB counters this hardware has.
1233 * @mib_port_cnt: Number of ports with MIB counters.
1234 * @tx_cfg: Cached transmit control settings.
1235 * @rx_cfg: Cached receive control settings.
1236 * @intr_mask: Current interrupt mask.
1237 * @intr_set: Current interrup set.
1238 * @intr_blocked: Interrupt blocked.
1239 * @rx_desc_info: Receive descriptor information.
1240 * @tx_desc_info: Transmit descriptor information.
1241 * @tx_int_cnt: Transmit interrupt count. Used for TX optimization.
1242 * @tx_int_mask: Transmit interrupt mask. Used for TX optimization.
1243 * @tx_size: Transmit data size. Used for TX optimization.
1244 * The maximum is defined by MAX_TX_HELD_SIZE.
1245 * @perm_addr: Permanent MAC address.
1246 * @override_addr: Overridden MAC address.
1247 * @address: Additional MAC address entries.
1248 * @addr_list_size: Additional MAC address list size.
1249 * @mac_override: Indication of MAC address overridden.
1250 * @promiscuous: Counter to keep track of promiscuous mode set.
1251 * @all_multi: Counter to keep track of all multicast mode set.
1252 * @multi_list: Multicast address entries.
1253 * @multi_bits: Cached multicast hash table settings.
1254 * @multi_list_size: Multicast address list size.
1255 * @enabled: Indication of hardware enabled.
1256 * @rx_stop: Indication of receive process stop.
1257 * @reserved2: none
1258 * @features: Hardware features to enable.
1259 * @overrides: Hardware features to override.
1260 * @parent: Pointer to parent, network device private structure.
1261 */
1262 struct ksz_hw {
1263 void __iomem *io;
1264
1265 struct ksz_switch *ksz_switch;
1266 struct ksz_port_info port_info[SWITCH_PORT_NUM];
1267 struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1268 int dev_count;
1269 int dst_ports;
1270 int id;
1271 int mib_cnt;
1272 int mib_port_cnt;
1273
1274 u32 tx_cfg;
1275 u32 rx_cfg;
1276 u32 intr_mask;
1277 u32 intr_set;
1278 uint intr_blocked;
1279
1280 struct ksz_desc_info rx_desc_info;
1281 struct ksz_desc_info tx_desc_info;
1282
1283 int tx_int_cnt;
1284 int tx_int_mask;
1285 int tx_size;
1286
1287 u8 perm_addr[ETH_ALEN];
1288 u8 override_addr[ETH_ALEN];
1289 u8 address[ADDITIONAL_ENTRIES][ETH_ALEN];
1290 u8 addr_list_size;
1291 u8 mac_override;
1292 u8 promiscuous;
1293 u8 all_multi;
1294 u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN];
1295 u8 multi_bits[HW_MULTICAST_SIZE];
1296 u8 multi_list_size;
1297
1298 u8 enabled;
1299 u8 rx_stop;
1300 u8 reserved2[1];
1301
1302 uint features;
1303 uint overrides;
1304
1305 void *parent;
1306 };
1307
1308 enum {
1309 PHY_NO_FLOW_CTRL,
1310 PHY_FLOW_CTRL,
1311 PHY_TX_ONLY,
1312 PHY_RX_ONLY
1313 };
1314
1315 /**
1316 * struct ksz_port - Virtual port data structure
1317 * @duplex: Duplex mode setting. 1 for half duplex, 2 for full
1318 * duplex, and 0 for auto, which normally results in full
1319 * duplex.
1320 * @speed: Speed setting. 10 for 10 Mbit, 100 for 100 Mbit, and
1321 * 0 for auto, which normally results in 100 Mbit.
1322 * @force_link: Force link setting. 0 for auto-negotiation, and 1 for
1323 * force.
1324 * @flow_ctrl: Flow control setting. PHY_NO_FLOW_CTRL for no flow
1325 * control, and PHY_FLOW_CTRL for flow control.
1326 * PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1327 * Mbit PHY.
1328 * @first_port: Index of first port this port supports.
1329 * @mib_port_cnt: Number of ports with MIB counters.
1330 * @port_cnt: Number of ports this port supports.
1331 * @counter: Port statistics counter.
1332 * @hw: Pointer to hardware structure.
1333 * @linked: Pointer to port information linked to this port.
1334 */
1335 struct ksz_port {
1336 u8 duplex;
1337 u8 speed;
1338 u8 force_link;
1339 u8 flow_ctrl;
1340
1341 int first_port;
1342 int mib_port_cnt;
1343 int port_cnt;
1344 u64 counter[OID_COUNTER_LAST];
1345
1346 struct ksz_hw *hw;
1347 struct ksz_port_info *linked;
1348 };
1349
1350 /**
1351 * struct ksz_timer_info - Timer information data structure
1352 * @timer: Kernel timer.
1353 * @cnt: Running timer counter.
1354 * @max: Number of times to run timer; -1 for infinity.
1355 * @period: Timer period in jiffies.
1356 */
1357 struct ksz_timer_info {
1358 struct timer_list timer;
1359 int cnt;
1360 int max;
1361 int period;
1362 };
1363
1364 /**
1365 * struct ksz_shared_mem - OS dependent shared memory data structure
1366 * @dma_addr: Physical DMA address allocated.
1367 * @alloc_size: Allocation size.
1368 * @phys: Actual physical address used.
1369 * @alloc_virt: Virtual address allocated.
1370 * @virt: Actual virtual address used.
1371 */
1372 struct ksz_shared_mem {
1373 dma_addr_t dma_addr;
1374 uint alloc_size;
1375 uint phys;
1376 u8 *alloc_virt;
1377 u8 *virt;
1378 };
1379
1380 /**
1381 * struct ksz_counter_info - OS dependent counter information data structure
1382 * @counter: Wait queue to wakeup after counters are read.
1383 * @time: Next time in jiffies to read counter.
1384 * @read: Indication of counters read in full or not.
1385 */
1386 struct ksz_counter_info {
1387 wait_queue_head_t counter;
1388 unsigned long time;
1389 int read;
1390 };
1391
1392 /**
1393 * struct dev_info - Network device information data structure
1394 * @dev: Pointer to network device.
1395 * @pdev: Pointer to PCI device.
1396 * @hw: Hardware structure.
1397 * @desc_pool: Physical memory used for descriptor pool.
1398 * @hwlock: Spinlock to prevent hardware from accessing.
1399 * @lock: Mutex lock to prevent device from accessing.
1400 * @dev_rcv: Receive process function used.
1401 * @last_skb: Socket buffer allocated for descriptor rx fragments.
1402 * @skb_index: Buffer index for receiving fragments.
1403 * @skb_len: Buffer length for receiving fragments.
1404 * @mib_read: Workqueue to read MIB counters.
1405 * @mib_timer_info: Timer to read MIB counters.
1406 * @counter: Used for MIB reading.
1407 * @mtu: Current MTU used. The default is REGULAR_RX_BUF_SIZE;
1408 * the maximum is MAX_RX_BUF_SIZE.
1409 * @opened: Counter to keep track of device open.
1410 * @rx_tasklet: Receive processing tasklet.
1411 * @tx_tasklet: Transmit processing tasklet.
1412 * @wol_enable: Wake-on-LAN enable set by ethtool.
1413 * @wol_support: Wake-on-LAN support used by ethtool.
1414 * @pme_wait: Used for KSZ8841 power management.
1415 */
1416 struct dev_info {
1417 struct net_device *dev;
1418 struct pci_dev *pdev;
1419
1420 struct ksz_hw hw;
1421 struct ksz_shared_mem desc_pool;
1422
1423 spinlock_t hwlock;
1424 struct mutex lock;
1425
1426 int (*dev_rcv)(struct dev_info *);
1427
1428 struct sk_buff *last_skb;
1429 int skb_index;
1430 int skb_len;
1431
1432 struct work_struct mib_read;
1433 struct ksz_timer_info mib_timer_info;
1434 struct ksz_counter_info counter[TOTAL_PORT_NUM];
1435
1436 int mtu;
1437 int opened;
1438
1439 struct tasklet_struct rx_tasklet;
1440 struct tasklet_struct tx_tasklet;
1441
1442 int wol_enable;
1443 int wol_support;
1444 unsigned long pme_wait;
1445 };
1446
1447 /**
1448 * struct dev_priv - Network device private data structure
1449 * @adapter: Adapter device information.
1450 * @port: Port information.
1451 * @monitor_timer_info: Timer to monitor ports.
1452 * @proc_sem: Semaphore for proc accessing.
1453 * @id: Device ID.
1454 * @mii_if: MII interface information.
1455 * @advertising: Temporary variable to store advertised settings.
1456 * @msg_enable: The message flags controlling driver output.
1457 * @media_state: The connection status of the device.
1458 * @multicast: The all multicast state of the device.
1459 * @promiscuous: The promiscuous state of the device.
1460 */
1461 struct dev_priv {
1462 struct dev_info *adapter;
1463 struct ksz_port port;
1464 struct ksz_timer_info monitor_timer_info;
1465
1466 struct semaphore proc_sem;
1467 int id;
1468
1469 struct mii_if_info mii_if;
1470 u32 advertising;
1471
1472 u32 msg_enable;
1473 int media_state;
1474 int multicast;
1475 int promiscuous;
1476 };
1477
1478 #define DRV_NAME "KSZ884X PCI"
1479 #define DEVICE_NAME "KSZ884x PCI"
1480 #define DRV_VERSION "1.0.0"
1481 #define DRV_RELDATE "Feb 8, 2010"
1482
1483 static char version[] =
1484 "Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1485
1486 static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1487
1488 /*
1489 * Interrupt processing primary routines
1490 */
1491
hw_ack_intr(struct ksz_hw * hw,uint interrupt)1492 static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1493 {
1494 writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1495 }
1496
hw_dis_intr(struct ksz_hw * hw)1497 static inline void hw_dis_intr(struct ksz_hw *hw)
1498 {
1499 hw->intr_blocked = hw->intr_mask;
1500 writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1501 hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1502 }
1503
hw_set_intr(struct ksz_hw * hw,uint interrupt)1504 static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1505 {
1506 hw->intr_set = interrupt;
1507 writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1508 }
1509
hw_ena_intr(struct ksz_hw * hw)1510 static inline void hw_ena_intr(struct ksz_hw *hw)
1511 {
1512 hw->intr_blocked = 0;
1513 hw_set_intr(hw, hw->intr_mask);
1514 }
1515
hw_dis_intr_bit(struct ksz_hw * hw,uint bit)1516 static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1517 {
1518 hw->intr_mask &= ~(bit);
1519 }
1520
hw_turn_off_intr(struct ksz_hw * hw,uint interrupt)1521 static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1522 {
1523 u32 read_intr;
1524
1525 read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1526 hw->intr_set = read_intr & ~interrupt;
1527 writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1528 hw_dis_intr_bit(hw, interrupt);
1529 }
1530
1531 /**
1532 * hw_turn_on_intr - turn on specified interrupts
1533 * @hw: The hardware instance.
1534 * @bit: The interrupt bits to be on.
1535 *
1536 * This routine turns on the specified interrupts in the interrupt mask so that
1537 * those interrupts will be enabled.
1538 */
hw_turn_on_intr(struct ksz_hw * hw,u32 bit)1539 static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1540 {
1541 hw->intr_mask |= bit;
1542
1543 if (!hw->intr_blocked)
1544 hw_set_intr(hw, hw->intr_mask);
1545 }
1546
hw_ena_intr_bit(struct ksz_hw * hw,uint interrupt)1547 static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1548 {
1549 u32 read_intr;
1550
1551 read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1552 hw->intr_set = read_intr | interrupt;
1553 writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1554 }
1555
hw_read_intr(struct ksz_hw * hw,uint * status)1556 static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1557 {
1558 *status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1559 *status = *status & hw->intr_set;
1560 }
1561
hw_restore_intr(struct ksz_hw * hw,uint interrupt)1562 static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1563 {
1564 if (interrupt)
1565 hw_ena_intr(hw);
1566 }
1567
1568 /**
1569 * hw_block_intr - block hardware interrupts
1570 * @hw: The hardware instance.
1571 *
1572 * This function blocks all interrupts of the hardware and returns the current
1573 * interrupt enable mask so that interrupts can be restored later.
1574 *
1575 * Return the current interrupt enable mask.
1576 */
hw_block_intr(struct ksz_hw * hw)1577 static uint hw_block_intr(struct ksz_hw *hw)
1578 {
1579 uint interrupt = 0;
1580
1581 if (!hw->intr_blocked) {
1582 hw_dis_intr(hw);
1583 interrupt = hw->intr_blocked;
1584 }
1585 return interrupt;
1586 }
1587
1588 /*
1589 * Hardware descriptor routines
1590 */
1591
reset_desc(struct ksz_desc * desc,union desc_stat status)1592 static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1593 {
1594 status.rx.hw_owned = 0;
1595 desc->phw->ctrl.data = cpu_to_le32(status.data);
1596 }
1597
release_desc(struct ksz_desc * desc)1598 static inline void release_desc(struct ksz_desc *desc)
1599 {
1600 desc->sw.ctrl.tx.hw_owned = 1;
1601 if (desc->sw.buf_size != desc->sw.buf.data) {
1602 desc->sw.buf_size = desc->sw.buf.data;
1603 desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1604 }
1605 desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1606 }
1607
get_rx_pkt(struct ksz_desc_info * info,struct ksz_desc ** desc)1608 static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1609 {
1610 *desc = &info->ring[info->last];
1611 info->last++;
1612 info->last &= info->mask;
1613 info->avail--;
1614 (*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1615 }
1616
set_rx_buf(struct ksz_desc * desc,u32 addr)1617 static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1618 {
1619 desc->phw->addr = cpu_to_le32(addr);
1620 }
1621
set_rx_len(struct ksz_desc * desc,u32 len)1622 static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1623 {
1624 desc->sw.buf.rx.buf_size = len;
1625 }
1626
get_tx_pkt(struct ksz_desc_info * info,struct ksz_desc ** desc)1627 static inline void get_tx_pkt(struct ksz_desc_info *info,
1628 struct ksz_desc **desc)
1629 {
1630 *desc = &info->ring[info->next];
1631 info->next++;
1632 info->next &= info->mask;
1633 info->avail--;
1634 (*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1635 }
1636
set_tx_buf(struct ksz_desc * desc,u32 addr)1637 static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1638 {
1639 desc->phw->addr = cpu_to_le32(addr);
1640 }
1641
set_tx_len(struct ksz_desc * desc,u32 len)1642 static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1643 {
1644 desc->sw.buf.tx.buf_size = len;
1645 }
1646
1647 /* Switch functions */
1648
1649 #define TABLE_READ 0x10
1650 #define TABLE_SEL_SHIFT 2
1651
1652 #define HW_DELAY(hw, reg) \
1653 do { \
1654 readw(hw->io + reg); \
1655 } while (0)
1656
1657 /**
1658 * sw_r_table - read 4 bytes of data from switch table
1659 * @hw: The hardware instance.
1660 * @table: The table selector.
1661 * @addr: The address of the table entry.
1662 * @data: Buffer to store the read data.
1663 *
1664 * This routine reads 4 bytes of data from the table of the switch.
1665 * Hardware interrupts are disabled to minimize corruption of read data.
1666 */
sw_r_table(struct ksz_hw * hw,int table,u16 addr,u32 * data)1667 static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1668 {
1669 u16 ctrl_addr;
1670 uint interrupt;
1671
1672 ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1673
1674 interrupt = hw_block_intr(hw);
1675
1676 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1677 HW_DELAY(hw, KS884X_IACR_OFFSET);
1678 *data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1679
1680 hw_restore_intr(hw, interrupt);
1681 }
1682
1683 /**
1684 * sw_w_table_64 - write 8 bytes of data to the switch table
1685 * @hw: The hardware instance.
1686 * @table: The table selector.
1687 * @addr: The address of the table entry.
1688 * @data_hi: The high part of data to be written (bit63 ~ bit32).
1689 * @data_lo: The low part of data to be written (bit31 ~ bit0).
1690 *
1691 * This routine writes 8 bytes of data to the table of the switch.
1692 * Hardware interrupts are disabled to minimize corruption of written data.
1693 */
sw_w_table_64(struct ksz_hw * hw,int table,u16 addr,u32 data_hi,u32 data_lo)1694 static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1695 u32 data_lo)
1696 {
1697 u16 ctrl_addr;
1698 uint interrupt;
1699
1700 ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1701
1702 interrupt = hw_block_intr(hw);
1703
1704 writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1705 writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1706
1707 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1708 HW_DELAY(hw, KS884X_IACR_OFFSET);
1709
1710 hw_restore_intr(hw, interrupt);
1711 }
1712
1713 /**
1714 * sw_w_sta_mac_table - write to the static MAC table
1715 * @hw: The hardware instance.
1716 * @addr: The address of the table entry.
1717 * @mac_addr: The MAC address.
1718 * @ports: The port members.
1719 * @override: The flag to override the port receive/transmit settings.
1720 * @valid: The flag to indicate entry is valid.
1721 * @use_fid: The flag to indicate the FID is valid.
1722 * @fid: The FID value.
1723 *
1724 * This routine writes an entry of the static MAC table of the switch. It
1725 * calls sw_w_table_64() to write the data.
1726 */
sw_w_sta_mac_table(struct ksz_hw * hw,u16 addr,u8 * mac_addr,u8 ports,int override,int valid,int use_fid,u8 fid)1727 static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1728 u8 ports, int override, int valid, int use_fid, u8 fid)
1729 {
1730 u32 data_hi;
1731 u32 data_lo;
1732
1733 data_lo = ((u32) mac_addr[2] << 24) |
1734 ((u32) mac_addr[3] << 16) |
1735 ((u32) mac_addr[4] << 8) | mac_addr[5];
1736 data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1737 data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1738
1739 if (override)
1740 data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1741 if (use_fid) {
1742 data_hi |= STATIC_MAC_TABLE_USE_FID;
1743 data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1744 }
1745 if (valid)
1746 data_hi |= STATIC_MAC_TABLE_VALID;
1747
1748 sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1749 }
1750
1751 /**
1752 * sw_r_vlan_table - read from the VLAN table
1753 * @hw: The hardware instance.
1754 * @addr: The address of the table entry.
1755 * @vid: Buffer to store the VID.
1756 * @fid: Buffer to store the VID.
1757 * @member: Buffer to store the port membership.
1758 *
1759 * This function reads an entry of the VLAN table of the switch. It calls
1760 * sw_r_table() to get the data.
1761 *
1762 * Return 0 if the entry is valid; otherwise -1.
1763 */
sw_r_vlan_table(struct ksz_hw * hw,u16 addr,u16 * vid,u8 * fid,u8 * member)1764 static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1765 u8 *member)
1766 {
1767 u32 data;
1768
1769 sw_r_table(hw, TABLE_VLAN, addr, &data);
1770 if (data & VLAN_TABLE_VALID) {
1771 *vid = (u16)(data & VLAN_TABLE_VID);
1772 *fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1773 *member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1774 VLAN_TABLE_MEMBERSHIP_SHIFT);
1775 return 0;
1776 }
1777 return -1;
1778 }
1779
1780 /**
1781 * port_r_mib_cnt - read MIB counter
1782 * @hw: The hardware instance.
1783 * @port: The port index.
1784 * @addr: The address of the counter.
1785 * @cnt: Buffer to store the counter.
1786 *
1787 * This routine reads a MIB counter of the port.
1788 * Hardware interrupts are disabled to minimize corruption of read data.
1789 */
port_r_mib_cnt(struct ksz_hw * hw,int port,u16 addr,u64 * cnt)1790 static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1791 {
1792 u32 data;
1793 u16 ctrl_addr;
1794 uint interrupt;
1795 int timeout;
1796
1797 ctrl_addr = addr + PORT_COUNTER_NUM * port;
1798
1799 interrupt = hw_block_intr(hw);
1800
1801 ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1802 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1803 HW_DELAY(hw, KS884X_IACR_OFFSET);
1804
1805 for (timeout = 100; timeout > 0; timeout--) {
1806 data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1807
1808 if (data & MIB_COUNTER_VALID) {
1809 if (data & MIB_COUNTER_OVERFLOW)
1810 *cnt += MIB_COUNTER_VALUE + 1;
1811 *cnt += data & MIB_COUNTER_VALUE;
1812 break;
1813 }
1814 }
1815
1816 hw_restore_intr(hw, interrupt);
1817 }
1818
1819 /**
1820 * port_r_mib_pkt - read dropped packet counts
1821 * @hw: The hardware instance.
1822 * @port: The port index.
1823 * @last: last one
1824 * @cnt: Buffer to store the receive and transmit dropped packet counts.
1825 *
1826 * This routine reads the dropped packet counts of the port.
1827 * Hardware interrupts are disabled to minimize corruption of read data.
1828 */
port_r_mib_pkt(struct ksz_hw * hw,int port,u32 * last,u64 * cnt)1829 static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1830 {
1831 u32 cur;
1832 u32 data;
1833 u16 ctrl_addr;
1834 uint interrupt;
1835 int index;
1836
1837 index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1838 do {
1839 interrupt = hw_block_intr(hw);
1840
1841 ctrl_addr = (u16) index;
1842 ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1843 << 8);
1844 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1845 HW_DELAY(hw, KS884X_IACR_OFFSET);
1846 data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1847
1848 hw_restore_intr(hw, interrupt);
1849
1850 data &= MIB_PACKET_DROPPED;
1851 cur = *last;
1852 if (data != cur) {
1853 *last = data;
1854 if (data < cur)
1855 data += MIB_PACKET_DROPPED + 1;
1856 data -= cur;
1857 *cnt += data;
1858 }
1859 ++last;
1860 ++cnt;
1861 index -= KS_MIB_PACKET_DROPPED_TX -
1862 KS_MIB_PACKET_DROPPED_TX_0 + 1;
1863 } while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1864 }
1865
1866 /**
1867 * port_r_cnt - read MIB counters periodically
1868 * @hw: The hardware instance.
1869 * @port: The port index.
1870 *
1871 * This routine is used to read the counters of the port periodically to avoid
1872 * counter overflow. The hardware should be acquired first before calling this
1873 * routine.
1874 *
1875 * Return non-zero when not all counters not read.
1876 */
port_r_cnt(struct ksz_hw * hw,int port)1877 static int port_r_cnt(struct ksz_hw *hw, int port)
1878 {
1879 struct ksz_port_mib *mib = &hw->port_mib[port];
1880
1881 if (mib->mib_start < PORT_COUNTER_NUM)
1882 while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1883 port_r_mib_cnt(hw, port, mib->cnt_ptr,
1884 &mib->counter[mib->cnt_ptr]);
1885 ++mib->cnt_ptr;
1886 }
1887 if (hw->mib_cnt > PORT_COUNTER_NUM)
1888 port_r_mib_pkt(hw, port, mib->dropped,
1889 &mib->counter[PORT_COUNTER_NUM]);
1890 mib->cnt_ptr = 0;
1891 return 0;
1892 }
1893
1894 /**
1895 * port_init_cnt - initialize MIB counter values
1896 * @hw: The hardware instance.
1897 * @port: The port index.
1898 *
1899 * This routine is used to initialize all counters to zero if the hardware
1900 * cannot do it after reset.
1901 */
port_init_cnt(struct ksz_hw * hw,int port)1902 static void port_init_cnt(struct ksz_hw *hw, int port)
1903 {
1904 struct ksz_port_mib *mib = &hw->port_mib[port];
1905
1906 mib->cnt_ptr = 0;
1907 if (mib->mib_start < PORT_COUNTER_NUM)
1908 do {
1909 port_r_mib_cnt(hw, port, mib->cnt_ptr,
1910 &mib->counter[mib->cnt_ptr]);
1911 ++mib->cnt_ptr;
1912 } while (mib->cnt_ptr < PORT_COUNTER_NUM);
1913 if (hw->mib_cnt > PORT_COUNTER_NUM)
1914 port_r_mib_pkt(hw, port, mib->dropped,
1915 &mib->counter[PORT_COUNTER_NUM]);
1916 memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1917 mib->cnt_ptr = 0;
1918 }
1919
1920 /*
1921 * Port functions
1922 */
1923
1924 /**
1925 * port_chk - check port register bits
1926 * @hw: The hardware instance.
1927 * @port: The port index.
1928 * @offset: The offset of the port register.
1929 * @bits: The data bits to check.
1930 *
1931 * This function checks whether the specified bits of the port register are set
1932 * or not.
1933 *
1934 * Return 0 if the bits are not set.
1935 */
port_chk(struct ksz_hw * hw,int port,int offset,u16 bits)1936 static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1937 {
1938 u32 addr;
1939 u16 data;
1940
1941 PORT_CTRL_ADDR(port, addr);
1942 addr += offset;
1943 data = readw(hw->io + addr);
1944 return (data & bits) == bits;
1945 }
1946
1947 /**
1948 * port_cfg - set port register bits
1949 * @hw: The hardware instance.
1950 * @port: The port index.
1951 * @offset: The offset of the port register.
1952 * @bits: The data bits to set.
1953 * @set: The flag indicating whether the bits are to be set or not.
1954 *
1955 * This routine sets or resets the specified bits of the port register.
1956 */
port_cfg(struct ksz_hw * hw,int port,int offset,u16 bits,int set)1957 static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1958 int set)
1959 {
1960 u32 addr;
1961 u16 data;
1962
1963 PORT_CTRL_ADDR(port, addr);
1964 addr += offset;
1965 data = readw(hw->io + addr);
1966 if (set)
1967 data |= bits;
1968 else
1969 data &= ~bits;
1970 writew(data, hw->io + addr);
1971 }
1972
1973 /**
1974 * port_chk_shift - check port bit
1975 * @hw: The hardware instance.
1976 * @port: The port index.
1977 * @addr: The offset of the register.
1978 * @shift: Number of bits to shift.
1979 *
1980 * This function checks whether the specified port is set in the register or
1981 * not.
1982 *
1983 * Return 0 if the port is not set.
1984 */
port_chk_shift(struct ksz_hw * hw,int port,u32 addr,int shift)1985 static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1986 {
1987 u16 data;
1988 u16 bit = 1 << port;
1989
1990 data = readw(hw->io + addr);
1991 data >>= shift;
1992 return (data & bit) == bit;
1993 }
1994
1995 /**
1996 * port_cfg_shift - set port bit
1997 * @hw: The hardware instance.
1998 * @port: The port index.
1999 * @addr: The offset of the register.
2000 * @shift: Number of bits to shift.
2001 * @set: The flag indicating whether the port is to be set or not.
2002 *
2003 * This routine sets or resets the specified port in the register.
2004 */
port_cfg_shift(struct ksz_hw * hw,int port,u32 addr,int shift,int set)2005 static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
2006 int set)
2007 {
2008 u16 data;
2009 u16 bits = 1 << port;
2010
2011 data = readw(hw->io + addr);
2012 bits <<= shift;
2013 if (set)
2014 data |= bits;
2015 else
2016 data &= ~bits;
2017 writew(data, hw->io + addr);
2018 }
2019
2020 /**
2021 * port_r8 - read byte from port register
2022 * @hw: The hardware instance.
2023 * @port: The port index.
2024 * @offset: The offset of the port register.
2025 * @data: Buffer to store the data.
2026 *
2027 * This routine reads a byte from the port register.
2028 */
port_r8(struct ksz_hw * hw,int port,int offset,u8 * data)2029 static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
2030 {
2031 u32 addr;
2032
2033 PORT_CTRL_ADDR(port, addr);
2034 addr += offset;
2035 *data = readb(hw->io + addr);
2036 }
2037
2038 /**
2039 * port_r16 - read word from port register.
2040 * @hw: The hardware instance.
2041 * @port: The port index.
2042 * @offset: The offset of the port register.
2043 * @data: Buffer to store the data.
2044 *
2045 * This routine reads a word from the port register.
2046 */
port_r16(struct ksz_hw * hw,int port,int offset,u16 * data)2047 static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
2048 {
2049 u32 addr;
2050
2051 PORT_CTRL_ADDR(port, addr);
2052 addr += offset;
2053 *data = readw(hw->io + addr);
2054 }
2055
2056 /**
2057 * port_w16 - write word to port register.
2058 * @hw: The hardware instance.
2059 * @port: The port index.
2060 * @offset: The offset of the port register.
2061 * @data: Data to write.
2062 *
2063 * This routine writes a word to the port register.
2064 */
port_w16(struct ksz_hw * hw,int port,int offset,u16 data)2065 static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
2066 {
2067 u32 addr;
2068
2069 PORT_CTRL_ADDR(port, addr);
2070 addr += offset;
2071 writew(data, hw->io + addr);
2072 }
2073
2074 /**
2075 * sw_chk - check switch register bits
2076 * @hw: The hardware instance.
2077 * @addr: The address of the switch register.
2078 * @bits: The data bits to check.
2079 *
2080 * This function checks whether the specified bits of the switch register are
2081 * set or not.
2082 *
2083 * Return 0 if the bits are not set.
2084 */
sw_chk(struct ksz_hw * hw,u32 addr,u16 bits)2085 static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2086 {
2087 u16 data;
2088
2089 data = readw(hw->io + addr);
2090 return (data & bits) == bits;
2091 }
2092
2093 /**
2094 * sw_cfg - set switch register bits
2095 * @hw: The hardware instance.
2096 * @addr: The address of the switch register.
2097 * @bits: The data bits to set.
2098 * @set: The flag indicating whether the bits are to be set or not.
2099 *
2100 * This function sets or resets the specified bits of the switch register.
2101 */
sw_cfg(struct ksz_hw * hw,u32 addr,u16 bits,int set)2102 static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2103 {
2104 u16 data;
2105
2106 data = readw(hw->io + addr);
2107 if (set)
2108 data |= bits;
2109 else
2110 data &= ~bits;
2111 writew(data, hw->io + addr);
2112 }
2113
2114 /* Bandwidth */
2115
port_cfg_broad_storm(struct ksz_hw * hw,int p,int set)2116 static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2117 {
2118 port_cfg(hw, p,
2119 KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2120 }
2121
port_chk_broad_storm(struct ksz_hw * hw,int p)2122 static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2123 {
2124 return port_chk(hw, p,
2125 KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2126 }
2127
2128 /* Driver set switch broadcast storm protection at 10% rate. */
2129 #define BROADCAST_STORM_PROTECTION_RATE 10
2130
2131 /* 148,800 frames * 67 ms / 100 */
2132 #define BROADCAST_STORM_VALUE 9969
2133
2134 /**
2135 * sw_cfg_broad_storm - configure broadcast storm threshold
2136 * @hw: The hardware instance.
2137 * @percent: Broadcast storm threshold in percent of transmit rate.
2138 *
2139 * This routine configures the broadcast storm threshold of the switch.
2140 */
sw_cfg_broad_storm(struct ksz_hw * hw,u8 percent)2141 static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2142 {
2143 u16 data;
2144 u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2145
2146 if (value > BROADCAST_STORM_RATE)
2147 value = BROADCAST_STORM_RATE;
2148
2149 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2150 data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2151 data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2152 writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2153 }
2154
2155 /**
2156 * sw_get_board_storm - get broadcast storm threshold
2157 * @hw: The hardware instance.
2158 * @percent: Buffer to store the broadcast storm threshold percentage.
2159 *
2160 * This routine retrieves the broadcast storm threshold of the switch.
2161 */
sw_get_broad_storm(struct ksz_hw * hw,u8 * percent)2162 static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2163 {
2164 int num;
2165 u16 data;
2166
2167 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2168 num = (data & BROADCAST_STORM_RATE_HI);
2169 num <<= 8;
2170 num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2171 num = DIV_ROUND_CLOSEST(num * 100, BROADCAST_STORM_VALUE);
2172 *percent = (u8) num;
2173 }
2174
2175 /**
2176 * sw_dis_broad_storm - disable broadstorm
2177 * @hw: The hardware instance.
2178 * @port: The port index.
2179 *
2180 * This routine disables the broadcast storm limit function of the switch.
2181 */
sw_dis_broad_storm(struct ksz_hw * hw,int port)2182 static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2183 {
2184 port_cfg_broad_storm(hw, port, 0);
2185 }
2186
2187 /**
2188 * sw_ena_broad_storm - enable broadcast storm
2189 * @hw: The hardware instance.
2190 * @port: The port index.
2191 *
2192 * This routine enables the broadcast storm limit function of the switch.
2193 */
sw_ena_broad_storm(struct ksz_hw * hw,int port)2194 static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2195 {
2196 sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2197 port_cfg_broad_storm(hw, port, 1);
2198 }
2199
2200 /**
2201 * sw_init_broad_storm - initialize broadcast storm
2202 * @hw: The hardware instance.
2203 *
2204 * This routine initializes the broadcast storm limit function of the switch.
2205 */
sw_init_broad_storm(struct ksz_hw * hw)2206 static void sw_init_broad_storm(struct ksz_hw *hw)
2207 {
2208 int port;
2209
2210 hw->ksz_switch->broad_per = 1;
2211 sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2212 for (port = 0; port < TOTAL_PORT_NUM; port++)
2213 sw_dis_broad_storm(hw, port);
2214 sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2215 }
2216
2217 /**
2218 * hw_cfg_broad_storm - configure broadcast storm
2219 * @hw: The hardware instance.
2220 * @percent: Broadcast storm threshold in percent of transmit rate.
2221 *
2222 * This routine configures the broadcast storm threshold of the switch.
2223 * It is called by user functions. The hardware should be acquired first.
2224 */
hw_cfg_broad_storm(struct ksz_hw * hw,u8 percent)2225 static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2226 {
2227 if (percent > 100)
2228 percent = 100;
2229
2230 sw_cfg_broad_storm(hw, percent);
2231 sw_get_broad_storm(hw, &percent);
2232 hw->ksz_switch->broad_per = percent;
2233 }
2234
2235 /**
2236 * sw_dis_prio_rate - disable switch priority rate
2237 * @hw: The hardware instance.
2238 * @port: The port index.
2239 *
2240 * This routine disables the priority rate function of the switch.
2241 */
sw_dis_prio_rate(struct ksz_hw * hw,int port)2242 static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2243 {
2244 u32 addr;
2245
2246 PORT_CTRL_ADDR(port, addr);
2247 addr += KS8842_PORT_IN_RATE_OFFSET;
2248 writel(0, hw->io + addr);
2249 }
2250
2251 /**
2252 * sw_init_prio_rate - initialize switch prioirty rate
2253 * @hw: The hardware instance.
2254 *
2255 * This routine initializes the priority rate function of the switch.
2256 */
sw_init_prio_rate(struct ksz_hw * hw)2257 static void sw_init_prio_rate(struct ksz_hw *hw)
2258 {
2259 int port;
2260 int prio;
2261 struct ksz_switch *sw = hw->ksz_switch;
2262
2263 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2264 for (prio = 0; prio < PRIO_QUEUES; prio++) {
2265 sw->port_cfg[port].rx_rate[prio] =
2266 sw->port_cfg[port].tx_rate[prio] = 0;
2267 }
2268 sw_dis_prio_rate(hw, port);
2269 }
2270 }
2271
2272 /* Communication */
2273
port_cfg_back_pressure(struct ksz_hw * hw,int p,int set)2274 static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2275 {
2276 port_cfg(hw, p,
2277 KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2278 }
2279
port_cfg_force_flow_ctrl(struct ksz_hw * hw,int p,int set)2280 static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2281 {
2282 port_cfg(hw, p,
2283 KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2284 }
2285
port_chk_back_pressure(struct ksz_hw * hw,int p)2286 static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2287 {
2288 return port_chk(hw, p,
2289 KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2290 }
2291
port_chk_force_flow_ctrl(struct ksz_hw * hw,int p)2292 static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2293 {
2294 return port_chk(hw, p,
2295 KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2296 }
2297
2298 /* Spanning Tree */
2299
port_cfg_rx(struct ksz_hw * hw,int p,int set)2300 static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2301 {
2302 port_cfg(hw, p,
2303 KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2304 }
2305
port_cfg_tx(struct ksz_hw * hw,int p,int set)2306 static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2307 {
2308 port_cfg(hw, p,
2309 KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2310 }
2311
sw_cfg_fast_aging(struct ksz_hw * hw,int set)2312 static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2313 {
2314 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2315 }
2316
sw_flush_dyn_mac_table(struct ksz_hw * hw)2317 static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2318 {
2319 if (!(hw->overrides & FAST_AGING)) {
2320 sw_cfg_fast_aging(hw, 1);
2321 mdelay(1);
2322 sw_cfg_fast_aging(hw, 0);
2323 }
2324 }
2325
2326 /* VLAN */
2327
port_cfg_ins_tag(struct ksz_hw * hw,int p,int insert)2328 static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2329 {
2330 port_cfg(hw, p,
2331 KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2332 }
2333
port_cfg_rmv_tag(struct ksz_hw * hw,int p,int remove)2334 static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2335 {
2336 port_cfg(hw, p,
2337 KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2338 }
2339
port_chk_ins_tag(struct ksz_hw * hw,int p)2340 static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2341 {
2342 return port_chk(hw, p,
2343 KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2344 }
2345
port_chk_rmv_tag(struct ksz_hw * hw,int p)2346 static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2347 {
2348 return port_chk(hw, p,
2349 KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2350 }
2351
port_cfg_dis_non_vid(struct ksz_hw * hw,int p,int set)2352 static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2353 {
2354 port_cfg(hw, p,
2355 KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2356 }
2357
port_cfg_in_filter(struct ksz_hw * hw,int p,int set)2358 static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2359 {
2360 port_cfg(hw, p,
2361 KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2362 }
2363
port_chk_dis_non_vid(struct ksz_hw * hw,int p)2364 static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2365 {
2366 return port_chk(hw, p,
2367 KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2368 }
2369
port_chk_in_filter(struct ksz_hw * hw,int p)2370 static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2371 {
2372 return port_chk(hw, p,
2373 KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2374 }
2375
2376 /* Mirroring */
2377
port_cfg_mirror_sniffer(struct ksz_hw * hw,int p,int set)2378 static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2379 {
2380 port_cfg(hw, p,
2381 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2382 }
2383
port_cfg_mirror_rx(struct ksz_hw * hw,int p,int set)2384 static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2385 {
2386 port_cfg(hw, p,
2387 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2388 }
2389
port_cfg_mirror_tx(struct ksz_hw * hw,int p,int set)2390 static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2391 {
2392 port_cfg(hw, p,
2393 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2394 }
2395
sw_cfg_mirror_rx_tx(struct ksz_hw * hw,int set)2396 static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2397 {
2398 sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2399 }
2400
sw_init_mirror(struct ksz_hw * hw)2401 static void sw_init_mirror(struct ksz_hw *hw)
2402 {
2403 int port;
2404
2405 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2406 port_cfg_mirror_sniffer(hw, port, 0);
2407 port_cfg_mirror_rx(hw, port, 0);
2408 port_cfg_mirror_tx(hw, port, 0);
2409 }
2410 sw_cfg_mirror_rx_tx(hw, 0);
2411 }
2412
sw_cfg_unk_def_deliver(struct ksz_hw * hw,int set)2413 static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2414 {
2415 sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2416 SWITCH_UNK_DEF_PORT_ENABLE, set);
2417 }
2418
sw_cfg_chk_unk_def_deliver(struct ksz_hw * hw)2419 static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2420 {
2421 return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2422 SWITCH_UNK_DEF_PORT_ENABLE);
2423 }
2424
sw_cfg_unk_def_port(struct ksz_hw * hw,int port,int set)2425 static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2426 {
2427 port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2428 }
2429
sw_chk_unk_def_port(struct ksz_hw * hw,int port)2430 static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2431 {
2432 return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2433 }
2434
2435 /* Priority */
2436
port_cfg_diffserv(struct ksz_hw * hw,int p,int set)2437 static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2438 {
2439 port_cfg(hw, p,
2440 KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2441 }
2442
port_cfg_802_1p(struct ksz_hw * hw,int p,int set)2443 static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2444 {
2445 port_cfg(hw, p,
2446 KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2447 }
2448
port_cfg_replace_vid(struct ksz_hw * hw,int p,int set)2449 static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2450 {
2451 port_cfg(hw, p,
2452 KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2453 }
2454
port_cfg_prio(struct ksz_hw * hw,int p,int set)2455 static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2456 {
2457 port_cfg(hw, p,
2458 KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2459 }
2460
port_chk_diffserv(struct ksz_hw * hw,int p)2461 static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2462 {
2463 return port_chk(hw, p,
2464 KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2465 }
2466
port_chk_802_1p(struct ksz_hw * hw,int p)2467 static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2468 {
2469 return port_chk(hw, p,
2470 KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2471 }
2472
port_chk_replace_vid(struct ksz_hw * hw,int p)2473 static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2474 {
2475 return port_chk(hw, p,
2476 KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2477 }
2478
port_chk_prio(struct ksz_hw * hw,int p)2479 static inline int port_chk_prio(struct ksz_hw *hw, int p)
2480 {
2481 return port_chk(hw, p,
2482 KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2483 }
2484
2485 /**
2486 * sw_dis_diffserv - disable switch DiffServ priority
2487 * @hw: The hardware instance.
2488 * @port: The port index.
2489 *
2490 * This routine disables the DiffServ priority function of the switch.
2491 */
sw_dis_diffserv(struct ksz_hw * hw,int port)2492 static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2493 {
2494 port_cfg_diffserv(hw, port, 0);
2495 }
2496
2497 /**
2498 * sw_dis_802_1p - disable switch 802.1p priority
2499 * @hw: The hardware instance.
2500 * @port: The port index.
2501 *
2502 * This routine disables the 802.1p priority function of the switch.
2503 */
sw_dis_802_1p(struct ksz_hw * hw,int port)2504 static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2505 {
2506 port_cfg_802_1p(hw, port, 0);
2507 }
2508
2509 /**
2510 * sw_cfg_replace_null_vid -
2511 * @hw: The hardware instance.
2512 * @set: The flag to disable or enable.
2513 *
2514 */
sw_cfg_replace_null_vid(struct ksz_hw * hw,int set)2515 static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2516 {
2517 sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2518 }
2519
2520 /**
2521 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2522 * @hw: The hardware instance.
2523 * @port: The port index.
2524 * @set: The flag to disable or enable.
2525 *
2526 * This routine enables the 802.1p priority re-mapping function of the switch.
2527 * That allows 802.1p priority field to be replaced with the port's default
2528 * tag's priority value if the ingress packet's 802.1p priority has a higher
2529 * priority than port's default tag's priority.
2530 */
sw_cfg_replace_vid(struct ksz_hw * hw,int port,int set)2531 static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2532 {
2533 port_cfg_replace_vid(hw, port, set);
2534 }
2535
2536 /**
2537 * sw_cfg_port_based - configure switch port based priority
2538 * @hw: The hardware instance.
2539 * @port: The port index.
2540 * @prio: The priority to set.
2541 *
2542 * This routine configures the port based priority of the switch.
2543 */
sw_cfg_port_based(struct ksz_hw * hw,int port,u8 prio)2544 static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2545 {
2546 u16 data;
2547
2548 if (prio > PORT_BASED_PRIORITY_BASE)
2549 prio = PORT_BASED_PRIORITY_BASE;
2550
2551 hw->ksz_switch->port_cfg[port].port_prio = prio;
2552
2553 port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2554 data &= ~PORT_BASED_PRIORITY_MASK;
2555 data |= prio << PORT_BASED_PRIORITY_SHIFT;
2556 port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2557 }
2558
2559 /**
2560 * sw_dis_multi_queue - disable transmit multiple queues
2561 * @hw: The hardware instance.
2562 * @port: The port index.
2563 *
2564 * This routine disables the transmit multiple queues selection of the switch
2565 * port. Only single transmit queue on the port.
2566 */
sw_dis_multi_queue(struct ksz_hw * hw,int port)2567 static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2568 {
2569 port_cfg_prio(hw, port, 0);
2570 }
2571
2572 /**
2573 * sw_init_prio - initialize switch priority
2574 * @hw: The hardware instance.
2575 *
2576 * This routine initializes the switch QoS priority functions.
2577 */
sw_init_prio(struct ksz_hw * hw)2578 static void sw_init_prio(struct ksz_hw *hw)
2579 {
2580 int port;
2581 int tos;
2582 struct ksz_switch *sw = hw->ksz_switch;
2583
2584 /*
2585 * Init all the 802.1p tag priority value to be assigned to different
2586 * priority queue.
2587 */
2588 sw->p_802_1p[0] = 0;
2589 sw->p_802_1p[1] = 0;
2590 sw->p_802_1p[2] = 1;
2591 sw->p_802_1p[3] = 1;
2592 sw->p_802_1p[4] = 2;
2593 sw->p_802_1p[5] = 2;
2594 sw->p_802_1p[6] = 3;
2595 sw->p_802_1p[7] = 3;
2596
2597 /*
2598 * Init all the DiffServ priority value to be assigned to priority
2599 * queue 0.
2600 */
2601 for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2602 sw->diffserv[tos] = 0;
2603
2604 /* All QoS functions disabled. */
2605 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2606 sw_dis_multi_queue(hw, port);
2607 sw_dis_diffserv(hw, port);
2608 sw_dis_802_1p(hw, port);
2609 sw_cfg_replace_vid(hw, port, 0);
2610
2611 sw->port_cfg[port].port_prio = 0;
2612 sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2613 }
2614 sw_cfg_replace_null_vid(hw, 0);
2615 }
2616
2617 /**
2618 * port_get_def_vid - get port default VID.
2619 * @hw: The hardware instance.
2620 * @port: The port index.
2621 * @vid: Buffer to store the VID.
2622 *
2623 * This routine retrieves the default VID of the port.
2624 */
port_get_def_vid(struct ksz_hw * hw,int port,u16 * vid)2625 static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2626 {
2627 u32 addr;
2628
2629 PORT_CTRL_ADDR(port, addr);
2630 addr += KS8842_PORT_CTRL_VID_OFFSET;
2631 *vid = readw(hw->io + addr);
2632 }
2633
2634 /**
2635 * sw_init_vlan - initialize switch VLAN
2636 * @hw: The hardware instance.
2637 *
2638 * This routine initializes the VLAN function of the switch.
2639 */
sw_init_vlan(struct ksz_hw * hw)2640 static void sw_init_vlan(struct ksz_hw *hw)
2641 {
2642 int port;
2643 int entry;
2644 struct ksz_switch *sw = hw->ksz_switch;
2645
2646 /* Read 16 VLAN entries from device's VLAN table. */
2647 for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2648 sw_r_vlan_table(hw, entry,
2649 &sw->vlan_table[entry].vid,
2650 &sw->vlan_table[entry].fid,
2651 &sw->vlan_table[entry].member);
2652 }
2653
2654 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2655 port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2656 sw->port_cfg[port].member = PORT_MASK;
2657 }
2658 }
2659
2660 /**
2661 * sw_cfg_port_base_vlan - configure port-based VLAN membership
2662 * @hw: The hardware instance.
2663 * @port: The port index.
2664 * @member: The port-based VLAN membership.
2665 *
2666 * This routine configures the port-based VLAN membership of the port.
2667 */
sw_cfg_port_base_vlan(struct ksz_hw * hw,int port,u8 member)2668 static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2669 {
2670 u32 addr;
2671 u8 data;
2672
2673 PORT_CTRL_ADDR(port, addr);
2674 addr += KS8842_PORT_CTRL_2_OFFSET;
2675
2676 data = readb(hw->io + addr);
2677 data &= ~PORT_VLAN_MEMBERSHIP;
2678 data |= (member & PORT_MASK);
2679 writeb(data, hw->io + addr);
2680
2681 hw->ksz_switch->port_cfg[port].member = member;
2682 }
2683
2684 /**
2685 * sw_get_addr - get the switch MAC address.
2686 * @hw: The hardware instance.
2687 * @mac_addr: Buffer to store the MAC address.
2688 *
2689 * This function retrieves the MAC address of the switch.
2690 */
sw_get_addr(struct ksz_hw * hw,u8 * mac_addr)2691 static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2692 {
2693 int i;
2694
2695 for (i = 0; i < 6; i += 2) {
2696 mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2697 mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2698 }
2699 }
2700
2701 /**
2702 * sw_set_addr - configure switch MAC address
2703 * @hw: The hardware instance.
2704 * @mac_addr: The MAC address.
2705 *
2706 * This function configures the MAC address of the switch.
2707 */
sw_set_addr(struct ksz_hw * hw,u8 * mac_addr)2708 static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2709 {
2710 int i;
2711
2712 for (i = 0; i < 6; i += 2) {
2713 writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2714 writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2715 }
2716 }
2717
2718 /**
2719 * sw_set_global_ctrl - set switch global control
2720 * @hw: The hardware instance.
2721 *
2722 * This routine sets the global control of the switch function.
2723 */
sw_set_global_ctrl(struct ksz_hw * hw)2724 static void sw_set_global_ctrl(struct ksz_hw *hw)
2725 {
2726 u16 data;
2727
2728 /* Enable switch MII flow control. */
2729 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2730 data |= SWITCH_FLOW_CTRL;
2731 writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2732
2733 data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2734
2735 /* Enable aggressive back off algorithm in half duplex mode. */
2736 data |= SWITCH_AGGR_BACKOFF;
2737
2738 /* Enable automatic fast aging when link changed detected. */
2739 data |= SWITCH_AGING_ENABLE;
2740 data |= SWITCH_LINK_AUTO_AGING;
2741
2742 if (hw->overrides & FAST_AGING)
2743 data |= SWITCH_FAST_AGING;
2744 else
2745 data &= ~SWITCH_FAST_AGING;
2746 writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2747
2748 data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2749
2750 /* Enable no excessive collision drop. */
2751 data |= NO_EXC_COLLISION_DROP;
2752 writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2753 }
2754
2755 enum {
2756 STP_STATE_DISABLED = 0,
2757 STP_STATE_LISTENING,
2758 STP_STATE_LEARNING,
2759 STP_STATE_FORWARDING,
2760 STP_STATE_BLOCKED,
2761 STP_STATE_SIMPLE
2762 };
2763
2764 /**
2765 * port_set_stp_state - configure port spanning tree state
2766 * @hw: The hardware instance.
2767 * @port: The port index.
2768 * @state: The spanning tree state.
2769 *
2770 * This routine configures the spanning tree state of the port.
2771 */
port_set_stp_state(struct ksz_hw * hw,int port,int state)2772 static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2773 {
2774 u16 data;
2775
2776 port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2777 switch (state) {
2778 case STP_STATE_DISABLED:
2779 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2780 data |= PORT_LEARN_DISABLE;
2781 break;
2782 case STP_STATE_LISTENING:
2783 /*
2784 * No need to turn on transmit because of port direct mode.
2785 * Turning on receive is required if static MAC table is not setup.
2786 */
2787 data &= ~PORT_TX_ENABLE;
2788 data |= PORT_RX_ENABLE;
2789 data |= PORT_LEARN_DISABLE;
2790 break;
2791 case STP_STATE_LEARNING:
2792 data &= ~PORT_TX_ENABLE;
2793 data |= PORT_RX_ENABLE;
2794 data &= ~PORT_LEARN_DISABLE;
2795 break;
2796 case STP_STATE_FORWARDING:
2797 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2798 data &= ~PORT_LEARN_DISABLE;
2799 break;
2800 case STP_STATE_BLOCKED:
2801 /*
2802 * Need to setup static MAC table with override to keep receiving BPDU
2803 * messages. See sw_init_stp routine.
2804 */
2805 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2806 data |= PORT_LEARN_DISABLE;
2807 break;
2808 case STP_STATE_SIMPLE:
2809 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2810 data |= PORT_LEARN_DISABLE;
2811 break;
2812 }
2813 port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2814 hw->ksz_switch->port_cfg[port].stp_state = state;
2815 }
2816
2817 #define STP_ENTRY 0
2818 #define BROADCAST_ENTRY 1
2819 #define BRIDGE_ADDR_ENTRY 2
2820 #define IPV6_ADDR_ENTRY 3
2821
2822 /**
2823 * sw_clr_sta_mac_table - clear static MAC table
2824 * @hw: The hardware instance.
2825 *
2826 * This routine clears the static MAC table.
2827 */
sw_clr_sta_mac_table(struct ksz_hw * hw)2828 static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2829 {
2830 struct ksz_mac_table *entry;
2831 int i;
2832
2833 for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2834 entry = &hw->ksz_switch->mac_table[i];
2835 sw_w_sta_mac_table(hw, i,
2836 entry->mac_addr, entry->ports,
2837 entry->override, 0,
2838 entry->use_fid, entry->fid);
2839 }
2840 }
2841
2842 /**
2843 * sw_init_stp - initialize switch spanning tree support
2844 * @hw: The hardware instance.
2845 *
2846 * This routine initializes the spanning tree support of the switch.
2847 */
sw_init_stp(struct ksz_hw * hw)2848 static void sw_init_stp(struct ksz_hw *hw)
2849 {
2850 struct ksz_mac_table *entry;
2851
2852 entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2853 entry->mac_addr[0] = 0x01;
2854 entry->mac_addr[1] = 0x80;
2855 entry->mac_addr[2] = 0xC2;
2856 entry->mac_addr[3] = 0x00;
2857 entry->mac_addr[4] = 0x00;
2858 entry->mac_addr[5] = 0x00;
2859 entry->ports = HOST_MASK;
2860 entry->override = 1;
2861 entry->valid = 1;
2862 sw_w_sta_mac_table(hw, STP_ENTRY,
2863 entry->mac_addr, entry->ports,
2864 entry->override, entry->valid,
2865 entry->use_fid, entry->fid);
2866 }
2867
2868 /**
2869 * sw_block_addr - block certain packets from the host port
2870 * @hw: The hardware instance.
2871 *
2872 * This routine blocks certain packets from reaching to the host port.
2873 */
sw_block_addr(struct ksz_hw * hw)2874 static void sw_block_addr(struct ksz_hw *hw)
2875 {
2876 struct ksz_mac_table *entry;
2877 int i;
2878
2879 for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2880 entry = &hw->ksz_switch->mac_table[i];
2881 entry->valid = 0;
2882 sw_w_sta_mac_table(hw, i,
2883 entry->mac_addr, entry->ports,
2884 entry->override, entry->valid,
2885 entry->use_fid, entry->fid);
2886 }
2887 }
2888
2889 #define PHY_LINK_SUPPORT \
2890 (PHY_AUTO_NEG_ASYM_PAUSE | \
2891 PHY_AUTO_NEG_SYM_PAUSE | \
2892 PHY_AUTO_NEG_100BT4 | \
2893 PHY_AUTO_NEG_100BTX_FD | \
2894 PHY_AUTO_NEG_100BTX | \
2895 PHY_AUTO_NEG_10BT_FD | \
2896 PHY_AUTO_NEG_10BT)
2897
hw_r_phy_ctrl(struct ksz_hw * hw,int phy,u16 * data)2898 static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2899 {
2900 *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2901 }
2902
hw_w_phy_ctrl(struct ksz_hw * hw,int phy,u16 data)2903 static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2904 {
2905 writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2906 }
2907
hw_r_phy_link_stat(struct ksz_hw * hw,int phy,u16 * data)2908 static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2909 {
2910 *data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2911 }
2912
hw_r_phy_auto_neg(struct ksz_hw * hw,int phy,u16 * data)2913 static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2914 {
2915 *data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2916 }
2917
hw_w_phy_auto_neg(struct ksz_hw * hw,int phy,u16 data)2918 static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2919 {
2920 writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2921 }
2922
hw_r_phy_rem_cap(struct ksz_hw * hw,int phy,u16 * data)2923 static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2924 {
2925 *data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2926 }
2927
hw_r_phy_crossover(struct ksz_hw * hw,int phy,u16 * data)2928 static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2929 {
2930 *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2931 }
2932
hw_w_phy_crossover(struct ksz_hw * hw,int phy,u16 data)2933 static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2934 {
2935 writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2936 }
2937
hw_r_phy_polarity(struct ksz_hw * hw,int phy,u16 * data)2938 static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2939 {
2940 *data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2941 }
2942
hw_w_phy_polarity(struct ksz_hw * hw,int phy,u16 data)2943 static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2944 {
2945 writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2946 }
2947
hw_r_phy_link_md(struct ksz_hw * hw,int phy,u16 * data)2948 static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2949 {
2950 *data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2951 }
2952
hw_w_phy_link_md(struct ksz_hw * hw,int phy,u16 data)2953 static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2954 {
2955 writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2956 }
2957
2958 /**
2959 * hw_r_phy - read data from PHY register
2960 * @hw: The hardware instance.
2961 * @port: Port to read.
2962 * @reg: PHY register to read.
2963 * @val: Buffer to store the read data.
2964 *
2965 * This routine reads data from the PHY register.
2966 */
hw_r_phy(struct ksz_hw * hw,int port,u16 reg,u16 * val)2967 static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2968 {
2969 int phy;
2970
2971 phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2972 *val = readw(hw->io + phy);
2973 }
2974
2975 /**
2976 * port_w_phy - write data to PHY register
2977 * @hw: The hardware instance.
2978 * @port: Port to write.
2979 * @reg: PHY register to write.
2980 * @val: Word data to write.
2981 *
2982 * This routine writes data to the PHY register.
2983 */
hw_w_phy(struct ksz_hw * hw,int port,u16 reg,u16 val)2984 static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2985 {
2986 int phy;
2987
2988 phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2989 writew(val, hw->io + phy);
2990 }
2991
2992 /*
2993 * EEPROM access functions
2994 */
2995
2996 #define AT93C_CODE 0
2997 #define AT93C_WR_OFF 0x00
2998 #define AT93C_WR_ALL 0x10
2999 #define AT93C_ER_ALL 0x20
3000 #define AT93C_WR_ON 0x30
3001
3002 #define AT93C_WRITE 1
3003 #define AT93C_READ 2
3004 #define AT93C_ERASE 3
3005
3006 #define EEPROM_DELAY 4
3007
drop_gpio(struct ksz_hw * hw,u8 gpio)3008 static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
3009 {
3010 u16 data;
3011
3012 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3013 data &= ~gpio;
3014 writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3015 }
3016
raise_gpio(struct ksz_hw * hw,u8 gpio)3017 static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
3018 {
3019 u16 data;
3020
3021 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3022 data |= gpio;
3023 writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3024 }
3025
state_gpio(struct ksz_hw * hw,u8 gpio)3026 static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
3027 {
3028 u16 data;
3029
3030 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3031 return (u8)(data & gpio);
3032 }
3033
eeprom_clk(struct ksz_hw * hw)3034 static void eeprom_clk(struct ksz_hw *hw)
3035 {
3036 raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3037 udelay(EEPROM_DELAY);
3038 drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3039 udelay(EEPROM_DELAY);
3040 }
3041
spi_r(struct ksz_hw * hw)3042 static u16 spi_r(struct ksz_hw *hw)
3043 {
3044 int i;
3045 u16 temp = 0;
3046
3047 for (i = 15; i >= 0; i--) {
3048 raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3049 udelay(EEPROM_DELAY);
3050
3051 temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
3052
3053 drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3054 udelay(EEPROM_DELAY);
3055 }
3056 return temp;
3057 }
3058
spi_w(struct ksz_hw * hw,u16 data)3059 static void spi_w(struct ksz_hw *hw, u16 data)
3060 {
3061 int i;
3062
3063 for (i = 15; i >= 0; i--) {
3064 (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3065 drop_gpio(hw, EEPROM_DATA_OUT);
3066 eeprom_clk(hw);
3067 }
3068 }
3069
spi_reg(struct ksz_hw * hw,u8 data,u8 reg)3070 static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
3071 {
3072 int i;
3073
3074 /* Initial start bit */
3075 raise_gpio(hw, EEPROM_DATA_OUT);
3076 eeprom_clk(hw);
3077
3078 /* AT93C operation */
3079 for (i = 1; i >= 0; i--) {
3080 (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3081 drop_gpio(hw, EEPROM_DATA_OUT);
3082 eeprom_clk(hw);
3083 }
3084
3085 /* Address location */
3086 for (i = 5; i >= 0; i--) {
3087 (reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3088 drop_gpio(hw, EEPROM_DATA_OUT);
3089 eeprom_clk(hw);
3090 }
3091 }
3092
3093 #define EEPROM_DATA_RESERVED 0
3094 #define EEPROM_DATA_MAC_ADDR_0 1
3095 #define EEPROM_DATA_MAC_ADDR_1 2
3096 #define EEPROM_DATA_MAC_ADDR_2 3
3097 #define EEPROM_DATA_SUBSYS_ID 4
3098 #define EEPROM_DATA_SUBSYS_VEN_ID 5
3099 #define EEPROM_DATA_PM_CAP 6
3100
3101 /* User defined EEPROM data */
3102 #define EEPROM_DATA_OTHER_MAC_ADDR 9
3103
3104 /**
3105 * eeprom_read - read from AT93C46 EEPROM
3106 * @hw: The hardware instance.
3107 * @reg: The register offset.
3108 *
3109 * This function reads a word from the AT93C46 EEPROM.
3110 *
3111 * Return the data value.
3112 */
eeprom_read(struct ksz_hw * hw,u8 reg)3113 static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3114 {
3115 u16 data;
3116
3117 raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3118
3119 spi_reg(hw, AT93C_READ, reg);
3120 data = spi_r(hw);
3121
3122 drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3123
3124 return data;
3125 }
3126
3127 /**
3128 * eeprom_write - write to AT93C46 EEPROM
3129 * @hw: The hardware instance.
3130 * @reg: The register offset.
3131 * @data: The data value.
3132 *
3133 * This procedure writes a word to the AT93C46 EEPROM.
3134 */
eeprom_write(struct ksz_hw * hw,u8 reg,u16 data)3135 static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3136 {
3137 int timeout;
3138
3139 raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3140
3141 /* Enable write. */
3142 spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3143 drop_gpio(hw, EEPROM_CHIP_SELECT);
3144 udelay(1);
3145
3146 /* Erase the register. */
3147 raise_gpio(hw, EEPROM_CHIP_SELECT);
3148 spi_reg(hw, AT93C_ERASE, reg);
3149 drop_gpio(hw, EEPROM_CHIP_SELECT);
3150 udelay(1);
3151
3152 /* Check operation complete. */
3153 raise_gpio(hw, EEPROM_CHIP_SELECT);
3154 timeout = 8;
3155 mdelay(2);
3156 do {
3157 mdelay(1);
3158 } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3159 drop_gpio(hw, EEPROM_CHIP_SELECT);
3160 udelay(1);
3161
3162 /* Write the register. */
3163 raise_gpio(hw, EEPROM_CHIP_SELECT);
3164 spi_reg(hw, AT93C_WRITE, reg);
3165 spi_w(hw, data);
3166 drop_gpio(hw, EEPROM_CHIP_SELECT);
3167 udelay(1);
3168
3169 /* Check operation complete. */
3170 raise_gpio(hw, EEPROM_CHIP_SELECT);
3171 timeout = 8;
3172 mdelay(2);
3173 do {
3174 mdelay(1);
3175 } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3176 drop_gpio(hw, EEPROM_CHIP_SELECT);
3177 udelay(1);
3178
3179 /* Disable write. */
3180 raise_gpio(hw, EEPROM_CHIP_SELECT);
3181 spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3182
3183 drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3184 }
3185
3186 /*
3187 * Link detection routines
3188 */
3189
advertised_flow_ctrl(struct ksz_port * port,u16 ctrl)3190 static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3191 {
3192 ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3193 switch (port->flow_ctrl) {
3194 case PHY_FLOW_CTRL:
3195 ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3196 break;
3197 /* Not supported. */
3198 case PHY_TX_ONLY:
3199 case PHY_RX_ONLY:
3200 default:
3201 break;
3202 }
3203 return ctrl;
3204 }
3205
set_flow_ctrl(struct ksz_hw * hw,int rx,int tx)3206 static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3207 {
3208 u32 rx_cfg;
3209 u32 tx_cfg;
3210
3211 rx_cfg = hw->rx_cfg;
3212 tx_cfg = hw->tx_cfg;
3213 if (rx)
3214 hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3215 else
3216 hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3217 if (tx)
3218 hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3219 else
3220 hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3221 if (hw->enabled) {
3222 if (rx_cfg != hw->rx_cfg)
3223 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3224 if (tx_cfg != hw->tx_cfg)
3225 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3226 }
3227 }
3228
determine_flow_ctrl(struct ksz_hw * hw,struct ksz_port * port,u16 local,u16 remote)3229 static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3230 u16 local, u16 remote)
3231 {
3232 int rx;
3233 int tx;
3234
3235 if (hw->overrides & PAUSE_FLOW_CTRL)
3236 return;
3237
3238 rx = tx = 0;
3239 if (port->force_link)
3240 rx = tx = 1;
3241 if (remote & PHY_AUTO_NEG_SYM_PAUSE) {
3242 if (local & PHY_AUTO_NEG_SYM_PAUSE) {
3243 rx = tx = 1;
3244 } else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) &&
3245 (local & PHY_AUTO_NEG_PAUSE) ==
3246 PHY_AUTO_NEG_ASYM_PAUSE) {
3247 tx = 1;
3248 }
3249 } else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) {
3250 if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE)
3251 rx = 1;
3252 }
3253 if (!hw->ksz_switch)
3254 set_flow_ctrl(hw, rx, tx);
3255 }
3256
port_cfg_change(struct ksz_hw * hw,struct ksz_port * port,struct ksz_port_info * info,u16 link_status)3257 static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3258 struct ksz_port_info *info, u16 link_status)
3259 {
3260 if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3261 !(hw->overrides & PAUSE_FLOW_CTRL)) {
3262 u32 cfg = hw->tx_cfg;
3263
3264 /* Disable flow control in the half duplex mode. */
3265 if (1 == info->duplex)
3266 hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3267 if (hw->enabled && cfg != hw->tx_cfg)
3268 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3269 }
3270 }
3271
3272 /**
3273 * port_get_link_speed - get current link status
3274 * @port: The port instance.
3275 *
3276 * This routine reads PHY registers to determine the current link status of the
3277 * switch ports.
3278 */
port_get_link_speed(struct ksz_port * port)3279 static void port_get_link_speed(struct ksz_port *port)
3280 {
3281 uint interrupt;
3282 struct ksz_port_info *info;
3283 struct ksz_port_info *linked = NULL;
3284 struct ksz_hw *hw = port->hw;
3285 u16 data;
3286 u16 status;
3287 u8 local;
3288 u8 remote;
3289 int i;
3290 int p;
3291 int change = 0;
3292
3293 interrupt = hw_block_intr(hw);
3294
3295 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3296 info = &hw->port_info[p];
3297 port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3298 port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3299
3300 /*
3301 * Link status is changing all the time even when there is no
3302 * cable connection!
3303 */
3304 remote = status & (PORT_AUTO_NEG_COMPLETE |
3305 PORT_STATUS_LINK_GOOD);
3306 local = (u8) data;
3307
3308 /* No change to status. */
3309 if (local == info->advertised && remote == info->partner)
3310 continue;
3311
3312 info->advertised = local;
3313 info->partner = remote;
3314 if (status & PORT_STATUS_LINK_GOOD) {
3315
3316 /* Remember the first linked port. */
3317 if (!linked)
3318 linked = info;
3319
3320 info->tx_rate = 10 * TX_RATE_UNIT;
3321 if (status & PORT_STATUS_SPEED_100MBIT)
3322 info->tx_rate = 100 * TX_RATE_UNIT;
3323
3324 info->duplex = 1;
3325 if (status & PORT_STATUS_FULL_DUPLEX)
3326 info->duplex = 2;
3327
3328 if (media_connected != info->state) {
3329 hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3330 &data);
3331 hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3332 &status);
3333 determine_flow_ctrl(hw, port, data, status);
3334 if (hw->ksz_switch) {
3335 port_cfg_back_pressure(hw, p,
3336 (1 == info->duplex));
3337 }
3338 change |= 1 << i;
3339 port_cfg_change(hw, port, info, status);
3340 }
3341 info->state = media_connected;
3342 } else {
3343 if (media_disconnected != info->state) {
3344 change |= 1 << i;
3345
3346 /* Indicate the link just goes down. */
3347 hw->port_mib[p].link_down = 1;
3348 }
3349 info->state = media_disconnected;
3350 }
3351 hw->port_mib[p].state = (u8) info->state;
3352 }
3353
3354 if (linked && media_disconnected == port->linked->state)
3355 port->linked = linked;
3356
3357 hw_restore_intr(hw, interrupt);
3358 }
3359
3360 #define PHY_RESET_TIMEOUT 10
3361
3362 /**
3363 * port_set_link_speed - set port speed
3364 * @port: The port instance.
3365 *
3366 * This routine sets the link speed of the switch ports.
3367 */
port_set_link_speed(struct ksz_port * port)3368 static void port_set_link_speed(struct ksz_port *port)
3369 {
3370 struct ksz_hw *hw = port->hw;
3371 u16 data;
3372 u16 cfg;
3373 u8 status;
3374 int i;
3375 int p;
3376
3377 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3378 port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3379 port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3380
3381 cfg = 0;
3382 if (status & PORT_STATUS_LINK_GOOD)
3383 cfg = data;
3384
3385 data |= PORT_AUTO_NEG_ENABLE;
3386 data = advertised_flow_ctrl(port, data);
3387
3388 data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3389 PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3390
3391 /* Check if manual configuration is specified by the user. */
3392 if (port->speed || port->duplex) {
3393 if (10 == port->speed)
3394 data &= ~(PORT_AUTO_NEG_100BTX_FD |
3395 PORT_AUTO_NEG_100BTX);
3396 else if (100 == port->speed)
3397 data &= ~(PORT_AUTO_NEG_10BT_FD |
3398 PORT_AUTO_NEG_10BT);
3399 if (1 == port->duplex)
3400 data &= ~(PORT_AUTO_NEG_100BTX_FD |
3401 PORT_AUTO_NEG_10BT_FD);
3402 else if (2 == port->duplex)
3403 data &= ~(PORT_AUTO_NEG_100BTX |
3404 PORT_AUTO_NEG_10BT);
3405 }
3406 if (data != cfg) {
3407 data |= PORT_AUTO_NEG_RESTART;
3408 port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3409 }
3410 }
3411 }
3412
3413 /**
3414 * port_force_link_speed - force port speed
3415 * @port: The port instance.
3416 *
3417 * This routine forces the link speed of the switch ports.
3418 */
port_force_link_speed(struct ksz_port * port)3419 static void port_force_link_speed(struct ksz_port *port)
3420 {
3421 struct ksz_hw *hw = port->hw;
3422 u16 data;
3423 int i;
3424 int phy;
3425 int p;
3426
3427 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3428 phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3429 hw_r_phy_ctrl(hw, phy, &data);
3430
3431 data &= ~PHY_AUTO_NEG_ENABLE;
3432
3433 if (10 == port->speed)
3434 data &= ~PHY_SPEED_100MBIT;
3435 else if (100 == port->speed)
3436 data |= PHY_SPEED_100MBIT;
3437 if (1 == port->duplex)
3438 data &= ~PHY_FULL_DUPLEX;
3439 else if (2 == port->duplex)
3440 data |= PHY_FULL_DUPLEX;
3441 hw_w_phy_ctrl(hw, phy, data);
3442 }
3443 }
3444
port_set_power_saving(struct ksz_port * port,int enable)3445 static void port_set_power_saving(struct ksz_port *port, int enable)
3446 {
3447 struct ksz_hw *hw = port->hw;
3448 int i;
3449 int p;
3450
3451 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3452 port_cfg(hw, p,
3453 KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3454 }
3455
3456 /*
3457 * KSZ8841 power management functions
3458 */
3459
3460 /**
3461 * hw_chk_wol_pme_status - check PMEN pin
3462 * @hw: The hardware instance.
3463 *
3464 * This function is used to check PMEN pin is asserted.
3465 *
3466 * Return 1 if PMEN pin is asserted; otherwise, 0.
3467 */
hw_chk_wol_pme_status(struct ksz_hw * hw)3468 static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3469 {
3470 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3471 struct pci_dev *pdev = hw_priv->pdev;
3472 u16 data;
3473
3474 if (!pdev->pm_cap)
3475 return 0;
3476 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3477 return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3478 }
3479
3480 /**
3481 * hw_clr_wol_pme_status - clear PMEN pin
3482 * @hw: The hardware instance.
3483 *
3484 * This routine is used to clear PME_Status to deassert PMEN pin.
3485 */
hw_clr_wol_pme_status(struct ksz_hw * hw)3486 static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3487 {
3488 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3489 struct pci_dev *pdev = hw_priv->pdev;
3490 u16 data;
3491
3492 if (!pdev->pm_cap)
3493 return;
3494
3495 /* Clear PME_Status to deassert PMEN pin. */
3496 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3497 data |= PCI_PM_CTRL_PME_STATUS;
3498 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3499 }
3500
3501 /**
3502 * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3503 * @hw: The hardware instance.
3504 * @set: The flag indicating whether to enable or disable.
3505 *
3506 * This routine is used to enable or disable Wake-on-LAN.
3507 */
hw_cfg_wol_pme(struct ksz_hw * hw,int set)3508 static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3509 {
3510 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3511 struct pci_dev *pdev = hw_priv->pdev;
3512 u16 data;
3513
3514 if (!pdev->pm_cap)
3515 return;
3516 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3517 data &= ~PCI_PM_CTRL_STATE_MASK;
3518 if (set)
3519 data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3520 else
3521 data &= ~PCI_PM_CTRL_PME_ENABLE;
3522 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3523 }
3524
3525 /**
3526 * hw_cfg_wol - configure Wake-on-LAN features
3527 * @hw: The hardware instance.
3528 * @frame: The pattern frame bit.
3529 * @set: The flag indicating whether to enable or disable.
3530 *
3531 * This routine is used to enable or disable certain Wake-on-LAN features.
3532 */
hw_cfg_wol(struct ksz_hw * hw,u16 frame,int set)3533 static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3534 {
3535 u16 data;
3536
3537 data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3538 if (set)
3539 data |= frame;
3540 else
3541 data &= ~frame;
3542 writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3543 }
3544
3545 /**
3546 * hw_set_wol_frame - program Wake-on-LAN pattern
3547 * @hw: The hardware instance.
3548 * @i: The frame index.
3549 * @mask_size: The size of the mask.
3550 * @mask: Mask to ignore certain bytes in the pattern.
3551 * @frame_size: The size of the frame.
3552 * @pattern: The frame data.
3553 *
3554 * This routine is used to program Wake-on-LAN pattern.
3555 */
hw_set_wol_frame(struct ksz_hw * hw,int i,uint mask_size,const u8 * mask,uint frame_size,const u8 * pattern)3556 static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3557 const u8 *mask, uint frame_size, const u8 *pattern)
3558 {
3559 int bits;
3560 int from;
3561 int len;
3562 int to;
3563 u32 crc;
3564 u8 data[64];
3565 u8 val = 0;
3566
3567 if (frame_size > mask_size * 8)
3568 frame_size = mask_size * 8;
3569 if (frame_size > 64)
3570 frame_size = 64;
3571
3572 i *= 0x10;
3573 writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3574 writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3575
3576 bits = len = from = to = 0;
3577 do {
3578 if (bits) {
3579 if ((val & 1))
3580 data[to++] = pattern[from];
3581 val >>= 1;
3582 ++from;
3583 --bits;
3584 } else {
3585 val = mask[len];
3586 writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3587 + len);
3588 ++len;
3589 if (val)
3590 bits = 8;
3591 else
3592 from += 8;
3593 }
3594 } while (from < (int) frame_size);
3595 if (val) {
3596 bits = mask[len - 1];
3597 val <<= (from % 8);
3598 bits &= ~val;
3599 writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3600 1);
3601 }
3602 crc = ether_crc(to, data);
3603 writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3604 }
3605
3606 /**
3607 * hw_add_wol_arp - add ARP pattern
3608 * @hw: The hardware instance.
3609 * @ip_addr: The IPv4 address assigned to the device.
3610 *
3611 * This routine is used to add ARP pattern for waking up the host.
3612 */
hw_add_wol_arp(struct ksz_hw * hw,const u8 * ip_addr)3613 static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3614 {
3615 static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3616 u8 pattern[42] = {
3617 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3618 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3619 0x08, 0x06,
3620 0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3621 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3622 0x00, 0x00, 0x00, 0x00,
3623 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3624 0x00, 0x00, 0x00, 0x00 };
3625
3626 memcpy(&pattern[38], ip_addr, 4);
3627 hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3628 }
3629
3630 /**
3631 * hw_add_wol_bcast - add broadcast pattern
3632 * @hw: The hardware instance.
3633 *
3634 * This routine is used to add broadcast pattern for waking up the host.
3635 */
hw_add_wol_bcast(struct ksz_hw * hw)3636 static void hw_add_wol_bcast(struct ksz_hw *hw)
3637 {
3638 static const u8 mask[] = { 0x3F };
3639 static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3640
3641 hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern);
3642 }
3643
3644 /**
3645 * hw_add_wol_mcast - add multicast pattern
3646 * @hw: The hardware instance.
3647 *
3648 * This routine is used to add multicast pattern for waking up the host.
3649 *
3650 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3651 * by IPv6 ping command. Note that multicast packets are filtred through the
3652 * multicast hash table, so not all multicast packets can wake up the host.
3653 */
hw_add_wol_mcast(struct ksz_hw * hw)3654 static void hw_add_wol_mcast(struct ksz_hw *hw)
3655 {
3656 static const u8 mask[] = { 0x3F };
3657 u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3658
3659 memcpy(&pattern[3], &hw->override_addr[3], 3);
3660 hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3661 }
3662
3663 /**
3664 * hw_add_wol_ucast - add unicast pattern
3665 * @hw: The hardware instance.
3666 *
3667 * This routine is used to add unicast pattern to wakeup the host.
3668 *
3669 * It is assumed the unicast packet is directed to the device, as the hardware
3670 * can only receive them in normal case.
3671 */
hw_add_wol_ucast(struct ksz_hw * hw)3672 static void hw_add_wol_ucast(struct ksz_hw *hw)
3673 {
3674 static const u8 mask[] = { 0x3F };
3675
3676 hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr);
3677 }
3678
3679 /**
3680 * hw_enable_wol - enable Wake-on-LAN
3681 * @hw: The hardware instance.
3682 * @wol_enable: The Wake-on-LAN settings.
3683 * @net_addr: The IPv4 address assigned to the device.
3684 *
3685 * This routine is used to enable Wake-on-LAN depending on driver settings.
3686 */
hw_enable_wol(struct ksz_hw * hw,u32 wol_enable,const u8 * net_addr)3687 static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3688 {
3689 hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3690 hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3691 hw_add_wol_ucast(hw);
3692 hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3693 hw_add_wol_mcast(hw);
3694 hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3695 hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3696 hw_add_wol_arp(hw, net_addr);
3697 }
3698
3699 /**
3700 * hw_init - check driver is correct for the hardware
3701 * @hw: The hardware instance.
3702 *
3703 * This function checks the hardware is correct for this driver and sets the
3704 * hardware up for proper initialization.
3705 *
3706 * Return number of ports or 0 if not right.
3707 */
hw_init(struct ksz_hw * hw)3708 static int hw_init(struct ksz_hw *hw)
3709 {
3710 int rc = 0;
3711 u16 data;
3712 u16 revision;
3713
3714 /* Set bus speed to 125MHz. */
3715 writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3716
3717 /* Check KSZ884x chip ID. */
3718 data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3719
3720 revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3721 data &= KS884X_CHIP_ID_MASK_41;
3722 if (REG_CHIP_ID_41 == data)
3723 rc = 1;
3724 else if (REG_CHIP_ID_42 == data)
3725 rc = 2;
3726 else
3727 return 0;
3728
3729 /* Setup hardware features or bug workarounds. */
3730 if (revision <= 1) {
3731 hw->features |= SMALL_PACKET_TX_BUG;
3732 if (1 == rc)
3733 hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3734 }
3735 return rc;
3736 }
3737
3738 /**
3739 * hw_reset - reset the hardware
3740 * @hw: The hardware instance.
3741 *
3742 * This routine resets the hardware.
3743 */
hw_reset(struct ksz_hw * hw)3744 static void hw_reset(struct ksz_hw *hw)
3745 {
3746 writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3747
3748 /* Wait for device to reset. */
3749 mdelay(10);
3750
3751 /* Write 0 to clear device reset. */
3752 writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3753 }
3754
3755 /**
3756 * hw_setup - setup the hardware
3757 * @hw: The hardware instance.
3758 *
3759 * This routine setup the hardware for proper operation.
3760 */
hw_setup(struct ksz_hw * hw)3761 static void hw_setup(struct ksz_hw *hw)
3762 {
3763 #if SET_DEFAULT_LED
3764 u16 data;
3765
3766 /* Change default LED mode. */
3767 data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3768 data &= ~LED_MODE;
3769 data |= SET_DEFAULT_LED;
3770 writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3771 #endif
3772
3773 /* Setup transmit control. */
3774 hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3775 (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3776
3777 /* Setup receive control. */
3778 hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3779 (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3780 hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3781
3782 /* Hardware cannot handle UDP packet in IP fragments. */
3783 hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3784
3785 if (hw->all_multi)
3786 hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3787 if (hw->promiscuous)
3788 hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3789 }
3790
3791 /**
3792 * hw_setup_intr - setup interrupt mask
3793 * @hw: The hardware instance.
3794 *
3795 * This routine setup the interrupt mask for proper operation.
3796 */
hw_setup_intr(struct ksz_hw * hw)3797 static void hw_setup_intr(struct ksz_hw *hw)
3798 {
3799 hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3800 }
3801
ksz_check_desc_num(struct ksz_desc_info * info)3802 static void ksz_check_desc_num(struct ksz_desc_info *info)
3803 {
3804 #define MIN_DESC_SHIFT 2
3805
3806 int alloc = info->alloc;
3807 int shift;
3808
3809 shift = 0;
3810 while (!(alloc & 1)) {
3811 shift++;
3812 alloc >>= 1;
3813 }
3814 if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3815 pr_alert("Hardware descriptor numbers not right!\n");
3816 while (alloc) {
3817 shift++;
3818 alloc >>= 1;
3819 }
3820 if (shift < MIN_DESC_SHIFT)
3821 shift = MIN_DESC_SHIFT;
3822 alloc = 1 << shift;
3823 info->alloc = alloc;
3824 }
3825 info->mask = info->alloc - 1;
3826 }
3827
hw_init_desc(struct ksz_desc_info * desc_info,int transmit)3828 static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3829 {
3830 int i;
3831 u32 phys = desc_info->ring_phys;
3832 struct ksz_hw_desc *desc = desc_info->ring_virt;
3833 struct ksz_desc *cur = desc_info->ring;
3834 struct ksz_desc *previous = NULL;
3835
3836 for (i = 0; i < desc_info->alloc; i++) {
3837 cur->phw = desc++;
3838 phys += desc_info->size;
3839 previous = cur++;
3840 previous->phw->next = cpu_to_le32(phys);
3841 }
3842 previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3843 previous->sw.buf.rx.end_of_ring = 1;
3844 previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3845
3846 desc_info->avail = desc_info->alloc;
3847 desc_info->last = desc_info->next = 0;
3848
3849 desc_info->cur = desc_info->ring;
3850 }
3851
3852 /**
3853 * hw_set_desc_base - set descriptor base addresses
3854 * @hw: The hardware instance.
3855 * @tx_addr: The transmit descriptor base.
3856 * @rx_addr: The receive descriptor base.
3857 *
3858 * This routine programs the descriptor base addresses after reset.
3859 */
hw_set_desc_base(struct ksz_hw * hw,u32 tx_addr,u32 rx_addr)3860 static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3861 {
3862 /* Set base address of Tx/Rx descriptors. */
3863 writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3864 writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3865 }
3866
hw_reset_pkts(struct ksz_desc_info * info)3867 static void hw_reset_pkts(struct ksz_desc_info *info)
3868 {
3869 info->cur = info->ring;
3870 info->avail = info->alloc;
3871 info->last = info->next = 0;
3872 }
3873
hw_resume_rx(struct ksz_hw * hw)3874 static inline void hw_resume_rx(struct ksz_hw *hw)
3875 {
3876 writel(DMA_START, hw->io + KS_DMA_RX_START);
3877 }
3878
3879 /**
3880 * hw_start_rx - start receiving
3881 * @hw: The hardware instance.
3882 *
3883 * This routine starts the receive function of the hardware.
3884 */
hw_start_rx(struct ksz_hw * hw)3885 static void hw_start_rx(struct ksz_hw *hw)
3886 {
3887 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3888
3889 /* Notify when the receive stops. */
3890 hw->intr_mask |= KS884X_INT_RX_STOPPED;
3891
3892 writel(DMA_START, hw->io + KS_DMA_RX_START);
3893 hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3894 hw->rx_stop++;
3895
3896 /* Variable overflows. */
3897 if (0 == hw->rx_stop)
3898 hw->rx_stop = 2;
3899 }
3900
3901 /**
3902 * hw_stop_rx - stop receiving
3903 * @hw: The hardware instance.
3904 *
3905 * This routine stops the receive function of the hardware.
3906 */
hw_stop_rx(struct ksz_hw * hw)3907 static void hw_stop_rx(struct ksz_hw *hw)
3908 {
3909 hw->rx_stop = 0;
3910 hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3911 writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3912 }
3913
3914 /**
3915 * hw_start_tx - start transmitting
3916 * @hw: The hardware instance.
3917 *
3918 * This routine starts the transmit function of the hardware.
3919 */
hw_start_tx(struct ksz_hw * hw)3920 static void hw_start_tx(struct ksz_hw *hw)
3921 {
3922 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3923 }
3924
3925 /**
3926 * hw_stop_tx - stop transmitting
3927 * @hw: The hardware instance.
3928 *
3929 * This routine stops the transmit function of the hardware.
3930 */
hw_stop_tx(struct ksz_hw * hw)3931 static void hw_stop_tx(struct ksz_hw *hw)
3932 {
3933 writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3934 }
3935
3936 /**
3937 * hw_disable - disable hardware
3938 * @hw: The hardware instance.
3939 *
3940 * This routine disables the hardware.
3941 */
hw_disable(struct ksz_hw * hw)3942 static void hw_disable(struct ksz_hw *hw)
3943 {
3944 hw_stop_rx(hw);
3945 hw_stop_tx(hw);
3946 hw->enabled = 0;
3947 }
3948
3949 /**
3950 * hw_enable - enable hardware
3951 * @hw: The hardware instance.
3952 *
3953 * This routine enables the hardware.
3954 */
hw_enable(struct ksz_hw * hw)3955 static void hw_enable(struct ksz_hw *hw)
3956 {
3957 hw_start_tx(hw);
3958 hw_start_rx(hw);
3959 hw->enabled = 1;
3960 }
3961
3962 /**
3963 * hw_alloc_pkt - allocate enough descriptors for transmission
3964 * @hw: The hardware instance.
3965 * @length: The length of the packet.
3966 * @physical: Number of descriptors required.
3967 *
3968 * This function allocates descriptors for transmission.
3969 *
3970 * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3971 */
hw_alloc_pkt(struct ksz_hw * hw,int length,int physical)3972 static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3973 {
3974 /* Always leave one descriptor free. */
3975 if (hw->tx_desc_info.avail <= 1)
3976 return 0;
3977
3978 /* Allocate a descriptor for transmission and mark it current. */
3979 get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3980 hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3981
3982 /* Keep track of number of transmit descriptors used so far. */
3983 ++hw->tx_int_cnt;
3984 hw->tx_size += length;
3985
3986 /* Cannot hold on too much data. */
3987 if (hw->tx_size >= MAX_TX_HELD_SIZE)
3988 hw->tx_int_cnt = hw->tx_int_mask + 1;
3989
3990 if (physical > hw->tx_desc_info.avail)
3991 return 1;
3992
3993 return hw->tx_desc_info.avail;
3994 }
3995
3996 /**
3997 * hw_send_pkt - mark packet for transmission
3998 * @hw: The hardware instance.
3999 *
4000 * This routine marks the packet for transmission in PCI version.
4001 */
hw_send_pkt(struct ksz_hw * hw)4002 static void hw_send_pkt(struct ksz_hw *hw)
4003 {
4004 struct ksz_desc *cur = hw->tx_desc_info.cur;
4005
4006 cur->sw.buf.tx.last_seg = 1;
4007
4008 /* Interrupt only after specified number of descriptors used. */
4009 if (hw->tx_int_cnt > hw->tx_int_mask) {
4010 cur->sw.buf.tx.intr = 1;
4011 hw->tx_int_cnt = 0;
4012 hw->tx_size = 0;
4013 }
4014
4015 /* KSZ8842 supports port directed transmission. */
4016 cur->sw.buf.tx.dest_port = hw->dst_ports;
4017
4018 release_desc(cur);
4019
4020 writel(0, hw->io + KS_DMA_TX_START);
4021 }
4022
empty_addr(u8 * addr)4023 static int empty_addr(u8 *addr)
4024 {
4025 u32 *addr1 = (u32 *) addr;
4026 u16 *addr2 = (u16 *) &addr[4];
4027
4028 return 0 == *addr1 && 0 == *addr2;
4029 }
4030
4031 /**
4032 * hw_set_addr - set MAC address
4033 * @hw: The hardware instance.
4034 *
4035 * This routine programs the MAC address of the hardware when the address is
4036 * overridden.
4037 */
hw_set_addr(struct ksz_hw * hw)4038 static void hw_set_addr(struct ksz_hw *hw)
4039 {
4040 int i;
4041
4042 for (i = 0; i < ETH_ALEN; i++)
4043 writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
4044 hw->io + KS884X_ADDR_0_OFFSET + i);
4045
4046 sw_set_addr(hw, hw->override_addr);
4047 }
4048
4049 /**
4050 * hw_read_addr - read MAC address
4051 * @hw: The hardware instance.
4052 *
4053 * This routine retrieves the MAC address of the hardware.
4054 */
hw_read_addr(struct ksz_hw * hw)4055 static void hw_read_addr(struct ksz_hw *hw)
4056 {
4057 int i;
4058
4059 for (i = 0; i < ETH_ALEN; i++)
4060 hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
4061 KS884X_ADDR_0_OFFSET + i);
4062
4063 if (!hw->mac_override) {
4064 memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN);
4065 if (empty_addr(hw->override_addr)) {
4066 memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN);
4067 memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
4068 ETH_ALEN);
4069 hw->override_addr[5] += hw->id;
4070 hw_set_addr(hw);
4071 }
4072 }
4073 }
4074
hw_ena_add_addr(struct ksz_hw * hw,int index,u8 * mac_addr)4075 static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4076 {
4077 int i;
4078 u32 mac_addr_lo;
4079 u32 mac_addr_hi;
4080
4081 mac_addr_hi = 0;
4082 for (i = 0; i < 2; i++) {
4083 mac_addr_hi <<= 8;
4084 mac_addr_hi |= mac_addr[i];
4085 }
4086 mac_addr_hi |= ADD_ADDR_ENABLE;
4087 mac_addr_lo = 0;
4088 for (i = 2; i < 6; i++) {
4089 mac_addr_lo <<= 8;
4090 mac_addr_lo |= mac_addr[i];
4091 }
4092 index *= ADD_ADDR_INCR;
4093
4094 writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4095 writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4096 }
4097
hw_set_add_addr(struct ksz_hw * hw)4098 static void hw_set_add_addr(struct ksz_hw *hw)
4099 {
4100 int i;
4101
4102 for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4103 if (empty_addr(hw->address[i]))
4104 writel(0, hw->io + ADD_ADDR_INCR * i +
4105 KS_ADD_ADDR_0_HI);
4106 else
4107 hw_ena_add_addr(hw, i, hw->address[i]);
4108 }
4109 }
4110
hw_add_addr(struct ksz_hw * hw,u8 * mac_addr)4111 static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
4112 {
4113 int i;
4114 int j = ADDITIONAL_ENTRIES;
4115
4116 if (ether_addr_equal(hw->override_addr, mac_addr))
4117 return 0;
4118 for (i = 0; i < hw->addr_list_size; i++) {
4119 if (ether_addr_equal(hw->address[i], mac_addr))
4120 return 0;
4121 if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4122 j = i;
4123 }
4124 if (j < ADDITIONAL_ENTRIES) {
4125 memcpy(hw->address[j], mac_addr, ETH_ALEN);
4126 hw_ena_add_addr(hw, j, hw->address[j]);
4127 return 0;
4128 }
4129 return -1;
4130 }
4131
hw_del_addr(struct ksz_hw * hw,u8 * mac_addr)4132 static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
4133 {
4134 int i;
4135
4136 for (i = 0; i < hw->addr_list_size; i++) {
4137 if (ether_addr_equal(hw->address[i], mac_addr)) {
4138 eth_zero_addr(hw->address[i]);
4139 writel(0, hw->io + ADD_ADDR_INCR * i +
4140 KS_ADD_ADDR_0_HI);
4141 return 0;
4142 }
4143 }
4144 return -1;
4145 }
4146
4147 /**
4148 * hw_clr_multicast - clear multicast addresses
4149 * @hw: The hardware instance.
4150 *
4151 * This routine removes all multicast addresses set in the hardware.
4152 */
hw_clr_multicast(struct ksz_hw * hw)4153 static void hw_clr_multicast(struct ksz_hw *hw)
4154 {
4155 int i;
4156
4157 for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4158 hw->multi_bits[i] = 0;
4159
4160 writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4161 }
4162 }
4163
4164 /**
4165 * hw_set_grp_addr - set multicast addresses
4166 * @hw: The hardware instance.
4167 *
4168 * This routine programs multicast addresses for the hardware to accept those
4169 * addresses.
4170 */
hw_set_grp_addr(struct ksz_hw * hw)4171 static void hw_set_grp_addr(struct ksz_hw *hw)
4172 {
4173 int i;
4174 int index;
4175 int position;
4176 int value;
4177
4178 memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4179
4180 for (i = 0; i < hw->multi_list_size; i++) {
4181 position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4182 index = position >> 3;
4183 value = 1 << (position & 7);
4184 hw->multi_bits[index] |= (u8) value;
4185 }
4186
4187 for (i = 0; i < HW_MULTICAST_SIZE; i++)
4188 writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4189 i);
4190 }
4191
4192 /**
4193 * hw_set_multicast - enable or disable all multicast receiving
4194 * @hw: The hardware instance.
4195 * @multicast: To turn on or off the all multicast feature.
4196 *
4197 * This routine enables/disables the hardware to accept all multicast packets.
4198 */
hw_set_multicast(struct ksz_hw * hw,u8 multicast)4199 static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4200 {
4201 /* Stop receiving for reconfiguration. */
4202 hw_stop_rx(hw);
4203
4204 if (multicast)
4205 hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4206 else
4207 hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4208
4209 if (hw->enabled)
4210 hw_start_rx(hw);
4211 }
4212
4213 /**
4214 * hw_set_promiscuous - enable or disable promiscuous receiving
4215 * @hw: The hardware instance.
4216 * @prom: To turn on or off the promiscuous feature.
4217 *
4218 * This routine enables/disables the hardware to accept all packets.
4219 */
hw_set_promiscuous(struct ksz_hw * hw,u8 prom)4220 static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4221 {
4222 /* Stop receiving for reconfiguration. */
4223 hw_stop_rx(hw);
4224
4225 if (prom)
4226 hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4227 else
4228 hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4229
4230 if (hw->enabled)
4231 hw_start_rx(hw);
4232 }
4233
4234 /**
4235 * sw_enable - enable the switch
4236 * @hw: The hardware instance.
4237 * @enable: The flag to enable or disable the switch
4238 *
4239 * This routine is used to enable/disable the switch in KSZ8842.
4240 */
sw_enable(struct ksz_hw * hw,int enable)4241 static void sw_enable(struct ksz_hw *hw, int enable)
4242 {
4243 int port;
4244
4245 for (port = 0; port < SWITCH_PORT_NUM; port++) {
4246 if (hw->dev_count > 1) {
4247 /* Set port-base vlan membership with host port. */
4248 sw_cfg_port_base_vlan(hw, port,
4249 HOST_MASK | (1 << port));
4250 port_set_stp_state(hw, port, STP_STATE_DISABLED);
4251 } else {
4252 sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4253 port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4254 }
4255 }
4256 if (hw->dev_count > 1)
4257 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4258 else
4259 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4260
4261 if (enable)
4262 enable = KS8842_START;
4263 writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4264 }
4265
4266 /**
4267 * sw_setup - setup the switch
4268 * @hw: The hardware instance.
4269 *
4270 * This routine setup the hardware switch engine for default operation.
4271 */
sw_setup(struct ksz_hw * hw)4272 static void sw_setup(struct ksz_hw *hw)
4273 {
4274 int port;
4275
4276 sw_set_global_ctrl(hw);
4277
4278 /* Enable switch broadcast storm protection at 10% percent rate. */
4279 sw_init_broad_storm(hw);
4280 hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4281 for (port = 0; port < SWITCH_PORT_NUM; port++)
4282 sw_ena_broad_storm(hw, port);
4283
4284 sw_init_prio(hw);
4285
4286 sw_init_mirror(hw);
4287
4288 sw_init_prio_rate(hw);
4289
4290 sw_init_vlan(hw);
4291
4292 if (hw->features & STP_SUPPORT)
4293 sw_init_stp(hw);
4294 if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4295 SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4296 hw->overrides |= PAUSE_FLOW_CTRL;
4297 sw_enable(hw, 1);
4298 }
4299
4300 /**
4301 * ksz_start_timer - start kernel timer
4302 * @info: Kernel timer information.
4303 * @time: The time tick.
4304 *
4305 * This routine starts the kernel timer after the specified time tick.
4306 */
ksz_start_timer(struct ksz_timer_info * info,int time)4307 static void ksz_start_timer(struct ksz_timer_info *info, int time)
4308 {
4309 info->cnt = 0;
4310 info->timer.expires = jiffies + time;
4311 add_timer(&info->timer);
4312
4313 /* infinity */
4314 info->max = -1;
4315 }
4316
4317 /**
4318 * ksz_stop_timer - stop kernel timer
4319 * @info: Kernel timer information.
4320 *
4321 * This routine stops the kernel timer.
4322 */
ksz_stop_timer(struct ksz_timer_info * info)4323 static void ksz_stop_timer(struct ksz_timer_info *info)
4324 {
4325 if (info->max) {
4326 info->max = 0;
4327 del_timer_sync(&info->timer);
4328 }
4329 }
4330
ksz_init_timer(struct ksz_timer_info * info,int period,void (* function)(struct timer_list *))4331 static void ksz_init_timer(struct ksz_timer_info *info, int period,
4332 void (*function)(struct timer_list *))
4333 {
4334 info->max = 0;
4335 info->period = period;
4336 timer_setup(&info->timer, function, 0);
4337 }
4338
ksz_update_timer(struct ksz_timer_info * info)4339 static void ksz_update_timer(struct ksz_timer_info *info)
4340 {
4341 ++info->cnt;
4342 if (info->max > 0) {
4343 if (info->cnt < info->max) {
4344 info->timer.expires = jiffies + info->period;
4345 add_timer(&info->timer);
4346 } else
4347 info->max = 0;
4348 } else if (info->max < 0) {
4349 info->timer.expires = jiffies + info->period;
4350 add_timer(&info->timer);
4351 }
4352 }
4353
4354 /**
4355 * ksz_alloc_soft_desc - allocate software descriptors
4356 * @desc_info: Descriptor information structure.
4357 * @transmit: Indication that descriptors are for transmit.
4358 *
4359 * This local function allocates software descriptors for manipulation in
4360 * memory.
4361 *
4362 * Return 0 if successful.
4363 */
ksz_alloc_soft_desc(struct ksz_desc_info * desc_info,int transmit)4364 static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4365 {
4366 desc_info->ring = kcalloc(desc_info->alloc, sizeof(struct ksz_desc),
4367 GFP_KERNEL);
4368 if (!desc_info->ring)
4369 return 1;
4370 hw_init_desc(desc_info, transmit);
4371 return 0;
4372 }
4373
4374 /**
4375 * ksz_alloc_desc - allocate hardware descriptors
4376 * @adapter: Adapter information structure.
4377 *
4378 * This local function allocates hardware descriptors for receiving and
4379 * transmitting.
4380 *
4381 * Return 0 if successful.
4382 */
ksz_alloc_desc(struct dev_info * adapter)4383 static int ksz_alloc_desc(struct dev_info *adapter)
4384 {
4385 struct ksz_hw *hw = &adapter->hw;
4386 int offset;
4387
4388 /* Allocate memory for RX & TX descriptors. */
4389 adapter->desc_pool.alloc_size =
4390 hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4391 hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4392 DESC_ALIGNMENT;
4393
4394 adapter->desc_pool.alloc_virt =
4395 dma_alloc_coherent(&adapter->pdev->dev,
4396 adapter->desc_pool.alloc_size,
4397 &adapter->desc_pool.dma_addr, GFP_KERNEL);
4398 if (adapter->desc_pool.alloc_virt == NULL) {
4399 adapter->desc_pool.alloc_size = 0;
4400 return 1;
4401 }
4402
4403 /* Align to the next cache line boundary. */
4404 offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4405 (DESC_ALIGNMENT -
4406 ((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4407 adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4408 adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4409
4410 /* Allocate receive/transmit descriptors. */
4411 hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4412 adapter->desc_pool.virt;
4413 hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4414 offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4415 hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4416 (adapter->desc_pool.virt + offset);
4417 hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4418
4419 if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4420 return 1;
4421 if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4422 return 1;
4423
4424 return 0;
4425 }
4426
4427 /**
4428 * free_dma_buf - release DMA buffer resources
4429 * @adapter: Adapter information structure.
4430 * @dma_buf: pointer to buf
4431 * @direction: to or from device
4432 *
4433 * This routine is just a helper function to release the DMA buffer resources.
4434 */
free_dma_buf(struct dev_info * adapter,struct ksz_dma_buf * dma_buf,int direction)4435 static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4436 int direction)
4437 {
4438 dma_unmap_single(&adapter->pdev->dev, dma_buf->dma, dma_buf->len,
4439 direction);
4440 dev_kfree_skb(dma_buf->skb);
4441 dma_buf->skb = NULL;
4442 dma_buf->dma = 0;
4443 }
4444
4445 /**
4446 * ksz_init_rx_buffers - initialize receive descriptors
4447 * @adapter: Adapter information structure.
4448 *
4449 * This routine initializes DMA buffers for receiving.
4450 */
ksz_init_rx_buffers(struct dev_info * adapter)4451 static void ksz_init_rx_buffers(struct dev_info *adapter)
4452 {
4453 int i;
4454 struct ksz_desc *desc;
4455 struct ksz_dma_buf *dma_buf;
4456 struct ksz_hw *hw = &adapter->hw;
4457 struct ksz_desc_info *info = &hw->rx_desc_info;
4458
4459 for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4460 get_rx_pkt(info, &desc);
4461
4462 dma_buf = DMA_BUFFER(desc);
4463 if (dma_buf->skb && dma_buf->len != adapter->mtu)
4464 free_dma_buf(adapter, dma_buf, DMA_FROM_DEVICE);
4465 dma_buf->len = adapter->mtu;
4466 if (!dma_buf->skb)
4467 dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4468 if (dma_buf->skb && !dma_buf->dma)
4469 dma_buf->dma = dma_map_single(&adapter->pdev->dev,
4470 skb_tail_pointer(dma_buf->skb),
4471 dma_buf->len,
4472 DMA_FROM_DEVICE);
4473
4474 /* Set descriptor. */
4475 set_rx_buf(desc, dma_buf->dma);
4476 set_rx_len(desc, dma_buf->len);
4477 release_desc(desc);
4478 }
4479 }
4480
4481 /**
4482 * ksz_alloc_mem - allocate memory for hardware descriptors
4483 * @adapter: Adapter information structure.
4484 *
4485 * This function allocates memory for use by hardware descriptors for receiving
4486 * and transmitting.
4487 *
4488 * Return 0 if successful.
4489 */
ksz_alloc_mem(struct dev_info * adapter)4490 static int ksz_alloc_mem(struct dev_info *adapter)
4491 {
4492 struct ksz_hw *hw = &adapter->hw;
4493
4494 /* Determine the number of receive and transmit descriptors. */
4495 hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4496 hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4497
4498 /* Determine how many descriptors to skip transmit interrupt. */
4499 hw->tx_int_cnt = 0;
4500 hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4501 if (hw->tx_int_mask > 8)
4502 hw->tx_int_mask = 8;
4503 while (hw->tx_int_mask) {
4504 hw->tx_int_cnt++;
4505 hw->tx_int_mask >>= 1;
4506 }
4507 if (hw->tx_int_cnt) {
4508 hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4509 hw->tx_int_cnt = 0;
4510 }
4511
4512 /* Determine the descriptor size. */
4513 hw->rx_desc_info.size =
4514 (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4515 DESC_ALIGNMENT) * DESC_ALIGNMENT);
4516 hw->tx_desc_info.size =
4517 (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4518 DESC_ALIGNMENT) * DESC_ALIGNMENT);
4519 if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4520 pr_alert("Hardware descriptor size not right!\n");
4521 ksz_check_desc_num(&hw->rx_desc_info);
4522 ksz_check_desc_num(&hw->tx_desc_info);
4523
4524 /* Allocate descriptors. */
4525 if (ksz_alloc_desc(adapter))
4526 return 1;
4527
4528 return 0;
4529 }
4530
4531 /**
4532 * ksz_free_desc - free software and hardware descriptors
4533 * @adapter: Adapter information structure.
4534 *
4535 * This local routine frees the software and hardware descriptors allocated by
4536 * ksz_alloc_desc().
4537 */
ksz_free_desc(struct dev_info * adapter)4538 static void ksz_free_desc(struct dev_info *adapter)
4539 {
4540 struct ksz_hw *hw = &adapter->hw;
4541
4542 /* Reset descriptor. */
4543 hw->rx_desc_info.ring_virt = NULL;
4544 hw->tx_desc_info.ring_virt = NULL;
4545 hw->rx_desc_info.ring_phys = 0;
4546 hw->tx_desc_info.ring_phys = 0;
4547
4548 /* Free memory. */
4549 if (adapter->desc_pool.alloc_virt)
4550 dma_free_coherent(&adapter->pdev->dev,
4551 adapter->desc_pool.alloc_size,
4552 adapter->desc_pool.alloc_virt,
4553 adapter->desc_pool.dma_addr);
4554
4555 /* Reset resource pool. */
4556 adapter->desc_pool.alloc_size = 0;
4557 adapter->desc_pool.alloc_virt = NULL;
4558
4559 kfree(hw->rx_desc_info.ring);
4560 hw->rx_desc_info.ring = NULL;
4561 kfree(hw->tx_desc_info.ring);
4562 hw->tx_desc_info.ring = NULL;
4563 }
4564
4565 /**
4566 * ksz_free_buffers - free buffers used in the descriptors
4567 * @adapter: Adapter information structure.
4568 * @desc_info: Descriptor information structure.
4569 * @direction: to or from device
4570 *
4571 * This local routine frees buffers used in the DMA buffers.
4572 */
ksz_free_buffers(struct dev_info * adapter,struct ksz_desc_info * desc_info,int direction)4573 static void ksz_free_buffers(struct dev_info *adapter,
4574 struct ksz_desc_info *desc_info, int direction)
4575 {
4576 int i;
4577 struct ksz_dma_buf *dma_buf;
4578 struct ksz_desc *desc = desc_info->ring;
4579
4580 for (i = 0; i < desc_info->alloc; i++) {
4581 dma_buf = DMA_BUFFER(desc);
4582 if (dma_buf->skb)
4583 free_dma_buf(adapter, dma_buf, direction);
4584 desc++;
4585 }
4586 }
4587
4588 /**
4589 * ksz_free_mem - free all resources used by descriptors
4590 * @adapter: Adapter information structure.
4591 *
4592 * This local routine frees all the resources allocated by ksz_alloc_mem().
4593 */
ksz_free_mem(struct dev_info * adapter)4594 static void ksz_free_mem(struct dev_info *adapter)
4595 {
4596 /* Free transmit buffers. */
4597 ksz_free_buffers(adapter, &adapter->hw.tx_desc_info, DMA_TO_DEVICE);
4598
4599 /* Free receive buffers. */
4600 ksz_free_buffers(adapter, &adapter->hw.rx_desc_info, DMA_FROM_DEVICE);
4601
4602 /* Free descriptors. */
4603 ksz_free_desc(adapter);
4604 }
4605
get_mib_counters(struct ksz_hw * hw,int first,int cnt,u64 * counter)4606 static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4607 u64 *counter)
4608 {
4609 int i;
4610 int mib;
4611 int port;
4612 struct ksz_port_mib *port_mib;
4613
4614 memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4615 for (i = 0, port = first; i < cnt; i++, port++) {
4616 port_mib = &hw->port_mib[port];
4617 for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4618 counter[mib] += port_mib->counter[mib];
4619 }
4620 }
4621
4622 /**
4623 * send_packet - send packet
4624 * @skb: Socket buffer.
4625 * @dev: Network device.
4626 *
4627 * This routine is used to send a packet out to the network.
4628 */
send_packet(struct sk_buff * skb,struct net_device * dev)4629 static void send_packet(struct sk_buff *skb, struct net_device *dev)
4630 {
4631 struct ksz_desc *desc;
4632 struct ksz_desc *first;
4633 struct dev_priv *priv = netdev_priv(dev);
4634 struct dev_info *hw_priv = priv->adapter;
4635 struct ksz_hw *hw = &hw_priv->hw;
4636 struct ksz_desc_info *info = &hw->tx_desc_info;
4637 struct ksz_dma_buf *dma_buf;
4638 int len;
4639 int last_frag = skb_shinfo(skb)->nr_frags;
4640
4641 /*
4642 * KSZ8842 with multiple device interfaces needs to be told which port
4643 * to send.
4644 */
4645 if (hw->dev_count > 1)
4646 hw->dst_ports = 1 << priv->port.first_port;
4647
4648 /* Hardware will pad the length to 60. */
4649 len = skb->len;
4650
4651 /* Remember the very first descriptor. */
4652 first = info->cur;
4653 desc = first;
4654
4655 dma_buf = DMA_BUFFER(desc);
4656 if (last_frag) {
4657 int frag;
4658 skb_frag_t *this_frag;
4659
4660 dma_buf->len = skb_headlen(skb);
4661
4662 dma_buf->dma = dma_map_single(&hw_priv->pdev->dev, skb->data,
4663 dma_buf->len, DMA_TO_DEVICE);
4664 set_tx_buf(desc, dma_buf->dma);
4665 set_tx_len(desc, dma_buf->len);
4666
4667 frag = 0;
4668 do {
4669 this_frag = &skb_shinfo(skb)->frags[frag];
4670
4671 /* Get a new descriptor. */
4672 get_tx_pkt(info, &desc);
4673
4674 /* Keep track of descriptors used so far. */
4675 ++hw->tx_int_cnt;
4676
4677 dma_buf = DMA_BUFFER(desc);
4678 dma_buf->len = skb_frag_size(this_frag);
4679
4680 dma_buf->dma = dma_map_single(&hw_priv->pdev->dev,
4681 skb_frag_address(this_frag),
4682 dma_buf->len,
4683 DMA_TO_DEVICE);
4684 set_tx_buf(desc, dma_buf->dma);
4685 set_tx_len(desc, dma_buf->len);
4686
4687 frag++;
4688 if (frag == last_frag)
4689 break;
4690
4691 /* Do not release the last descriptor here. */
4692 release_desc(desc);
4693 } while (1);
4694
4695 /* current points to the last descriptor. */
4696 info->cur = desc;
4697
4698 /* Release the first descriptor. */
4699 release_desc(first);
4700 } else {
4701 dma_buf->len = len;
4702
4703 dma_buf->dma = dma_map_single(&hw_priv->pdev->dev, skb->data,
4704 dma_buf->len, DMA_TO_DEVICE);
4705 set_tx_buf(desc, dma_buf->dma);
4706 set_tx_len(desc, dma_buf->len);
4707 }
4708
4709 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4710 (desc)->sw.buf.tx.csum_gen_tcp = 1;
4711 (desc)->sw.buf.tx.csum_gen_udp = 1;
4712 }
4713
4714 /*
4715 * The last descriptor holds the packet so that it can be returned to
4716 * network subsystem after all descriptors are transmitted.
4717 */
4718 dma_buf->skb = skb;
4719
4720 hw_send_pkt(hw);
4721
4722 /* Update transmit statistics. */
4723 dev->stats.tx_packets++;
4724 dev->stats.tx_bytes += len;
4725 }
4726
4727 /**
4728 * transmit_cleanup - clean up transmit descriptors
4729 * @hw_priv: Network device.
4730 * @normal: break if owned
4731 *
4732 * This routine is called to clean up the transmitted buffers.
4733 */
transmit_cleanup(struct dev_info * hw_priv,int normal)4734 static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4735 {
4736 int last;
4737 union desc_stat status;
4738 struct ksz_hw *hw = &hw_priv->hw;
4739 struct ksz_desc_info *info = &hw->tx_desc_info;
4740 struct ksz_desc *desc;
4741 struct ksz_dma_buf *dma_buf;
4742 struct net_device *dev = NULL;
4743
4744 spin_lock_irq(&hw_priv->hwlock);
4745 last = info->last;
4746
4747 while (info->avail < info->alloc) {
4748 /* Get next descriptor which is not hardware owned. */
4749 desc = &info->ring[last];
4750 status.data = le32_to_cpu(desc->phw->ctrl.data);
4751 if (status.tx.hw_owned) {
4752 if (normal)
4753 break;
4754 else
4755 reset_desc(desc, status);
4756 }
4757
4758 dma_buf = DMA_BUFFER(desc);
4759 dma_unmap_single(&hw_priv->pdev->dev, dma_buf->dma,
4760 dma_buf->len, DMA_TO_DEVICE);
4761
4762 /* This descriptor contains the last buffer in the packet. */
4763 if (dma_buf->skb) {
4764 dev = dma_buf->skb->dev;
4765
4766 /* Release the packet back to network subsystem. */
4767 dev_kfree_skb_irq(dma_buf->skb);
4768 dma_buf->skb = NULL;
4769 }
4770
4771 /* Free the transmitted descriptor. */
4772 last++;
4773 last &= info->mask;
4774 info->avail++;
4775 }
4776 info->last = last;
4777 spin_unlock_irq(&hw_priv->hwlock);
4778
4779 /* Notify the network subsystem that the packet has been sent. */
4780 if (dev)
4781 netif_trans_update(dev);
4782 }
4783
4784 /**
4785 * transmit_done - transmit done processing
4786 * @hw_priv: Network device.
4787 *
4788 * This routine is called when the transmit interrupt is triggered, indicating
4789 * either a packet is sent successfully or there are transmit errors.
4790 */
tx_done(struct dev_info * hw_priv)4791 static void tx_done(struct dev_info *hw_priv)
4792 {
4793 struct ksz_hw *hw = &hw_priv->hw;
4794 int port;
4795
4796 transmit_cleanup(hw_priv, 1);
4797
4798 for (port = 0; port < hw->dev_count; port++) {
4799 struct net_device *dev = hw->port_info[port].pdev;
4800
4801 if (netif_running(dev) && netif_queue_stopped(dev))
4802 netif_wake_queue(dev);
4803 }
4804 }
4805
copy_old_skb(struct sk_buff * old,struct sk_buff * skb)4806 static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4807 {
4808 skb->dev = old->dev;
4809 skb->protocol = old->protocol;
4810 skb->ip_summed = old->ip_summed;
4811 skb->csum = old->csum;
4812 skb_set_network_header(skb, ETH_HLEN);
4813
4814 dev_consume_skb_any(old);
4815 }
4816
4817 /**
4818 * netdev_tx - send out packet
4819 * @skb: Socket buffer.
4820 * @dev: Network device.
4821 *
4822 * This function is used by the upper network layer to send out a packet.
4823 *
4824 * Return 0 if successful; otherwise an error code indicating failure.
4825 */
netdev_tx(struct sk_buff * skb,struct net_device * dev)4826 static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
4827 {
4828 struct dev_priv *priv = netdev_priv(dev);
4829 struct dev_info *hw_priv = priv->adapter;
4830 struct ksz_hw *hw = &hw_priv->hw;
4831 int left;
4832 int num = 1;
4833 int rc = 0;
4834
4835 if (hw->features & SMALL_PACKET_TX_BUG) {
4836 struct sk_buff *org_skb = skb;
4837
4838 if (skb->len <= 48) {
4839 if (skb_end_pointer(skb) - skb->data >= 50) {
4840 memset(&skb->data[skb->len], 0, 50 - skb->len);
4841 skb->len = 50;
4842 } else {
4843 skb = netdev_alloc_skb(dev, 50);
4844 if (!skb)
4845 return NETDEV_TX_BUSY;
4846 memcpy(skb->data, org_skb->data, org_skb->len);
4847 memset(&skb->data[org_skb->len], 0,
4848 50 - org_skb->len);
4849 skb->len = 50;
4850 copy_old_skb(org_skb, skb);
4851 }
4852 }
4853 }
4854
4855 spin_lock_irq(&hw_priv->hwlock);
4856
4857 num = skb_shinfo(skb)->nr_frags + 1;
4858 left = hw_alloc_pkt(hw, skb->len, num);
4859 if (left) {
4860 if (left < num ||
4861 (CHECKSUM_PARTIAL == skb->ip_summed &&
4862 skb->protocol == htons(ETH_P_IPV6))) {
4863 struct sk_buff *org_skb = skb;
4864
4865 skb = netdev_alloc_skb(dev, org_skb->len);
4866 if (!skb) {
4867 rc = NETDEV_TX_BUSY;
4868 goto unlock;
4869 }
4870 skb_copy_and_csum_dev(org_skb, skb->data);
4871 org_skb->ip_summed = CHECKSUM_NONE;
4872 skb->len = org_skb->len;
4873 copy_old_skb(org_skb, skb);
4874 }
4875 send_packet(skb, dev);
4876 if (left <= num)
4877 netif_stop_queue(dev);
4878 } else {
4879 /* Stop the transmit queue until packet is allocated. */
4880 netif_stop_queue(dev);
4881 rc = NETDEV_TX_BUSY;
4882 }
4883 unlock:
4884 spin_unlock_irq(&hw_priv->hwlock);
4885
4886 return rc;
4887 }
4888
4889 /**
4890 * netdev_tx_timeout - transmit timeout processing
4891 * @dev: Network device.
4892 * @txqueue: index of hanging queue
4893 *
4894 * This routine is called when the transmit timer expires. That indicates the
4895 * hardware is not running correctly because transmit interrupts are not
4896 * triggered to free up resources so that the transmit routine can continue
4897 * sending out packets. The hardware is reset to correct the problem.
4898 */
netdev_tx_timeout(struct net_device * dev,unsigned int txqueue)4899 static void netdev_tx_timeout(struct net_device *dev, unsigned int txqueue)
4900 {
4901 static unsigned long last_reset;
4902
4903 struct dev_priv *priv = netdev_priv(dev);
4904 struct dev_info *hw_priv = priv->adapter;
4905 struct ksz_hw *hw = &hw_priv->hw;
4906 int port;
4907
4908 if (hw->dev_count > 1) {
4909 /*
4910 * Only reset the hardware if time between calls is long
4911 * enough.
4912 */
4913 if (time_before_eq(jiffies, last_reset + dev->watchdog_timeo))
4914 hw_priv = NULL;
4915 }
4916
4917 last_reset = jiffies;
4918 if (hw_priv) {
4919 hw_dis_intr(hw);
4920 hw_disable(hw);
4921
4922 transmit_cleanup(hw_priv, 0);
4923 hw_reset_pkts(&hw->rx_desc_info);
4924 hw_reset_pkts(&hw->tx_desc_info);
4925 ksz_init_rx_buffers(hw_priv);
4926
4927 hw_reset(hw);
4928
4929 hw_set_desc_base(hw,
4930 hw->tx_desc_info.ring_phys,
4931 hw->rx_desc_info.ring_phys);
4932 hw_set_addr(hw);
4933 if (hw->all_multi)
4934 hw_set_multicast(hw, hw->all_multi);
4935 else if (hw->multi_list_size)
4936 hw_set_grp_addr(hw);
4937
4938 if (hw->dev_count > 1) {
4939 hw_set_add_addr(hw);
4940 for (port = 0; port < SWITCH_PORT_NUM; port++) {
4941 struct net_device *port_dev;
4942
4943 port_set_stp_state(hw, port,
4944 STP_STATE_DISABLED);
4945
4946 port_dev = hw->port_info[port].pdev;
4947 if (netif_running(port_dev))
4948 port_set_stp_state(hw, port,
4949 STP_STATE_SIMPLE);
4950 }
4951 }
4952
4953 hw_enable(hw);
4954 hw_ena_intr(hw);
4955 }
4956
4957 netif_trans_update(dev);
4958 netif_wake_queue(dev);
4959 }
4960
csum_verified(struct sk_buff * skb)4961 static inline void csum_verified(struct sk_buff *skb)
4962 {
4963 unsigned short protocol;
4964 struct iphdr *iph;
4965
4966 protocol = skb->protocol;
4967 skb_reset_network_header(skb);
4968 iph = (struct iphdr *) skb_network_header(skb);
4969 if (protocol == htons(ETH_P_8021Q)) {
4970 protocol = iph->tot_len;
4971 skb_set_network_header(skb, VLAN_HLEN);
4972 iph = (struct iphdr *) skb_network_header(skb);
4973 }
4974 if (protocol == htons(ETH_P_IP)) {
4975 if (iph->protocol == IPPROTO_TCP)
4976 skb->ip_summed = CHECKSUM_UNNECESSARY;
4977 }
4978 }
4979
rx_proc(struct net_device * dev,struct ksz_hw * hw,struct ksz_desc * desc,union desc_stat status)4980 static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
4981 struct ksz_desc *desc, union desc_stat status)
4982 {
4983 int packet_len;
4984 struct dev_priv *priv = netdev_priv(dev);
4985 struct dev_info *hw_priv = priv->adapter;
4986 struct ksz_dma_buf *dma_buf;
4987 struct sk_buff *skb;
4988
4989 /* Received length includes 4-byte CRC. */
4990 packet_len = status.rx.frame_len - 4;
4991
4992 dma_buf = DMA_BUFFER(desc);
4993 dma_sync_single_for_cpu(&hw_priv->pdev->dev, dma_buf->dma,
4994 packet_len + 4, DMA_FROM_DEVICE);
4995
4996 do {
4997 /* skb->data != skb->head */
4998 skb = netdev_alloc_skb(dev, packet_len + 2);
4999 if (!skb) {
5000 dev->stats.rx_dropped++;
5001 return -ENOMEM;
5002 }
5003
5004 /*
5005 * Align socket buffer in 4-byte boundary for better
5006 * performance.
5007 */
5008 skb_reserve(skb, 2);
5009
5010 skb_put_data(skb, dma_buf->skb->data, packet_len);
5011 } while (0);
5012
5013 skb->protocol = eth_type_trans(skb, dev);
5014
5015 if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
5016 csum_verified(skb);
5017
5018 /* Update receive statistics. */
5019 dev->stats.rx_packets++;
5020 dev->stats.rx_bytes += packet_len;
5021
5022 /* Notify upper layer for received packet. */
5023 netif_rx(skb);
5024
5025 return 0;
5026 }
5027
dev_rcv_packets(struct dev_info * hw_priv)5028 static int dev_rcv_packets(struct dev_info *hw_priv)
5029 {
5030 int next;
5031 union desc_stat status;
5032 struct ksz_hw *hw = &hw_priv->hw;
5033 struct net_device *dev = hw->port_info[0].pdev;
5034 struct ksz_desc_info *info = &hw->rx_desc_info;
5035 int left = info->alloc;
5036 struct ksz_desc *desc;
5037 int received = 0;
5038
5039 next = info->next;
5040 while (left--) {
5041 /* Get next descriptor which is not hardware owned. */
5042 desc = &info->ring[next];
5043 status.data = le32_to_cpu(desc->phw->ctrl.data);
5044 if (status.rx.hw_owned)
5045 break;
5046
5047 /* Status valid only when last descriptor bit is set. */
5048 if (status.rx.last_desc && status.rx.first_desc) {
5049 if (rx_proc(dev, hw, desc, status))
5050 goto release_packet;
5051 received++;
5052 }
5053
5054 release_packet:
5055 release_desc(desc);
5056 next++;
5057 next &= info->mask;
5058 }
5059 info->next = next;
5060
5061 return received;
5062 }
5063
port_rcv_packets(struct dev_info * hw_priv)5064 static int port_rcv_packets(struct dev_info *hw_priv)
5065 {
5066 int next;
5067 union desc_stat status;
5068 struct ksz_hw *hw = &hw_priv->hw;
5069 struct net_device *dev = hw->port_info[0].pdev;
5070 struct ksz_desc_info *info = &hw->rx_desc_info;
5071 int left = info->alloc;
5072 struct ksz_desc *desc;
5073 int received = 0;
5074
5075 next = info->next;
5076 while (left--) {
5077 /* Get next descriptor which is not hardware owned. */
5078 desc = &info->ring[next];
5079 status.data = le32_to_cpu(desc->phw->ctrl.data);
5080 if (status.rx.hw_owned)
5081 break;
5082
5083 if (hw->dev_count > 1) {
5084 /* Get received port number. */
5085 int p = HW_TO_DEV_PORT(status.rx.src_port);
5086
5087 dev = hw->port_info[p].pdev;
5088 if (!netif_running(dev))
5089 goto release_packet;
5090 }
5091
5092 /* Status valid only when last descriptor bit is set. */
5093 if (status.rx.last_desc && status.rx.first_desc) {
5094 if (rx_proc(dev, hw, desc, status))
5095 goto release_packet;
5096 received++;
5097 }
5098
5099 release_packet:
5100 release_desc(desc);
5101 next++;
5102 next &= info->mask;
5103 }
5104 info->next = next;
5105
5106 return received;
5107 }
5108
dev_rcv_special(struct dev_info * hw_priv)5109 static int dev_rcv_special(struct dev_info *hw_priv)
5110 {
5111 int next;
5112 union desc_stat status;
5113 struct ksz_hw *hw = &hw_priv->hw;
5114 struct net_device *dev = hw->port_info[0].pdev;
5115 struct ksz_desc_info *info = &hw->rx_desc_info;
5116 int left = info->alloc;
5117 struct ksz_desc *desc;
5118 int received = 0;
5119
5120 next = info->next;
5121 while (left--) {
5122 /* Get next descriptor which is not hardware owned. */
5123 desc = &info->ring[next];
5124 status.data = le32_to_cpu(desc->phw->ctrl.data);
5125 if (status.rx.hw_owned)
5126 break;
5127
5128 if (hw->dev_count > 1) {
5129 /* Get received port number. */
5130 int p = HW_TO_DEV_PORT(status.rx.src_port);
5131
5132 dev = hw->port_info[p].pdev;
5133 if (!netif_running(dev))
5134 goto release_packet;
5135 }
5136
5137 /* Status valid only when last descriptor bit is set. */
5138 if (status.rx.last_desc && status.rx.first_desc) {
5139 /*
5140 * Receive without error. With receive errors
5141 * disabled, packets with receive errors will be
5142 * dropped, so no need to check the error bit.
5143 */
5144 if (!status.rx.error || (status.data &
5145 KS_DESC_RX_ERROR_COND) ==
5146 KS_DESC_RX_ERROR_TOO_LONG) {
5147 if (rx_proc(dev, hw, desc, status))
5148 goto release_packet;
5149 received++;
5150 } else {
5151 struct dev_priv *priv = netdev_priv(dev);
5152
5153 /* Update receive error statistics. */
5154 priv->port.counter[OID_COUNTER_RCV_ERROR]++;
5155 }
5156 }
5157
5158 release_packet:
5159 release_desc(desc);
5160 next++;
5161 next &= info->mask;
5162 }
5163 info->next = next;
5164
5165 return received;
5166 }
5167
rx_proc_task(struct tasklet_struct * t)5168 static void rx_proc_task(struct tasklet_struct *t)
5169 {
5170 struct dev_info *hw_priv = from_tasklet(hw_priv, t, rx_tasklet);
5171 struct ksz_hw *hw = &hw_priv->hw;
5172
5173 if (!hw->enabled)
5174 return;
5175 if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
5176
5177 /* In case receive process is suspended because of overrun. */
5178 hw_resume_rx(hw);
5179
5180 /* tasklets are interruptible. */
5181 spin_lock_irq(&hw_priv->hwlock);
5182 hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
5183 spin_unlock_irq(&hw_priv->hwlock);
5184 } else {
5185 hw_ack_intr(hw, KS884X_INT_RX);
5186 tasklet_schedule(&hw_priv->rx_tasklet);
5187 }
5188 }
5189
tx_proc_task(struct tasklet_struct * t)5190 static void tx_proc_task(struct tasklet_struct *t)
5191 {
5192 struct dev_info *hw_priv = from_tasklet(hw_priv, t, tx_tasklet);
5193 struct ksz_hw *hw = &hw_priv->hw;
5194
5195 hw_ack_intr(hw, KS884X_INT_TX_MASK);
5196
5197 tx_done(hw_priv);
5198
5199 /* tasklets are interruptible. */
5200 spin_lock_irq(&hw_priv->hwlock);
5201 hw_turn_on_intr(hw, KS884X_INT_TX);
5202 spin_unlock_irq(&hw_priv->hwlock);
5203 }
5204
handle_rx_stop(struct ksz_hw * hw)5205 static inline void handle_rx_stop(struct ksz_hw *hw)
5206 {
5207 /* Receive just has been stopped. */
5208 if (0 == hw->rx_stop)
5209 hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5210 else if (hw->rx_stop > 1) {
5211 if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
5212 hw_start_rx(hw);
5213 } else {
5214 hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5215 hw->rx_stop = 0;
5216 }
5217 } else
5218 /* Receive just has been started. */
5219 hw->rx_stop++;
5220 }
5221
5222 /**
5223 * netdev_intr - interrupt handling
5224 * @irq: Interrupt number.
5225 * @dev_id: Network device.
5226 *
5227 * This function is called by upper network layer to signal interrupt.
5228 *
5229 * Return IRQ_HANDLED if interrupt is handled.
5230 */
netdev_intr(int irq,void * dev_id)5231 static irqreturn_t netdev_intr(int irq, void *dev_id)
5232 {
5233 uint int_enable = 0;
5234 struct net_device *dev = (struct net_device *) dev_id;
5235 struct dev_priv *priv = netdev_priv(dev);
5236 struct dev_info *hw_priv = priv->adapter;
5237 struct ksz_hw *hw = &hw_priv->hw;
5238
5239 spin_lock(&hw_priv->hwlock);
5240
5241 hw_read_intr(hw, &int_enable);
5242
5243 /* Not our interrupt! */
5244 if (!int_enable) {
5245 spin_unlock(&hw_priv->hwlock);
5246 return IRQ_NONE;
5247 }
5248
5249 do {
5250 hw_ack_intr(hw, int_enable);
5251 int_enable &= hw->intr_mask;
5252
5253 if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
5254 hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
5255 tasklet_schedule(&hw_priv->tx_tasklet);
5256 }
5257
5258 if (likely(int_enable & KS884X_INT_RX)) {
5259 hw_dis_intr_bit(hw, KS884X_INT_RX);
5260 tasklet_schedule(&hw_priv->rx_tasklet);
5261 }
5262
5263 if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
5264 dev->stats.rx_fifo_errors++;
5265 hw_resume_rx(hw);
5266 }
5267
5268 if (unlikely(int_enable & KS884X_INT_PHY)) {
5269 struct ksz_port *port = &priv->port;
5270
5271 hw->features |= LINK_INT_WORKING;
5272 port_get_link_speed(port);
5273 }
5274
5275 if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
5276 handle_rx_stop(hw);
5277 break;
5278 }
5279
5280 if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
5281 u32 data;
5282
5283 hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
5284 pr_info("Tx stopped\n");
5285 data = readl(hw->io + KS_DMA_TX_CTRL);
5286 if (!(data & DMA_TX_ENABLE))
5287 pr_info("Tx disabled\n");
5288 break;
5289 }
5290 } while (0);
5291
5292 hw_ena_intr(hw);
5293
5294 spin_unlock(&hw_priv->hwlock);
5295
5296 return IRQ_HANDLED;
5297 }
5298
5299 /*
5300 * Linux network device functions
5301 */
5302
5303 static unsigned long next_jiffies;
5304
5305 #ifdef CONFIG_NET_POLL_CONTROLLER
netdev_netpoll(struct net_device * dev)5306 static void netdev_netpoll(struct net_device *dev)
5307 {
5308 struct dev_priv *priv = netdev_priv(dev);
5309 struct dev_info *hw_priv = priv->adapter;
5310
5311 hw_dis_intr(&hw_priv->hw);
5312 netdev_intr(dev->irq, dev);
5313 }
5314 #endif
5315
bridge_change(struct ksz_hw * hw)5316 static void bridge_change(struct ksz_hw *hw)
5317 {
5318 int port;
5319 u8 member;
5320 struct ksz_switch *sw = hw->ksz_switch;
5321
5322 /* No ports in forwarding state. */
5323 if (!sw->member) {
5324 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
5325 sw_block_addr(hw);
5326 }
5327 for (port = 0; port < SWITCH_PORT_NUM; port++) {
5328 if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
5329 member = HOST_MASK | sw->member;
5330 else
5331 member = HOST_MASK | (1 << port);
5332 if (member != sw->port_cfg[port].member)
5333 sw_cfg_port_base_vlan(hw, port, member);
5334 }
5335 }
5336
5337 /**
5338 * netdev_close - close network device
5339 * @dev: Network device.
5340 *
5341 * This function process the close operation of network device. This is caused
5342 * by the user command "ifconfig ethX down."
5343 *
5344 * Return 0 if successful; otherwise an error code indicating failure.
5345 */
netdev_close(struct net_device * dev)5346 static int netdev_close(struct net_device *dev)
5347 {
5348 struct dev_priv *priv = netdev_priv(dev);
5349 struct dev_info *hw_priv = priv->adapter;
5350 struct ksz_port *port = &priv->port;
5351 struct ksz_hw *hw = &hw_priv->hw;
5352 int pi;
5353
5354 netif_stop_queue(dev);
5355
5356 ksz_stop_timer(&priv->monitor_timer_info);
5357
5358 /* Need to shut the port manually in multiple device interfaces mode. */
5359 if (hw->dev_count > 1) {
5360 port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
5361
5362 /* Port is closed. Need to change bridge setting. */
5363 if (hw->features & STP_SUPPORT) {
5364 pi = 1 << port->first_port;
5365 if (hw->ksz_switch->member & pi) {
5366 hw->ksz_switch->member &= ~pi;
5367 bridge_change(hw);
5368 }
5369 }
5370 }
5371 if (port->first_port > 0)
5372 hw_del_addr(hw, dev->dev_addr);
5373 if (!hw_priv->wol_enable)
5374 port_set_power_saving(port, true);
5375
5376 if (priv->multicast)
5377 --hw->all_multi;
5378 if (priv->promiscuous)
5379 --hw->promiscuous;
5380
5381 hw_priv->opened--;
5382 if (!(hw_priv->opened)) {
5383 ksz_stop_timer(&hw_priv->mib_timer_info);
5384 flush_work(&hw_priv->mib_read);
5385
5386 hw_dis_intr(hw);
5387 hw_disable(hw);
5388 hw_clr_multicast(hw);
5389
5390 /* Delay for receive task to stop scheduling itself. */
5391 msleep(2000 / HZ);
5392
5393 tasklet_kill(&hw_priv->rx_tasklet);
5394 tasklet_kill(&hw_priv->tx_tasklet);
5395 free_irq(dev->irq, hw_priv->dev);
5396
5397 transmit_cleanup(hw_priv, 0);
5398 hw_reset_pkts(&hw->rx_desc_info);
5399 hw_reset_pkts(&hw->tx_desc_info);
5400
5401 /* Clean out static MAC table when the switch is shutdown. */
5402 if (hw->features & STP_SUPPORT)
5403 sw_clr_sta_mac_table(hw);
5404 }
5405
5406 return 0;
5407 }
5408
hw_cfg_huge_frame(struct dev_info * hw_priv,struct ksz_hw * hw)5409 static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5410 {
5411 if (hw->ksz_switch) {
5412 u32 data;
5413
5414 data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5415 if (hw->features & RX_HUGE_FRAME)
5416 data |= SWITCH_HUGE_PACKET;
5417 else
5418 data &= ~SWITCH_HUGE_PACKET;
5419 writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5420 }
5421 if (hw->features & RX_HUGE_FRAME) {
5422 hw->rx_cfg |= DMA_RX_ERROR;
5423 hw_priv->dev_rcv = dev_rcv_special;
5424 } else {
5425 hw->rx_cfg &= ~DMA_RX_ERROR;
5426 if (hw->dev_count > 1)
5427 hw_priv->dev_rcv = port_rcv_packets;
5428 else
5429 hw_priv->dev_rcv = dev_rcv_packets;
5430 }
5431 }
5432
prepare_hardware(struct net_device * dev)5433 static int prepare_hardware(struct net_device *dev)
5434 {
5435 struct dev_priv *priv = netdev_priv(dev);
5436 struct dev_info *hw_priv = priv->adapter;
5437 struct ksz_hw *hw = &hw_priv->hw;
5438 int rc = 0;
5439
5440 /* Remember the network device that requests interrupts. */
5441 hw_priv->dev = dev;
5442 rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5443 if (rc)
5444 return rc;
5445 tasklet_setup(&hw_priv->rx_tasklet, rx_proc_task);
5446 tasklet_setup(&hw_priv->tx_tasklet, tx_proc_task);
5447
5448 hw->promiscuous = 0;
5449 hw->all_multi = 0;
5450 hw->multi_list_size = 0;
5451
5452 hw_reset(hw);
5453
5454 hw_set_desc_base(hw,
5455 hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5456 hw_set_addr(hw);
5457 hw_cfg_huge_frame(hw_priv, hw);
5458 ksz_init_rx_buffers(hw_priv);
5459 return 0;
5460 }
5461
set_media_state(struct net_device * dev,int media_state)5462 static void set_media_state(struct net_device *dev, int media_state)
5463 {
5464 struct dev_priv *priv = netdev_priv(dev);
5465
5466 if (media_state == priv->media_state)
5467 netif_carrier_on(dev);
5468 else
5469 netif_carrier_off(dev);
5470 netif_info(priv, link, dev, "link %s\n",
5471 media_state == priv->media_state ? "on" : "off");
5472 }
5473
5474 /**
5475 * netdev_open - open network device
5476 * @dev: Network device.
5477 *
5478 * This function process the open operation of network device. This is caused
5479 * by the user command "ifconfig ethX up."
5480 *
5481 * Return 0 if successful; otherwise an error code indicating failure.
5482 */
netdev_open(struct net_device * dev)5483 static int netdev_open(struct net_device *dev)
5484 {
5485 struct dev_priv *priv = netdev_priv(dev);
5486 struct dev_info *hw_priv = priv->adapter;
5487 struct ksz_hw *hw = &hw_priv->hw;
5488 struct ksz_port *port = &priv->port;
5489 int i;
5490 int p;
5491 int rc = 0;
5492
5493 priv->multicast = 0;
5494 priv->promiscuous = 0;
5495
5496 /* Reset device statistics. */
5497 memset(&dev->stats, 0, sizeof(struct net_device_stats));
5498 memset((void *) port->counter, 0,
5499 (sizeof(u64) * OID_COUNTER_LAST));
5500
5501 if (!(hw_priv->opened)) {
5502 rc = prepare_hardware(dev);
5503 if (rc)
5504 return rc;
5505 for (i = 0; i < hw->mib_port_cnt; i++) {
5506 if (next_jiffies < jiffies)
5507 next_jiffies = jiffies + HZ * 2;
5508 else
5509 next_jiffies += HZ * 1;
5510 hw_priv->counter[i].time = next_jiffies;
5511 hw->port_mib[i].state = media_disconnected;
5512 port_init_cnt(hw, i);
5513 }
5514 if (hw->ksz_switch)
5515 hw->port_mib[HOST_PORT].state = media_connected;
5516 else {
5517 hw_add_wol_bcast(hw);
5518 hw_cfg_wol_pme(hw, 0);
5519 hw_clr_wol_pme_status(&hw_priv->hw);
5520 }
5521 }
5522 port_set_power_saving(port, false);
5523
5524 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5525 /*
5526 * Initialize to invalid value so that link detection
5527 * is done.
5528 */
5529 hw->port_info[p].partner = 0xFF;
5530 hw->port_info[p].state = media_disconnected;
5531 }
5532
5533 /* Need to open the port in multiple device interfaces mode. */
5534 if (hw->dev_count > 1) {
5535 port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5536 if (port->first_port > 0)
5537 hw_add_addr(hw, dev->dev_addr);
5538 }
5539
5540 port_get_link_speed(port);
5541 if (port->force_link)
5542 port_force_link_speed(port);
5543 else
5544 port_set_link_speed(port);
5545
5546 if (!(hw_priv->opened)) {
5547 hw_setup_intr(hw);
5548 hw_enable(hw);
5549 hw_ena_intr(hw);
5550
5551 if (hw->mib_port_cnt)
5552 ksz_start_timer(&hw_priv->mib_timer_info,
5553 hw_priv->mib_timer_info.period);
5554 }
5555
5556 hw_priv->opened++;
5557
5558 ksz_start_timer(&priv->monitor_timer_info,
5559 priv->monitor_timer_info.period);
5560
5561 priv->media_state = port->linked->state;
5562
5563 set_media_state(dev, media_connected);
5564 netif_start_queue(dev);
5565
5566 return 0;
5567 }
5568
5569 /* RX errors = rx_errors */
5570 /* RX dropped = rx_dropped */
5571 /* RX overruns = rx_fifo_errors */
5572 /* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5573 /* TX errors = tx_errors */
5574 /* TX dropped = tx_dropped */
5575 /* TX overruns = tx_fifo_errors */
5576 /* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5577 /* collisions = collisions */
5578
5579 /**
5580 * netdev_query_statistics - query network device statistics
5581 * @dev: Network device.
5582 *
5583 * This function returns the statistics of the network device. The device
5584 * needs not be opened.
5585 *
5586 * Return network device statistics.
5587 */
netdev_query_statistics(struct net_device * dev)5588 static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5589 {
5590 struct dev_priv *priv = netdev_priv(dev);
5591 struct ksz_port *port = &priv->port;
5592 struct ksz_hw *hw = &priv->adapter->hw;
5593 struct ksz_port_mib *mib;
5594 int i;
5595 int p;
5596
5597 dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5598 dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5599
5600 /* Reset to zero to add count later. */
5601 dev->stats.multicast = 0;
5602 dev->stats.collisions = 0;
5603 dev->stats.rx_length_errors = 0;
5604 dev->stats.rx_crc_errors = 0;
5605 dev->stats.rx_frame_errors = 0;
5606 dev->stats.tx_window_errors = 0;
5607
5608 for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5609 mib = &hw->port_mib[p];
5610
5611 dev->stats.multicast += (unsigned long)
5612 mib->counter[MIB_COUNTER_RX_MULTICAST];
5613
5614 dev->stats.collisions += (unsigned long)
5615 mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5616
5617 dev->stats.rx_length_errors += (unsigned long)(
5618 mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5619 mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5620 mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5621 mib->counter[MIB_COUNTER_RX_JABBER]);
5622 dev->stats.rx_crc_errors += (unsigned long)
5623 mib->counter[MIB_COUNTER_RX_CRC_ERR];
5624 dev->stats.rx_frame_errors += (unsigned long)(
5625 mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5626 mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5627
5628 dev->stats.tx_window_errors += (unsigned long)
5629 mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5630 }
5631
5632 return &dev->stats;
5633 }
5634
5635 /**
5636 * netdev_set_mac_address - set network device MAC address
5637 * @dev: Network device.
5638 * @addr: Buffer of MAC address.
5639 *
5640 * This function is used to set the MAC address of the network device.
5641 *
5642 * Return 0 to indicate success.
5643 */
netdev_set_mac_address(struct net_device * dev,void * addr)5644 static int netdev_set_mac_address(struct net_device *dev, void *addr)
5645 {
5646 struct dev_priv *priv = netdev_priv(dev);
5647 struct dev_info *hw_priv = priv->adapter;
5648 struct ksz_hw *hw = &hw_priv->hw;
5649 struct sockaddr *mac = addr;
5650 uint interrupt;
5651
5652 if (priv->port.first_port > 0)
5653 hw_del_addr(hw, dev->dev_addr);
5654 else {
5655 hw->mac_override = 1;
5656 memcpy(hw->override_addr, mac->sa_data, ETH_ALEN);
5657 }
5658
5659 memcpy(dev->dev_addr, mac->sa_data, ETH_ALEN);
5660
5661 interrupt = hw_block_intr(hw);
5662
5663 if (priv->port.first_port > 0)
5664 hw_add_addr(hw, dev->dev_addr);
5665 else
5666 hw_set_addr(hw);
5667 hw_restore_intr(hw, interrupt);
5668
5669 return 0;
5670 }
5671
dev_set_promiscuous(struct net_device * dev,struct dev_priv * priv,struct ksz_hw * hw,int promiscuous)5672 static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5673 struct ksz_hw *hw, int promiscuous)
5674 {
5675 if (promiscuous != priv->promiscuous) {
5676 u8 prev_state = hw->promiscuous;
5677
5678 if (promiscuous)
5679 ++hw->promiscuous;
5680 else
5681 --hw->promiscuous;
5682 priv->promiscuous = promiscuous;
5683
5684 /* Turn on/off promiscuous mode. */
5685 if (hw->promiscuous <= 1 && prev_state <= 1)
5686 hw_set_promiscuous(hw, hw->promiscuous);
5687
5688 /*
5689 * Port is not in promiscuous mode, meaning it is released
5690 * from the bridge.
5691 */
5692 if ((hw->features & STP_SUPPORT) && !promiscuous &&
5693 netif_is_bridge_port(dev)) {
5694 struct ksz_switch *sw = hw->ksz_switch;
5695 int port = priv->port.first_port;
5696
5697 port_set_stp_state(hw, port, STP_STATE_DISABLED);
5698 port = 1 << port;
5699 if (sw->member & port) {
5700 sw->member &= ~port;
5701 bridge_change(hw);
5702 }
5703 }
5704 }
5705 }
5706
dev_set_multicast(struct dev_priv * priv,struct ksz_hw * hw,int multicast)5707 static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5708 int multicast)
5709 {
5710 if (multicast != priv->multicast) {
5711 u8 all_multi = hw->all_multi;
5712
5713 if (multicast)
5714 ++hw->all_multi;
5715 else
5716 --hw->all_multi;
5717 priv->multicast = multicast;
5718
5719 /* Turn on/off all multicast mode. */
5720 if (hw->all_multi <= 1 && all_multi <= 1)
5721 hw_set_multicast(hw, hw->all_multi);
5722 }
5723 }
5724
5725 /**
5726 * netdev_set_rx_mode
5727 * @dev: Network device.
5728 *
5729 * This routine is used to set multicast addresses or put the network device
5730 * into promiscuous mode.
5731 */
netdev_set_rx_mode(struct net_device * dev)5732 static void netdev_set_rx_mode(struct net_device *dev)
5733 {
5734 struct dev_priv *priv = netdev_priv(dev);
5735 struct dev_info *hw_priv = priv->adapter;
5736 struct ksz_hw *hw = &hw_priv->hw;
5737 struct netdev_hw_addr *ha;
5738 int multicast = (dev->flags & IFF_ALLMULTI);
5739
5740 dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5741
5742 if (hw_priv->hw.dev_count > 1)
5743 multicast |= (dev->flags & IFF_MULTICAST);
5744 dev_set_multicast(priv, hw, multicast);
5745
5746 /* Cannot use different hashes in multiple device interfaces mode. */
5747 if (hw_priv->hw.dev_count > 1)
5748 return;
5749
5750 if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
5751 int i = 0;
5752
5753 /* List too big to support so turn on all multicast mode. */
5754 if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
5755 if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5756 hw->multi_list_size = MAX_MULTICAST_LIST;
5757 ++hw->all_multi;
5758 hw_set_multicast(hw, hw->all_multi);
5759 }
5760 return;
5761 }
5762
5763 netdev_for_each_mc_addr(ha, dev) {
5764 if (i >= MAX_MULTICAST_LIST)
5765 break;
5766 memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN);
5767 }
5768 hw->multi_list_size = (u8) i;
5769 hw_set_grp_addr(hw);
5770 } else {
5771 if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5772 --hw->all_multi;
5773 hw_set_multicast(hw, hw->all_multi);
5774 }
5775 hw->multi_list_size = 0;
5776 hw_clr_multicast(hw);
5777 }
5778 }
5779
netdev_change_mtu(struct net_device * dev,int new_mtu)5780 static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5781 {
5782 struct dev_priv *priv = netdev_priv(dev);
5783 struct dev_info *hw_priv = priv->adapter;
5784 struct ksz_hw *hw = &hw_priv->hw;
5785 int hw_mtu;
5786
5787 if (netif_running(dev))
5788 return -EBUSY;
5789
5790 /* Cannot use different MTU in multiple device interfaces mode. */
5791 if (hw->dev_count > 1)
5792 if (dev != hw_priv->dev)
5793 return 0;
5794
5795 hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5796 if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5797 hw->features |= RX_HUGE_FRAME;
5798 hw_mtu = MAX_RX_BUF_SIZE;
5799 } else {
5800 hw->features &= ~RX_HUGE_FRAME;
5801 hw_mtu = REGULAR_RX_BUF_SIZE;
5802 }
5803 hw_mtu = (hw_mtu + 3) & ~3;
5804 hw_priv->mtu = hw_mtu;
5805 dev->mtu = new_mtu;
5806
5807 return 0;
5808 }
5809
5810 /**
5811 * netdev_ioctl - I/O control processing
5812 * @dev: Network device.
5813 * @ifr: Interface request structure.
5814 * @cmd: I/O control code.
5815 *
5816 * This function is used to process I/O control calls.
5817 *
5818 * Return 0 to indicate success.
5819 */
netdev_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)5820 static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5821 {
5822 struct dev_priv *priv = netdev_priv(dev);
5823 struct dev_info *hw_priv = priv->adapter;
5824 struct ksz_hw *hw = &hw_priv->hw;
5825 struct ksz_port *port = &priv->port;
5826 int result = 0;
5827 struct mii_ioctl_data *data = if_mii(ifr);
5828
5829 if (down_interruptible(&priv->proc_sem))
5830 return -ERESTARTSYS;
5831
5832 switch (cmd) {
5833 /* Get address of MII PHY in use. */
5834 case SIOCGMIIPHY:
5835 data->phy_id = priv->id;
5836 fallthrough;
5837
5838 /* Read MII PHY register. */
5839 case SIOCGMIIREG:
5840 if (data->phy_id != priv->id || data->reg_num >= 6)
5841 result = -EIO;
5842 else
5843 hw_r_phy(hw, port->linked->port_id, data->reg_num,
5844 &data->val_out);
5845 break;
5846
5847 /* Write MII PHY register. */
5848 case SIOCSMIIREG:
5849 if (!capable(CAP_NET_ADMIN))
5850 result = -EPERM;
5851 else if (data->phy_id != priv->id || data->reg_num >= 6)
5852 result = -EIO;
5853 else
5854 hw_w_phy(hw, port->linked->port_id, data->reg_num,
5855 data->val_in);
5856 break;
5857
5858 default:
5859 result = -EOPNOTSUPP;
5860 }
5861
5862 up(&priv->proc_sem);
5863
5864 return result;
5865 }
5866
5867 /*
5868 * MII support
5869 */
5870
5871 /**
5872 * mdio_read - read PHY register
5873 * @dev: Network device.
5874 * @phy_id: The PHY id.
5875 * @reg_num: The register number.
5876 *
5877 * This function returns the PHY register value.
5878 *
5879 * Return the register value.
5880 */
mdio_read(struct net_device * dev,int phy_id,int reg_num)5881 static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5882 {
5883 struct dev_priv *priv = netdev_priv(dev);
5884 struct ksz_port *port = &priv->port;
5885 struct ksz_hw *hw = port->hw;
5886 u16 val_out;
5887
5888 hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5889 return val_out;
5890 }
5891
5892 /**
5893 * mdio_write - set PHY register
5894 * @dev: Network device.
5895 * @phy_id: The PHY id.
5896 * @reg_num: The register number.
5897 * @val: The register value.
5898 *
5899 * This procedure sets the PHY register value.
5900 */
mdio_write(struct net_device * dev,int phy_id,int reg_num,int val)5901 static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5902 {
5903 struct dev_priv *priv = netdev_priv(dev);
5904 struct ksz_port *port = &priv->port;
5905 struct ksz_hw *hw = port->hw;
5906 int i;
5907 int pi;
5908
5909 for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5910 hw_w_phy(hw, pi, reg_num << 1, val);
5911 }
5912
5913 /*
5914 * ethtool support
5915 */
5916
5917 #define EEPROM_SIZE 0x40
5918
5919 static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5920
5921 #define ADVERTISED_ALL \
5922 (ADVERTISED_10baseT_Half | \
5923 ADVERTISED_10baseT_Full | \
5924 ADVERTISED_100baseT_Half | \
5925 ADVERTISED_100baseT_Full)
5926
5927 /* These functions use the MII functions in mii.c. */
5928
5929 /**
5930 * netdev_get_link_ksettings - get network device settings
5931 * @dev: Network device.
5932 * @cmd: Ethtool command.
5933 *
5934 * This function queries the PHY and returns its state in the ethtool command.
5935 *
5936 * Return 0 if successful; otherwise an error code.
5937 */
netdev_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)5938 static int netdev_get_link_ksettings(struct net_device *dev,
5939 struct ethtool_link_ksettings *cmd)
5940 {
5941 struct dev_priv *priv = netdev_priv(dev);
5942 struct dev_info *hw_priv = priv->adapter;
5943
5944 mutex_lock(&hw_priv->lock);
5945 mii_ethtool_get_link_ksettings(&priv->mii_if, cmd);
5946 ethtool_link_ksettings_add_link_mode(cmd, advertising, TP);
5947 mutex_unlock(&hw_priv->lock);
5948
5949 /* Save advertised settings for workaround in next function. */
5950 ethtool_convert_link_mode_to_legacy_u32(&priv->advertising,
5951 cmd->link_modes.advertising);
5952
5953 return 0;
5954 }
5955
5956 /**
5957 * netdev_set_link_ksettings - set network device settings
5958 * @dev: Network device.
5959 * @cmd: Ethtool command.
5960 *
5961 * This function sets the PHY according to the ethtool command.
5962 *
5963 * Return 0 if successful; otherwise an error code.
5964 */
netdev_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)5965 static int netdev_set_link_ksettings(struct net_device *dev,
5966 const struct ethtool_link_ksettings *cmd)
5967 {
5968 struct dev_priv *priv = netdev_priv(dev);
5969 struct dev_info *hw_priv = priv->adapter;
5970 struct ksz_port *port = &priv->port;
5971 struct ethtool_link_ksettings copy_cmd;
5972 u32 speed = cmd->base.speed;
5973 u32 advertising;
5974 int rc;
5975
5976 ethtool_convert_link_mode_to_legacy_u32(&advertising,
5977 cmd->link_modes.advertising);
5978
5979 /*
5980 * ethtool utility does not change advertised setting if auto
5981 * negotiation is not specified explicitly.
5982 */
5983 if (cmd->base.autoneg && priv->advertising == advertising) {
5984 advertising |= ADVERTISED_ALL;
5985 if (10 == speed)
5986 advertising &=
5987 ~(ADVERTISED_100baseT_Full |
5988 ADVERTISED_100baseT_Half);
5989 else if (100 == speed)
5990 advertising &=
5991 ~(ADVERTISED_10baseT_Full |
5992 ADVERTISED_10baseT_Half);
5993 if (0 == cmd->base.duplex)
5994 advertising &=
5995 ~(ADVERTISED_100baseT_Full |
5996 ADVERTISED_10baseT_Full);
5997 else if (1 == cmd->base.duplex)
5998 advertising &=
5999 ~(ADVERTISED_100baseT_Half |
6000 ADVERTISED_10baseT_Half);
6001 }
6002 mutex_lock(&hw_priv->lock);
6003 if (cmd->base.autoneg &&
6004 (advertising & ADVERTISED_ALL) == ADVERTISED_ALL) {
6005 port->duplex = 0;
6006 port->speed = 0;
6007 port->force_link = 0;
6008 } else {
6009 port->duplex = cmd->base.duplex + 1;
6010 if (1000 != speed)
6011 port->speed = speed;
6012 if (cmd->base.autoneg)
6013 port->force_link = 0;
6014 else
6015 port->force_link = 1;
6016 }
6017
6018 memcpy(©_cmd, cmd, sizeof(copy_cmd));
6019 ethtool_convert_legacy_u32_to_link_mode(copy_cmd.link_modes.advertising,
6020 advertising);
6021 rc = mii_ethtool_set_link_ksettings(
6022 &priv->mii_if,
6023 (const struct ethtool_link_ksettings *)©_cmd);
6024 mutex_unlock(&hw_priv->lock);
6025 return rc;
6026 }
6027
6028 /**
6029 * netdev_nway_reset - restart auto-negotiation
6030 * @dev: Network device.
6031 *
6032 * This function restarts the PHY for auto-negotiation.
6033 *
6034 * Return 0 if successful; otherwise an error code.
6035 */
netdev_nway_reset(struct net_device * dev)6036 static int netdev_nway_reset(struct net_device *dev)
6037 {
6038 struct dev_priv *priv = netdev_priv(dev);
6039 struct dev_info *hw_priv = priv->adapter;
6040 int rc;
6041
6042 mutex_lock(&hw_priv->lock);
6043 rc = mii_nway_restart(&priv->mii_if);
6044 mutex_unlock(&hw_priv->lock);
6045 return rc;
6046 }
6047
6048 /**
6049 * netdev_get_link - get network device link status
6050 * @dev: Network device.
6051 *
6052 * This function gets the link status from the PHY.
6053 *
6054 * Return true if PHY is linked and false otherwise.
6055 */
netdev_get_link(struct net_device * dev)6056 static u32 netdev_get_link(struct net_device *dev)
6057 {
6058 struct dev_priv *priv = netdev_priv(dev);
6059 int rc;
6060
6061 rc = mii_link_ok(&priv->mii_if);
6062 return rc;
6063 }
6064
6065 /**
6066 * netdev_get_drvinfo - get network driver information
6067 * @dev: Network device.
6068 * @info: Ethtool driver info data structure.
6069 *
6070 * This procedure returns the driver information.
6071 */
netdev_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)6072 static void netdev_get_drvinfo(struct net_device *dev,
6073 struct ethtool_drvinfo *info)
6074 {
6075 struct dev_priv *priv = netdev_priv(dev);
6076 struct dev_info *hw_priv = priv->adapter;
6077
6078 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
6079 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
6080 strlcpy(info->bus_info, pci_name(hw_priv->pdev),
6081 sizeof(info->bus_info));
6082 }
6083
6084 static struct hw_regs {
6085 int start;
6086 int end;
6087 } hw_regs_range[] = {
6088 { KS_DMA_TX_CTRL, KS884X_INTERRUPTS_STATUS },
6089 { KS_ADD_ADDR_0_LO, KS_ADD_ADDR_F_HI },
6090 { KS884X_ADDR_0_OFFSET, KS8841_WOL_FRAME_BYTE2_OFFSET },
6091 { KS884X_SIDER_P, KS8842_SGCR7_P },
6092 { KS8842_MACAR1_P, KS8842_TOSR8_P },
6093 { KS884X_P1MBCR_P, KS8842_P3ERCR_P },
6094 { 0, 0 }
6095 };
6096
6097 /**
6098 * netdev_get_regs_len - get length of register dump
6099 * @dev: Network device.
6100 *
6101 * This function returns the length of the register dump.
6102 *
6103 * Return length of the register dump.
6104 */
netdev_get_regs_len(struct net_device * dev)6105 static int netdev_get_regs_len(struct net_device *dev)
6106 {
6107 struct hw_regs *range = hw_regs_range;
6108 int regs_len = 0x10 * sizeof(u32);
6109
6110 while (range->end > range->start) {
6111 regs_len += (range->end - range->start + 3) / 4 * 4;
6112 range++;
6113 }
6114 return regs_len;
6115 }
6116
6117 /**
6118 * netdev_get_regs - get register dump
6119 * @dev: Network device.
6120 * @regs: Ethtool registers data structure.
6121 * @ptr: Buffer to store the register values.
6122 *
6123 * This procedure dumps the register values in the provided buffer.
6124 */
netdev_get_regs(struct net_device * dev,struct ethtool_regs * regs,void * ptr)6125 static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
6126 void *ptr)
6127 {
6128 struct dev_priv *priv = netdev_priv(dev);
6129 struct dev_info *hw_priv = priv->adapter;
6130 struct ksz_hw *hw = &hw_priv->hw;
6131 int *buf = (int *) ptr;
6132 struct hw_regs *range = hw_regs_range;
6133 int len;
6134
6135 mutex_lock(&hw_priv->lock);
6136 regs->version = 0;
6137 for (len = 0; len < 0x40; len += 4) {
6138 pci_read_config_dword(hw_priv->pdev, len, buf);
6139 buf++;
6140 }
6141 while (range->end > range->start) {
6142 for (len = range->start; len < range->end; len += 4) {
6143 *buf = readl(hw->io + len);
6144 buf++;
6145 }
6146 range++;
6147 }
6148 mutex_unlock(&hw_priv->lock);
6149 }
6150
6151 #define WOL_SUPPORT \
6152 (WAKE_PHY | WAKE_MAGIC | \
6153 WAKE_UCAST | WAKE_MCAST | \
6154 WAKE_BCAST | WAKE_ARP)
6155
6156 /**
6157 * netdev_get_wol - get Wake-on-LAN support
6158 * @dev: Network device.
6159 * @wol: Ethtool Wake-on-LAN data structure.
6160 *
6161 * This procedure returns Wake-on-LAN support.
6162 */
netdev_get_wol(struct net_device * dev,struct ethtool_wolinfo * wol)6163 static void netdev_get_wol(struct net_device *dev,
6164 struct ethtool_wolinfo *wol)
6165 {
6166 struct dev_priv *priv = netdev_priv(dev);
6167 struct dev_info *hw_priv = priv->adapter;
6168
6169 wol->supported = hw_priv->wol_support;
6170 wol->wolopts = hw_priv->wol_enable;
6171 memset(&wol->sopass, 0, sizeof(wol->sopass));
6172 }
6173
6174 /**
6175 * netdev_set_wol - set Wake-on-LAN support
6176 * @dev: Network device.
6177 * @wol: Ethtool Wake-on-LAN data structure.
6178 *
6179 * This function sets Wake-on-LAN support.
6180 *
6181 * Return 0 if successful; otherwise an error code.
6182 */
netdev_set_wol(struct net_device * dev,struct ethtool_wolinfo * wol)6183 static int netdev_set_wol(struct net_device *dev,
6184 struct ethtool_wolinfo *wol)
6185 {
6186 struct dev_priv *priv = netdev_priv(dev);
6187 struct dev_info *hw_priv = priv->adapter;
6188
6189 /* Need to find a way to retrieve the device IP address. */
6190 static const u8 net_addr[] = { 192, 168, 1, 1 };
6191
6192 if (wol->wolopts & ~hw_priv->wol_support)
6193 return -EINVAL;
6194
6195 hw_priv->wol_enable = wol->wolopts;
6196
6197 /* Link wakeup cannot really be disabled. */
6198 if (wol->wolopts)
6199 hw_priv->wol_enable |= WAKE_PHY;
6200 hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
6201 return 0;
6202 }
6203
6204 /**
6205 * netdev_get_msglevel - get debug message level
6206 * @dev: Network device.
6207 *
6208 * This function returns current debug message level.
6209 *
6210 * Return current debug message flags.
6211 */
netdev_get_msglevel(struct net_device * dev)6212 static u32 netdev_get_msglevel(struct net_device *dev)
6213 {
6214 struct dev_priv *priv = netdev_priv(dev);
6215
6216 return priv->msg_enable;
6217 }
6218
6219 /**
6220 * netdev_set_msglevel - set debug message level
6221 * @dev: Network device.
6222 * @value: Debug message flags.
6223 *
6224 * This procedure sets debug message level.
6225 */
netdev_set_msglevel(struct net_device * dev,u32 value)6226 static void netdev_set_msglevel(struct net_device *dev, u32 value)
6227 {
6228 struct dev_priv *priv = netdev_priv(dev);
6229
6230 priv->msg_enable = value;
6231 }
6232
6233 /**
6234 * netdev_get_eeprom_len - get EEPROM length
6235 * @dev: Network device.
6236 *
6237 * This function returns the length of the EEPROM.
6238 *
6239 * Return length of the EEPROM.
6240 */
netdev_get_eeprom_len(struct net_device * dev)6241 static int netdev_get_eeprom_len(struct net_device *dev)
6242 {
6243 return EEPROM_SIZE * 2;
6244 }
6245
6246 #define EEPROM_MAGIC 0x10A18842
6247
6248 /**
6249 * netdev_get_eeprom - get EEPROM data
6250 * @dev: Network device.
6251 * @eeprom: Ethtool EEPROM data structure.
6252 * @data: Buffer to store the EEPROM data.
6253 *
6254 * This function dumps the EEPROM data in the provided buffer.
6255 *
6256 * Return 0 if successful; otherwise an error code.
6257 */
netdev_get_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data)6258 static int netdev_get_eeprom(struct net_device *dev,
6259 struct ethtool_eeprom *eeprom, u8 *data)
6260 {
6261 struct dev_priv *priv = netdev_priv(dev);
6262 struct dev_info *hw_priv = priv->adapter;
6263 u8 *eeprom_byte = (u8 *) eeprom_data;
6264 int i;
6265 int len;
6266
6267 len = (eeprom->offset + eeprom->len + 1) / 2;
6268 for (i = eeprom->offset / 2; i < len; i++)
6269 eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6270 eeprom->magic = EEPROM_MAGIC;
6271 memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
6272
6273 return 0;
6274 }
6275
6276 /**
6277 * netdev_set_eeprom - write EEPROM data
6278 * @dev: Network device.
6279 * @eeprom: Ethtool EEPROM data structure.
6280 * @data: Data buffer.
6281 *
6282 * This function modifies the EEPROM data one byte at a time.
6283 *
6284 * Return 0 if successful; otherwise an error code.
6285 */
netdev_set_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data)6286 static int netdev_set_eeprom(struct net_device *dev,
6287 struct ethtool_eeprom *eeprom, u8 *data)
6288 {
6289 struct dev_priv *priv = netdev_priv(dev);
6290 struct dev_info *hw_priv = priv->adapter;
6291 u16 eeprom_word[EEPROM_SIZE];
6292 u8 *eeprom_byte = (u8 *) eeprom_word;
6293 int i;
6294 int len;
6295
6296 if (eeprom->magic != EEPROM_MAGIC)
6297 return -EINVAL;
6298
6299 len = (eeprom->offset + eeprom->len + 1) / 2;
6300 for (i = eeprom->offset / 2; i < len; i++)
6301 eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6302 memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
6303 memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
6304 for (i = 0; i < EEPROM_SIZE; i++)
6305 if (eeprom_word[i] != eeprom_data[i]) {
6306 eeprom_data[i] = eeprom_word[i];
6307 eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
6308 }
6309
6310 return 0;
6311 }
6312
6313 /**
6314 * netdev_get_pauseparam - get flow control parameters
6315 * @dev: Network device.
6316 * @pause: Ethtool PAUSE settings data structure.
6317 *
6318 * This procedure returns the PAUSE control flow settings.
6319 */
netdev_get_pauseparam(struct net_device * dev,struct ethtool_pauseparam * pause)6320 static void netdev_get_pauseparam(struct net_device *dev,
6321 struct ethtool_pauseparam *pause)
6322 {
6323 struct dev_priv *priv = netdev_priv(dev);
6324 struct dev_info *hw_priv = priv->adapter;
6325 struct ksz_hw *hw = &hw_priv->hw;
6326
6327 pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
6328 if (!hw->ksz_switch) {
6329 pause->rx_pause =
6330 (hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
6331 pause->tx_pause =
6332 (hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
6333 } else {
6334 pause->rx_pause =
6335 (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6336 SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
6337 pause->tx_pause =
6338 (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6339 SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
6340 }
6341 }
6342
6343 /**
6344 * netdev_set_pauseparam - set flow control parameters
6345 * @dev: Network device.
6346 * @pause: Ethtool PAUSE settings data structure.
6347 *
6348 * This function sets the PAUSE control flow settings.
6349 * Not implemented yet.
6350 *
6351 * Return 0 if successful; otherwise an error code.
6352 */
netdev_set_pauseparam(struct net_device * dev,struct ethtool_pauseparam * pause)6353 static int netdev_set_pauseparam(struct net_device *dev,
6354 struct ethtool_pauseparam *pause)
6355 {
6356 struct dev_priv *priv = netdev_priv(dev);
6357 struct dev_info *hw_priv = priv->adapter;
6358 struct ksz_hw *hw = &hw_priv->hw;
6359 struct ksz_port *port = &priv->port;
6360
6361 mutex_lock(&hw_priv->lock);
6362 if (pause->autoneg) {
6363 if (!pause->rx_pause && !pause->tx_pause)
6364 port->flow_ctrl = PHY_NO_FLOW_CTRL;
6365 else
6366 port->flow_ctrl = PHY_FLOW_CTRL;
6367 hw->overrides &= ~PAUSE_FLOW_CTRL;
6368 port->force_link = 0;
6369 if (hw->ksz_switch) {
6370 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6371 SWITCH_RX_FLOW_CTRL, 1);
6372 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6373 SWITCH_TX_FLOW_CTRL, 1);
6374 }
6375 port_set_link_speed(port);
6376 } else {
6377 hw->overrides |= PAUSE_FLOW_CTRL;
6378 if (hw->ksz_switch) {
6379 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6380 SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6381 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6382 SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6383 } else
6384 set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6385 }
6386 mutex_unlock(&hw_priv->lock);
6387
6388 return 0;
6389 }
6390
6391 /**
6392 * netdev_get_ringparam - get tx/rx ring parameters
6393 * @dev: Network device.
6394 * @ring: Ethtool RING settings data structure.
6395 *
6396 * This procedure returns the TX/RX ring settings.
6397 */
netdev_get_ringparam(struct net_device * dev,struct ethtool_ringparam * ring)6398 static void netdev_get_ringparam(struct net_device *dev,
6399 struct ethtool_ringparam *ring)
6400 {
6401 struct dev_priv *priv = netdev_priv(dev);
6402 struct dev_info *hw_priv = priv->adapter;
6403 struct ksz_hw *hw = &hw_priv->hw;
6404
6405 ring->tx_max_pending = (1 << 9);
6406 ring->tx_pending = hw->tx_desc_info.alloc;
6407 ring->rx_max_pending = (1 << 9);
6408 ring->rx_pending = hw->rx_desc_info.alloc;
6409 }
6410
6411 #define STATS_LEN (TOTAL_PORT_COUNTER_NUM)
6412
6413 static struct {
6414 char string[ETH_GSTRING_LEN];
6415 } ethtool_stats_keys[STATS_LEN] = {
6416 { "rx_lo_priority_octets" },
6417 { "rx_hi_priority_octets" },
6418 { "rx_undersize_packets" },
6419 { "rx_fragments" },
6420 { "rx_oversize_packets" },
6421 { "rx_jabbers" },
6422 { "rx_symbol_errors" },
6423 { "rx_crc_errors" },
6424 { "rx_align_errors" },
6425 { "rx_mac_ctrl_packets" },
6426 { "rx_pause_packets" },
6427 { "rx_bcast_packets" },
6428 { "rx_mcast_packets" },
6429 { "rx_ucast_packets" },
6430 { "rx_64_or_less_octet_packets" },
6431 { "rx_65_to_127_octet_packets" },
6432 { "rx_128_to_255_octet_packets" },
6433 { "rx_256_to_511_octet_packets" },
6434 { "rx_512_to_1023_octet_packets" },
6435 { "rx_1024_to_1522_octet_packets" },
6436
6437 { "tx_lo_priority_octets" },
6438 { "tx_hi_priority_octets" },
6439 { "tx_late_collisions" },
6440 { "tx_pause_packets" },
6441 { "tx_bcast_packets" },
6442 { "tx_mcast_packets" },
6443 { "tx_ucast_packets" },
6444 { "tx_deferred" },
6445 { "tx_total_collisions" },
6446 { "tx_excessive_collisions" },
6447 { "tx_single_collisions" },
6448 { "tx_mult_collisions" },
6449
6450 { "rx_discards" },
6451 { "tx_discards" },
6452 };
6453
6454 /**
6455 * netdev_get_strings - get statistics identity strings
6456 * @dev: Network device.
6457 * @stringset: String set identifier.
6458 * @buf: Buffer to store the strings.
6459 *
6460 * This procedure returns the strings used to identify the statistics.
6461 */
netdev_get_strings(struct net_device * dev,u32 stringset,u8 * buf)6462 static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6463 {
6464 struct dev_priv *priv = netdev_priv(dev);
6465 struct dev_info *hw_priv = priv->adapter;
6466 struct ksz_hw *hw = &hw_priv->hw;
6467
6468 if (ETH_SS_STATS == stringset)
6469 memcpy(buf, ðtool_stats_keys,
6470 ETH_GSTRING_LEN * hw->mib_cnt);
6471 }
6472
6473 /**
6474 * netdev_get_sset_count - get statistics size
6475 * @dev: Network device.
6476 * @sset: The statistics set number.
6477 *
6478 * This function returns the size of the statistics to be reported.
6479 *
6480 * Return size of the statistics to be reported.
6481 */
netdev_get_sset_count(struct net_device * dev,int sset)6482 static int netdev_get_sset_count(struct net_device *dev, int sset)
6483 {
6484 struct dev_priv *priv = netdev_priv(dev);
6485 struct dev_info *hw_priv = priv->adapter;
6486 struct ksz_hw *hw = &hw_priv->hw;
6487
6488 switch (sset) {
6489 case ETH_SS_STATS:
6490 return hw->mib_cnt;
6491 default:
6492 return -EOPNOTSUPP;
6493 }
6494 }
6495
6496 /**
6497 * netdev_get_ethtool_stats - get network device statistics
6498 * @dev: Network device.
6499 * @stats: Ethtool statistics data structure.
6500 * @data: Buffer to store the statistics.
6501 *
6502 * This procedure returns the statistics.
6503 */
netdev_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)6504 static void netdev_get_ethtool_stats(struct net_device *dev,
6505 struct ethtool_stats *stats, u64 *data)
6506 {
6507 struct dev_priv *priv = netdev_priv(dev);
6508 struct dev_info *hw_priv = priv->adapter;
6509 struct ksz_hw *hw = &hw_priv->hw;
6510 struct ksz_port *port = &priv->port;
6511 int n_stats = stats->n_stats;
6512 int i;
6513 int n;
6514 int p;
6515 u64 counter[TOTAL_PORT_COUNTER_NUM];
6516
6517 mutex_lock(&hw_priv->lock);
6518 n = SWITCH_PORT_NUM;
6519 for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6520 if (media_connected == hw->port_mib[p].state) {
6521 hw_priv->counter[p].read = 1;
6522
6523 /* Remember first port that requests read. */
6524 if (n == SWITCH_PORT_NUM)
6525 n = p;
6526 }
6527 }
6528 mutex_unlock(&hw_priv->lock);
6529
6530 if (n < SWITCH_PORT_NUM)
6531 schedule_work(&hw_priv->mib_read);
6532
6533 if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6534 p = n;
6535 wait_event_interruptible_timeout(
6536 hw_priv->counter[p].counter,
6537 2 == hw_priv->counter[p].read,
6538 HZ * 1);
6539 } else
6540 for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6541 if (0 == i) {
6542 wait_event_interruptible_timeout(
6543 hw_priv->counter[p].counter,
6544 2 == hw_priv->counter[p].read,
6545 HZ * 2);
6546 } else if (hw->port_mib[p].cnt_ptr) {
6547 wait_event_interruptible_timeout(
6548 hw_priv->counter[p].counter,
6549 2 == hw_priv->counter[p].read,
6550 HZ * 1);
6551 }
6552 }
6553
6554 get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6555 n = hw->mib_cnt;
6556 if (n > n_stats)
6557 n = n_stats;
6558 n_stats -= n;
6559 for (i = 0; i < n; i++)
6560 *data++ = counter[i];
6561 }
6562
6563 /**
6564 * netdev_set_features - set receive checksum support
6565 * @dev: Network device.
6566 * @features: New device features (offloads).
6567 *
6568 * This function sets receive checksum support setting.
6569 *
6570 * Return 0 if successful; otherwise an error code.
6571 */
netdev_set_features(struct net_device * dev,netdev_features_t features)6572 static int netdev_set_features(struct net_device *dev,
6573 netdev_features_t features)
6574 {
6575 struct dev_priv *priv = netdev_priv(dev);
6576 struct dev_info *hw_priv = priv->adapter;
6577 struct ksz_hw *hw = &hw_priv->hw;
6578
6579 mutex_lock(&hw_priv->lock);
6580
6581 /* see note in hw_setup() */
6582 if (features & NETIF_F_RXCSUM)
6583 hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
6584 else
6585 hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
6586
6587 if (hw->enabled)
6588 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6589
6590 mutex_unlock(&hw_priv->lock);
6591
6592 return 0;
6593 }
6594
6595 static const struct ethtool_ops netdev_ethtool_ops = {
6596 .nway_reset = netdev_nway_reset,
6597 .get_link = netdev_get_link,
6598 .get_drvinfo = netdev_get_drvinfo,
6599 .get_regs_len = netdev_get_regs_len,
6600 .get_regs = netdev_get_regs,
6601 .get_wol = netdev_get_wol,
6602 .set_wol = netdev_set_wol,
6603 .get_msglevel = netdev_get_msglevel,
6604 .set_msglevel = netdev_set_msglevel,
6605 .get_eeprom_len = netdev_get_eeprom_len,
6606 .get_eeprom = netdev_get_eeprom,
6607 .set_eeprom = netdev_set_eeprom,
6608 .get_pauseparam = netdev_get_pauseparam,
6609 .set_pauseparam = netdev_set_pauseparam,
6610 .get_ringparam = netdev_get_ringparam,
6611 .get_strings = netdev_get_strings,
6612 .get_sset_count = netdev_get_sset_count,
6613 .get_ethtool_stats = netdev_get_ethtool_stats,
6614 .get_link_ksettings = netdev_get_link_ksettings,
6615 .set_link_ksettings = netdev_set_link_ksettings,
6616 };
6617
6618 /*
6619 * Hardware monitoring
6620 */
6621
update_link(struct net_device * dev,struct dev_priv * priv,struct ksz_port * port)6622 static void update_link(struct net_device *dev, struct dev_priv *priv,
6623 struct ksz_port *port)
6624 {
6625 if (priv->media_state != port->linked->state) {
6626 priv->media_state = port->linked->state;
6627 if (netif_running(dev))
6628 set_media_state(dev, media_connected);
6629 }
6630 }
6631
mib_read_work(struct work_struct * work)6632 static void mib_read_work(struct work_struct *work)
6633 {
6634 struct dev_info *hw_priv =
6635 container_of(work, struct dev_info, mib_read);
6636 struct ksz_hw *hw = &hw_priv->hw;
6637 struct ksz_port_mib *mib;
6638 int i;
6639
6640 next_jiffies = jiffies;
6641 for (i = 0; i < hw->mib_port_cnt; i++) {
6642 mib = &hw->port_mib[i];
6643
6644 /* Reading MIB counters or requested to read. */
6645 if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6646
6647 /* Need to process receive interrupt. */
6648 if (port_r_cnt(hw, i))
6649 break;
6650 hw_priv->counter[i].read = 0;
6651
6652 /* Finish reading counters. */
6653 if (0 == mib->cnt_ptr) {
6654 hw_priv->counter[i].read = 2;
6655 wake_up_interruptible(
6656 &hw_priv->counter[i].counter);
6657 }
6658 } else if (time_after_eq(jiffies, hw_priv->counter[i].time)) {
6659 /* Only read MIB counters when the port is connected. */
6660 if (media_connected == mib->state)
6661 hw_priv->counter[i].read = 1;
6662 next_jiffies += HZ * 1 * hw->mib_port_cnt;
6663 hw_priv->counter[i].time = next_jiffies;
6664
6665 /* Port is just disconnected. */
6666 } else if (mib->link_down) {
6667 mib->link_down = 0;
6668
6669 /* Read counters one last time after link is lost. */
6670 hw_priv->counter[i].read = 1;
6671 }
6672 }
6673 }
6674
mib_monitor(struct timer_list * t)6675 static void mib_monitor(struct timer_list *t)
6676 {
6677 struct dev_info *hw_priv = from_timer(hw_priv, t, mib_timer_info.timer);
6678
6679 mib_read_work(&hw_priv->mib_read);
6680
6681 /* This is used to verify Wake-on-LAN is working. */
6682 if (hw_priv->pme_wait) {
6683 if (time_is_before_eq_jiffies(hw_priv->pme_wait)) {
6684 hw_clr_wol_pme_status(&hw_priv->hw);
6685 hw_priv->pme_wait = 0;
6686 }
6687 } else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6688
6689 /* PME is asserted. Wait 2 seconds to clear it. */
6690 hw_priv->pme_wait = jiffies + HZ * 2;
6691 }
6692
6693 ksz_update_timer(&hw_priv->mib_timer_info);
6694 }
6695
6696 /**
6697 * dev_monitor - periodic monitoring
6698 * @t: timer list containing a network device pointer.
6699 *
6700 * This routine is run in a kernel timer to monitor the network device.
6701 */
dev_monitor(struct timer_list * t)6702 static void dev_monitor(struct timer_list *t)
6703 {
6704 struct dev_priv *priv = from_timer(priv, t, monitor_timer_info.timer);
6705 struct net_device *dev = priv->mii_if.dev;
6706 struct dev_info *hw_priv = priv->adapter;
6707 struct ksz_hw *hw = &hw_priv->hw;
6708 struct ksz_port *port = &priv->port;
6709
6710 if (!(hw->features & LINK_INT_WORKING))
6711 port_get_link_speed(port);
6712 update_link(dev, priv, port);
6713
6714 ksz_update_timer(&priv->monitor_timer_info);
6715 }
6716
6717 /*
6718 * Linux network device interface functions
6719 */
6720
6721 /* Driver exported variables */
6722
6723 static int msg_enable;
6724
6725 static char *macaddr = ":";
6726 static char *mac1addr = ":";
6727
6728 /*
6729 * This enables multiple network device mode for KSZ8842, which contains a
6730 * switch with two physical ports. Some users like to take control of the
6731 * ports for running Spanning Tree Protocol. The driver will create an
6732 * additional eth? device for the other port.
6733 *
6734 * Some limitations are the network devices cannot have different MTU and
6735 * multicast hash tables.
6736 */
6737 static int multi_dev;
6738
6739 /*
6740 * As most users select multiple network device mode to use Spanning Tree
6741 * Protocol, this enables a feature in which most unicast and multicast packets
6742 * are forwarded inside the switch and not passed to the host. Only packets
6743 * that need the host's attention are passed to it. This prevents the host
6744 * wasting CPU time to examine each and every incoming packets and do the
6745 * forwarding itself.
6746 *
6747 * As the hack requires the private bridge header, the driver cannot compile
6748 * with just the kernel headers.
6749 *
6750 * Enabling STP support also turns on multiple network device mode.
6751 */
6752 static int stp;
6753
6754 /*
6755 * This enables fast aging in the KSZ8842 switch. Not sure what situation
6756 * needs that. However, fast aging is used to flush the dynamic MAC table when
6757 * STP support is enabled.
6758 */
6759 static int fast_aging;
6760
6761 /**
6762 * netdev_init - initialize network device.
6763 * @dev: Network device.
6764 *
6765 * This function initializes the network device.
6766 *
6767 * Return 0 if successful; otherwise an error code indicating failure.
6768 */
netdev_init(struct net_device * dev)6769 static int __init netdev_init(struct net_device *dev)
6770 {
6771 struct dev_priv *priv = netdev_priv(dev);
6772
6773 /* 500 ms timeout */
6774 ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6775 dev_monitor);
6776
6777 /* 500 ms timeout */
6778 dev->watchdog_timeo = HZ / 2;
6779
6780 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
6781
6782 /*
6783 * Hardware does not really support IPv6 checksum generation, but
6784 * driver actually runs faster with this on.
6785 */
6786 dev->hw_features |= NETIF_F_IPV6_CSUM;
6787
6788 dev->features |= dev->hw_features;
6789
6790 sema_init(&priv->proc_sem, 1);
6791
6792 priv->mii_if.phy_id_mask = 0x1;
6793 priv->mii_if.reg_num_mask = 0x7;
6794 priv->mii_if.dev = dev;
6795 priv->mii_if.mdio_read = mdio_read;
6796 priv->mii_if.mdio_write = mdio_write;
6797 priv->mii_if.phy_id = priv->port.first_port + 1;
6798
6799 priv->msg_enable = netif_msg_init(msg_enable,
6800 (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6801
6802 return 0;
6803 }
6804
6805 static const struct net_device_ops netdev_ops = {
6806 .ndo_init = netdev_init,
6807 .ndo_open = netdev_open,
6808 .ndo_stop = netdev_close,
6809 .ndo_get_stats = netdev_query_statistics,
6810 .ndo_start_xmit = netdev_tx,
6811 .ndo_tx_timeout = netdev_tx_timeout,
6812 .ndo_change_mtu = netdev_change_mtu,
6813 .ndo_set_features = netdev_set_features,
6814 .ndo_set_mac_address = netdev_set_mac_address,
6815 .ndo_validate_addr = eth_validate_addr,
6816 .ndo_do_ioctl = netdev_ioctl,
6817 .ndo_set_rx_mode = netdev_set_rx_mode,
6818 #ifdef CONFIG_NET_POLL_CONTROLLER
6819 .ndo_poll_controller = netdev_netpoll,
6820 #endif
6821 };
6822
netdev_free(struct net_device * dev)6823 static void netdev_free(struct net_device *dev)
6824 {
6825 if (dev->watchdog_timeo)
6826 unregister_netdev(dev);
6827
6828 free_netdev(dev);
6829 }
6830
6831 struct platform_info {
6832 struct dev_info dev_info;
6833 struct net_device *netdev[SWITCH_PORT_NUM];
6834 };
6835
6836 static int net_device_present;
6837
get_mac_addr(struct dev_info * hw_priv,u8 * macaddr,int port)6838 static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6839 {
6840 int i;
6841 int j;
6842 int got_num;
6843 int num;
6844
6845 i = j = num = got_num = 0;
6846 while (j < ETH_ALEN) {
6847 if (macaddr[i]) {
6848 int digit;
6849
6850 got_num = 1;
6851 digit = hex_to_bin(macaddr[i]);
6852 if (digit >= 0)
6853 num = num * 16 + digit;
6854 else if (':' == macaddr[i])
6855 got_num = 2;
6856 else
6857 break;
6858 } else if (got_num)
6859 got_num = 2;
6860 else
6861 break;
6862 if (2 == got_num) {
6863 if (MAIN_PORT == port) {
6864 hw_priv->hw.override_addr[j++] = (u8) num;
6865 hw_priv->hw.override_addr[5] +=
6866 hw_priv->hw.id;
6867 } else {
6868 hw_priv->hw.ksz_switch->other_addr[j++] =
6869 (u8) num;
6870 hw_priv->hw.ksz_switch->other_addr[5] +=
6871 hw_priv->hw.id;
6872 }
6873 num = got_num = 0;
6874 }
6875 i++;
6876 }
6877 if (ETH_ALEN == j) {
6878 if (MAIN_PORT == port)
6879 hw_priv->hw.mac_override = 1;
6880 }
6881 }
6882
6883 #define KS884X_DMA_MASK (~0x0UL)
6884
read_other_addr(struct ksz_hw * hw)6885 static void read_other_addr(struct ksz_hw *hw)
6886 {
6887 int i;
6888 u16 data[3];
6889 struct ksz_switch *sw = hw->ksz_switch;
6890
6891 for (i = 0; i < 3; i++)
6892 data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6893 if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6894 sw->other_addr[5] = (u8) data[0];
6895 sw->other_addr[4] = (u8)(data[0] >> 8);
6896 sw->other_addr[3] = (u8) data[1];
6897 sw->other_addr[2] = (u8)(data[1] >> 8);
6898 sw->other_addr[1] = (u8) data[2];
6899 sw->other_addr[0] = (u8)(data[2] >> 8);
6900 }
6901 }
6902
6903 #ifndef PCI_VENDOR_ID_MICREL_KS
6904 #define PCI_VENDOR_ID_MICREL_KS 0x16c6
6905 #endif
6906
pcidev_init(struct pci_dev * pdev,const struct pci_device_id * id)6907 static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id)
6908 {
6909 struct net_device *dev;
6910 struct dev_priv *priv;
6911 struct dev_info *hw_priv;
6912 struct ksz_hw *hw;
6913 struct platform_info *info;
6914 struct ksz_port *port;
6915 unsigned long reg_base;
6916 unsigned long reg_len;
6917 int cnt;
6918 int i;
6919 int mib_port_count;
6920 int pi;
6921 int port_count;
6922 int result;
6923 char banner[sizeof(version)];
6924 struct ksz_switch *sw = NULL;
6925
6926 result = pci_enable_device(pdev);
6927 if (result)
6928 return result;
6929
6930 result = -ENODEV;
6931
6932 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)) ||
6933 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)))
6934 return result;
6935
6936 reg_base = pci_resource_start(pdev, 0);
6937 reg_len = pci_resource_len(pdev, 0);
6938 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6939 return result;
6940
6941 if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6942 return result;
6943 pci_set_master(pdev);
6944
6945 result = -ENOMEM;
6946
6947 info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
6948 if (!info)
6949 goto pcidev_init_dev_err;
6950
6951 hw_priv = &info->dev_info;
6952 hw_priv->pdev = pdev;
6953
6954 hw = &hw_priv->hw;
6955
6956 hw->io = ioremap(reg_base, reg_len);
6957 if (!hw->io)
6958 goto pcidev_init_io_err;
6959
6960 cnt = hw_init(hw);
6961 if (!cnt) {
6962 if (msg_enable & NETIF_MSG_PROBE)
6963 pr_alert("chip not detected\n");
6964 result = -ENODEV;
6965 goto pcidev_init_alloc_err;
6966 }
6967
6968 snprintf(banner, sizeof(banner), "%s", version);
6969 banner[13] = cnt + '0'; /* Replace x in "Micrel KSZ884x" */
6970 dev_info(&hw_priv->pdev->dev, "%s\n", banner);
6971 dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
6972
6973 /* Assume device is KSZ8841. */
6974 hw->dev_count = 1;
6975 port_count = 1;
6976 mib_port_count = 1;
6977 hw->addr_list_size = 0;
6978 hw->mib_cnt = PORT_COUNTER_NUM;
6979 hw->mib_port_cnt = 1;
6980
6981 /* KSZ8842 has a switch with multiple ports. */
6982 if (2 == cnt) {
6983 if (fast_aging)
6984 hw->overrides |= FAST_AGING;
6985
6986 hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
6987
6988 /* Multiple network device interfaces are required. */
6989 if (multi_dev) {
6990 hw->dev_count = SWITCH_PORT_NUM;
6991 hw->addr_list_size = SWITCH_PORT_NUM - 1;
6992 }
6993
6994 /* Single network device has multiple ports. */
6995 if (1 == hw->dev_count) {
6996 port_count = SWITCH_PORT_NUM;
6997 mib_port_count = SWITCH_PORT_NUM;
6998 }
6999 hw->mib_port_cnt = TOTAL_PORT_NUM;
7000 hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
7001 if (!hw->ksz_switch)
7002 goto pcidev_init_alloc_err;
7003
7004 sw = hw->ksz_switch;
7005 }
7006 for (i = 0; i < hw->mib_port_cnt; i++)
7007 hw->port_mib[i].mib_start = 0;
7008
7009 hw->parent = hw_priv;
7010
7011 /* Default MTU is 1500. */
7012 hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
7013
7014 if (ksz_alloc_mem(hw_priv))
7015 goto pcidev_init_mem_err;
7016
7017 hw_priv->hw.id = net_device_present;
7018
7019 spin_lock_init(&hw_priv->hwlock);
7020 mutex_init(&hw_priv->lock);
7021
7022 for (i = 0; i < TOTAL_PORT_NUM; i++)
7023 init_waitqueue_head(&hw_priv->counter[i].counter);
7024
7025 if (macaddr[0] != ':')
7026 get_mac_addr(hw_priv, macaddr, MAIN_PORT);
7027
7028 /* Read MAC address and initialize override address if not overridden. */
7029 hw_read_addr(hw);
7030
7031 /* Multiple device interfaces mode requires a second MAC address. */
7032 if (hw->dev_count > 1) {
7033 memcpy(sw->other_addr, hw->override_addr, ETH_ALEN);
7034 read_other_addr(hw);
7035 if (mac1addr[0] != ':')
7036 get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
7037 }
7038
7039 hw_setup(hw);
7040 if (hw->ksz_switch)
7041 sw_setup(hw);
7042 else {
7043 hw_priv->wol_support = WOL_SUPPORT;
7044 hw_priv->wol_enable = 0;
7045 }
7046
7047 INIT_WORK(&hw_priv->mib_read, mib_read_work);
7048
7049 /* 500 ms timeout */
7050 ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
7051 mib_monitor);
7052
7053 for (i = 0; i < hw->dev_count; i++) {
7054 dev = alloc_etherdev(sizeof(struct dev_priv));
7055 if (!dev)
7056 goto pcidev_init_reg_err;
7057 SET_NETDEV_DEV(dev, &pdev->dev);
7058 info->netdev[i] = dev;
7059
7060 priv = netdev_priv(dev);
7061 priv->adapter = hw_priv;
7062 priv->id = net_device_present++;
7063
7064 port = &priv->port;
7065 port->port_cnt = port_count;
7066 port->mib_port_cnt = mib_port_count;
7067 port->first_port = i;
7068 port->flow_ctrl = PHY_FLOW_CTRL;
7069
7070 port->hw = hw;
7071 port->linked = &hw->port_info[port->first_port];
7072
7073 for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
7074 hw->port_info[pi].port_id = pi;
7075 hw->port_info[pi].pdev = dev;
7076 hw->port_info[pi].state = media_disconnected;
7077 }
7078
7079 dev->mem_start = (unsigned long) hw->io;
7080 dev->mem_end = dev->mem_start + reg_len - 1;
7081 dev->irq = pdev->irq;
7082 if (MAIN_PORT == i)
7083 memcpy(dev->dev_addr, hw_priv->hw.override_addr,
7084 ETH_ALEN);
7085 else {
7086 memcpy(dev->dev_addr, sw->other_addr, ETH_ALEN);
7087 if (ether_addr_equal(sw->other_addr, hw->override_addr))
7088 dev->dev_addr[5] += port->first_port;
7089 }
7090
7091 dev->netdev_ops = &netdev_ops;
7092 dev->ethtool_ops = &netdev_ethtool_ops;
7093
7094 /* MTU range: 60 - 1894 */
7095 dev->min_mtu = ETH_ZLEN;
7096 dev->max_mtu = MAX_RX_BUF_SIZE -
7097 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
7098
7099 if (register_netdev(dev))
7100 goto pcidev_init_reg_err;
7101 port_set_power_saving(port, true);
7102 }
7103
7104 pci_dev_get(hw_priv->pdev);
7105 pci_set_drvdata(pdev, info);
7106 return 0;
7107
7108 pcidev_init_reg_err:
7109 for (i = 0; i < hw->dev_count; i++) {
7110 if (info->netdev[i]) {
7111 netdev_free(info->netdev[i]);
7112 info->netdev[i] = NULL;
7113 }
7114 }
7115
7116 pcidev_init_mem_err:
7117 ksz_free_mem(hw_priv);
7118 kfree(hw->ksz_switch);
7119
7120 pcidev_init_alloc_err:
7121 iounmap(hw->io);
7122
7123 pcidev_init_io_err:
7124 kfree(info);
7125
7126 pcidev_init_dev_err:
7127 release_mem_region(reg_base, reg_len);
7128
7129 return result;
7130 }
7131
pcidev_exit(struct pci_dev * pdev)7132 static void pcidev_exit(struct pci_dev *pdev)
7133 {
7134 int i;
7135 struct platform_info *info = pci_get_drvdata(pdev);
7136 struct dev_info *hw_priv = &info->dev_info;
7137
7138 release_mem_region(pci_resource_start(pdev, 0),
7139 pci_resource_len(pdev, 0));
7140 for (i = 0; i < hw_priv->hw.dev_count; i++) {
7141 if (info->netdev[i])
7142 netdev_free(info->netdev[i]);
7143 }
7144 if (hw_priv->hw.io)
7145 iounmap(hw_priv->hw.io);
7146 ksz_free_mem(hw_priv);
7147 kfree(hw_priv->hw.ksz_switch);
7148 pci_dev_put(hw_priv->pdev);
7149 kfree(info);
7150 }
7151
pcidev_resume(struct device * dev_d)7152 static int __maybe_unused pcidev_resume(struct device *dev_d)
7153 {
7154 int i;
7155 struct platform_info *info = dev_get_drvdata(dev_d);
7156 struct dev_info *hw_priv = &info->dev_info;
7157 struct ksz_hw *hw = &hw_priv->hw;
7158
7159 device_wakeup_disable(dev_d);
7160
7161 if (hw_priv->wol_enable)
7162 hw_cfg_wol_pme(hw, 0);
7163 for (i = 0; i < hw->dev_count; i++) {
7164 if (info->netdev[i]) {
7165 struct net_device *dev = info->netdev[i];
7166
7167 if (netif_running(dev)) {
7168 netdev_open(dev);
7169 netif_device_attach(dev);
7170 }
7171 }
7172 }
7173 return 0;
7174 }
7175
pcidev_suspend(struct device * dev_d)7176 static int __maybe_unused pcidev_suspend(struct device *dev_d)
7177 {
7178 int i;
7179 struct platform_info *info = dev_get_drvdata(dev_d);
7180 struct dev_info *hw_priv = &info->dev_info;
7181 struct ksz_hw *hw = &hw_priv->hw;
7182
7183 /* Need to find a way to retrieve the device IP address. */
7184 static const u8 net_addr[] = { 192, 168, 1, 1 };
7185
7186 for (i = 0; i < hw->dev_count; i++) {
7187 if (info->netdev[i]) {
7188 struct net_device *dev = info->netdev[i];
7189
7190 if (netif_running(dev)) {
7191 netif_device_detach(dev);
7192 netdev_close(dev);
7193 }
7194 }
7195 }
7196 if (hw_priv->wol_enable) {
7197 hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
7198 hw_cfg_wol_pme(hw, 1);
7199 }
7200
7201 device_wakeup_enable(dev_d);
7202 return 0;
7203 }
7204
7205 static char pcidev_name[] = "ksz884xp";
7206
7207 static const struct pci_device_id pcidev_table[] = {
7208 { PCI_VENDOR_ID_MICREL_KS, 0x8841,
7209 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7210 { PCI_VENDOR_ID_MICREL_KS, 0x8842,
7211 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7212 { 0 }
7213 };
7214
7215 MODULE_DEVICE_TABLE(pci, pcidev_table);
7216
7217 static SIMPLE_DEV_PM_OPS(pcidev_pm_ops, pcidev_suspend, pcidev_resume);
7218
7219 static struct pci_driver pci_device_driver = {
7220 .driver.pm = &pcidev_pm_ops,
7221 .name = pcidev_name,
7222 .id_table = pcidev_table,
7223 .probe = pcidev_init,
7224 .remove = pcidev_exit
7225 };
7226
7227 module_pci_driver(pci_device_driver);
7228
7229 MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
7230 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
7231 MODULE_LICENSE("GPL");
7232
7233 module_param_named(message, msg_enable, int, 0);
7234 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
7235
7236 module_param(macaddr, charp, 0);
7237 module_param(mac1addr, charp, 0);
7238 module_param(fast_aging, int, 0);
7239 module_param(multi_dev, int, 0);
7240 module_param(stp, int, 0);
7241 MODULE_PARM_DESC(macaddr, "MAC address");
7242 MODULE_PARM_DESC(mac1addr, "Second MAC address");
7243 MODULE_PARM_DESC(fast_aging, "Fast aging");
7244 MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
7245 MODULE_PARM_DESC(stp, "STP support");
7246