1 // SPDX-License-Identifier: GPL-2.0
2
3 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
4 * Copyright (C) 2018-2021 Linaro Ltd.
5 */
6
7 #include <linux/types.h>
8 #include <linux/bits.h>
9 #include <linux/bitfield.h>
10 #include <linux/mutex.h>
11 #include <linux/completion.h>
12 #include <linux/io.h>
13 #include <linux/bug.h>
14 #include <linux/interrupt.h>
15 #include <linux/platform_device.h>
16 #include <linux/netdevice.h>
17
18 #include "gsi.h"
19 #include "gsi_reg.h"
20 #include "gsi_private.h"
21 #include "gsi_trans.h"
22 #include "ipa_gsi.h"
23 #include "ipa_data.h"
24 #include "ipa_version.h"
25
26 /**
27 * DOC: The IPA Generic Software Interface
28 *
29 * The generic software interface (GSI) is an integral component of the IPA,
30 * providing a well-defined communication layer between the AP subsystem
31 * and the IPA core. The modem uses the GSI layer as well.
32 *
33 * -------- ---------
34 * | | | |
35 * | AP +<---. .----+ Modem |
36 * | +--. | | .->+ |
37 * | | | | | | | |
38 * -------- | | | | ---------
39 * v | v |
40 * --+-+---+-+--
41 * | GSI |
42 * |-----------|
43 * | |
44 * | IPA |
45 * | |
46 * -------------
47 *
48 * In the above diagram, the AP and Modem represent "execution environments"
49 * (EEs), which are independent operating environments that use the IPA for
50 * data transfer.
51 *
52 * Each EE uses a set of unidirectional GSI "channels," which allow transfer
53 * of data to or from the IPA. A channel is implemented as a ring buffer,
54 * with a DRAM-resident array of "transfer elements" (TREs) available to
55 * describe transfers to or from other EEs through the IPA. A transfer
56 * element can also contain an immediate command, requesting the IPA perform
57 * actions other than data transfer.
58 *
59 * Each TRE refers to a block of data--also located DRAM. After writing one
60 * or more TREs to a channel, the writer (either the IPA or an EE) writes a
61 * doorbell register to inform the receiving side how many elements have
62 * been written.
63 *
64 * Each channel has a GSI "event ring" associated with it. An event ring
65 * is implemented very much like a channel ring, but is always directed from
66 * the IPA to an EE. The IPA notifies an EE (such as the AP) about channel
67 * events by adding an entry to the event ring associated with the channel.
68 * The GSI then writes its doorbell for the event ring, causing the target
69 * EE to be interrupted. Each entry in an event ring contains a pointer
70 * to the channel TRE whose completion the event represents.
71 *
72 * Each TRE in a channel ring has a set of flags. One flag indicates whether
73 * the completion of the transfer operation generates an entry (and possibly
74 * an interrupt) in the channel's event ring. Other flags allow transfer
75 * elements to be chained together, forming a single logical transaction.
76 * TRE flags are used to control whether and when interrupts are generated
77 * to signal completion of channel transfers.
78 *
79 * Elements in channel and event rings are completed (or consumed) strictly
80 * in order. Completion of one entry implies the completion of all preceding
81 * entries. A single completion interrupt can therefore communicate the
82 * completion of many transfers.
83 *
84 * Note that all GSI registers are little-endian, which is the assumed
85 * endianness of I/O space accesses. The accessor functions perform byte
86 * swapping if needed (i.e., for a big endian CPU).
87 */
88
89 /* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */
90 #define GSI_EVT_RING_INT_MODT (32 * 1) /* 1ms under 32KHz clock */
91
92 #define GSI_CMD_TIMEOUT 50 /* milliseconds */
93
94 #define GSI_CHANNEL_STOP_RETRIES 10
95 #define GSI_CHANNEL_MODEM_HALT_RETRIES 10
96
97 #define GSI_MHI_EVENT_ID_START 10 /* 1st reserved event id */
98 #define GSI_MHI_EVENT_ID_END 16 /* Last reserved event id */
99
100 #define GSI_ISR_MAX_ITER 50 /* Detect interrupt storms */
101
102 /* An entry in an event ring */
103 struct gsi_event {
104 __le64 xfer_ptr;
105 __le16 len;
106 u8 reserved1;
107 u8 code;
108 __le16 reserved2;
109 u8 type;
110 u8 chid;
111 };
112
113 /** gsi_channel_scratch_gpi - GPI protocol scratch register
114 * @max_outstanding_tre:
115 * Defines the maximum number of TREs allowed in a single transaction
116 * on a channel (in bytes). This determines the amount of prefetch
117 * performed by the hardware. We configure this to equal the size of
118 * the TLV FIFO for the channel.
119 * @outstanding_threshold:
120 * Defines the threshold (in bytes) determining when the sequencer
121 * should update the channel doorbell. We configure this to equal
122 * the size of two TREs.
123 */
124 struct gsi_channel_scratch_gpi {
125 u64 reserved1;
126 u16 reserved2;
127 u16 max_outstanding_tre;
128 u16 reserved3;
129 u16 outstanding_threshold;
130 };
131
132 /** gsi_channel_scratch - channel scratch configuration area
133 *
134 * The exact interpretation of this register is protocol-specific.
135 * We only use GPI channels; see struct gsi_channel_scratch_gpi, above.
136 */
137 union gsi_channel_scratch {
138 struct gsi_channel_scratch_gpi gpi;
139 struct {
140 u32 word1;
141 u32 word2;
142 u32 word3;
143 u32 word4;
144 } data;
145 };
146
147 /* Check things that can be validated at build time. */
gsi_validate_build(void)148 static void gsi_validate_build(void)
149 {
150 /* This is used as a divisor */
151 BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE);
152
153 /* Code assumes the size of channel and event ring element are
154 * the same (and fixed). Make sure the size of an event ring
155 * element is what's expected.
156 */
157 BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE);
158
159 /* Hardware requires a 2^n ring size. We ensure the number of
160 * elements in an event ring is a power of 2 elsewhere; this
161 * ensure the elements themselves meet the requirement.
162 */
163 BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE));
164
165 /* The channel element size must fit in this field */
166 BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(ELEMENT_SIZE_FMASK));
167
168 /* The event ring element size must fit in this field */
169 BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(EV_ELEMENT_SIZE_FMASK));
170 }
171
172 /* Return the channel id associated with a given channel */
gsi_channel_id(struct gsi_channel * channel)173 static u32 gsi_channel_id(struct gsi_channel *channel)
174 {
175 return channel - &channel->gsi->channel[0];
176 }
177
178 /* An initialized channel has a non-null GSI pointer */
gsi_channel_initialized(struct gsi_channel * channel)179 static bool gsi_channel_initialized(struct gsi_channel *channel)
180 {
181 return !!channel->gsi;
182 }
183
184 /* Update the GSI IRQ type register with the cached value */
gsi_irq_type_update(struct gsi * gsi,u32 val)185 static void gsi_irq_type_update(struct gsi *gsi, u32 val)
186 {
187 gsi->type_enabled_bitmap = val;
188 iowrite32(val, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET);
189 }
190
gsi_irq_type_enable(struct gsi * gsi,enum gsi_irq_type_id type_id)191 static void gsi_irq_type_enable(struct gsi *gsi, enum gsi_irq_type_id type_id)
192 {
193 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(type_id));
194 }
195
gsi_irq_type_disable(struct gsi * gsi,enum gsi_irq_type_id type_id)196 static void gsi_irq_type_disable(struct gsi *gsi, enum gsi_irq_type_id type_id)
197 {
198 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap & ~BIT(type_id));
199 }
200
201 /* Turn off all GSI interrupts initially; there is no gsi_irq_teardown() */
gsi_irq_setup(struct gsi * gsi)202 static void gsi_irq_setup(struct gsi *gsi)
203 {
204 /* Disable all interrupt types */
205 gsi_irq_type_update(gsi, 0);
206
207 /* Clear all type-specific interrupt masks */
208 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
209 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
210 iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
211 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
212
213 /* The inter-EE registers are in the non-adjusted address range */
214 iowrite32(0, gsi->virt_raw + GSI_INTER_EE_SRC_CH_IRQ_MSK_OFFSET);
215 iowrite32(0, gsi->virt_raw + GSI_INTER_EE_SRC_EV_CH_IRQ_MSK_OFFSET);
216
217 iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
218 }
219
220 /* Event ring commands are performed one at a time. Their completion
221 * is signaled by the event ring control GSI interrupt type, which is
222 * only enabled when we issue an event ring command. Only the event
223 * ring being operated on has this interrupt enabled.
224 */
gsi_irq_ev_ctrl_enable(struct gsi * gsi,u32 evt_ring_id)225 static void gsi_irq_ev_ctrl_enable(struct gsi *gsi, u32 evt_ring_id)
226 {
227 u32 val = BIT(evt_ring_id);
228
229 /* There's a small chance that a previous command completed
230 * after the interrupt was disabled, so make sure we have no
231 * pending interrupts before we enable them.
232 */
233 iowrite32(~0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET);
234
235 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
236 gsi_irq_type_enable(gsi, GSI_EV_CTRL);
237 }
238
239 /* Disable event ring control interrupts */
gsi_irq_ev_ctrl_disable(struct gsi * gsi)240 static void gsi_irq_ev_ctrl_disable(struct gsi *gsi)
241 {
242 gsi_irq_type_disable(gsi, GSI_EV_CTRL);
243 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
244 }
245
246 /* Channel commands are performed one at a time. Their completion is
247 * signaled by the channel control GSI interrupt type, which is only
248 * enabled when we issue a channel command. Only the channel being
249 * operated on has this interrupt enabled.
250 */
gsi_irq_ch_ctrl_enable(struct gsi * gsi,u32 channel_id)251 static void gsi_irq_ch_ctrl_enable(struct gsi *gsi, u32 channel_id)
252 {
253 u32 val = BIT(channel_id);
254
255 /* There's a small chance that a previous command completed
256 * after the interrupt was disabled, so make sure we have no
257 * pending interrupts before we enable them.
258 */
259 iowrite32(~0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET);
260
261 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
262 gsi_irq_type_enable(gsi, GSI_CH_CTRL);
263 }
264
265 /* Disable channel control interrupts */
gsi_irq_ch_ctrl_disable(struct gsi * gsi)266 static void gsi_irq_ch_ctrl_disable(struct gsi *gsi)
267 {
268 gsi_irq_type_disable(gsi, GSI_CH_CTRL);
269 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
270 }
271
gsi_irq_ieob_enable_one(struct gsi * gsi,u32 evt_ring_id)272 static void gsi_irq_ieob_enable_one(struct gsi *gsi, u32 evt_ring_id)
273 {
274 bool enable_ieob = !gsi->ieob_enabled_bitmap;
275 u32 val;
276
277 gsi->ieob_enabled_bitmap |= BIT(evt_ring_id);
278 val = gsi->ieob_enabled_bitmap;
279 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
280
281 /* Enable the interrupt type if this is the first channel enabled */
282 if (enable_ieob)
283 gsi_irq_type_enable(gsi, GSI_IEOB);
284 }
285
gsi_irq_ieob_disable(struct gsi * gsi,u32 event_mask)286 static void gsi_irq_ieob_disable(struct gsi *gsi, u32 event_mask)
287 {
288 u32 val;
289
290 gsi->ieob_enabled_bitmap &= ~event_mask;
291
292 /* Disable the interrupt type if this was the last enabled channel */
293 if (!gsi->ieob_enabled_bitmap)
294 gsi_irq_type_disable(gsi, GSI_IEOB);
295
296 val = gsi->ieob_enabled_bitmap;
297 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
298 }
299
gsi_irq_ieob_disable_one(struct gsi * gsi,u32 evt_ring_id)300 static void gsi_irq_ieob_disable_one(struct gsi *gsi, u32 evt_ring_id)
301 {
302 gsi_irq_ieob_disable(gsi, BIT(evt_ring_id));
303 }
304
305 /* Enable all GSI_interrupt types */
gsi_irq_enable(struct gsi * gsi)306 static void gsi_irq_enable(struct gsi *gsi)
307 {
308 u32 val;
309
310 /* Global interrupts include hardware error reports. Enable
311 * that so we can at least report the error should it occur.
312 */
313 iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
314 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GLOB_EE));
315
316 /* General GSI interrupts are reported to all EEs; if they occur
317 * they are unrecoverable (without reset). A breakpoint interrupt
318 * also exists, but we don't support that. We want to be notified
319 * of errors so we can report them, even if they can't be handled.
320 */
321 val = BIT(BUS_ERROR);
322 val |= BIT(CMD_FIFO_OVRFLOW);
323 val |= BIT(MCS_STACK_OVRFLOW);
324 iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
325 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GENERAL));
326 }
327
328 /* Disable all GSI interrupt types */
gsi_irq_disable(struct gsi * gsi)329 static void gsi_irq_disable(struct gsi *gsi)
330 {
331 gsi_irq_type_update(gsi, 0);
332
333 /* Clear the type-specific interrupt masks set by gsi_irq_enable() */
334 iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
335 iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
336 }
337
338 /* Return the virtual address associated with a ring index */
gsi_ring_virt(struct gsi_ring * ring,u32 index)339 void *gsi_ring_virt(struct gsi_ring *ring, u32 index)
340 {
341 /* Note: index *must* be used modulo the ring count here */
342 return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE;
343 }
344
345 /* Return the 32-bit DMA address associated with a ring index */
gsi_ring_addr(struct gsi_ring * ring,u32 index)346 static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index)
347 {
348 return lower_32_bits(ring->addr) + index * GSI_RING_ELEMENT_SIZE;
349 }
350
351 /* Return the ring index of a 32-bit ring offset */
gsi_ring_index(struct gsi_ring * ring,u32 offset)352 static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset)
353 {
354 return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE;
355 }
356
357 /* Issue a GSI command by writing a value to a register, then wait for
358 * completion to be signaled. Returns true if the command completes
359 * or false if it times out.
360 */
361 static bool
gsi_command(struct gsi * gsi,u32 reg,u32 val,struct completion * completion)362 gsi_command(struct gsi *gsi, u32 reg, u32 val, struct completion *completion)
363 {
364 unsigned long timeout = msecs_to_jiffies(GSI_CMD_TIMEOUT);
365
366 reinit_completion(completion);
367
368 iowrite32(val, gsi->virt + reg);
369
370 return !!wait_for_completion_timeout(completion, timeout);
371 }
372
373 /* Return the hardware's notion of the current state of an event ring */
374 static enum gsi_evt_ring_state
gsi_evt_ring_state(struct gsi * gsi,u32 evt_ring_id)375 gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id)
376 {
377 u32 val;
378
379 val = ioread32(gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
380
381 return u32_get_bits(val, EV_CHSTATE_FMASK);
382 }
383
384 /* Issue an event ring command and wait for it to complete */
gsi_evt_ring_command(struct gsi * gsi,u32 evt_ring_id,enum gsi_evt_cmd_opcode opcode)385 static void gsi_evt_ring_command(struct gsi *gsi, u32 evt_ring_id,
386 enum gsi_evt_cmd_opcode opcode)
387 {
388 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
389 struct completion *completion = &evt_ring->completion;
390 struct device *dev = gsi->dev;
391 bool timeout;
392 u32 val;
393
394 /* Enable the completion interrupt for the command */
395 gsi_irq_ev_ctrl_enable(gsi, evt_ring_id);
396
397 val = u32_encode_bits(evt_ring_id, EV_CHID_FMASK);
398 val |= u32_encode_bits(opcode, EV_OPCODE_FMASK);
399
400 timeout = !gsi_command(gsi, GSI_EV_CH_CMD_OFFSET, val, completion);
401
402 gsi_irq_ev_ctrl_disable(gsi);
403
404 if (!timeout)
405 return;
406
407 dev_err(dev, "GSI command %u for event ring %u timed out, state %u\n",
408 opcode, evt_ring_id, gsi_evt_ring_state(gsi, evt_ring_id));
409 }
410
411 /* Allocate an event ring in NOT_ALLOCATED state */
gsi_evt_ring_alloc_command(struct gsi * gsi,u32 evt_ring_id)412 static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id)
413 {
414 enum gsi_evt_ring_state state;
415
416 /* Get initial event ring state */
417 state = gsi_evt_ring_state(gsi, evt_ring_id);
418 if (state != GSI_EVT_RING_STATE_NOT_ALLOCATED) {
419 dev_err(gsi->dev, "event ring %u bad state %u before alloc\n",
420 evt_ring_id, state);
421 return -EINVAL;
422 }
423
424 gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE);
425
426 /* If successful the event ring state will have changed */
427 state = gsi_evt_ring_state(gsi, evt_ring_id);
428 if (state == GSI_EVT_RING_STATE_ALLOCATED)
429 return 0;
430
431 dev_err(gsi->dev, "event ring %u bad state %u after alloc\n",
432 evt_ring_id, state);
433
434 return -EIO;
435 }
436
437 /* Reset a GSI event ring in ALLOCATED or ERROR state. */
gsi_evt_ring_reset_command(struct gsi * gsi,u32 evt_ring_id)438 static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id)
439 {
440 enum gsi_evt_ring_state state;
441
442 state = gsi_evt_ring_state(gsi, evt_ring_id);
443 if (state != GSI_EVT_RING_STATE_ALLOCATED &&
444 state != GSI_EVT_RING_STATE_ERROR) {
445 dev_err(gsi->dev, "event ring %u bad state %u before reset\n",
446 evt_ring_id, state);
447 return;
448 }
449
450 gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET);
451
452 /* If successful the event ring state will have changed */
453 state = gsi_evt_ring_state(gsi, evt_ring_id);
454 if (state == GSI_EVT_RING_STATE_ALLOCATED)
455 return;
456
457 dev_err(gsi->dev, "event ring %u bad state %u after reset\n",
458 evt_ring_id, state);
459 }
460
461 /* Issue a hardware de-allocation request for an allocated event ring */
gsi_evt_ring_de_alloc_command(struct gsi * gsi,u32 evt_ring_id)462 static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id)
463 {
464 enum gsi_evt_ring_state state;
465
466 state = gsi_evt_ring_state(gsi, evt_ring_id);
467 if (state != GSI_EVT_RING_STATE_ALLOCATED) {
468 dev_err(gsi->dev, "event ring %u state %u before dealloc\n",
469 evt_ring_id, state);
470 return;
471 }
472
473 gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC);
474
475 /* If successful the event ring state will have changed */
476 state = gsi_evt_ring_state(gsi, evt_ring_id);
477 if (state == GSI_EVT_RING_STATE_NOT_ALLOCATED)
478 return;
479
480 dev_err(gsi->dev, "event ring %u bad state %u after dealloc\n",
481 evt_ring_id, state);
482 }
483
484 /* Fetch the current state of a channel from hardware */
gsi_channel_state(struct gsi_channel * channel)485 static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel)
486 {
487 u32 channel_id = gsi_channel_id(channel);
488 void __iomem *virt = channel->gsi->virt;
489 u32 val;
490
491 val = ioread32(virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
492
493 return u32_get_bits(val, CHSTATE_FMASK);
494 }
495
496 /* Issue a channel command and wait for it to complete */
497 static void
gsi_channel_command(struct gsi_channel * channel,enum gsi_ch_cmd_opcode opcode)498 gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode)
499 {
500 struct completion *completion = &channel->completion;
501 u32 channel_id = gsi_channel_id(channel);
502 struct gsi *gsi = channel->gsi;
503 struct device *dev = gsi->dev;
504 bool timeout;
505 u32 val;
506
507 /* Enable the completion interrupt for the command */
508 gsi_irq_ch_ctrl_enable(gsi, channel_id);
509
510 val = u32_encode_bits(channel_id, CH_CHID_FMASK);
511 val |= u32_encode_bits(opcode, CH_OPCODE_FMASK);
512 timeout = !gsi_command(gsi, GSI_CH_CMD_OFFSET, val, completion);
513
514 gsi_irq_ch_ctrl_disable(gsi);
515
516 if (!timeout)
517 return;
518
519 dev_err(dev, "GSI command %u for channel %u timed out, state %u\n",
520 opcode, channel_id, gsi_channel_state(channel));
521 }
522
523 /* Allocate GSI channel in NOT_ALLOCATED state */
gsi_channel_alloc_command(struct gsi * gsi,u32 channel_id)524 static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id)
525 {
526 struct gsi_channel *channel = &gsi->channel[channel_id];
527 struct device *dev = gsi->dev;
528 enum gsi_channel_state state;
529
530 /* Get initial channel state */
531 state = gsi_channel_state(channel);
532 if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) {
533 dev_err(dev, "channel %u bad state %u before alloc\n",
534 channel_id, state);
535 return -EINVAL;
536 }
537
538 gsi_channel_command(channel, GSI_CH_ALLOCATE);
539
540 /* If successful the channel state will have changed */
541 state = gsi_channel_state(channel);
542 if (state == GSI_CHANNEL_STATE_ALLOCATED)
543 return 0;
544
545 dev_err(dev, "channel %u bad state %u after alloc\n",
546 channel_id, state);
547
548 return -EIO;
549 }
550
551 /* Start an ALLOCATED channel */
gsi_channel_start_command(struct gsi_channel * channel)552 static int gsi_channel_start_command(struct gsi_channel *channel)
553 {
554 struct device *dev = channel->gsi->dev;
555 enum gsi_channel_state state;
556
557 state = gsi_channel_state(channel);
558 if (state != GSI_CHANNEL_STATE_ALLOCATED &&
559 state != GSI_CHANNEL_STATE_STOPPED) {
560 dev_err(dev, "channel %u bad state %u before start\n",
561 gsi_channel_id(channel), state);
562 return -EINVAL;
563 }
564
565 gsi_channel_command(channel, GSI_CH_START);
566
567 /* If successful the channel state will have changed */
568 state = gsi_channel_state(channel);
569 if (state == GSI_CHANNEL_STATE_STARTED)
570 return 0;
571
572 dev_err(dev, "channel %u bad state %u after start\n",
573 gsi_channel_id(channel), state);
574
575 return -EIO;
576 }
577
578 /* Stop a GSI channel in STARTED state */
gsi_channel_stop_command(struct gsi_channel * channel)579 static int gsi_channel_stop_command(struct gsi_channel *channel)
580 {
581 struct device *dev = channel->gsi->dev;
582 enum gsi_channel_state state;
583
584 state = gsi_channel_state(channel);
585
586 /* Channel could have entered STOPPED state since last call
587 * if it timed out. If so, we're done.
588 */
589 if (state == GSI_CHANNEL_STATE_STOPPED)
590 return 0;
591
592 if (state != GSI_CHANNEL_STATE_STARTED &&
593 state != GSI_CHANNEL_STATE_STOP_IN_PROC) {
594 dev_err(dev, "channel %u bad state %u before stop\n",
595 gsi_channel_id(channel), state);
596 return -EINVAL;
597 }
598
599 gsi_channel_command(channel, GSI_CH_STOP);
600
601 /* If successful the channel state will have changed */
602 state = gsi_channel_state(channel);
603 if (state == GSI_CHANNEL_STATE_STOPPED)
604 return 0;
605
606 /* We may have to try again if stop is in progress */
607 if (state == GSI_CHANNEL_STATE_STOP_IN_PROC)
608 return -EAGAIN;
609
610 dev_err(dev, "channel %u bad state %u after stop\n",
611 gsi_channel_id(channel), state);
612
613 return -EIO;
614 }
615
616 /* Reset a GSI channel in ALLOCATED or ERROR state. */
gsi_channel_reset_command(struct gsi_channel * channel)617 static void gsi_channel_reset_command(struct gsi_channel *channel)
618 {
619 struct device *dev = channel->gsi->dev;
620 enum gsi_channel_state state;
621
622 /* A short delay is required before a RESET command */
623 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
624
625 state = gsi_channel_state(channel);
626 if (state != GSI_CHANNEL_STATE_STOPPED &&
627 state != GSI_CHANNEL_STATE_ERROR) {
628 /* No need to reset a channel already in ALLOCATED state */
629 if (state != GSI_CHANNEL_STATE_ALLOCATED)
630 dev_err(dev, "channel %u bad state %u before reset\n",
631 gsi_channel_id(channel), state);
632 return;
633 }
634
635 gsi_channel_command(channel, GSI_CH_RESET);
636
637 /* If successful the channel state will have changed */
638 state = gsi_channel_state(channel);
639 if (state != GSI_CHANNEL_STATE_ALLOCATED)
640 dev_err(dev, "channel %u bad state %u after reset\n",
641 gsi_channel_id(channel), state);
642 }
643
644 /* Deallocate an ALLOCATED GSI channel */
gsi_channel_de_alloc_command(struct gsi * gsi,u32 channel_id)645 static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id)
646 {
647 struct gsi_channel *channel = &gsi->channel[channel_id];
648 struct device *dev = gsi->dev;
649 enum gsi_channel_state state;
650
651 state = gsi_channel_state(channel);
652 if (state != GSI_CHANNEL_STATE_ALLOCATED) {
653 dev_err(dev, "channel %u bad state %u before dealloc\n",
654 channel_id, state);
655 return;
656 }
657
658 gsi_channel_command(channel, GSI_CH_DE_ALLOC);
659
660 /* If successful the channel state will have changed */
661 state = gsi_channel_state(channel);
662
663 if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED)
664 dev_err(dev, "channel %u bad state %u after dealloc\n",
665 channel_id, state);
666 }
667
668 /* Ring an event ring doorbell, reporting the last entry processed by the AP.
669 * The index argument (modulo the ring count) is the first unfilled entry, so
670 * we supply one less than that with the doorbell. Update the event ring
671 * index field with the value provided.
672 */
gsi_evt_ring_doorbell(struct gsi * gsi,u32 evt_ring_id,u32 index)673 static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index)
674 {
675 struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring;
676 u32 val;
677
678 ring->index = index; /* Next unused entry */
679
680 /* Note: index *must* be used modulo the ring count here */
681 val = gsi_ring_addr(ring, (index - 1) % ring->count);
682 iowrite32(val, gsi->virt + GSI_EV_CH_E_DOORBELL_0_OFFSET(evt_ring_id));
683 }
684
685 /* Program an event ring for use */
gsi_evt_ring_program(struct gsi * gsi,u32 evt_ring_id)686 static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id)
687 {
688 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
689 size_t size = evt_ring->ring.count * GSI_RING_ELEMENT_SIZE;
690 u32 val;
691
692 /* We program all event rings as GPI type/protocol */
693 val = u32_encode_bits(GSI_CHANNEL_TYPE_GPI, EV_CHTYPE_FMASK);
694 val |= EV_INTYPE_FMASK;
695 val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, EV_ELEMENT_SIZE_FMASK);
696 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
697
698 val = ev_r_length_encoded(gsi->version, size);
699 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_1_OFFSET(evt_ring_id));
700
701 /* The context 2 and 3 registers store the low-order and
702 * high-order 32 bits of the address of the event ring,
703 * respectively.
704 */
705 val = lower_32_bits(evt_ring->ring.addr);
706 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_2_OFFSET(evt_ring_id));
707 val = upper_32_bits(evt_ring->ring.addr);
708 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_3_OFFSET(evt_ring_id));
709
710 /* Enable interrupt moderation by setting the moderation delay */
711 val = u32_encode_bits(GSI_EVT_RING_INT_MODT, MODT_FMASK);
712 val |= u32_encode_bits(1, MODC_FMASK); /* comes from channel */
713 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_8_OFFSET(evt_ring_id));
714
715 /* No MSI write data, and MSI address high and low address is 0 */
716 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_9_OFFSET(evt_ring_id));
717 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_10_OFFSET(evt_ring_id));
718 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_11_OFFSET(evt_ring_id));
719
720 /* We don't need to get event read pointer updates */
721 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_12_OFFSET(evt_ring_id));
722 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_13_OFFSET(evt_ring_id));
723
724 /* Finally, tell the hardware we've completed event 0 (arbitrary) */
725 gsi_evt_ring_doorbell(gsi, evt_ring_id, 0);
726 }
727
728 /* Find the transaction whose completion indicates a channel is quiesced */
gsi_channel_trans_last(struct gsi_channel * channel)729 static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel)
730 {
731 struct gsi_trans_info *trans_info = &channel->trans_info;
732 const struct list_head *list;
733 struct gsi_trans *trans;
734
735 spin_lock_bh(&trans_info->spinlock);
736
737 /* There is a small chance a TX transaction got allocated just
738 * before we disabled transmits, so check for that.
739 */
740 if (channel->toward_ipa) {
741 list = &trans_info->alloc;
742 if (!list_empty(list))
743 goto done;
744 list = &trans_info->pending;
745 if (!list_empty(list))
746 goto done;
747 }
748
749 /* Otherwise (TX or RX) we want to wait for anything that
750 * has completed, or has been polled but not released yet.
751 */
752 list = &trans_info->complete;
753 if (!list_empty(list))
754 goto done;
755 list = &trans_info->polled;
756 if (list_empty(list))
757 list = NULL;
758 done:
759 trans = list ? list_last_entry(list, struct gsi_trans, links) : NULL;
760
761 /* Caller will wait for this, so take a reference */
762 if (trans)
763 refcount_inc(&trans->refcount);
764
765 spin_unlock_bh(&trans_info->spinlock);
766
767 return trans;
768 }
769
770 /* Wait for transaction activity on a channel to complete */
gsi_channel_trans_quiesce(struct gsi_channel * channel)771 static void gsi_channel_trans_quiesce(struct gsi_channel *channel)
772 {
773 struct gsi_trans *trans;
774
775 /* Get the last transaction, and wait for it to complete */
776 trans = gsi_channel_trans_last(channel);
777 if (trans) {
778 wait_for_completion(&trans->completion);
779 gsi_trans_free(trans);
780 }
781 }
782
783 /* Program a channel for use; there is no gsi_channel_deprogram() */
gsi_channel_program(struct gsi_channel * channel,bool doorbell)784 static void gsi_channel_program(struct gsi_channel *channel, bool doorbell)
785 {
786 size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE;
787 u32 channel_id = gsi_channel_id(channel);
788 union gsi_channel_scratch scr = { };
789 struct gsi_channel_scratch_gpi *gpi;
790 struct gsi *gsi = channel->gsi;
791 u32 wrr_weight = 0;
792 u32 val;
793
794 /* Arbitrarily pick TRE 0 as the first channel element to use */
795 channel->tre_ring.index = 0;
796
797 /* We program all channels as GPI type/protocol */
798 val = chtype_protocol_encoded(gsi->version, GSI_CHANNEL_TYPE_GPI);
799 if (channel->toward_ipa)
800 val |= CHTYPE_DIR_FMASK;
801 val |= u32_encode_bits(channel->evt_ring_id, ERINDEX_FMASK);
802 val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, ELEMENT_SIZE_FMASK);
803 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
804
805 val = r_length_encoded(gsi->version, size);
806 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_1_OFFSET(channel_id));
807
808 /* The context 2 and 3 registers store the low-order and
809 * high-order 32 bits of the address of the channel ring,
810 * respectively.
811 */
812 val = lower_32_bits(channel->tre_ring.addr);
813 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_2_OFFSET(channel_id));
814 val = upper_32_bits(channel->tre_ring.addr);
815 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_3_OFFSET(channel_id));
816
817 /* Command channel gets low weighted round-robin priority */
818 if (channel->command)
819 wrr_weight = field_max(WRR_WEIGHT_FMASK);
820 val = u32_encode_bits(wrr_weight, WRR_WEIGHT_FMASK);
821
822 /* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */
823
824 /* No need to use the doorbell engine starting at IPA v4.0 */
825 if (gsi->version < IPA_VERSION_4_0 && doorbell)
826 val |= USE_DB_ENG_FMASK;
827
828 /* v4.0 introduces an escape buffer for prefetch. We use it
829 * on all but the AP command channel.
830 */
831 if (gsi->version >= IPA_VERSION_4_0 && !channel->command) {
832 /* If not otherwise set, prefetch buffers are used */
833 if (gsi->version < IPA_VERSION_4_5)
834 val |= USE_ESCAPE_BUF_ONLY_FMASK;
835 else
836 val |= u32_encode_bits(GSI_ESCAPE_BUF_ONLY,
837 PREFETCH_MODE_FMASK);
838 }
839 /* All channels set DB_IN_BYTES */
840 if (gsi->version >= IPA_VERSION_4_9)
841 val |= DB_IN_BYTES;
842
843 iowrite32(val, gsi->virt + GSI_CH_C_QOS_OFFSET(channel_id));
844
845 /* Now update the scratch registers for GPI protocol */
846 gpi = &scr.gpi;
847 gpi->max_outstanding_tre = gsi_channel_trans_tre_max(gsi, channel_id) *
848 GSI_RING_ELEMENT_SIZE;
849 gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE;
850
851 val = scr.data.word1;
852 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_0_OFFSET(channel_id));
853
854 val = scr.data.word2;
855 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_1_OFFSET(channel_id));
856
857 val = scr.data.word3;
858 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_2_OFFSET(channel_id));
859
860 /* We must preserve the upper 16 bits of the last scratch register.
861 * The next sequence assumes those bits remain unchanged between the
862 * read and the write.
863 */
864 val = ioread32(gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
865 val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0));
866 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
867
868 /* All done! */
869 }
870
__gsi_channel_start(struct gsi_channel * channel,bool start)871 static int __gsi_channel_start(struct gsi_channel *channel, bool start)
872 {
873 struct gsi *gsi = channel->gsi;
874 int ret;
875
876 if (!start)
877 return 0;
878
879 mutex_lock(&gsi->mutex);
880
881 ret = gsi_channel_start_command(channel);
882
883 mutex_unlock(&gsi->mutex);
884
885 return ret;
886 }
887
888 /* Start an allocated GSI channel */
gsi_channel_start(struct gsi * gsi,u32 channel_id)889 int gsi_channel_start(struct gsi *gsi, u32 channel_id)
890 {
891 struct gsi_channel *channel = &gsi->channel[channel_id];
892 int ret;
893
894 /* Enable NAPI and the completion interrupt */
895 napi_enable(&channel->napi);
896 gsi_irq_ieob_enable_one(gsi, channel->evt_ring_id);
897
898 ret = __gsi_channel_start(channel, true);
899 if (ret) {
900 gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id);
901 napi_disable(&channel->napi);
902 }
903
904 return ret;
905 }
906
gsi_channel_stop_retry(struct gsi_channel * channel)907 static int gsi_channel_stop_retry(struct gsi_channel *channel)
908 {
909 u32 retries = GSI_CHANNEL_STOP_RETRIES;
910 int ret;
911
912 do {
913 ret = gsi_channel_stop_command(channel);
914 if (ret != -EAGAIN)
915 break;
916 usleep_range(3 * USEC_PER_MSEC, 5 * USEC_PER_MSEC);
917 } while (retries--);
918
919 return ret;
920 }
921
__gsi_channel_stop(struct gsi_channel * channel,bool stop)922 static int __gsi_channel_stop(struct gsi_channel *channel, bool stop)
923 {
924 struct gsi *gsi = channel->gsi;
925 int ret;
926
927 /* Wait for any underway transactions to complete before stopping. */
928 gsi_channel_trans_quiesce(channel);
929
930 if (!stop)
931 return 0;
932
933 mutex_lock(&gsi->mutex);
934
935 ret = gsi_channel_stop_retry(channel);
936
937 mutex_unlock(&gsi->mutex);
938
939 return ret;
940 }
941
942 /* Stop a started channel */
gsi_channel_stop(struct gsi * gsi,u32 channel_id)943 int gsi_channel_stop(struct gsi *gsi, u32 channel_id)
944 {
945 struct gsi_channel *channel = &gsi->channel[channel_id];
946 int ret;
947
948 ret = __gsi_channel_stop(channel, true);
949 if (ret)
950 return ret;
951
952 /* Disable the completion interrupt and NAPI if successful */
953 gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id);
954 napi_disable(&channel->napi);
955
956 return 0;
957 }
958
959 /* Reset and reconfigure a channel, (possibly) enabling the doorbell engine */
gsi_channel_reset(struct gsi * gsi,u32 channel_id,bool doorbell)960 void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool doorbell)
961 {
962 struct gsi_channel *channel = &gsi->channel[channel_id];
963
964 mutex_lock(&gsi->mutex);
965
966 gsi_channel_reset_command(channel);
967 /* Due to a hardware quirk we may need to reset RX channels twice. */
968 if (gsi->version < IPA_VERSION_4_0 && !channel->toward_ipa)
969 gsi_channel_reset_command(channel);
970
971 gsi_channel_program(channel, doorbell);
972 gsi_channel_trans_cancel_pending(channel);
973
974 mutex_unlock(&gsi->mutex);
975 }
976
977 /* Stop a STARTED channel for suspend (using stop if requested) */
gsi_channel_suspend(struct gsi * gsi,u32 channel_id,bool stop)978 int gsi_channel_suspend(struct gsi *gsi, u32 channel_id, bool stop)
979 {
980 struct gsi_channel *channel = &gsi->channel[channel_id];
981 int ret;
982
983 ret = __gsi_channel_stop(channel, stop);
984 if (ret)
985 return ret;
986
987 /* Ensure NAPI polling has finished. */
988 napi_synchronize(&channel->napi);
989
990 return 0;
991 }
992
993 /* Resume a suspended channel (starting will be requested if STOPPED) */
gsi_channel_resume(struct gsi * gsi,u32 channel_id,bool start)994 int gsi_channel_resume(struct gsi *gsi, u32 channel_id, bool start)
995 {
996 struct gsi_channel *channel = &gsi->channel[channel_id];
997
998 return __gsi_channel_start(channel, start);
999 }
1000
1001 /**
1002 * gsi_channel_tx_queued() - Report queued TX transfers for a channel
1003 * @channel: Channel for which to report
1004 *
1005 * Report to the network stack the number of bytes and transactions that
1006 * have been queued to hardware since last call. This and the next function
1007 * supply information used by the network stack for throttling.
1008 *
1009 * For each channel we track the number of transactions used and bytes of
1010 * data those transactions represent. We also track what those values are
1011 * each time this function is called. Subtracting the two tells us
1012 * the number of bytes and transactions that have been added between
1013 * successive calls.
1014 *
1015 * Calling this each time we ring the channel doorbell allows us to
1016 * provide accurate information to the network stack about how much
1017 * work we've given the hardware at any point in time.
1018 */
gsi_channel_tx_queued(struct gsi_channel * channel)1019 void gsi_channel_tx_queued(struct gsi_channel *channel)
1020 {
1021 u32 trans_count;
1022 u32 byte_count;
1023
1024 byte_count = channel->byte_count - channel->queued_byte_count;
1025 trans_count = channel->trans_count - channel->queued_trans_count;
1026 channel->queued_byte_count = channel->byte_count;
1027 channel->queued_trans_count = channel->trans_count;
1028
1029 ipa_gsi_channel_tx_queued(channel->gsi, gsi_channel_id(channel),
1030 trans_count, byte_count);
1031 }
1032
1033 /**
1034 * gsi_channel_tx_update() - Report completed TX transfers
1035 * @channel: Channel that has completed transmitting packets
1036 * @trans: Last transation known to be complete
1037 *
1038 * Compute the number of transactions and bytes that have been transferred
1039 * over a TX channel since the given transaction was committed. Report this
1040 * information to the network stack.
1041 *
1042 * At the time a transaction is committed, we record its channel's
1043 * committed transaction and byte counts *in the transaction*.
1044 * Completions are signaled by the hardware with an interrupt, and
1045 * we can determine the latest completed transaction at that time.
1046 *
1047 * The difference between the byte/transaction count recorded in
1048 * the transaction and the count last time we recorded a completion
1049 * tells us exactly how much data has been transferred between
1050 * completions.
1051 *
1052 * Calling this each time we learn of a newly-completed transaction
1053 * allows us to provide accurate information to the network stack
1054 * about how much work has been completed by the hardware at a given
1055 * point in time.
1056 */
1057 static void
gsi_channel_tx_update(struct gsi_channel * channel,struct gsi_trans * trans)1058 gsi_channel_tx_update(struct gsi_channel *channel, struct gsi_trans *trans)
1059 {
1060 u64 byte_count = trans->byte_count + trans->len;
1061 u64 trans_count = trans->trans_count + 1;
1062
1063 byte_count -= channel->compl_byte_count;
1064 channel->compl_byte_count += byte_count;
1065 trans_count -= channel->compl_trans_count;
1066 channel->compl_trans_count += trans_count;
1067
1068 ipa_gsi_channel_tx_completed(channel->gsi, gsi_channel_id(channel),
1069 trans_count, byte_count);
1070 }
1071
1072 /* Channel control interrupt handler */
gsi_isr_chan_ctrl(struct gsi * gsi)1073 static void gsi_isr_chan_ctrl(struct gsi *gsi)
1074 {
1075 u32 channel_mask;
1076
1077 channel_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_CH_IRQ_OFFSET);
1078 iowrite32(channel_mask, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET);
1079
1080 while (channel_mask) {
1081 u32 channel_id = __ffs(channel_mask);
1082 struct gsi_channel *channel;
1083
1084 channel_mask ^= BIT(channel_id);
1085
1086 channel = &gsi->channel[channel_id];
1087
1088 complete(&channel->completion);
1089 }
1090 }
1091
1092 /* Event ring control interrupt handler */
gsi_isr_evt_ctrl(struct gsi * gsi)1093 static void gsi_isr_evt_ctrl(struct gsi *gsi)
1094 {
1095 u32 event_mask;
1096
1097 event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_OFFSET);
1098 iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET);
1099
1100 while (event_mask) {
1101 u32 evt_ring_id = __ffs(event_mask);
1102 struct gsi_evt_ring *evt_ring;
1103
1104 event_mask ^= BIT(evt_ring_id);
1105
1106 evt_ring = &gsi->evt_ring[evt_ring_id];
1107
1108 complete(&evt_ring->completion);
1109 }
1110 }
1111
1112 /* Global channel error interrupt handler */
1113 static void
gsi_isr_glob_chan_err(struct gsi * gsi,u32 err_ee,u32 channel_id,u32 code)1114 gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code)
1115 {
1116 if (code == GSI_OUT_OF_RESOURCES) {
1117 dev_err(gsi->dev, "channel %u out of resources\n", channel_id);
1118 complete(&gsi->channel[channel_id].completion);
1119 return;
1120 }
1121
1122 /* Report, but otherwise ignore all other error codes */
1123 dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n",
1124 channel_id, err_ee, code);
1125 }
1126
1127 /* Global event error interrupt handler */
1128 static void
gsi_isr_glob_evt_err(struct gsi * gsi,u32 err_ee,u32 evt_ring_id,u32 code)1129 gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code)
1130 {
1131 if (code == GSI_OUT_OF_RESOURCES) {
1132 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
1133 u32 channel_id = gsi_channel_id(evt_ring->channel);
1134
1135 complete(&evt_ring->completion);
1136 dev_err(gsi->dev, "evt_ring for channel %u out of resources\n",
1137 channel_id);
1138 return;
1139 }
1140
1141 /* Report, but otherwise ignore all other error codes */
1142 dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n",
1143 evt_ring_id, err_ee, code);
1144 }
1145
1146 /* Global error interrupt handler */
gsi_isr_glob_err(struct gsi * gsi)1147 static void gsi_isr_glob_err(struct gsi *gsi)
1148 {
1149 enum gsi_err_type type;
1150 enum gsi_err_code code;
1151 u32 which;
1152 u32 val;
1153 u32 ee;
1154
1155 /* Get the logged error, then reinitialize the log */
1156 val = ioread32(gsi->virt + GSI_ERROR_LOG_OFFSET);
1157 iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
1158 iowrite32(~0, gsi->virt + GSI_ERROR_LOG_CLR_OFFSET);
1159
1160 ee = u32_get_bits(val, ERR_EE_FMASK);
1161 type = u32_get_bits(val, ERR_TYPE_FMASK);
1162 which = u32_get_bits(val, ERR_VIRT_IDX_FMASK);
1163 code = u32_get_bits(val, ERR_CODE_FMASK);
1164
1165 if (type == GSI_ERR_TYPE_CHAN)
1166 gsi_isr_glob_chan_err(gsi, ee, which, code);
1167 else if (type == GSI_ERR_TYPE_EVT)
1168 gsi_isr_glob_evt_err(gsi, ee, which, code);
1169 else /* type GSI_ERR_TYPE_GLOB should be fatal */
1170 dev_err(gsi->dev, "unexpected global error 0x%08x\n", type);
1171 }
1172
1173 /* Generic EE interrupt handler */
gsi_isr_gp_int1(struct gsi * gsi)1174 static void gsi_isr_gp_int1(struct gsi *gsi)
1175 {
1176 u32 result;
1177 u32 val;
1178
1179 /* This interrupt is used to handle completions of the two GENERIC
1180 * GSI commands. We use these to allocate and halt channels on
1181 * the modem's behalf due to a hardware quirk on IPA v4.2. Once
1182 * allocated, the modem "owns" these channels, and as a result we
1183 * have no way of knowing the channel's state at any given time.
1184 *
1185 * It is recommended that we halt the modem channels we allocated
1186 * when shutting down, but it's possible the channel isn't running
1187 * at the time we issue the HALT command. We'll get an error in
1188 * that case, but it's harmless (the channel is already halted).
1189 *
1190 * For this reason, we silently ignore a CHANNEL_NOT_RUNNING error
1191 * if we receive it.
1192 */
1193 val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1194 result = u32_get_bits(val, GENERIC_EE_RESULT_FMASK);
1195
1196 switch (result) {
1197 case GENERIC_EE_SUCCESS:
1198 case GENERIC_EE_CHANNEL_NOT_RUNNING:
1199 gsi->result = 0;
1200 break;
1201
1202 case GENERIC_EE_RETRY:
1203 gsi->result = -EAGAIN;
1204 break;
1205
1206 default:
1207 dev_err(gsi->dev, "global INT1 generic result %u\n", result);
1208 gsi->result = -EIO;
1209 break;
1210 }
1211
1212 complete(&gsi->completion);
1213 }
1214
1215 /* Inter-EE interrupt handler */
gsi_isr_glob_ee(struct gsi * gsi)1216 static void gsi_isr_glob_ee(struct gsi *gsi)
1217 {
1218 u32 val;
1219
1220 val = ioread32(gsi->virt + GSI_CNTXT_GLOB_IRQ_STTS_OFFSET);
1221
1222 if (val & BIT(ERROR_INT))
1223 gsi_isr_glob_err(gsi);
1224
1225 iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_CLR_OFFSET);
1226
1227 val &= ~BIT(ERROR_INT);
1228
1229 if (val & BIT(GP_INT1)) {
1230 val ^= BIT(GP_INT1);
1231 gsi_isr_gp_int1(gsi);
1232 }
1233
1234 if (val)
1235 dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val);
1236 }
1237
1238 /* I/O completion interrupt event */
gsi_isr_ieob(struct gsi * gsi)1239 static void gsi_isr_ieob(struct gsi *gsi)
1240 {
1241 u32 event_mask;
1242
1243 event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_OFFSET);
1244 gsi_irq_ieob_disable(gsi, event_mask);
1245 iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET);
1246
1247 while (event_mask) {
1248 u32 evt_ring_id = __ffs(event_mask);
1249
1250 event_mask ^= BIT(evt_ring_id);
1251
1252 napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi);
1253 }
1254 }
1255
1256 /* General event interrupts represent serious problems, so report them */
gsi_isr_general(struct gsi * gsi)1257 static void gsi_isr_general(struct gsi *gsi)
1258 {
1259 struct device *dev = gsi->dev;
1260 u32 val;
1261
1262 val = ioread32(gsi->virt + GSI_CNTXT_GSI_IRQ_STTS_OFFSET);
1263 iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_CLR_OFFSET);
1264
1265 dev_err(dev, "unexpected general interrupt 0x%08x\n", val);
1266 }
1267
1268 /**
1269 * gsi_isr() - Top level GSI interrupt service routine
1270 * @irq: Interrupt number (ignored)
1271 * @dev_id: GSI pointer supplied to request_irq()
1272 *
1273 * This is the main handler function registered for the GSI IRQ. Each type
1274 * of interrupt has a separate handler function that is called from here.
1275 */
gsi_isr(int irq,void * dev_id)1276 static irqreturn_t gsi_isr(int irq, void *dev_id)
1277 {
1278 struct gsi *gsi = dev_id;
1279 u32 intr_mask;
1280 u32 cnt = 0;
1281
1282 /* enum gsi_irq_type_id defines GSI interrupt types */
1283 while ((intr_mask = ioread32(gsi->virt + GSI_CNTXT_TYPE_IRQ_OFFSET))) {
1284 /* intr_mask contains bitmask of pending GSI interrupts */
1285 do {
1286 u32 gsi_intr = BIT(__ffs(intr_mask));
1287
1288 intr_mask ^= gsi_intr;
1289
1290 switch (gsi_intr) {
1291 case BIT(GSI_CH_CTRL):
1292 gsi_isr_chan_ctrl(gsi);
1293 break;
1294 case BIT(GSI_EV_CTRL):
1295 gsi_isr_evt_ctrl(gsi);
1296 break;
1297 case BIT(GSI_GLOB_EE):
1298 gsi_isr_glob_ee(gsi);
1299 break;
1300 case BIT(GSI_IEOB):
1301 gsi_isr_ieob(gsi);
1302 break;
1303 case BIT(GSI_GENERAL):
1304 gsi_isr_general(gsi);
1305 break;
1306 default:
1307 dev_err(gsi->dev,
1308 "unrecognized interrupt type 0x%08x\n",
1309 gsi_intr);
1310 break;
1311 }
1312 } while (intr_mask);
1313
1314 if (++cnt > GSI_ISR_MAX_ITER) {
1315 dev_err(gsi->dev, "interrupt flood\n");
1316 break;
1317 }
1318 }
1319
1320 return IRQ_HANDLED;
1321 }
1322
gsi_irq_init(struct gsi * gsi,struct platform_device * pdev)1323 static int gsi_irq_init(struct gsi *gsi, struct platform_device *pdev)
1324 {
1325 struct device *dev = &pdev->dev;
1326 unsigned int irq;
1327 int ret;
1328
1329 ret = platform_get_irq_byname(pdev, "gsi");
1330 if (ret <= 0)
1331 return ret ? : -EINVAL;
1332
1333 irq = ret;
1334
1335 ret = request_irq(irq, gsi_isr, 0, "gsi", gsi);
1336 if (ret) {
1337 dev_err(dev, "error %d requesting \"gsi\" IRQ\n", ret);
1338 return ret;
1339 }
1340 gsi->irq = irq;
1341
1342 return 0;
1343 }
1344
gsi_irq_exit(struct gsi * gsi)1345 static void gsi_irq_exit(struct gsi *gsi)
1346 {
1347 free_irq(gsi->irq, gsi);
1348 }
1349
1350 /* Return the transaction associated with a transfer completion event */
gsi_event_trans(struct gsi_channel * channel,struct gsi_event * event)1351 static struct gsi_trans *gsi_event_trans(struct gsi_channel *channel,
1352 struct gsi_event *event)
1353 {
1354 u32 tre_offset;
1355 u32 tre_index;
1356
1357 /* Event xfer_ptr records the TRE it's associated with */
1358 tre_offset = lower_32_bits(le64_to_cpu(event->xfer_ptr));
1359 tre_index = gsi_ring_index(&channel->tre_ring, tre_offset);
1360
1361 return gsi_channel_trans_mapped(channel, tre_index);
1362 }
1363
1364 /**
1365 * gsi_evt_ring_rx_update() - Record lengths of received data
1366 * @evt_ring: Event ring associated with channel that received packets
1367 * @index: Event index in ring reported by hardware
1368 *
1369 * Events for RX channels contain the actual number of bytes received into
1370 * the buffer. Every event has a transaction associated with it, and here
1371 * we update transactions to record their actual received lengths.
1372 *
1373 * This function is called whenever we learn that the GSI hardware has filled
1374 * new events since the last time we checked. The ring's index field tells
1375 * the first entry in need of processing. The index provided is the
1376 * first *unfilled* event in the ring (following the last filled one).
1377 *
1378 * Events are sequential within the event ring, and transactions are
1379 * sequential within the transaction pool.
1380 *
1381 * Note that @index always refers to an element *within* the event ring.
1382 */
gsi_evt_ring_rx_update(struct gsi_evt_ring * evt_ring,u32 index)1383 static void gsi_evt_ring_rx_update(struct gsi_evt_ring *evt_ring, u32 index)
1384 {
1385 struct gsi_channel *channel = evt_ring->channel;
1386 struct gsi_ring *ring = &evt_ring->ring;
1387 struct gsi_trans_info *trans_info;
1388 struct gsi_event *event_done;
1389 struct gsi_event *event;
1390 struct gsi_trans *trans;
1391 u32 byte_count = 0;
1392 u32 old_index;
1393 u32 event_avail;
1394
1395 trans_info = &channel->trans_info;
1396
1397 /* We'll start with the oldest un-processed event. RX channels
1398 * replenish receive buffers in single-TRE transactions, so we
1399 * can just map that event to its transaction. Transactions
1400 * associated with completion events are consecutive.
1401 */
1402 old_index = ring->index;
1403 event = gsi_ring_virt(ring, old_index);
1404 trans = gsi_event_trans(channel, event);
1405
1406 /* Compute the number of events to process before we wrap,
1407 * and determine when we'll be done processing events.
1408 */
1409 event_avail = ring->count - old_index % ring->count;
1410 event_done = gsi_ring_virt(ring, index);
1411 do {
1412 trans->len = __le16_to_cpu(event->len);
1413 byte_count += trans->len;
1414
1415 /* Move on to the next event and transaction */
1416 if (--event_avail)
1417 event++;
1418 else
1419 event = gsi_ring_virt(ring, 0);
1420 trans = gsi_trans_pool_next(&trans_info->pool, trans);
1421 } while (event != event_done);
1422
1423 /* We record RX bytes when they are received */
1424 channel->byte_count += byte_count;
1425 channel->trans_count++;
1426 }
1427
1428 /* Initialize a ring, including allocating DMA memory for its entries */
gsi_ring_alloc(struct gsi * gsi,struct gsi_ring * ring,u32 count)1429 static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count)
1430 {
1431 u32 size = count * GSI_RING_ELEMENT_SIZE;
1432 struct device *dev = gsi->dev;
1433 dma_addr_t addr;
1434
1435 /* Hardware requires a 2^n ring size, with alignment equal to size.
1436 * The DMA address returned by dma_alloc_coherent() is guaranteed to
1437 * be a power-of-2 number of pages, which satisfies the requirement.
1438 */
1439 ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL);
1440 if (!ring->virt)
1441 return -ENOMEM;
1442
1443 ring->addr = addr;
1444 ring->count = count;
1445
1446 return 0;
1447 }
1448
1449 /* Free a previously-allocated ring */
gsi_ring_free(struct gsi * gsi,struct gsi_ring * ring)1450 static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring)
1451 {
1452 size_t size = ring->count * GSI_RING_ELEMENT_SIZE;
1453
1454 dma_free_coherent(gsi->dev, size, ring->virt, ring->addr);
1455 }
1456
1457 /* Allocate an available event ring id */
gsi_evt_ring_id_alloc(struct gsi * gsi)1458 static int gsi_evt_ring_id_alloc(struct gsi *gsi)
1459 {
1460 u32 evt_ring_id;
1461
1462 if (gsi->event_bitmap == ~0U) {
1463 dev_err(gsi->dev, "event rings exhausted\n");
1464 return -ENOSPC;
1465 }
1466
1467 evt_ring_id = ffz(gsi->event_bitmap);
1468 gsi->event_bitmap |= BIT(evt_ring_id);
1469
1470 return (int)evt_ring_id;
1471 }
1472
1473 /* Free a previously-allocated event ring id */
gsi_evt_ring_id_free(struct gsi * gsi,u32 evt_ring_id)1474 static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id)
1475 {
1476 gsi->event_bitmap &= ~BIT(evt_ring_id);
1477 }
1478
1479 /* Ring a channel doorbell, reporting the first un-filled entry */
gsi_channel_doorbell(struct gsi_channel * channel)1480 void gsi_channel_doorbell(struct gsi_channel *channel)
1481 {
1482 struct gsi_ring *tre_ring = &channel->tre_ring;
1483 u32 channel_id = gsi_channel_id(channel);
1484 struct gsi *gsi = channel->gsi;
1485 u32 val;
1486
1487 /* Note: index *must* be used modulo the ring count here */
1488 val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count);
1489 iowrite32(val, gsi->virt + GSI_CH_C_DOORBELL_0_OFFSET(channel_id));
1490 }
1491
1492 /* Consult hardware, move any newly completed transactions to completed list */
gsi_channel_update(struct gsi_channel * channel)1493 static struct gsi_trans *gsi_channel_update(struct gsi_channel *channel)
1494 {
1495 u32 evt_ring_id = channel->evt_ring_id;
1496 struct gsi *gsi = channel->gsi;
1497 struct gsi_evt_ring *evt_ring;
1498 struct gsi_trans *trans;
1499 struct gsi_ring *ring;
1500 u32 offset;
1501 u32 index;
1502
1503 evt_ring = &gsi->evt_ring[evt_ring_id];
1504 ring = &evt_ring->ring;
1505
1506 /* See if there's anything new to process; if not, we're done. Note
1507 * that index always refers to an entry *within* the event ring.
1508 */
1509 offset = GSI_EV_CH_E_CNTXT_4_OFFSET(evt_ring_id);
1510 index = gsi_ring_index(ring, ioread32(gsi->virt + offset));
1511 if (index == ring->index % ring->count)
1512 return NULL;
1513
1514 /* Get the transaction for the latest completed event. Take a
1515 * reference to keep it from completing before we give the events
1516 * for this and previous transactions back to the hardware.
1517 */
1518 trans = gsi_event_trans(channel, gsi_ring_virt(ring, index - 1));
1519 refcount_inc(&trans->refcount);
1520
1521 /* For RX channels, update each completed transaction with the number
1522 * of bytes that were actually received. For TX channels, report
1523 * the number of transactions and bytes this completion represents
1524 * up the network stack.
1525 */
1526 if (channel->toward_ipa)
1527 gsi_channel_tx_update(channel, trans);
1528 else
1529 gsi_evt_ring_rx_update(evt_ring, index);
1530
1531 gsi_trans_move_complete(trans);
1532
1533 /* Tell the hardware we've handled these events */
1534 gsi_evt_ring_doorbell(channel->gsi, channel->evt_ring_id, index);
1535
1536 gsi_trans_free(trans);
1537
1538 return gsi_channel_trans_complete(channel);
1539 }
1540
1541 /**
1542 * gsi_channel_poll_one() - Return a single completed transaction on a channel
1543 * @channel: Channel to be polled
1544 *
1545 * Return: Transaction pointer, or null if none are available
1546 *
1547 * This function returns the first entry on a channel's completed transaction
1548 * list. If that list is empty, the hardware is consulted to determine
1549 * whether any new transactions have completed. If so, they're moved to the
1550 * completed list and the new first entry is returned. If there are no more
1551 * completed transactions, a null pointer is returned.
1552 */
gsi_channel_poll_one(struct gsi_channel * channel)1553 static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel)
1554 {
1555 struct gsi_trans *trans;
1556
1557 /* Get the first transaction from the completed list */
1558 trans = gsi_channel_trans_complete(channel);
1559 if (!trans) /* List is empty; see if there's more to do */
1560 trans = gsi_channel_update(channel);
1561
1562 if (trans)
1563 gsi_trans_move_polled(trans);
1564
1565 return trans;
1566 }
1567
1568 /**
1569 * gsi_channel_poll() - NAPI poll function for a channel
1570 * @napi: NAPI structure for the channel
1571 * @budget: Budget supplied by NAPI core
1572 *
1573 * Return: Number of items polled (<= budget)
1574 *
1575 * Single transactions completed by hardware are polled until either
1576 * the budget is exhausted, or there are no more. Each transaction
1577 * polled is passed to gsi_trans_complete(), to perform remaining
1578 * completion processing and retire/free the transaction.
1579 */
gsi_channel_poll(struct napi_struct * napi,int budget)1580 static int gsi_channel_poll(struct napi_struct *napi, int budget)
1581 {
1582 struct gsi_channel *channel;
1583 int count;
1584
1585 channel = container_of(napi, struct gsi_channel, napi);
1586 for (count = 0; count < budget; count++) {
1587 struct gsi_trans *trans;
1588
1589 trans = gsi_channel_poll_one(channel);
1590 if (!trans)
1591 break;
1592 gsi_trans_complete(trans);
1593 }
1594
1595 if (count < budget && napi_complete(napi))
1596 gsi_irq_ieob_enable_one(channel->gsi, channel->evt_ring_id);
1597
1598 return count;
1599 }
1600
1601 /* The event bitmap represents which event ids are available for allocation.
1602 * Set bits are not available, clear bits can be used. This function
1603 * initializes the map so all events supported by the hardware are available,
1604 * then precludes any reserved events from being allocated.
1605 */
gsi_event_bitmap_init(u32 evt_ring_max)1606 static u32 gsi_event_bitmap_init(u32 evt_ring_max)
1607 {
1608 u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max);
1609
1610 event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START);
1611
1612 return event_bitmap;
1613 }
1614
1615 /* Setup function for a single channel */
gsi_channel_setup_one(struct gsi * gsi,u32 channel_id)1616 static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id)
1617 {
1618 struct gsi_channel *channel = &gsi->channel[channel_id];
1619 u32 evt_ring_id = channel->evt_ring_id;
1620 int ret;
1621
1622 if (!gsi_channel_initialized(channel))
1623 return 0;
1624
1625 ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id);
1626 if (ret)
1627 return ret;
1628
1629 gsi_evt_ring_program(gsi, evt_ring_id);
1630
1631 ret = gsi_channel_alloc_command(gsi, channel_id);
1632 if (ret)
1633 goto err_evt_ring_de_alloc;
1634
1635 gsi_channel_program(channel, true);
1636
1637 if (channel->toward_ipa)
1638 netif_tx_napi_add(&gsi->dummy_dev, &channel->napi,
1639 gsi_channel_poll, NAPI_POLL_WEIGHT);
1640 else
1641 netif_napi_add(&gsi->dummy_dev, &channel->napi,
1642 gsi_channel_poll, NAPI_POLL_WEIGHT);
1643
1644 return 0;
1645
1646 err_evt_ring_de_alloc:
1647 /* We've done nothing with the event ring yet so don't reset */
1648 gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1649
1650 return ret;
1651 }
1652
1653 /* Inverse of gsi_channel_setup_one() */
gsi_channel_teardown_one(struct gsi * gsi,u32 channel_id)1654 static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id)
1655 {
1656 struct gsi_channel *channel = &gsi->channel[channel_id];
1657 u32 evt_ring_id = channel->evt_ring_id;
1658
1659 if (!gsi_channel_initialized(channel))
1660 return;
1661
1662 netif_napi_del(&channel->napi);
1663
1664 gsi_channel_de_alloc_command(gsi, channel_id);
1665 gsi_evt_ring_reset_command(gsi, evt_ring_id);
1666 gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1667 }
1668
gsi_generic_command(struct gsi * gsi,u32 channel_id,enum gsi_generic_cmd_opcode opcode)1669 static int gsi_generic_command(struct gsi *gsi, u32 channel_id,
1670 enum gsi_generic_cmd_opcode opcode)
1671 {
1672 struct completion *completion = &gsi->completion;
1673 bool timeout;
1674 u32 val;
1675
1676 /* The error global interrupt type is always enabled (until we
1677 * teardown), so we won't change that. A generic EE command
1678 * completes with a GSI global interrupt of type GP_INT1. We
1679 * only perform one generic command at a time (to allocate or
1680 * halt a modem channel) and only from this function. So we
1681 * enable the GP_INT1 IRQ type here while we're expecting it.
1682 */
1683 val = BIT(ERROR_INT) | BIT(GP_INT1);
1684 iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
1685
1686 /* First zero the result code field */
1687 val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1688 val &= ~GENERIC_EE_RESULT_FMASK;
1689 iowrite32(val, gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1690
1691 /* Now issue the command */
1692 val = u32_encode_bits(opcode, GENERIC_OPCODE_FMASK);
1693 val |= u32_encode_bits(channel_id, GENERIC_CHID_FMASK);
1694 val |= u32_encode_bits(GSI_EE_MODEM, GENERIC_EE_FMASK);
1695
1696 timeout = !gsi_command(gsi, GSI_GENERIC_CMD_OFFSET, val, completion);
1697
1698 /* Disable the GP_INT1 IRQ type again */
1699 iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
1700
1701 if (!timeout)
1702 return gsi->result;
1703
1704 dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n",
1705 opcode, channel_id);
1706
1707 return -ETIMEDOUT;
1708 }
1709
gsi_modem_channel_alloc(struct gsi * gsi,u32 channel_id)1710 static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id)
1711 {
1712 return gsi_generic_command(gsi, channel_id,
1713 GSI_GENERIC_ALLOCATE_CHANNEL);
1714 }
1715
gsi_modem_channel_halt(struct gsi * gsi,u32 channel_id)1716 static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id)
1717 {
1718 u32 retries = GSI_CHANNEL_MODEM_HALT_RETRIES;
1719 int ret;
1720
1721 do
1722 ret = gsi_generic_command(gsi, channel_id,
1723 GSI_GENERIC_HALT_CHANNEL);
1724 while (ret == -EAGAIN && retries--);
1725
1726 if (ret)
1727 dev_err(gsi->dev, "error %d halting modem channel %u\n",
1728 ret, channel_id);
1729 }
1730
1731 /* Setup function for channels */
gsi_channel_setup(struct gsi * gsi)1732 static int gsi_channel_setup(struct gsi *gsi)
1733 {
1734 u32 channel_id = 0;
1735 u32 mask;
1736 int ret;
1737
1738 gsi_irq_enable(gsi);
1739
1740 mutex_lock(&gsi->mutex);
1741
1742 do {
1743 ret = gsi_channel_setup_one(gsi, channel_id);
1744 if (ret)
1745 goto err_unwind;
1746 } while (++channel_id < gsi->channel_count);
1747
1748 /* Make sure no channels were defined that hardware does not support */
1749 while (channel_id < GSI_CHANNEL_COUNT_MAX) {
1750 struct gsi_channel *channel = &gsi->channel[channel_id++];
1751
1752 if (!gsi_channel_initialized(channel))
1753 continue;
1754
1755 ret = -EINVAL;
1756 dev_err(gsi->dev, "channel %u not supported by hardware\n",
1757 channel_id - 1);
1758 channel_id = gsi->channel_count;
1759 goto err_unwind;
1760 }
1761
1762 /* Allocate modem channels if necessary */
1763 mask = gsi->modem_channel_bitmap;
1764 while (mask) {
1765 u32 modem_channel_id = __ffs(mask);
1766
1767 ret = gsi_modem_channel_alloc(gsi, modem_channel_id);
1768 if (ret)
1769 goto err_unwind_modem;
1770
1771 /* Clear bit from mask only after success (for unwind) */
1772 mask ^= BIT(modem_channel_id);
1773 }
1774
1775 mutex_unlock(&gsi->mutex);
1776
1777 return 0;
1778
1779 err_unwind_modem:
1780 /* Compute which modem channels need to be deallocated */
1781 mask ^= gsi->modem_channel_bitmap;
1782 while (mask) {
1783 channel_id = __fls(mask);
1784
1785 mask ^= BIT(channel_id);
1786
1787 gsi_modem_channel_halt(gsi, channel_id);
1788 }
1789
1790 err_unwind:
1791 while (channel_id--)
1792 gsi_channel_teardown_one(gsi, channel_id);
1793
1794 mutex_unlock(&gsi->mutex);
1795
1796 gsi_irq_disable(gsi);
1797
1798 return ret;
1799 }
1800
1801 /* Inverse of gsi_channel_setup() */
gsi_channel_teardown(struct gsi * gsi)1802 static void gsi_channel_teardown(struct gsi *gsi)
1803 {
1804 u32 mask = gsi->modem_channel_bitmap;
1805 u32 channel_id;
1806
1807 mutex_lock(&gsi->mutex);
1808
1809 while (mask) {
1810 channel_id = __fls(mask);
1811
1812 mask ^= BIT(channel_id);
1813
1814 gsi_modem_channel_halt(gsi, channel_id);
1815 }
1816
1817 channel_id = gsi->channel_count - 1;
1818 do
1819 gsi_channel_teardown_one(gsi, channel_id);
1820 while (channel_id--);
1821
1822 mutex_unlock(&gsi->mutex);
1823
1824 gsi_irq_disable(gsi);
1825 }
1826
1827 /* Setup function for GSI. GSI firmware must be loaded and initialized */
gsi_setup(struct gsi * gsi)1828 int gsi_setup(struct gsi *gsi)
1829 {
1830 struct device *dev = gsi->dev;
1831 u32 val;
1832
1833 /* Here is where we first touch the GSI hardware */
1834 val = ioread32(gsi->virt + GSI_GSI_STATUS_OFFSET);
1835 if (!(val & ENABLED_FMASK)) {
1836 dev_err(dev, "GSI has not been enabled\n");
1837 return -EIO;
1838 }
1839
1840 gsi_irq_setup(gsi); /* No matching teardown required */
1841
1842 val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET);
1843
1844 gsi->channel_count = u32_get_bits(val, NUM_CH_PER_EE_FMASK);
1845 if (!gsi->channel_count) {
1846 dev_err(dev, "GSI reports zero channels supported\n");
1847 return -EINVAL;
1848 }
1849 if (gsi->channel_count > GSI_CHANNEL_COUNT_MAX) {
1850 dev_warn(dev,
1851 "limiting to %u channels; hardware supports %u\n",
1852 GSI_CHANNEL_COUNT_MAX, gsi->channel_count);
1853 gsi->channel_count = GSI_CHANNEL_COUNT_MAX;
1854 }
1855
1856 gsi->evt_ring_count = u32_get_bits(val, NUM_EV_PER_EE_FMASK);
1857 if (!gsi->evt_ring_count) {
1858 dev_err(dev, "GSI reports zero event rings supported\n");
1859 return -EINVAL;
1860 }
1861 if (gsi->evt_ring_count > GSI_EVT_RING_COUNT_MAX) {
1862 dev_warn(dev,
1863 "limiting to %u event rings; hardware supports %u\n",
1864 GSI_EVT_RING_COUNT_MAX, gsi->evt_ring_count);
1865 gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX;
1866 }
1867
1868 /* Initialize the error log */
1869 iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
1870
1871 /* Writing 1 indicates IRQ interrupts; 0 would be MSI */
1872 iowrite32(1, gsi->virt + GSI_CNTXT_INTSET_OFFSET);
1873
1874 return gsi_channel_setup(gsi);
1875 }
1876
1877 /* Inverse of gsi_setup() */
gsi_teardown(struct gsi * gsi)1878 void gsi_teardown(struct gsi *gsi)
1879 {
1880 gsi_channel_teardown(gsi);
1881 }
1882
1883 /* Initialize a channel's event ring */
gsi_channel_evt_ring_init(struct gsi_channel * channel)1884 static int gsi_channel_evt_ring_init(struct gsi_channel *channel)
1885 {
1886 struct gsi *gsi = channel->gsi;
1887 struct gsi_evt_ring *evt_ring;
1888 int ret;
1889
1890 ret = gsi_evt_ring_id_alloc(gsi);
1891 if (ret < 0)
1892 return ret;
1893 channel->evt_ring_id = ret;
1894
1895 evt_ring = &gsi->evt_ring[channel->evt_ring_id];
1896 evt_ring->channel = channel;
1897
1898 ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count);
1899 if (!ret)
1900 return 0; /* Success! */
1901
1902 dev_err(gsi->dev, "error %d allocating channel %u event ring\n",
1903 ret, gsi_channel_id(channel));
1904
1905 gsi_evt_ring_id_free(gsi, channel->evt_ring_id);
1906
1907 return ret;
1908 }
1909
1910 /* Inverse of gsi_channel_evt_ring_init() */
gsi_channel_evt_ring_exit(struct gsi_channel * channel)1911 static void gsi_channel_evt_ring_exit(struct gsi_channel *channel)
1912 {
1913 u32 evt_ring_id = channel->evt_ring_id;
1914 struct gsi *gsi = channel->gsi;
1915 struct gsi_evt_ring *evt_ring;
1916
1917 evt_ring = &gsi->evt_ring[evt_ring_id];
1918 gsi_ring_free(gsi, &evt_ring->ring);
1919 gsi_evt_ring_id_free(gsi, evt_ring_id);
1920 }
1921
1922 /* Init function for event rings; there is no gsi_evt_ring_exit() */
gsi_evt_ring_init(struct gsi * gsi)1923 static void gsi_evt_ring_init(struct gsi *gsi)
1924 {
1925 u32 evt_ring_id = 0;
1926
1927 gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX);
1928 gsi->ieob_enabled_bitmap = 0;
1929 do
1930 init_completion(&gsi->evt_ring[evt_ring_id].completion);
1931 while (++evt_ring_id < GSI_EVT_RING_COUNT_MAX);
1932 }
1933
gsi_channel_data_valid(struct gsi * gsi,const struct ipa_gsi_endpoint_data * data)1934 static bool gsi_channel_data_valid(struct gsi *gsi,
1935 const struct ipa_gsi_endpoint_data *data)
1936 {
1937 #ifdef IPA_VALIDATION
1938 u32 channel_id = data->channel_id;
1939 struct device *dev = gsi->dev;
1940
1941 /* Make sure channel ids are in the range driver supports */
1942 if (channel_id >= GSI_CHANNEL_COUNT_MAX) {
1943 dev_err(dev, "bad channel id %u; must be less than %u\n",
1944 channel_id, GSI_CHANNEL_COUNT_MAX);
1945 return false;
1946 }
1947
1948 if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) {
1949 dev_err(dev, "bad EE id %u; not AP or modem\n", data->ee_id);
1950 return false;
1951 }
1952
1953 if (!data->channel.tlv_count ||
1954 data->channel.tlv_count > GSI_TLV_MAX) {
1955 dev_err(dev, "channel %u bad tlv_count %u; must be 1..%u\n",
1956 channel_id, data->channel.tlv_count, GSI_TLV_MAX);
1957 return false;
1958 }
1959
1960 /* We have to allow at least one maximally-sized transaction to
1961 * be outstanding (which would use tlv_count TREs). Given how
1962 * gsi_channel_tre_max() is computed, tre_count has to be almost
1963 * twice the TLV FIFO size to satisfy this requirement.
1964 */
1965 if (data->channel.tre_count < 2 * data->channel.tlv_count - 1) {
1966 dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n",
1967 channel_id, data->channel.tlv_count,
1968 data->channel.tre_count);
1969 return false;
1970 }
1971
1972 if (!is_power_of_2(data->channel.tre_count)) {
1973 dev_err(dev, "channel %u bad tre_count %u; not power of 2\n",
1974 channel_id, data->channel.tre_count);
1975 return false;
1976 }
1977
1978 if (!is_power_of_2(data->channel.event_count)) {
1979 dev_err(dev, "channel %u bad event_count %u; not power of 2\n",
1980 channel_id, data->channel.event_count);
1981 return false;
1982 }
1983 #endif /* IPA_VALIDATION */
1984
1985 return true;
1986 }
1987
1988 /* Init function for a single channel */
gsi_channel_init_one(struct gsi * gsi,const struct ipa_gsi_endpoint_data * data,bool command)1989 static int gsi_channel_init_one(struct gsi *gsi,
1990 const struct ipa_gsi_endpoint_data *data,
1991 bool command)
1992 {
1993 struct gsi_channel *channel;
1994 u32 tre_count;
1995 int ret;
1996
1997 if (!gsi_channel_data_valid(gsi, data))
1998 return -EINVAL;
1999
2000 /* Worst case we need an event for every outstanding TRE */
2001 if (data->channel.tre_count > data->channel.event_count) {
2002 tre_count = data->channel.event_count;
2003 dev_warn(gsi->dev, "channel %u limited to %u TREs\n",
2004 data->channel_id, tre_count);
2005 } else {
2006 tre_count = data->channel.tre_count;
2007 }
2008
2009 channel = &gsi->channel[data->channel_id];
2010 memset(channel, 0, sizeof(*channel));
2011
2012 channel->gsi = gsi;
2013 channel->toward_ipa = data->toward_ipa;
2014 channel->command = command;
2015 channel->tlv_count = data->channel.tlv_count;
2016 channel->tre_count = tre_count;
2017 channel->event_count = data->channel.event_count;
2018 init_completion(&channel->completion);
2019
2020 ret = gsi_channel_evt_ring_init(channel);
2021 if (ret)
2022 goto err_clear_gsi;
2023
2024 ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count);
2025 if (ret) {
2026 dev_err(gsi->dev, "error %d allocating channel %u ring\n",
2027 ret, data->channel_id);
2028 goto err_channel_evt_ring_exit;
2029 }
2030
2031 ret = gsi_channel_trans_init(gsi, data->channel_id);
2032 if (ret)
2033 goto err_ring_free;
2034
2035 if (command) {
2036 u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id);
2037
2038 ret = ipa_cmd_pool_init(channel, tre_max);
2039 }
2040 if (!ret)
2041 return 0; /* Success! */
2042
2043 gsi_channel_trans_exit(channel);
2044 err_ring_free:
2045 gsi_ring_free(gsi, &channel->tre_ring);
2046 err_channel_evt_ring_exit:
2047 gsi_channel_evt_ring_exit(channel);
2048 err_clear_gsi:
2049 channel->gsi = NULL; /* Mark it not (fully) initialized */
2050
2051 return ret;
2052 }
2053
2054 /* Inverse of gsi_channel_init_one() */
gsi_channel_exit_one(struct gsi_channel * channel)2055 static void gsi_channel_exit_one(struct gsi_channel *channel)
2056 {
2057 if (!gsi_channel_initialized(channel))
2058 return;
2059
2060 if (channel->command)
2061 ipa_cmd_pool_exit(channel);
2062 gsi_channel_trans_exit(channel);
2063 gsi_ring_free(channel->gsi, &channel->tre_ring);
2064 gsi_channel_evt_ring_exit(channel);
2065 }
2066
2067 /* Init function for channels */
gsi_channel_init(struct gsi * gsi,u32 count,const struct ipa_gsi_endpoint_data * data)2068 static int gsi_channel_init(struct gsi *gsi, u32 count,
2069 const struct ipa_gsi_endpoint_data *data)
2070 {
2071 bool modem_alloc;
2072 int ret = 0;
2073 u32 i;
2074
2075 /* IPA v4.2 requires the AP to allocate channels for the modem */
2076 modem_alloc = gsi->version == IPA_VERSION_4_2;
2077
2078 gsi_evt_ring_init(gsi); /* No matching exit required */
2079
2080 /* The endpoint data array is indexed by endpoint name */
2081 for (i = 0; i < count; i++) {
2082 bool command = i == IPA_ENDPOINT_AP_COMMAND_TX;
2083
2084 if (ipa_gsi_endpoint_data_empty(&data[i]))
2085 continue; /* Skip over empty slots */
2086
2087 /* Mark modem channels to be allocated (hardware workaround) */
2088 if (data[i].ee_id == GSI_EE_MODEM) {
2089 if (modem_alloc)
2090 gsi->modem_channel_bitmap |=
2091 BIT(data[i].channel_id);
2092 continue;
2093 }
2094
2095 ret = gsi_channel_init_one(gsi, &data[i], command);
2096 if (ret)
2097 goto err_unwind;
2098 }
2099
2100 return ret;
2101
2102 err_unwind:
2103 while (i--) {
2104 if (ipa_gsi_endpoint_data_empty(&data[i]))
2105 continue;
2106 if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) {
2107 gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id);
2108 continue;
2109 }
2110 gsi_channel_exit_one(&gsi->channel[data->channel_id]);
2111 }
2112
2113 return ret;
2114 }
2115
2116 /* Inverse of gsi_channel_init() */
gsi_channel_exit(struct gsi * gsi)2117 static void gsi_channel_exit(struct gsi *gsi)
2118 {
2119 u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1;
2120
2121 do
2122 gsi_channel_exit_one(&gsi->channel[channel_id]);
2123 while (channel_id--);
2124 gsi->modem_channel_bitmap = 0;
2125 }
2126
2127 /* Init function for GSI. GSI hardware does not need to be "ready" */
gsi_init(struct gsi * gsi,struct platform_device * pdev,enum ipa_version version,u32 count,const struct ipa_gsi_endpoint_data * data)2128 int gsi_init(struct gsi *gsi, struct platform_device *pdev,
2129 enum ipa_version version, u32 count,
2130 const struct ipa_gsi_endpoint_data *data)
2131 {
2132 struct device *dev = &pdev->dev;
2133 struct resource *res;
2134 resource_size_t size;
2135 u32 adjust;
2136 int ret;
2137
2138 gsi_validate_build();
2139
2140 gsi->dev = dev;
2141 gsi->version = version;
2142
2143 /* GSI uses NAPI on all channels. Create a dummy network device
2144 * for the channel NAPI contexts to be associated with.
2145 */
2146 init_dummy_netdev(&gsi->dummy_dev);
2147
2148 /* Get GSI memory range and map it */
2149 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gsi");
2150 if (!res) {
2151 dev_err(dev, "DT error getting \"gsi\" memory property\n");
2152 return -ENODEV;
2153 }
2154
2155 size = resource_size(res);
2156 if (res->start > U32_MAX || size > U32_MAX - res->start) {
2157 dev_err(dev, "DT memory resource \"gsi\" out of range\n");
2158 return -EINVAL;
2159 }
2160
2161 /* Make sure we can make our pointer adjustment if necessary */
2162 adjust = gsi->version < IPA_VERSION_4_5 ? 0 : GSI_EE_REG_ADJUST;
2163 if (res->start < adjust) {
2164 dev_err(dev, "DT memory resource \"gsi\" too low (< %u)\n",
2165 adjust);
2166 return -EINVAL;
2167 }
2168
2169 gsi->virt_raw = ioremap(res->start, size);
2170 if (!gsi->virt_raw) {
2171 dev_err(dev, "unable to remap \"gsi\" memory\n");
2172 return -ENOMEM;
2173 }
2174 /* Most registers are accessed using an adjusted register range */
2175 gsi->virt = gsi->virt_raw - adjust;
2176
2177 init_completion(&gsi->completion);
2178
2179 ret = gsi_irq_init(gsi, pdev);
2180 if (ret)
2181 goto err_iounmap;
2182
2183 ret = gsi_channel_init(gsi, count, data);
2184 if (ret)
2185 goto err_irq_exit;
2186
2187 mutex_init(&gsi->mutex);
2188
2189 return 0;
2190
2191 err_irq_exit:
2192 gsi_irq_exit(gsi);
2193 err_iounmap:
2194 iounmap(gsi->virt_raw);
2195
2196 return ret;
2197 }
2198
2199 /* Inverse of gsi_init() */
gsi_exit(struct gsi * gsi)2200 void gsi_exit(struct gsi *gsi)
2201 {
2202 mutex_destroy(&gsi->mutex);
2203 gsi_channel_exit(gsi);
2204 gsi_irq_exit(gsi);
2205 iounmap(gsi->virt_raw);
2206 }
2207
2208 /* The maximum number of outstanding TREs on a channel. This limits
2209 * a channel's maximum number of transactions outstanding (worst case
2210 * is one TRE per transaction).
2211 *
2212 * The absolute limit is the number of TREs in the channel's TRE ring,
2213 * and in theory we should be able use all of them. But in practice,
2214 * doing that led to the hardware reporting exhaustion of event ring
2215 * slots for writing completion information. So the hardware limit
2216 * would be (tre_count - 1).
2217 *
2218 * We reduce it a bit further though. Transaction resource pools are
2219 * sized to be a little larger than this maximum, to allow resource
2220 * allocations to always be contiguous. The number of entries in a
2221 * TRE ring buffer is a power of 2, and the extra resources in a pool
2222 * tends to nearly double the memory allocated for it. Reducing the
2223 * maximum number of outstanding TREs allows the number of entries in
2224 * a pool to avoid crossing that power-of-2 boundary, and this can
2225 * substantially reduce pool memory requirements. The number we
2226 * reduce it by matches the number added in gsi_trans_pool_init().
2227 */
gsi_channel_tre_max(struct gsi * gsi,u32 channel_id)2228 u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id)
2229 {
2230 struct gsi_channel *channel = &gsi->channel[channel_id];
2231
2232 /* Hardware limit is channel->tre_count - 1 */
2233 return channel->tre_count - (channel->tlv_count - 1);
2234 }
2235
2236 /* Returns the maximum number of TREs in a single transaction for a channel */
gsi_channel_trans_tre_max(struct gsi * gsi,u32 channel_id)2237 u32 gsi_channel_trans_tre_max(struct gsi *gsi, u32 channel_id)
2238 {
2239 struct gsi_channel *channel = &gsi->channel[channel_id];
2240
2241 return channel->tlv_count;
2242 }
2243