1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27 
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30 
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition)					\
35 	do {								\
36 		if (WARN_ON(condition))					\
37 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
38 	} while (0)
39 #endif
40 
41 enum {
42 	FAULT_KMALLOC,
43 	FAULT_KVMALLOC,
44 	FAULT_PAGE_ALLOC,
45 	FAULT_PAGE_GET,
46 	FAULT_ALLOC_NID,
47 	FAULT_ORPHAN,
48 	FAULT_BLOCK,
49 	FAULT_DIR_DEPTH,
50 	FAULT_EVICT_INODE,
51 	FAULT_TRUNCATE,
52 	FAULT_READ_IO,
53 	FAULT_CHECKPOINT,
54 	FAULT_DISCARD,
55 	FAULT_WRITE_IO,
56 	FAULT_MAX,
57 };
58 
59 #ifdef CONFIG_F2FS_FAULT_INJECTION
60 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
61 
62 struct f2fs_fault_info {
63 	atomic_t inject_ops;
64 	unsigned int inject_rate;
65 	unsigned int inject_type;
66 };
67 
68 extern const char *f2fs_fault_name[FAULT_MAX];
69 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
70 #endif
71 
72 /*
73  * For mount options
74  */
75 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
76 #define F2FS_MOUNT_DISCARD		0x00000004
77 #define F2FS_MOUNT_NOHEAP		0x00000008
78 #define F2FS_MOUNT_XATTR_USER		0x00000010
79 #define F2FS_MOUNT_POSIX_ACL		0x00000020
80 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
81 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
82 #define F2FS_MOUNT_INLINE_DATA		0x00000100
83 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
84 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
85 #define F2FS_MOUNT_NOBARRIER		0x00000800
86 #define F2FS_MOUNT_FASTBOOT		0x00001000
87 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
88 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
89 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
90 #define F2FS_MOUNT_USRQUOTA		0x00080000
91 #define F2FS_MOUNT_GRPQUOTA		0x00100000
92 #define F2FS_MOUNT_PRJQUOTA		0x00200000
93 #define F2FS_MOUNT_QUOTA		0x00400000
94 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
95 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
96 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
97 #define F2FS_MOUNT_NORECOVERY		0x04000000
98 #define F2FS_MOUNT_ATGC			0x08000000
99 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x10000000
100 #define	F2FS_MOUNT_GC_MERGE		0x20000000
101 
102 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
103 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
104 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
105 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
106 
107 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
108 		typecheck(unsigned long long, b) &&			\
109 		((long long)((a) - (b)) > 0))
110 
111 typedef u32 block_t;	/*
112 			 * should not change u32, since it is the on-disk block
113 			 * address format, __le32.
114 			 */
115 typedef u32 nid_t;
116 
117 #define COMPRESS_EXT_NUM		16
118 
119 struct f2fs_mount_info {
120 	unsigned int opt;
121 	int write_io_size_bits;		/* Write IO size bits */
122 	block_t root_reserved_blocks;	/* root reserved blocks */
123 	kuid_t s_resuid;		/* reserved blocks for uid */
124 	kgid_t s_resgid;		/* reserved blocks for gid */
125 	int active_logs;		/* # of active logs */
126 	int inline_xattr_size;		/* inline xattr size */
127 #ifdef CONFIG_F2FS_FAULT_INJECTION
128 	struct f2fs_fault_info fault_info;	/* For fault injection */
129 #endif
130 #ifdef CONFIG_QUOTA
131 	/* Names of quota files with journalled quota */
132 	char *s_qf_names[MAXQUOTAS];
133 	int s_jquota_fmt;			/* Format of quota to use */
134 #endif
135 	/* For which write hints are passed down to block layer */
136 	int whint_mode;
137 	int alloc_mode;			/* segment allocation policy */
138 	int fsync_mode;			/* fsync policy */
139 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
140 	int bggc_mode;			/* bggc mode: off, on or sync */
141 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
142 	block_t unusable_cap_perc;	/* percentage for cap */
143 	block_t unusable_cap;		/* Amount of space allowed to be
144 					 * unusable when disabling checkpoint
145 					 */
146 
147 	/* For compression */
148 	unsigned char compress_algorithm;	/* algorithm type */
149 	unsigned char compress_log_size;	/* cluster log size */
150 	unsigned char compress_level;		/* compress level */
151 	bool compress_chksum;			/* compressed data chksum */
152 	unsigned char compress_ext_cnt;		/* extension count */
153 	int compress_mode;			/* compression mode */
154 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
155 };
156 
157 #define F2FS_FEATURE_ENCRYPT		0x0001
158 #define F2FS_FEATURE_BLKZONED		0x0002
159 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
160 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
161 #define F2FS_FEATURE_PRJQUOTA		0x0010
162 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
163 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
164 #define F2FS_FEATURE_QUOTA_INO		0x0080
165 #define F2FS_FEATURE_INODE_CRTIME	0x0100
166 #define F2FS_FEATURE_LOST_FOUND		0x0200
167 #define F2FS_FEATURE_VERITY		0x0400
168 #define F2FS_FEATURE_SB_CHKSUM		0x0800
169 #define F2FS_FEATURE_CASEFOLD		0x1000
170 #define F2FS_FEATURE_COMPRESSION	0x2000
171 
172 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
173 	((raw_super->feature & cpu_to_le32(mask)) != 0)
174 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
175 #define F2FS_SET_FEATURE(sbi, mask)					\
176 	(sbi->raw_super->feature |= cpu_to_le32(mask))
177 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
178 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
179 
180 /*
181  * Default values for user and/or group using reserved blocks
182  */
183 #define	F2FS_DEF_RESUID		0
184 #define	F2FS_DEF_RESGID		0
185 
186 /*
187  * For checkpoint manager
188  */
189 enum {
190 	NAT_BITMAP,
191 	SIT_BITMAP
192 };
193 
194 #define	CP_UMOUNT	0x00000001
195 #define	CP_FASTBOOT	0x00000002
196 #define	CP_SYNC		0x00000004
197 #define	CP_RECOVERY	0x00000008
198 #define	CP_DISCARD	0x00000010
199 #define CP_TRIMMED	0x00000020
200 #define CP_PAUSE	0x00000040
201 #define CP_RESIZE 	0x00000080
202 
203 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
204 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
205 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
206 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
207 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
208 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
209 #define DEF_CP_INTERVAL			60	/* 60 secs */
210 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
211 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
212 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
213 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
214 
215 struct cp_control {
216 	int reason;
217 	__u64 trim_start;
218 	__u64 trim_end;
219 	__u64 trim_minlen;
220 };
221 
222 /*
223  * indicate meta/data type
224  */
225 enum {
226 	META_CP,
227 	META_NAT,
228 	META_SIT,
229 	META_SSA,
230 	META_MAX,
231 	META_POR,
232 	DATA_GENERIC,		/* check range only */
233 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
234 	DATA_GENERIC_ENHANCE_READ,	/*
235 					 * strong check on range and segment
236 					 * bitmap but no warning due to race
237 					 * condition of read on truncated area
238 					 * by extent_cache
239 					 */
240 	META_GENERIC,
241 };
242 
243 /* for the list of ino */
244 enum {
245 	ORPHAN_INO,		/* for orphan ino list */
246 	APPEND_INO,		/* for append ino list */
247 	UPDATE_INO,		/* for update ino list */
248 	TRANS_DIR_INO,		/* for trasactions dir ino list */
249 	FLUSH_INO,		/* for multiple device flushing */
250 	MAX_INO_ENTRY,		/* max. list */
251 };
252 
253 struct ino_entry {
254 	struct list_head list;		/* list head */
255 	nid_t ino;			/* inode number */
256 	unsigned int dirty_device;	/* dirty device bitmap */
257 };
258 
259 /* for the list of inodes to be GCed */
260 struct inode_entry {
261 	struct list_head list;	/* list head */
262 	struct inode *inode;	/* vfs inode pointer */
263 };
264 
265 struct fsync_node_entry {
266 	struct list_head list;	/* list head */
267 	struct page *page;	/* warm node page pointer */
268 	unsigned int seq_id;	/* sequence id */
269 };
270 
271 struct ckpt_req {
272 	struct completion wait;		/* completion for checkpoint done */
273 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
274 	int ret;			/* return code of checkpoint */
275 	ktime_t queue_time;		/* request queued time */
276 };
277 
278 struct ckpt_req_control {
279 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
280 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
281 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
282 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
283 	atomic_t total_ckpt;		/* # of total ckpts */
284 	atomic_t queued_ckpt;		/* # of queued ckpts */
285 	struct llist_head issue_list;	/* list for command issue */
286 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
287 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
288 	unsigned int peak_time;		/* peak wait time in msec until now */
289 };
290 
291 /* for the bitmap indicate blocks to be discarded */
292 struct discard_entry {
293 	struct list_head list;	/* list head */
294 	block_t start_blkaddr;	/* start blockaddr of current segment */
295 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
296 };
297 
298 /* default discard granularity of inner discard thread, unit: block count */
299 #define DEFAULT_DISCARD_GRANULARITY		16
300 
301 /* max discard pend list number */
302 #define MAX_PLIST_NUM		512
303 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
304 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
305 
306 enum {
307 	D_PREP,			/* initial */
308 	D_PARTIAL,		/* partially submitted */
309 	D_SUBMIT,		/* all submitted */
310 	D_DONE,			/* finished */
311 };
312 
313 struct discard_info {
314 	block_t lstart;			/* logical start address */
315 	block_t len;			/* length */
316 	block_t start;			/* actual start address in dev */
317 };
318 
319 struct discard_cmd {
320 	struct rb_node rb_node;		/* rb node located in rb-tree */
321 	union {
322 		struct {
323 			block_t lstart;	/* logical start address */
324 			block_t len;	/* length */
325 			block_t start;	/* actual start address in dev */
326 		};
327 		struct discard_info di;	/* discard info */
328 
329 	};
330 	struct list_head list;		/* command list */
331 	struct completion wait;		/* compleation */
332 	struct block_device *bdev;	/* bdev */
333 	unsigned short ref;		/* reference count */
334 	unsigned char state;		/* state */
335 	unsigned char queued;		/* queued discard */
336 	int error;			/* bio error */
337 	spinlock_t lock;		/* for state/bio_ref updating */
338 	unsigned short bio_ref;		/* bio reference count */
339 };
340 
341 enum {
342 	DPOLICY_BG,
343 	DPOLICY_FORCE,
344 	DPOLICY_FSTRIM,
345 	DPOLICY_UMOUNT,
346 	MAX_DPOLICY,
347 };
348 
349 struct discard_policy {
350 	int type;			/* type of discard */
351 	unsigned int min_interval;	/* used for candidates exist */
352 	unsigned int mid_interval;	/* used for device busy */
353 	unsigned int max_interval;	/* used for candidates not exist */
354 	unsigned int max_requests;	/* # of discards issued per round */
355 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
356 	bool io_aware;			/* issue discard in idle time */
357 	bool sync;			/* submit discard with REQ_SYNC flag */
358 	bool ordered;			/* issue discard by lba order */
359 	bool timeout;			/* discard timeout for put_super */
360 	unsigned int granularity;	/* discard granularity */
361 };
362 
363 struct discard_cmd_control {
364 	struct task_struct *f2fs_issue_discard;	/* discard thread */
365 	struct list_head entry_list;		/* 4KB discard entry list */
366 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
367 	struct list_head wait_list;		/* store on-flushing entries */
368 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
369 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
370 	unsigned int discard_wake;		/* to wake up discard thread */
371 	struct mutex cmd_lock;
372 	unsigned int nr_discards;		/* # of discards in the list */
373 	unsigned int max_discards;		/* max. discards to be issued */
374 	unsigned int discard_granularity;	/* discard granularity */
375 	unsigned int undiscard_blks;		/* # of undiscard blocks */
376 	unsigned int next_pos;			/* next discard position */
377 	atomic_t issued_discard;		/* # of issued discard */
378 	atomic_t queued_discard;		/* # of queued discard */
379 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
380 	struct rb_root_cached root;		/* root of discard rb-tree */
381 	bool rbtree_check;			/* config for consistence check */
382 };
383 
384 /* for the list of fsync inodes, used only during recovery */
385 struct fsync_inode_entry {
386 	struct list_head list;	/* list head */
387 	struct inode *inode;	/* vfs inode pointer */
388 	block_t blkaddr;	/* block address locating the last fsync */
389 	block_t last_dentry;	/* block address locating the last dentry */
390 };
391 
392 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
393 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
394 
395 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
396 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
397 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
398 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
399 
400 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
401 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
402 
update_nats_in_cursum(struct f2fs_journal * journal,int i)403 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
404 {
405 	int before = nats_in_cursum(journal);
406 
407 	journal->n_nats = cpu_to_le16(before + i);
408 	return before;
409 }
410 
update_sits_in_cursum(struct f2fs_journal * journal,int i)411 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
412 {
413 	int before = sits_in_cursum(journal);
414 
415 	journal->n_sits = cpu_to_le16(before + i);
416 	return before;
417 }
418 
__has_cursum_space(struct f2fs_journal * journal,int size,int type)419 static inline bool __has_cursum_space(struct f2fs_journal *journal,
420 							int size, int type)
421 {
422 	if (type == NAT_JOURNAL)
423 		return size <= MAX_NAT_JENTRIES(journal);
424 	return size <= MAX_SIT_JENTRIES(journal);
425 }
426 
427 /* for inline stuff */
428 #define DEF_INLINE_RESERVED_SIZE	1
429 static inline int get_extra_isize(struct inode *inode);
430 static inline int get_inline_xattr_addrs(struct inode *inode);
431 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
432 				(CUR_ADDRS_PER_INODE(inode) -		\
433 				get_inline_xattr_addrs(inode) -	\
434 				DEF_INLINE_RESERVED_SIZE))
435 
436 /* for inline dir */
437 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
438 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
439 				BITS_PER_BYTE + 1))
440 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
441 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
442 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
443 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
444 				NR_INLINE_DENTRY(inode) + \
445 				INLINE_DENTRY_BITMAP_SIZE(inode)))
446 
447 /*
448  * For INODE and NODE manager
449  */
450 /* for directory operations */
451 
452 struct f2fs_filename {
453 	/*
454 	 * The filename the user specified.  This is NULL for some
455 	 * filesystem-internal operations, e.g. converting an inline directory
456 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
457 	 */
458 	const struct qstr *usr_fname;
459 
460 	/*
461 	 * The on-disk filename.  For encrypted directories, this is encrypted.
462 	 * This may be NULL for lookups in an encrypted dir without the key.
463 	 */
464 	struct fscrypt_str disk_name;
465 
466 	/* The dirhash of this filename */
467 	f2fs_hash_t hash;
468 
469 #ifdef CONFIG_FS_ENCRYPTION
470 	/*
471 	 * For lookups in encrypted directories: either the buffer backing
472 	 * disk_name, or a buffer that holds the decoded no-key name.
473 	 */
474 	struct fscrypt_str crypto_buf;
475 #endif
476 #ifdef CONFIG_UNICODE
477 	/*
478 	 * For casefolded directories: the casefolded name, but it's left NULL
479 	 * if the original name is not valid Unicode, if the directory is both
480 	 * casefolded and encrypted and its encryption key is unavailable, or if
481 	 * the filesystem is doing an internal operation where usr_fname is also
482 	 * NULL.  In all these cases we fall back to treating the name as an
483 	 * opaque byte sequence.
484 	 */
485 	struct fscrypt_str cf_name;
486 #endif
487 };
488 
489 struct f2fs_dentry_ptr {
490 	struct inode *inode;
491 	void *bitmap;
492 	struct f2fs_dir_entry *dentry;
493 	__u8 (*filename)[F2FS_SLOT_LEN];
494 	int max;
495 	int nr_bitmap;
496 };
497 
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)498 static inline void make_dentry_ptr_block(struct inode *inode,
499 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
500 {
501 	d->inode = inode;
502 	d->max = NR_DENTRY_IN_BLOCK;
503 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
504 	d->bitmap = t->dentry_bitmap;
505 	d->dentry = t->dentry;
506 	d->filename = t->filename;
507 }
508 
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)509 static inline void make_dentry_ptr_inline(struct inode *inode,
510 					struct f2fs_dentry_ptr *d, void *t)
511 {
512 	int entry_cnt = NR_INLINE_DENTRY(inode);
513 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
514 	int reserved_size = INLINE_RESERVED_SIZE(inode);
515 
516 	d->inode = inode;
517 	d->max = entry_cnt;
518 	d->nr_bitmap = bitmap_size;
519 	d->bitmap = t;
520 	d->dentry = t + bitmap_size + reserved_size;
521 	d->filename = t + bitmap_size + reserved_size +
522 					SIZE_OF_DIR_ENTRY * entry_cnt;
523 }
524 
525 /*
526  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
527  * as its node offset to distinguish from index node blocks.
528  * But some bits are used to mark the node block.
529  */
530 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
531 				>> OFFSET_BIT_SHIFT)
532 enum {
533 	ALLOC_NODE,			/* allocate a new node page if needed */
534 	LOOKUP_NODE,			/* look up a node without readahead */
535 	LOOKUP_NODE_RA,			/*
536 					 * look up a node with readahead called
537 					 * by get_data_block.
538 					 */
539 };
540 
541 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
542 
543 /* congestion wait timeout value, default: 20ms */
544 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
545 
546 /* maximum retry quota flush count */
547 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
548 
549 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
550 
551 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
552 
553 /* for in-memory extent cache entry */
554 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
555 
556 /* number of extent info in extent cache we try to shrink */
557 #define EXTENT_CACHE_SHRINK_NUMBER	128
558 
559 struct rb_entry {
560 	struct rb_node rb_node;		/* rb node located in rb-tree */
561 	union {
562 		struct {
563 			unsigned int ofs;	/* start offset of the entry */
564 			unsigned int len;	/* length of the entry */
565 		};
566 		unsigned long long key;		/* 64-bits key */
567 	} __packed;
568 };
569 
570 struct extent_info {
571 	unsigned int fofs;		/* start offset in a file */
572 	unsigned int len;		/* length of the extent */
573 	u32 blk;			/* start block address of the extent */
574 };
575 
576 struct extent_node {
577 	struct rb_node rb_node;		/* rb node located in rb-tree */
578 	struct extent_info ei;		/* extent info */
579 	struct list_head list;		/* node in global extent list of sbi */
580 	struct extent_tree *et;		/* extent tree pointer */
581 };
582 
583 struct extent_tree {
584 	nid_t ino;			/* inode number */
585 	struct rb_root_cached root;	/* root of extent info rb-tree */
586 	struct extent_node *cached_en;	/* recently accessed extent node */
587 	struct extent_info largest;	/* largested extent info */
588 	struct list_head list;		/* to be used by sbi->zombie_list */
589 	rwlock_t lock;			/* protect extent info rb-tree */
590 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
591 	bool largest_updated;		/* largest extent updated */
592 };
593 
594 /*
595  * This structure is taken from ext4_map_blocks.
596  *
597  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
598  */
599 #define F2FS_MAP_NEW		(1 << BH_New)
600 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
601 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
602 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
603 				F2FS_MAP_UNWRITTEN)
604 
605 struct f2fs_map_blocks {
606 	block_t m_pblk;
607 	block_t m_lblk;
608 	unsigned int m_len;
609 	unsigned int m_flags;
610 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
611 	pgoff_t *m_next_extent;		/* point to next possible extent */
612 	int m_seg_type;
613 	bool m_may_create;		/* indicate it is from write path */
614 };
615 
616 /* for flag in get_data_block */
617 enum {
618 	F2FS_GET_BLOCK_DEFAULT,
619 	F2FS_GET_BLOCK_FIEMAP,
620 	F2FS_GET_BLOCK_BMAP,
621 	F2FS_GET_BLOCK_DIO,
622 	F2FS_GET_BLOCK_PRE_DIO,
623 	F2FS_GET_BLOCK_PRE_AIO,
624 	F2FS_GET_BLOCK_PRECACHE,
625 };
626 
627 /*
628  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
629  */
630 #define FADVISE_COLD_BIT	0x01
631 #define FADVISE_LOST_PINO_BIT	0x02
632 #define FADVISE_ENCRYPT_BIT	0x04
633 #define FADVISE_ENC_NAME_BIT	0x08
634 #define FADVISE_KEEP_SIZE_BIT	0x10
635 #define FADVISE_HOT_BIT		0x20
636 #define FADVISE_VERITY_BIT	0x40
637 
638 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
639 
640 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
641 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
642 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
643 
644 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
645 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
646 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
647 
648 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
649 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
650 
651 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
652 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
653 
654 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
655 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
656 
657 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
658 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
659 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
660 
661 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
662 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
663 
664 #define DEF_DIR_LEVEL		0
665 
666 enum {
667 	GC_FAILURE_PIN,
668 	GC_FAILURE_ATOMIC,
669 	MAX_GC_FAILURE
670 };
671 
672 /* used for f2fs_inode_info->flags */
673 enum {
674 	FI_NEW_INODE,		/* indicate newly allocated inode */
675 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
676 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
677 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
678 	FI_INC_LINK,		/* need to increment i_nlink */
679 	FI_ACL_MODE,		/* indicate acl mode */
680 	FI_NO_ALLOC,		/* should not allocate any blocks */
681 	FI_FREE_NID,		/* free allocated nide */
682 	FI_NO_EXTENT,		/* not to use the extent cache */
683 	FI_INLINE_XATTR,	/* used for inline xattr */
684 	FI_INLINE_DATA,		/* used for inline data*/
685 	FI_INLINE_DENTRY,	/* used for inline dentry */
686 	FI_APPEND_WRITE,	/* inode has appended data */
687 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
688 	FI_NEED_IPU,		/* used for ipu per file */
689 	FI_ATOMIC_FILE,		/* indicate atomic file */
690 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
691 	FI_VOLATILE_FILE,	/* indicate volatile file */
692 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
693 	FI_DROP_CACHE,		/* drop dirty page cache */
694 	FI_DATA_EXIST,		/* indicate data exists */
695 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
696 	FI_DO_DEFRAG,		/* indicate defragment is running */
697 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
698 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
699 	FI_HOT_DATA,		/* indicate file is hot */
700 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
701 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
702 	FI_PIN_FILE,		/* indicate file should not be gced */
703 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
704 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
705 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
706 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
707 	FI_MMAP_FILE,		/* indicate file was mmapped */
708 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
709 	FI_MAX,			/* max flag, never be used */
710 };
711 
712 struct f2fs_inode_info {
713 	struct inode vfs_inode;		/* serve a vfs inode */
714 	unsigned long i_flags;		/* keep an inode flags for ioctl */
715 	unsigned char i_advise;		/* use to give file attribute hints */
716 	unsigned char i_dir_level;	/* use for dentry level for large dir */
717 	unsigned int i_current_depth;	/* only for directory depth */
718 	/* for gc failure statistic */
719 	unsigned int i_gc_failures[MAX_GC_FAILURE];
720 	unsigned int i_pino;		/* parent inode number */
721 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
722 
723 	/* Use below internally in f2fs*/
724 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
725 	struct rw_semaphore i_sem;	/* protect fi info */
726 	atomic_t dirty_pages;		/* # of dirty pages */
727 	f2fs_hash_t chash;		/* hash value of given file name */
728 	unsigned int clevel;		/* maximum level of given file name */
729 	struct task_struct *task;	/* lookup and create consistency */
730 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
731 	nid_t i_xattr_nid;		/* node id that contains xattrs */
732 	loff_t	last_disk_size;		/* lastly written file size */
733 	spinlock_t i_size_lock;		/* protect last_disk_size */
734 
735 #ifdef CONFIG_QUOTA
736 	struct dquot *i_dquot[MAXQUOTAS];
737 
738 	/* quota space reservation, managed internally by quota code */
739 	qsize_t i_reserved_quota;
740 #endif
741 	struct list_head dirty_list;	/* dirty list for dirs and files */
742 	struct list_head gdirty_list;	/* linked in global dirty list */
743 	struct list_head inmem_ilist;	/* list for inmem inodes */
744 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
745 	struct task_struct *inmem_task;	/* store inmemory task */
746 	struct mutex inmem_lock;	/* lock for inmemory pages */
747 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
748 
749 	/* avoid racing between foreground op and gc */
750 	struct rw_semaphore i_gc_rwsem[2];
751 	struct rw_semaphore i_mmap_sem;
752 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
753 
754 	int i_extra_isize;		/* size of extra space located in i_addr */
755 	kprojid_t i_projid;		/* id for project quota */
756 	int i_inline_xattr_size;	/* inline xattr size */
757 	struct timespec64 i_crtime;	/* inode creation time */
758 	struct timespec64 i_disk_time[4];/* inode disk times */
759 
760 	/* for file compress */
761 	atomic_t i_compr_blocks;		/* # of compressed blocks */
762 	unsigned char i_compress_algorithm;	/* algorithm type */
763 	unsigned char i_log_cluster_size;	/* log of cluster size */
764 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
765 	unsigned short i_compress_flag;		/* compress flag */
766 	unsigned int i_cluster_size;		/* cluster size */
767 };
768 
get_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)769 static inline void get_extent_info(struct extent_info *ext,
770 					struct f2fs_extent *i_ext)
771 {
772 	ext->fofs = le32_to_cpu(i_ext->fofs);
773 	ext->blk = le32_to_cpu(i_ext->blk);
774 	ext->len = le32_to_cpu(i_ext->len);
775 }
776 
set_raw_extent(struct extent_info * ext,struct f2fs_extent * i_ext)777 static inline void set_raw_extent(struct extent_info *ext,
778 					struct f2fs_extent *i_ext)
779 {
780 	i_ext->fofs = cpu_to_le32(ext->fofs);
781 	i_ext->blk = cpu_to_le32(ext->blk);
782 	i_ext->len = cpu_to_le32(ext->len);
783 }
784 
set_extent_info(struct extent_info * ei,unsigned int fofs,u32 blk,unsigned int len)785 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
786 						u32 blk, unsigned int len)
787 {
788 	ei->fofs = fofs;
789 	ei->blk = blk;
790 	ei->len = len;
791 }
792 
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)793 static inline bool __is_discard_mergeable(struct discard_info *back,
794 			struct discard_info *front, unsigned int max_len)
795 {
796 	return (back->lstart + back->len == front->lstart) &&
797 		(back->len + front->len <= max_len);
798 }
799 
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)800 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
801 			struct discard_info *back, unsigned int max_len)
802 {
803 	return __is_discard_mergeable(back, cur, max_len);
804 }
805 
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)806 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
807 			struct discard_info *front, unsigned int max_len)
808 {
809 	return __is_discard_mergeable(cur, front, max_len);
810 }
811 
__is_extent_mergeable(struct extent_info * back,struct extent_info * front)812 static inline bool __is_extent_mergeable(struct extent_info *back,
813 						struct extent_info *front)
814 {
815 	return (back->fofs + back->len == front->fofs &&
816 			back->blk + back->len == front->blk);
817 }
818 
__is_back_mergeable(struct extent_info * cur,struct extent_info * back)819 static inline bool __is_back_mergeable(struct extent_info *cur,
820 						struct extent_info *back)
821 {
822 	return __is_extent_mergeable(back, cur);
823 }
824 
__is_front_mergeable(struct extent_info * cur,struct extent_info * front)825 static inline bool __is_front_mergeable(struct extent_info *cur,
826 						struct extent_info *front)
827 {
828 	return __is_extent_mergeable(cur, front);
829 }
830 
831 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
__try_update_largest_extent(struct extent_tree * et,struct extent_node * en)832 static inline void __try_update_largest_extent(struct extent_tree *et,
833 						struct extent_node *en)
834 {
835 	if (en->ei.len > et->largest.len) {
836 		et->largest = en->ei;
837 		et->largest_updated = true;
838 	}
839 }
840 
841 /*
842  * For free nid management
843  */
844 enum nid_state {
845 	FREE_NID,		/* newly added to free nid list */
846 	PREALLOC_NID,		/* it is preallocated */
847 	MAX_NID_STATE,
848 };
849 
850 enum nat_state {
851 	TOTAL_NAT,
852 	DIRTY_NAT,
853 	RECLAIMABLE_NAT,
854 	MAX_NAT_STATE,
855 };
856 
857 struct f2fs_nm_info {
858 	block_t nat_blkaddr;		/* base disk address of NAT */
859 	nid_t max_nid;			/* maximum possible node ids */
860 	nid_t available_nids;		/* # of available node ids */
861 	nid_t next_scan_nid;		/* the next nid to be scanned */
862 	unsigned int ram_thresh;	/* control the memory footprint */
863 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
864 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
865 
866 	/* NAT cache management */
867 	struct radix_tree_root nat_root;/* root of the nat entry cache */
868 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
869 	struct rw_semaphore nat_tree_lock;	/* protect nat entry tree */
870 	struct list_head nat_entries;	/* cached nat entry list (clean) */
871 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
872 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
873 	unsigned int nat_blocks;	/* # of nat blocks */
874 
875 	/* free node ids management */
876 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
877 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
878 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
879 	spinlock_t nid_list_lock;	/* protect nid lists ops */
880 	struct mutex build_lock;	/* lock for build free nids */
881 	unsigned char **free_nid_bitmap;
882 	unsigned char *nat_block_bitmap;
883 	unsigned short *free_nid_count;	/* free nid count of NAT block */
884 
885 	/* for checkpoint */
886 	char *nat_bitmap;		/* NAT bitmap pointer */
887 
888 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
889 	unsigned char *nat_bits;	/* NAT bits blocks */
890 	unsigned char *full_nat_bits;	/* full NAT pages */
891 	unsigned char *empty_nat_bits;	/* empty NAT pages */
892 #ifdef CONFIG_F2FS_CHECK_FS
893 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
894 #endif
895 	int bitmap_size;		/* bitmap size */
896 };
897 
898 /*
899  * this structure is used as one of function parameters.
900  * all the information are dedicated to a given direct node block determined
901  * by the data offset in a file.
902  */
903 struct dnode_of_data {
904 	struct inode *inode;		/* vfs inode pointer */
905 	struct page *inode_page;	/* its inode page, NULL is possible */
906 	struct page *node_page;		/* cached direct node page */
907 	nid_t nid;			/* node id of the direct node block */
908 	unsigned int ofs_in_node;	/* data offset in the node page */
909 	bool inode_page_locked;		/* inode page is locked or not */
910 	bool node_changed;		/* is node block changed */
911 	char cur_level;			/* level of hole node page */
912 	char max_level;			/* level of current page located */
913 	block_t	data_blkaddr;		/* block address of the node block */
914 };
915 
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)916 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
917 		struct page *ipage, struct page *npage, nid_t nid)
918 {
919 	memset(dn, 0, sizeof(*dn));
920 	dn->inode = inode;
921 	dn->inode_page = ipage;
922 	dn->node_page = npage;
923 	dn->nid = nid;
924 }
925 
926 /*
927  * For SIT manager
928  *
929  * By default, there are 6 active log areas across the whole main area.
930  * When considering hot and cold data separation to reduce cleaning overhead,
931  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
932  * respectively.
933  * In the current design, you should not change the numbers intentionally.
934  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
935  * logs individually according to the underlying devices. (default: 6)
936  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
937  * data and 8 for node logs.
938  */
939 #define	NR_CURSEG_DATA_TYPE	(3)
940 #define NR_CURSEG_NODE_TYPE	(3)
941 #define NR_CURSEG_INMEM_TYPE	(2)
942 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
943 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
944 
945 enum {
946 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
947 	CURSEG_WARM_DATA,	/* data blocks */
948 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
949 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
950 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
951 	CURSEG_COLD_NODE,	/* indirect node blocks */
952 	NR_PERSISTENT_LOG,	/* number of persistent log */
953 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
954 				/* pinned file that needs consecutive block address */
955 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
956 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
957 };
958 
959 struct flush_cmd {
960 	struct completion wait;
961 	struct llist_node llnode;
962 	nid_t ino;
963 	int ret;
964 };
965 
966 struct flush_cmd_control {
967 	struct task_struct *f2fs_issue_flush;	/* flush thread */
968 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
969 	atomic_t issued_flush;			/* # of issued flushes */
970 	atomic_t queued_flush;			/* # of queued flushes */
971 	struct llist_head issue_list;		/* list for command issue */
972 	struct llist_node *dispatch_list;	/* list for command dispatch */
973 };
974 
975 struct f2fs_sm_info {
976 	struct sit_info *sit_info;		/* whole segment information */
977 	struct free_segmap_info *free_info;	/* free segment information */
978 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
979 	struct curseg_info *curseg_array;	/* active segment information */
980 
981 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
982 
983 	block_t seg0_blkaddr;		/* block address of 0'th segment */
984 	block_t main_blkaddr;		/* start block address of main area */
985 	block_t ssa_blkaddr;		/* start block address of SSA area */
986 
987 	unsigned int segment_count;	/* total # of segments */
988 	unsigned int main_segments;	/* # of segments in main area */
989 	unsigned int reserved_segments;	/* # of reserved segments */
990 	unsigned int ovp_segments;	/* # of overprovision segments */
991 
992 	/* a threshold to reclaim prefree segments */
993 	unsigned int rec_prefree_segments;
994 
995 	/* for batched trimming */
996 	unsigned int trim_sections;		/* # of sections to trim */
997 
998 	struct list_head sit_entry_set;	/* sit entry set list */
999 
1000 	unsigned int ipu_policy;	/* in-place-update policy */
1001 	unsigned int min_ipu_util;	/* in-place-update threshold */
1002 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1003 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1004 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1005 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1006 
1007 	/* for flush command control */
1008 	struct flush_cmd_control *fcc_info;
1009 
1010 	/* for discard command control */
1011 	struct discard_cmd_control *dcc_info;
1012 };
1013 
1014 /*
1015  * For superblock
1016  */
1017 /*
1018  * COUNT_TYPE for monitoring
1019  *
1020  * f2fs monitors the number of several block types such as on-writeback,
1021  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1022  */
1023 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1024 enum count_type {
1025 	F2FS_DIRTY_DENTS,
1026 	F2FS_DIRTY_DATA,
1027 	F2FS_DIRTY_QDATA,
1028 	F2FS_DIRTY_NODES,
1029 	F2FS_DIRTY_META,
1030 	F2FS_INMEM_PAGES,
1031 	F2FS_DIRTY_IMETA,
1032 	F2FS_WB_CP_DATA,
1033 	F2FS_WB_DATA,
1034 	F2FS_RD_DATA,
1035 	F2FS_RD_NODE,
1036 	F2FS_RD_META,
1037 	F2FS_DIO_WRITE,
1038 	F2FS_DIO_READ,
1039 	NR_COUNT_TYPE,
1040 };
1041 
1042 /*
1043  * The below are the page types of bios used in submit_bio().
1044  * The available types are:
1045  * DATA			User data pages. It operates as async mode.
1046  * NODE			Node pages. It operates as async mode.
1047  * META			FS metadata pages such as SIT, NAT, CP.
1048  * NR_PAGE_TYPE		The number of page types.
1049  * META_FLUSH		Make sure the previous pages are written
1050  *			with waiting the bio's completion
1051  * ...			Only can be used with META.
1052  */
1053 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1054 enum page_type {
1055 	DATA,
1056 	NODE,
1057 	META,
1058 	NR_PAGE_TYPE,
1059 	META_FLUSH,
1060 	INMEM,		/* the below types are used by tracepoints only. */
1061 	INMEM_DROP,
1062 	INMEM_INVALIDATE,
1063 	INMEM_REVOKE,
1064 	IPU,
1065 	OPU,
1066 };
1067 
1068 enum temp_type {
1069 	HOT = 0,	/* must be zero for meta bio */
1070 	WARM,
1071 	COLD,
1072 	NR_TEMP_TYPE,
1073 };
1074 
1075 enum need_lock_type {
1076 	LOCK_REQ = 0,
1077 	LOCK_DONE,
1078 	LOCK_RETRY,
1079 };
1080 
1081 enum cp_reason_type {
1082 	CP_NO_NEEDED,
1083 	CP_NON_REGULAR,
1084 	CP_COMPRESSED,
1085 	CP_HARDLINK,
1086 	CP_SB_NEED_CP,
1087 	CP_WRONG_PINO,
1088 	CP_NO_SPC_ROLL,
1089 	CP_NODE_NEED_CP,
1090 	CP_FASTBOOT_MODE,
1091 	CP_SPEC_LOG_NUM,
1092 	CP_RECOVER_DIR,
1093 };
1094 
1095 enum iostat_type {
1096 	/* WRITE IO */
1097 	APP_DIRECT_IO,			/* app direct write IOs */
1098 	APP_BUFFERED_IO,		/* app buffered write IOs */
1099 	APP_WRITE_IO,			/* app write IOs */
1100 	APP_MAPPED_IO,			/* app mapped IOs */
1101 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1102 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1103 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1104 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1105 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1106 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1107 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1108 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1109 
1110 	/* READ IO */
1111 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1112 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1113 	APP_READ_IO,			/* app read IOs */
1114 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1115 	FS_DATA_READ_IO,		/* data read IOs */
1116 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1117 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1118 	FS_NODE_READ_IO,		/* node read IOs */
1119 	FS_META_READ_IO,		/* meta read IOs */
1120 
1121 	/* other */
1122 	FS_DISCARD,			/* discard */
1123 	NR_IO_TYPE,
1124 };
1125 
1126 struct f2fs_io_info {
1127 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1128 	nid_t ino;		/* inode number */
1129 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1130 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1131 	int op;			/* contains REQ_OP_ */
1132 	int op_flags;		/* req_flag_bits */
1133 	block_t new_blkaddr;	/* new block address to be written */
1134 	block_t old_blkaddr;	/* old block address before Cow */
1135 	struct page *page;	/* page to be written */
1136 	struct page *encrypted_page;	/* encrypted page */
1137 	struct page *compressed_page;	/* compressed page */
1138 	struct list_head list;		/* serialize IOs */
1139 	bool submitted;		/* indicate IO submission */
1140 	int need_lock;		/* indicate we need to lock cp_rwsem */
1141 	bool in_list;		/* indicate fio is in io_list */
1142 	bool is_por;		/* indicate IO is from recovery or not */
1143 	bool retry;		/* need to reallocate block address */
1144 	int compr_blocks;	/* # of compressed block addresses */
1145 	bool encrypted;		/* indicate file is encrypted */
1146 	enum iostat_type io_type;	/* io type */
1147 	struct writeback_control *io_wbc; /* writeback control */
1148 	struct bio **bio;		/* bio for ipu */
1149 	sector_t *last_block;		/* last block number in bio */
1150 	unsigned char version;		/* version of the node */
1151 };
1152 
1153 struct bio_entry {
1154 	struct bio *bio;
1155 	struct list_head list;
1156 };
1157 
1158 #define is_read_io(rw) ((rw) == READ)
1159 struct f2fs_bio_info {
1160 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1161 	struct bio *bio;		/* bios to merge */
1162 	sector_t last_block_in_bio;	/* last block number */
1163 	struct f2fs_io_info fio;	/* store buffered io info. */
1164 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1165 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1166 	struct list_head io_list;	/* track fios */
1167 	struct list_head bio_list;	/* bio entry list head */
1168 	struct rw_semaphore bio_list_lock;	/* lock to protect bio entry list */
1169 };
1170 
1171 #define FDEV(i)				(sbi->devs[i])
1172 #define RDEV(i)				(raw_super->devs[i])
1173 struct f2fs_dev_info {
1174 	struct block_device *bdev;
1175 	char path[MAX_PATH_LEN];
1176 	unsigned int total_segments;
1177 	block_t start_blk;
1178 	block_t end_blk;
1179 #ifdef CONFIG_BLK_DEV_ZONED
1180 	unsigned int nr_blkz;		/* Total number of zones */
1181 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1182 	block_t *zone_capacity_blocks;  /* Array of zone capacity in blks */
1183 #endif
1184 };
1185 
1186 enum inode_type {
1187 	DIR_INODE,			/* for dirty dir inode */
1188 	FILE_INODE,			/* for dirty regular/symlink inode */
1189 	DIRTY_META,			/* for all dirtied inode metadata */
1190 	ATOMIC_FILE,			/* for all atomic files */
1191 	NR_INODE_TYPE,
1192 };
1193 
1194 /* for inner inode cache management */
1195 struct inode_management {
1196 	struct radix_tree_root ino_root;	/* ino entry array */
1197 	spinlock_t ino_lock;			/* for ino entry lock */
1198 	struct list_head ino_list;		/* inode list head */
1199 	unsigned long ino_num;			/* number of entries */
1200 };
1201 
1202 /* for GC_AT */
1203 struct atgc_management {
1204 	bool atgc_enabled;			/* ATGC is enabled or not */
1205 	struct rb_root_cached root;		/* root of victim rb-tree */
1206 	struct list_head victim_list;		/* linked with all victim entries */
1207 	unsigned int victim_count;		/* victim count in rb-tree */
1208 	unsigned int candidate_ratio;		/* candidate ratio */
1209 	unsigned int max_candidate_count;	/* max candidate count */
1210 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1211 	unsigned long long age_threshold;	/* age threshold */
1212 };
1213 
1214 /* For s_flag in struct f2fs_sb_info */
1215 enum {
1216 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1217 	SBI_IS_CLOSE,				/* specify unmounting */
1218 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1219 	SBI_POR_DOING,				/* recovery is doing or not */
1220 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1221 	SBI_NEED_CP,				/* need to checkpoint */
1222 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1223 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1224 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1225 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1226 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1227 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1228 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1229 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1230 };
1231 
1232 enum {
1233 	CP_TIME,
1234 	REQ_TIME,
1235 	DISCARD_TIME,
1236 	GC_TIME,
1237 	DISABLE_TIME,
1238 	UMOUNT_DISCARD_TIMEOUT,
1239 	MAX_TIME,
1240 };
1241 
1242 enum {
1243 	GC_NORMAL,
1244 	GC_IDLE_CB,
1245 	GC_IDLE_GREEDY,
1246 	GC_IDLE_AT,
1247 	GC_URGENT_HIGH,
1248 	GC_URGENT_LOW,
1249 };
1250 
1251 enum {
1252 	BGGC_MODE_ON,		/* background gc is on */
1253 	BGGC_MODE_OFF,		/* background gc is off */
1254 	BGGC_MODE_SYNC,		/*
1255 				 * background gc is on, migrating blocks
1256 				 * like foreground gc
1257 				 */
1258 };
1259 
1260 enum {
1261 	FS_MODE_ADAPTIVE,	/* use both lfs/ssr allocation */
1262 	FS_MODE_LFS,		/* use lfs allocation only */
1263 };
1264 
1265 enum {
1266 	WHINT_MODE_OFF,		/* not pass down write hints */
1267 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1268 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1269 };
1270 
1271 enum {
1272 	ALLOC_MODE_DEFAULT,	/* stay default */
1273 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1274 };
1275 
1276 enum fsync_mode {
1277 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1278 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1279 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1280 };
1281 
1282 enum {
1283 	COMPR_MODE_FS,		/*
1284 				 * automatically compress compression
1285 				 * enabled files
1286 				 */
1287 	COMPR_MODE_USER,	/*
1288 				 * automatical compression is disabled.
1289 				 * user can control the file compression
1290 				 * using ioctls
1291 				 */
1292 };
1293 
1294 /*
1295  * this value is set in page as a private data which indicate that
1296  * the page is atomically written, and it is in inmem_pages list.
1297  */
1298 #define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)
1299 #define DUMMY_WRITTEN_PAGE		((unsigned long)-2)
1300 
1301 #define IS_ATOMIC_WRITTEN_PAGE(page)			\
1302 		(page_private(page) == ATOMIC_WRITTEN_PAGE)
1303 #define IS_DUMMY_WRITTEN_PAGE(page)			\
1304 		(page_private(page) == DUMMY_WRITTEN_PAGE)
1305 
1306 /* For compression */
1307 enum compress_algorithm_type {
1308 	COMPRESS_LZO,
1309 	COMPRESS_LZ4,
1310 	COMPRESS_ZSTD,
1311 	COMPRESS_LZORLE,
1312 	COMPRESS_MAX,
1313 };
1314 
1315 enum compress_flag {
1316 	COMPRESS_CHKSUM,
1317 	COMPRESS_MAX_FLAG,
1318 };
1319 
1320 #define COMPRESS_DATA_RESERVED_SIZE		4
1321 struct compress_data {
1322 	__le32 clen;			/* compressed data size */
1323 	__le32 chksum;			/* compressed data chksum */
1324 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1325 	u8 cdata[];			/* compressed data */
1326 };
1327 
1328 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1329 
1330 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1331 
1332 #define	COMPRESS_LEVEL_OFFSET	8
1333 
1334 /* compress context */
1335 struct compress_ctx {
1336 	struct inode *inode;		/* inode the context belong to */
1337 	pgoff_t cluster_idx;		/* cluster index number */
1338 	unsigned int cluster_size;	/* page count in cluster */
1339 	unsigned int log_cluster_size;	/* log of cluster size */
1340 	struct page **rpages;		/* pages store raw data in cluster */
1341 	unsigned int nr_rpages;		/* total page number in rpages */
1342 	struct page **cpages;		/* pages store compressed data in cluster */
1343 	unsigned int nr_cpages;		/* total page number in cpages */
1344 	void *rbuf;			/* virtual mapped address on rpages */
1345 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1346 	size_t rlen;			/* valid data length in rbuf */
1347 	size_t clen;			/* valid data length in cbuf */
1348 	void *private;			/* payload buffer for specified compression algorithm */
1349 	void *private2;			/* extra payload buffer */
1350 };
1351 
1352 /* compress context for write IO path */
1353 struct compress_io_ctx {
1354 	u32 magic;			/* magic number to indicate page is compressed */
1355 	struct inode *inode;		/* inode the context belong to */
1356 	struct page **rpages;		/* pages store raw data in cluster */
1357 	unsigned int nr_rpages;		/* total page number in rpages */
1358 	atomic_t pending_pages;		/* in-flight compressed page count */
1359 };
1360 
1361 /* Context for decompressing one cluster on the read IO path */
1362 struct decompress_io_ctx {
1363 	u32 magic;			/* magic number to indicate page is compressed */
1364 	struct inode *inode;		/* inode the context belong to */
1365 	pgoff_t cluster_idx;		/* cluster index number */
1366 	unsigned int cluster_size;	/* page count in cluster */
1367 	unsigned int log_cluster_size;	/* log of cluster size */
1368 	struct page **rpages;		/* pages store raw data in cluster */
1369 	unsigned int nr_rpages;		/* total page number in rpages */
1370 	struct page **cpages;		/* pages store compressed data in cluster */
1371 	unsigned int nr_cpages;		/* total page number in cpages */
1372 	struct page **tpages;		/* temp pages to pad holes in cluster */
1373 	void *rbuf;			/* virtual mapped address on rpages */
1374 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1375 	size_t rlen;			/* valid data length in rbuf */
1376 	size_t clen;			/* valid data length in cbuf */
1377 
1378 	/*
1379 	 * The number of compressed pages remaining to be read in this cluster.
1380 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1381 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1382 	 * is decompressed (or an error is reported).
1383 	 *
1384 	 * If an error occurs before all the pages have been submitted for I/O,
1385 	 * then this will never reach 0.  In this case the I/O submitter is
1386 	 * responsible for calling f2fs_decompress_end_io() instead.
1387 	 */
1388 	atomic_t remaining_pages;
1389 
1390 	/*
1391 	 * Number of references to this decompress_io_ctx.
1392 	 *
1393 	 * One reference is held for I/O completion.  This reference is dropped
1394 	 * after the pagecache pages are updated and unlocked -- either after
1395 	 * decompression (and verity if enabled), or after an error.
1396 	 *
1397 	 * In addition, each compressed page holds a reference while it is in a
1398 	 * bio.  These references are necessary prevent compressed pages from
1399 	 * being freed while they are still in a bio.
1400 	 */
1401 	refcount_t refcnt;
1402 
1403 	bool failed;			/* IO error occurred before decompression? */
1404 	bool need_verity;		/* need fs-verity verification after decompression? */
1405 	void *private;			/* payload buffer for specified decompression algorithm */
1406 	void *private2;			/* extra payload buffer */
1407 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1408 };
1409 
1410 #define NULL_CLUSTER			((unsigned int)(~0))
1411 #define MIN_COMPRESS_LOG_SIZE		2
1412 #define MAX_COMPRESS_LOG_SIZE		8
1413 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1414 
1415 struct f2fs_sb_info {
1416 	struct super_block *sb;			/* pointer to VFS super block */
1417 	struct proc_dir_entry *s_proc;		/* proc entry */
1418 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1419 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1420 	int valid_super_block;			/* valid super block no */
1421 	unsigned long s_flag;				/* flags for sbi */
1422 	struct mutex writepages;		/* mutex for writepages() */
1423 
1424 #ifdef CONFIG_BLK_DEV_ZONED
1425 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1426 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1427 #endif
1428 
1429 	/* for node-related operations */
1430 	struct f2fs_nm_info *nm_info;		/* node manager */
1431 	struct inode *node_inode;		/* cache node blocks */
1432 
1433 	/* for segment-related operations */
1434 	struct f2fs_sm_info *sm_info;		/* segment manager */
1435 
1436 	/* for bio operations */
1437 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1438 	/* keep migration IO order for LFS mode */
1439 	struct rw_semaphore io_order_lock;
1440 	mempool_t *write_io_dummy;		/* Dummy pages */
1441 
1442 	/* for checkpoint */
1443 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1444 	int cur_cp_pack;			/* remain current cp pack */
1445 	spinlock_t cp_lock;			/* for flag in ckpt */
1446 	struct inode *meta_inode;		/* cache meta blocks */
1447 	struct rw_semaphore cp_global_sem;	/* checkpoint procedure lock */
1448 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1449 	struct rw_semaphore node_write;		/* locking node writes */
1450 	struct rw_semaphore node_change;	/* locking node change */
1451 	wait_queue_head_t cp_wait;
1452 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1453 	long interval_time[MAX_TIME];		/* to store thresholds */
1454 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1455 
1456 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1457 
1458 	spinlock_t fsync_node_lock;		/* for node entry lock */
1459 	struct list_head fsync_node_list;	/* node list head */
1460 	unsigned int fsync_seg_id;		/* sequence id */
1461 	unsigned int fsync_node_num;		/* number of node entries */
1462 
1463 	/* for orphan inode, use 0'th array */
1464 	unsigned int max_orphans;		/* max orphan inodes */
1465 
1466 	/* for inode management */
1467 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1468 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1469 	struct mutex flush_lock;		/* for flush exclusion */
1470 
1471 	/* for extent tree cache */
1472 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1473 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1474 	struct list_head extent_list;		/* lru list for shrinker */
1475 	spinlock_t extent_lock;			/* locking extent lru list */
1476 	atomic_t total_ext_tree;		/* extent tree count */
1477 	struct list_head zombie_list;		/* extent zombie tree list */
1478 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1479 	atomic_t total_ext_node;		/* extent info count */
1480 
1481 	/* basic filesystem units */
1482 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1483 	unsigned int log_blocksize;		/* log2 block size */
1484 	unsigned int blocksize;			/* block size */
1485 	unsigned int root_ino_num;		/* root inode number*/
1486 	unsigned int node_ino_num;		/* node inode number*/
1487 	unsigned int meta_ino_num;		/* meta inode number*/
1488 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1489 	unsigned int blocks_per_seg;		/* blocks per segment */
1490 	unsigned int segs_per_sec;		/* segments per section */
1491 	unsigned int secs_per_zone;		/* sections per zone */
1492 	unsigned int total_sections;		/* total section count */
1493 	unsigned int total_node_count;		/* total node block count */
1494 	unsigned int total_valid_node_count;	/* valid node block count */
1495 	int dir_level;				/* directory level */
1496 	int readdir_ra;				/* readahead inode in readdir */
1497 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1498 
1499 	block_t user_block_count;		/* # of user blocks */
1500 	block_t total_valid_block_count;	/* # of valid blocks */
1501 	block_t discard_blks;			/* discard command candidats */
1502 	block_t last_valid_block_count;		/* for recovery */
1503 	block_t reserved_blocks;		/* configurable reserved blocks */
1504 	block_t current_reserved_blocks;	/* current reserved blocks */
1505 
1506 	/* Additional tracking for no checkpoint mode */
1507 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1508 
1509 	unsigned int nquota_files;		/* # of quota sysfile */
1510 	struct rw_semaphore quota_sem;		/* blocking cp for flags */
1511 
1512 	/* # of pages, see count_type */
1513 	atomic_t nr_pages[NR_COUNT_TYPE];
1514 	/* # of allocated blocks */
1515 	struct percpu_counter alloc_valid_block_count;
1516 
1517 	/* writeback control */
1518 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1519 
1520 	/* valid inode count */
1521 	struct percpu_counter total_valid_inode_count;
1522 
1523 	struct f2fs_mount_info mount_opt;	/* mount options */
1524 
1525 	/* for cleaning operations */
1526 	struct rw_semaphore gc_lock;		/*
1527 						 * semaphore for GC, avoid
1528 						 * race between GC and GC or CP
1529 						 */
1530 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1531 	struct atgc_management am;		/* atgc management */
1532 	unsigned int cur_victim_sec;		/* current victim section num */
1533 	unsigned int gc_mode;			/* current GC state */
1534 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1535 
1536 	/* for skip statistic */
1537 	unsigned int atomic_files;		/* # of opened atomic file */
1538 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1539 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1540 
1541 	/* threshold for gc trials on pinned files */
1542 	u64 gc_pin_file_threshold;
1543 	struct rw_semaphore pin_sem;
1544 
1545 	/* maximum # of trials to find a victim segment for SSR and GC */
1546 	unsigned int max_victim_search;
1547 	/* migration granularity of garbage collection, unit: segment */
1548 	unsigned int migration_granularity;
1549 
1550 	/*
1551 	 * for stat information.
1552 	 * one is for the LFS mode, and the other is for the SSR mode.
1553 	 */
1554 #ifdef CONFIG_F2FS_STAT_FS
1555 	struct f2fs_stat_info *stat_info;	/* FS status information */
1556 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1557 	unsigned int segment_count[2];		/* # of allocated segments */
1558 	unsigned int block_count[2];		/* # of allocated blocks */
1559 	atomic_t inplace_count;		/* # of inplace update */
1560 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1561 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1562 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1563 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1564 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1565 	atomic_t inline_inode;			/* # of inline_data inodes */
1566 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1567 	atomic_t compr_inode;			/* # of compressed inodes */
1568 	atomic64_t compr_blocks;		/* # of compressed blocks */
1569 	atomic_t vw_cnt;			/* # of volatile writes */
1570 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1571 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1572 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1573 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1574 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1575 #endif
1576 	spinlock_t stat_lock;			/* lock for stat operations */
1577 
1578 	/* For app/fs IO statistics */
1579 	spinlock_t iostat_lock;
1580 	unsigned long long rw_iostat[NR_IO_TYPE];
1581 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1582 	bool iostat_enable;
1583 	unsigned long iostat_next_period;
1584 	unsigned int iostat_period_ms;
1585 
1586 	/* to attach REQ_META|REQ_FUA flags */
1587 	unsigned int data_io_flag;
1588 	unsigned int node_io_flag;
1589 
1590 	/* For sysfs suppport */
1591 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1592 	struct completion s_kobj_unregister;
1593 
1594 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1595 	struct completion s_stat_kobj_unregister;
1596 
1597 	/* For shrinker support */
1598 	struct list_head s_list;
1599 	int s_ndevs;				/* number of devices */
1600 	struct f2fs_dev_info *devs;		/* for device list */
1601 	unsigned int dirty_device;		/* for checkpoint data flush */
1602 	spinlock_t dev_lock;			/* protect dirty_device */
1603 	struct mutex umount_mutex;
1604 	unsigned int shrinker_run_no;
1605 
1606 	/* For write statistics */
1607 	u64 sectors_written_start;
1608 	u64 kbytes_written;
1609 
1610 	/* Reference to checksum algorithm driver via cryptoapi */
1611 	struct crypto_shash *s_chksum_driver;
1612 
1613 	/* Precomputed FS UUID checksum for seeding other checksums */
1614 	__u32 s_chksum_seed;
1615 
1616 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1617 
1618 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1619 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1620 
1621 #ifdef CONFIG_F2FS_FS_COMPRESSION
1622 	struct kmem_cache *page_array_slab;	/* page array entry */
1623 	unsigned int page_array_slab_size;	/* default page array slab size */
1624 
1625 	/* For runtime compression statistics */
1626 	u64 compr_written_block;
1627 	u64 compr_saved_block;
1628 	u32 compr_new_inode;
1629 #endif
1630 };
1631 
1632 struct f2fs_private_dio {
1633 	struct inode *inode;
1634 	void *orig_private;
1635 	bio_end_io_t *orig_end_io;
1636 	bool write;
1637 };
1638 
1639 #ifdef CONFIG_F2FS_FAULT_INJECTION
1640 #define f2fs_show_injection_info(sbi, type)					\
1641 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1642 		KERN_INFO, sbi->sb->s_id,				\
1643 		f2fs_fault_name[type],					\
1644 		__func__, __builtin_return_address(0))
time_to_inject(struct f2fs_sb_info * sbi,int type)1645 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1646 {
1647 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1648 
1649 	if (!ffi->inject_rate)
1650 		return false;
1651 
1652 	if (!IS_FAULT_SET(ffi, type))
1653 		return false;
1654 
1655 	atomic_inc(&ffi->inject_ops);
1656 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1657 		atomic_set(&ffi->inject_ops, 0);
1658 		return true;
1659 	}
1660 	return false;
1661 }
1662 #else
1663 #define f2fs_show_injection_info(sbi, type) do { } while (0)
time_to_inject(struct f2fs_sb_info * sbi,int type)1664 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1665 {
1666 	return false;
1667 }
1668 #endif
1669 
1670 /*
1671  * Test if the mounted volume is a multi-device volume.
1672  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1673  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1674  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1675  */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1676 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1677 {
1678 	return sbi->s_ndevs > 1;
1679 }
1680 
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1681 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1682 {
1683 	unsigned long now = jiffies;
1684 
1685 	sbi->last_time[type] = now;
1686 
1687 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1688 	if (type == REQ_TIME) {
1689 		sbi->last_time[DISCARD_TIME] = now;
1690 		sbi->last_time[GC_TIME] = now;
1691 	}
1692 }
1693 
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1694 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1695 {
1696 	unsigned long interval = sbi->interval_time[type] * HZ;
1697 
1698 	return time_after(jiffies, sbi->last_time[type] + interval);
1699 }
1700 
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1701 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1702 						int type)
1703 {
1704 	unsigned long interval = sbi->interval_time[type] * HZ;
1705 	unsigned int wait_ms = 0;
1706 	long delta;
1707 
1708 	delta = (sbi->last_time[type] + interval) - jiffies;
1709 	if (delta > 0)
1710 		wait_ms = jiffies_to_msecs(delta);
1711 
1712 	return wait_ms;
1713 }
1714 
1715 /*
1716  * Inline functions
1717  */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1718 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1719 			      const void *address, unsigned int length)
1720 {
1721 	struct {
1722 		struct shash_desc shash;
1723 		char ctx[4];
1724 	} desc;
1725 	int err;
1726 
1727 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1728 
1729 	desc.shash.tfm = sbi->s_chksum_driver;
1730 	*(u32 *)desc.ctx = crc;
1731 
1732 	err = crypto_shash_update(&desc.shash, address, length);
1733 	BUG_ON(err);
1734 
1735 	return *(u32 *)desc.ctx;
1736 }
1737 
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1738 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1739 			   unsigned int length)
1740 {
1741 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1742 }
1743 
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1744 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1745 				  void *buf, size_t buf_size)
1746 {
1747 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1748 }
1749 
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1750 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1751 			      const void *address, unsigned int length)
1752 {
1753 	return __f2fs_crc32(sbi, crc, address, length);
1754 }
1755 
F2FS_I(struct inode * inode)1756 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1757 {
1758 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1759 }
1760 
F2FS_SB(struct super_block * sb)1761 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1762 {
1763 	return sb->s_fs_info;
1764 }
1765 
F2FS_I_SB(struct inode * inode)1766 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1767 {
1768 	return F2FS_SB(inode->i_sb);
1769 }
1770 
F2FS_M_SB(struct address_space * mapping)1771 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1772 {
1773 	return F2FS_I_SB(mapping->host);
1774 }
1775 
F2FS_P_SB(struct page * page)1776 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1777 {
1778 	return F2FS_M_SB(page_file_mapping(page));
1779 }
1780 
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1781 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1782 {
1783 	return (struct f2fs_super_block *)(sbi->raw_super);
1784 }
1785 
F2FS_CKPT(struct f2fs_sb_info * sbi)1786 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1787 {
1788 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1789 }
1790 
F2FS_NODE(struct page * page)1791 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1792 {
1793 	return (struct f2fs_node *)page_address(page);
1794 }
1795 
F2FS_INODE(struct page * page)1796 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1797 {
1798 	return &((struct f2fs_node *)page_address(page))->i;
1799 }
1800 
NM_I(struct f2fs_sb_info * sbi)1801 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1802 {
1803 	return (struct f2fs_nm_info *)(sbi->nm_info);
1804 }
1805 
SM_I(struct f2fs_sb_info * sbi)1806 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1807 {
1808 	return (struct f2fs_sm_info *)(sbi->sm_info);
1809 }
1810 
SIT_I(struct f2fs_sb_info * sbi)1811 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1812 {
1813 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1814 }
1815 
FREE_I(struct f2fs_sb_info * sbi)1816 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1817 {
1818 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1819 }
1820 
DIRTY_I(struct f2fs_sb_info * sbi)1821 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1822 {
1823 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1824 }
1825 
META_MAPPING(struct f2fs_sb_info * sbi)1826 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1827 {
1828 	return sbi->meta_inode->i_mapping;
1829 }
1830 
NODE_MAPPING(struct f2fs_sb_info * sbi)1831 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1832 {
1833 	return sbi->node_inode->i_mapping;
1834 }
1835 
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)1836 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1837 {
1838 	return test_bit(type, &sbi->s_flag);
1839 }
1840 
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1841 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1842 {
1843 	set_bit(type, &sbi->s_flag);
1844 }
1845 
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1846 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1847 {
1848 	clear_bit(type, &sbi->s_flag);
1849 }
1850 
cur_cp_version(struct f2fs_checkpoint * cp)1851 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1852 {
1853 	return le64_to_cpu(cp->checkpoint_ver);
1854 }
1855 
f2fs_qf_ino(struct super_block * sb,int type)1856 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1857 {
1858 	if (type < F2FS_MAX_QUOTAS)
1859 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1860 	return 0;
1861 }
1862 
cur_cp_crc(struct f2fs_checkpoint * cp)1863 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1864 {
1865 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1866 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1867 }
1868 
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1869 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1870 {
1871 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1872 
1873 	return ckpt_flags & f;
1874 }
1875 
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1876 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1877 {
1878 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1879 }
1880 
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1881 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1882 {
1883 	unsigned int ckpt_flags;
1884 
1885 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1886 	ckpt_flags |= f;
1887 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1888 }
1889 
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1890 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1891 {
1892 	unsigned long flags;
1893 
1894 	spin_lock_irqsave(&sbi->cp_lock, flags);
1895 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1896 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1897 }
1898 
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1899 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1900 {
1901 	unsigned int ckpt_flags;
1902 
1903 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1904 	ckpt_flags &= (~f);
1905 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1906 }
1907 
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1908 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1909 {
1910 	unsigned long flags;
1911 
1912 	spin_lock_irqsave(&sbi->cp_lock, flags);
1913 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1914 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1915 }
1916 
disable_nat_bits(struct f2fs_sb_info * sbi,bool lock)1917 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1918 {
1919 	unsigned long flags;
1920 	unsigned char *nat_bits;
1921 
1922 	/*
1923 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
1924 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1925 	 * so let's rely on regular fsck or unclean shutdown.
1926 	 */
1927 
1928 	if (lock)
1929 		spin_lock_irqsave(&sbi->cp_lock, flags);
1930 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1931 	nat_bits = NM_I(sbi)->nat_bits;
1932 	NM_I(sbi)->nat_bits = NULL;
1933 	if (lock)
1934 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1935 
1936 	kvfree(nat_bits);
1937 }
1938 
enabled_nat_bits(struct f2fs_sb_info * sbi,struct cp_control * cpc)1939 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1940 					struct cp_control *cpc)
1941 {
1942 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1943 
1944 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1945 }
1946 
f2fs_lock_op(struct f2fs_sb_info * sbi)1947 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1948 {
1949 	down_read(&sbi->cp_rwsem);
1950 }
1951 
f2fs_trylock_op(struct f2fs_sb_info * sbi)1952 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1953 {
1954 	return down_read_trylock(&sbi->cp_rwsem);
1955 }
1956 
f2fs_unlock_op(struct f2fs_sb_info * sbi)1957 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1958 {
1959 	up_read(&sbi->cp_rwsem);
1960 }
1961 
f2fs_lock_all(struct f2fs_sb_info * sbi)1962 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1963 {
1964 	down_write(&sbi->cp_rwsem);
1965 }
1966 
f2fs_unlock_all(struct f2fs_sb_info * sbi)1967 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1968 {
1969 	up_write(&sbi->cp_rwsem);
1970 }
1971 
__get_cp_reason(struct f2fs_sb_info * sbi)1972 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1973 {
1974 	int reason = CP_SYNC;
1975 
1976 	if (test_opt(sbi, FASTBOOT))
1977 		reason = CP_FASTBOOT;
1978 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1979 		reason = CP_UMOUNT;
1980 	return reason;
1981 }
1982 
__remain_node_summaries(int reason)1983 static inline bool __remain_node_summaries(int reason)
1984 {
1985 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1986 }
1987 
__exist_node_summaries(struct f2fs_sb_info * sbi)1988 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1989 {
1990 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1991 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1992 }
1993 
1994 /*
1995  * Check whether the inode has blocks or not
1996  */
F2FS_HAS_BLOCKS(struct inode * inode)1997 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1998 {
1999 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2000 
2001 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2002 }
2003 
f2fs_has_xattr_block(unsigned int ofs)2004 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2005 {
2006 	return ofs == XATTR_NODE_OFFSET;
2007 }
2008 
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2009 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2010 					struct inode *inode, bool cap)
2011 {
2012 	if (!inode)
2013 		return true;
2014 	if (!test_opt(sbi, RESERVE_ROOT))
2015 		return false;
2016 	if (IS_NOQUOTA(inode))
2017 		return true;
2018 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2019 		return true;
2020 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2021 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2022 		return true;
2023 	if (cap && capable(CAP_SYS_RESOURCE))
2024 		return true;
2025 	return false;
2026 }
2027 
2028 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count)2029 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2030 				 struct inode *inode, blkcnt_t *count)
2031 {
2032 	blkcnt_t diff = 0, release = 0;
2033 	block_t avail_user_block_count;
2034 	int ret;
2035 
2036 	ret = dquot_reserve_block(inode, *count);
2037 	if (ret)
2038 		return ret;
2039 
2040 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2041 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2042 		release = *count;
2043 		goto release_quota;
2044 	}
2045 
2046 	/*
2047 	 * let's increase this in prior to actual block count change in order
2048 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2049 	 */
2050 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2051 
2052 	spin_lock(&sbi->stat_lock);
2053 	sbi->total_valid_block_count += (block_t)(*count);
2054 	avail_user_block_count = sbi->user_block_count -
2055 					sbi->current_reserved_blocks;
2056 
2057 	if (!__allow_reserved_blocks(sbi, inode, true))
2058 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2059 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2060 		if (avail_user_block_count > sbi->unusable_block_count)
2061 			avail_user_block_count -= sbi->unusable_block_count;
2062 		else
2063 			avail_user_block_count = 0;
2064 	}
2065 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2066 		diff = sbi->total_valid_block_count - avail_user_block_count;
2067 		if (diff > *count)
2068 			diff = *count;
2069 		*count -= diff;
2070 		release = diff;
2071 		sbi->total_valid_block_count -= diff;
2072 		if (!*count) {
2073 			spin_unlock(&sbi->stat_lock);
2074 			goto enospc;
2075 		}
2076 	}
2077 	spin_unlock(&sbi->stat_lock);
2078 
2079 	if (unlikely(release)) {
2080 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2081 		dquot_release_reservation_block(inode, release);
2082 	}
2083 	f2fs_i_blocks_write(inode, *count, true, true);
2084 	return 0;
2085 
2086 enospc:
2087 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2088 release_quota:
2089 	dquot_release_reservation_block(inode, release);
2090 	return -ENOSPC;
2091 }
2092 
2093 __printf(2, 3)
2094 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2095 
2096 #define f2fs_err(sbi, fmt, ...)						\
2097 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2098 #define f2fs_warn(sbi, fmt, ...)					\
2099 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2100 #define f2fs_notice(sbi, fmt, ...)					\
2101 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2102 #define f2fs_info(sbi, fmt, ...)					\
2103 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2104 #define f2fs_debug(sbi, fmt, ...)					\
2105 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2106 
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2107 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2108 						struct inode *inode,
2109 						block_t count)
2110 {
2111 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2112 
2113 	spin_lock(&sbi->stat_lock);
2114 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2115 	sbi->total_valid_block_count -= (block_t)count;
2116 	if (sbi->reserved_blocks &&
2117 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2118 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2119 					sbi->current_reserved_blocks + count);
2120 	spin_unlock(&sbi->stat_lock);
2121 	if (unlikely(inode->i_blocks < sectors)) {
2122 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2123 			  inode->i_ino,
2124 			  (unsigned long long)inode->i_blocks,
2125 			  (unsigned long long)sectors);
2126 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2127 		return;
2128 	}
2129 	f2fs_i_blocks_write(inode, count, false, true);
2130 }
2131 
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2132 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2133 {
2134 	atomic_inc(&sbi->nr_pages[count_type]);
2135 
2136 	if (count_type == F2FS_DIRTY_DENTS ||
2137 			count_type == F2FS_DIRTY_NODES ||
2138 			count_type == F2FS_DIRTY_META ||
2139 			count_type == F2FS_DIRTY_QDATA ||
2140 			count_type == F2FS_DIRTY_IMETA)
2141 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2142 }
2143 
inode_inc_dirty_pages(struct inode * inode)2144 static inline void inode_inc_dirty_pages(struct inode *inode)
2145 {
2146 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2147 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2148 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2149 	if (IS_NOQUOTA(inode))
2150 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2151 }
2152 
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2153 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2154 {
2155 	atomic_dec(&sbi->nr_pages[count_type]);
2156 }
2157 
inode_dec_dirty_pages(struct inode * inode)2158 static inline void inode_dec_dirty_pages(struct inode *inode)
2159 {
2160 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2161 			!S_ISLNK(inode->i_mode))
2162 		return;
2163 
2164 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2165 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2166 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2167 	if (IS_NOQUOTA(inode))
2168 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2169 }
2170 
get_pages(struct f2fs_sb_info * sbi,int count_type)2171 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2172 {
2173 	return atomic_read(&sbi->nr_pages[count_type]);
2174 }
2175 
get_dirty_pages(struct inode * inode)2176 static inline int get_dirty_pages(struct inode *inode)
2177 {
2178 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2179 }
2180 
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2181 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2182 {
2183 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2184 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2185 						sbi->log_blocks_per_seg;
2186 
2187 	return segs / sbi->segs_per_sec;
2188 }
2189 
valid_user_blocks(struct f2fs_sb_info * sbi)2190 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2191 {
2192 	return sbi->total_valid_block_count;
2193 }
2194 
discard_blocks(struct f2fs_sb_info * sbi)2195 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2196 {
2197 	return sbi->discard_blks;
2198 }
2199 
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2200 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2201 {
2202 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2203 
2204 	/* return NAT or SIT bitmap */
2205 	if (flag == NAT_BITMAP)
2206 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2207 	else if (flag == SIT_BITMAP)
2208 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2209 
2210 	return 0;
2211 }
2212 
__cp_payload(struct f2fs_sb_info * sbi)2213 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2214 {
2215 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2216 }
2217 
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2218 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2219 {
2220 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2221 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2222 	int offset;
2223 
2224 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2225 		offset = (flag == SIT_BITMAP) ?
2226 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2227 		/*
2228 		 * if large_nat_bitmap feature is enabled, leave checksum
2229 		 * protection for all nat/sit bitmaps.
2230 		 */
2231 		return tmp_ptr + offset + sizeof(__le32);
2232 	}
2233 
2234 	if (__cp_payload(sbi) > 0) {
2235 		if (flag == NAT_BITMAP)
2236 			return &ckpt->sit_nat_version_bitmap;
2237 		else
2238 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2239 	} else {
2240 		offset = (flag == NAT_BITMAP) ?
2241 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2242 		return tmp_ptr + offset;
2243 	}
2244 }
2245 
__start_cp_addr(struct f2fs_sb_info * sbi)2246 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2247 {
2248 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2249 
2250 	if (sbi->cur_cp_pack == 2)
2251 		start_addr += sbi->blocks_per_seg;
2252 	return start_addr;
2253 }
2254 
__start_cp_next_addr(struct f2fs_sb_info * sbi)2255 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2256 {
2257 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2258 
2259 	if (sbi->cur_cp_pack == 1)
2260 		start_addr += sbi->blocks_per_seg;
2261 	return start_addr;
2262 }
2263 
__set_cp_next_pack(struct f2fs_sb_info * sbi)2264 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2265 {
2266 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2267 }
2268 
__start_sum_addr(struct f2fs_sb_info * sbi)2269 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2270 {
2271 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2272 }
2273 
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2274 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2275 					struct inode *inode, bool is_inode)
2276 {
2277 	block_t	valid_block_count;
2278 	unsigned int valid_node_count, user_block_count;
2279 	int err;
2280 
2281 	if (is_inode) {
2282 		if (inode) {
2283 			err = dquot_alloc_inode(inode);
2284 			if (err)
2285 				return err;
2286 		}
2287 	} else {
2288 		err = dquot_reserve_block(inode, 1);
2289 		if (err)
2290 			return err;
2291 	}
2292 
2293 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2294 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2295 		goto enospc;
2296 	}
2297 
2298 	spin_lock(&sbi->stat_lock);
2299 
2300 	valid_block_count = sbi->total_valid_block_count +
2301 					sbi->current_reserved_blocks + 1;
2302 
2303 	if (!__allow_reserved_blocks(sbi, inode, false))
2304 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2305 	user_block_count = sbi->user_block_count;
2306 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2307 		user_block_count -= sbi->unusable_block_count;
2308 
2309 	if (unlikely(valid_block_count > user_block_count)) {
2310 		spin_unlock(&sbi->stat_lock);
2311 		goto enospc;
2312 	}
2313 
2314 	valid_node_count = sbi->total_valid_node_count + 1;
2315 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2316 		spin_unlock(&sbi->stat_lock);
2317 		goto enospc;
2318 	}
2319 
2320 	sbi->total_valid_node_count++;
2321 	sbi->total_valid_block_count++;
2322 	spin_unlock(&sbi->stat_lock);
2323 
2324 	if (inode) {
2325 		if (is_inode)
2326 			f2fs_mark_inode_dirty_sync(inode, true);
2327 		else
2328 			f2fs_i_blocks_write(inode, 1, true, true);
2329 	}
2330 
2331 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2332 	return 0;
2333 
2334 enospc:
2335 	if (is_inode) {
2336 		if (inode)
2337 			dquot_free_inode(inode);
2338 	} else {
2339 		dquot_release_reservation_block(inode, 1);
2340 	}
2341 	return -ENOSPC;
2342 }
2343 
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2344 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2345 					struct inode *inode, bool is_inode)
2346 {
2347 	spin_lock(&sbi->stat_lock);
2348 
2349 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2350 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2351 
2352 	sbi->total_valid_node_count--;
2353 	sbi->total_valid_block_count--;
2354 	if (sbi->reserved_blocks &&
2355 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2356 		sbi->current_reserved_blocks++;
2357 
2358 	spin_unlock(&sbi->stat_lock);
2359 
2360 	if (is_inode) {
2361 		dquot_free_inode(inode);
2362 	} else {
2363 		if (unlikely(inode->i_blocks == 0)) {
2364 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2365 				  inode->i_ino,
2366 				  (unsigned long long)inode->i_blocks);
2367 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2368 			return;
2369 		}
2370 		f2fs_i_blocks_write(inode, 1, false, true);
2371 	}
2372 }
2373 
valid_node_count(struct f2fs_sb_info * sbi)2374 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2375 {
2376 	return sbi->total_valid_node_count;
2377 }
2378 
inc_valid_inode_count(struct f2fs_sb_info * sbi)2379 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2380 {
2381 	percpu_counter_inc(&sbi->total_valid_inode_count);
2382 }
2383 
dec_valid_inode_count(struct f2fs_sb_info * sbi)2384 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2385 {
2386 	percpu_counter_dec(&sbi->total_valid_inode_count);
2387 }
2388 
valid_inode_count(struct f2fs_sb_info * sbi)2389 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2390 {
2391 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2392 }
2393 
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2394 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2395 						pgoff_t index, bool for_write)
2396 {
2397 	struct page *page;
2398 
2399 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2400 		if (!for_write)
2401 			page = find_get_page_flags(mapping, index,
2402 							FGP_LOCK | FGP_ACCESSED);
2403 		else
2404 			page = find_lock_page(mapping, index);
2405 		if (page)
2406 			return page;
2407 
2408 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2409 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2410 							FAULT_PAGE_ALLOC);
2411 			return NULL;
2412 		}
2413 	}
2414 
2415 	if (!for_write)
2416 		return grab_cache_page(mapping, index);
2417 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2418 }
2419 
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)2420 static inline struct page *f2fs_pagecache_get_page(
2421 				struct address_space *mapping, pgoff_t index,
2422 				int fgp_flags, gfp_t gfp_mask)
2423 {
2424 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2425 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2426 		return NULL;
2427 	}
2428 
2429 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2430 }
2431 
f2fs_copy_page(struct page * src,struct page * dst)2432 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2433 {
2434 	char *src_kaddr = kmap(src);
2435 	char *dst_kaddr = kmap(dst);
2436 
2437 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2438 	kunmap(dst);
2439 	kunmap(src);
2440 }
2441 
f2fs_put_page(struct page * page,int unlock)2442 static inline void f2fs_put_page(struct page *page, int unlock)
2443 {
2444 	if (!page)
2445 		return;
2446 
2447 	if (unlock) {
2448 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2449 		unlock_page(page);
2450 	}
2451 	put_page(page);
2452 }
2453 
f2fs_put_dnode(struct dnode_of_data * dn)2454 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2455 {
2456 	if (dn->node_page)
2457 		f2fs_put_page(dn->node_page, 1);
2458 	if (dn->inode_page && dn->node_page != dn->inode_page)
2459 		f2fs_put_page(dn->inode_page, 0);
2460 	dn->node_page = NULL;
2461 	dn->inode_page = NULL;
2462 }
2463 
f2fs_kmem_cache_create(const char * name,size_t size)2464 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2465 					size_t size)
2466 {
2467 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2468 }
2469 
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags)2470 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2471 						gfp_t flags)
2472 {
2473 	void *entry;
2474 
2475 	entry = kmem_cache_alloc(cachep, flags);
2476 	if (!entry)
2477 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2478 	return entry;
2479 }
2480 
is_inflight_io(struct f2fs_sb_info * sbi,int type)2481 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2482 {
2483 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2484 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2485 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2486 		get_pages(sbi, F2FS_DIO_READ) ||
2487 		get_pages(sbi, F2FS_DIO_WRITE))
2488 		return true;
2489 
2490 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2491 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2492 		return true;
2493 
2494 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2495 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2496 		return true;
2497 	return false;
2498 }
2499 
is_idle(struct f2fs_sb_info * sbi,int type)2500 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2501 {
2502 	if (sbi->gc_mode == GC_URGENT_HIGH)
2503 		return true;
2504 
2505 	if (is_inflight_io(sbi, type))
2506 		return false;
2507 
2508 	if (sbi->gc_mode == GC_URGENT_LOW &&
2509 			(type == DISCARD_TIME || type == GC_TIME))
2510 		return true;
2511 
2512 	return f2fs_time_over(sbi, type);
2513 }
2514 
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2515 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2516 				unsigned long index, void *item)
2517 {
2518 	while (radix_tree_insert(root, index, item))
2519 		cond_resched();
2520 }
2521 
2522 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2523 
IS_INODE(struct page * page)2524 static inline bool IS_INODE(struct page *page)
2525 {
2526 	struct f2fs_node *p = F2FS_NODE(page);
2527 
2528 	return RAW_IS_INODE(p);
2529 }
2530 
offset_in_addr(struct f2fs_inode * i)2531 static inline int offset_in_addr(struct f2fs_inode *i)
2532 {
2533 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2534 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2535 }
2536 
blkaddr_in_node(struct f2fs_node * node)2537 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2538 {
2539 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2540 }
2541 
2542 static inline int f2fs_has_extra_attr(struct inode *inode);
data_blkaddr(struct inode * inode,struct page * node_page,unsigned int offset)2543 static inline block_t data_blkaddr(struct inode *inode,
2544 			struct page *node_page, unsigned int offset)
2545 {
2546 	struct f2fs_node *raw_node;
2547 	__le32 *addr_array;
2548 	int base = 0;
2549 	bool is_inode = IS_INODE(node_page);
2550 
2551 	raw_node = F2FS_NODE(node_page);
2552 
2553 	if (is_inode) {
2554 		if (!inode)
2555 			/* from GC path only */
2556 			base = offset_in_addr(&raw_node->i);
2557 		else if (f2fs_has_extra_attr(inode))
2558 			base = get_extra_isize(inode);
2559 	}
2560 
2561 	addr_array = blkaddr_in_node(raw_node);
2562 	return le32_to_cpu(addr_array[base + offset]);
2563 }
2564 
f2fs_data_blkaddr(struct dnode_of_data * dn)2565 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2566 {
2567 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2568 }
2569 
f2fs_test_bit(unsigned int nr,char * addr)2570 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2571 {
2572 	int mask;
2573 
2574 	addr += (nr >> 3);
2575 	mask = 1 << (7 - (nr & 0x07));
2576 	return mask & *addr;
2577 }
2578 
f2fs_set_bit(unsigned int nr,char * addr)2579 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2580 {
2581 	int mask;
2582 
2583 	addr += (nr >> 3);
2584 	mask = 1 << (7 - (nr & 0x07));
2585 	*addr |= mask;
2586 }
2587 
f2fs_clear_bit(unsigned int nr,char * addr)2588 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2589 {
2590 	int mask;
2591 
2592 	addr += (nr >> 3);
2593 	mask = 1 << (7 - (nr & 0x07));
2594 	*addr &= ~mask;
2595 }
2596 
f2fs_test_and_set_bit(unsigned int nr,char * addr)2597 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2598 {
2599 	int mask;
2600 	int ret;
2601 
2602 	addr += (nr >> 3);
2603 	mask = 1 << (7 - (nr & 0x07));
2604 	ret = mask & *addr;
2605 	*addr |= mask;
2606 	return ret;
2607 }
2608 
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2609 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2610 {
2611 	int mask;
2612 	int ret;
2613 
2614 	addr += (nr >> 3);
2615 	mask = 1 << (7 - (nr & 0x07));
2616 	ret = mask & *addr;
2617 	*addr &= ~mask;
2618 	return ret;
2619 }
2620 
f2fs_change_bit(unsigned int nr,char * addr)2621 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2622 {
2623 	int mask;
2624 
2625 	addr += (nr >> 3);
2626 	mask = 1 << (7 - (nr & 0x07));
2627 	*addr ^= mask;
2628 }
2629 
2630 /*
2631  * On-disk inode flags (f2fs_inode::i_flags)
2632  */
2633 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2634 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2635 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2636 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2637 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2638 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2639 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2640 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2641 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2642 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2643 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2644 
2645 /* Flags that should be inherited by new inodes from their parent. */
2646 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2647 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2648 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2649 
2650 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2651 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2652 				F2FS_CASEFOLD_FL))
2653 
2654 /* Flags that are appropriate for non-directories/regular files. */
2655 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2656 
f2fs_mask_flags(umode_t mode,__u32 flags)2657 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2658 {
2659 	if (S_ISDIR(mode))
2660 		return flags;
2661 	else if (S_ISREG(mode))
2662 		return flags & F2FS_REG_FLMASK;
2663 	else
2664 		return flags & F2FS_OTHER_FLMASK;
2665 }
2666 
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)2667 static inline void __mark_inode_dirty_flag(struct inode *inode,
2668 						int flag, bool set)
2669 {
2670 	switch (flag) {
2671 	case FI_INLINE_XATTR:
2672 	case FI_INLINE_DATA:
2673 	case FI_INLINE_DENTRY:
2674 	case FI_NEW_INODE:
2675 		if (set)
2676 			return;
2677 		fallthrough;
2678 	case FI_DATA_EXIST:
2679 	case FI_INLINE_DOTS:
2680 	case FI_PIN_FILE:
2681 		f2fs_mark_inode_dirty_sync(inode, true);
2682 	}
2683 }
2684 
set_inode_flag(struct inode * inode,int flag)2685 static inline void set_inode_flag(struct inode *inode, int flag)
2686 {
2687 	set_bit(flag, F2FS_I(inode)->flags);
2688 	__mark_inode_dirty_flag(inode, flag, true);
2689 }
2690 
is_inode_flag_set(struct inode * inode,int flag)2691 static inline int is_inode_flag_set(struct inode *inode, int flag)
2692 {
2693 	return test_bit(flag, F2FS_I(inode)->flags);
2694 }
2695 
clear_inode_flag(struct inode * inode,int flag)2696 static inline void clear_inode_flag(struct inode *inode, int flag)
2697 {
2698 	clear_bit(flag, F2FS_I(inode)->flags);
2699 	__mark_inode_dirty_flag(inode, flag, false);
2700 }
2701 
f2fs_verity_in_progress(struct inode * inode)2702 static inline bool f2fs_verity_in_progress(struct inode *inode)
2703 {
2704 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2705 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2706 }
2707 
set_acl_inode(struct inode * inode,umode_t mode)2708 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2709 {
2710 	F2FS_I(inode)->i_acl_mode = mode;
2711 	set_inode_flag(inode, FI_ACL_MODE);
2712 	f2fs_mark_inode_dirty_sync(inode, false);
2713 }
2714 
f2fs_i_links_write(struct inode * inode,bool inc)2715 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2716 {
2717 	if (inc)
2718 		inc_nlink(inode);
2719 	else
2720 		drop_nlink(inode);
2721 	f2fs_mark_inode_dirty_sync(inode, true);
2722 }
2723 
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)2724 static inline void f2fs_i_blocks_write(struct inode *inode,
2725 					block_t diff, bool add, bool claim)
2726 {
2727 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2728 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2729 
2730 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2731 	if (add) {
2732 		if (claim)
2733 			dquot_claim_block(inode, diff);
2734 		else
2735 			dquot_alloc_block_nofail(inode, diff);
2736 	} else {
2737 		dquot_free_block(inode, diff);
2738 	}
2739 
2740 	f2fs_mark_inode_dirty_sync(inode, true);
2741 	if (clean || recover)
2742 		set_inode_flag(inode, FI_AUTO_RECOVER);
2743 }
2744 
f2fs_i_size_write(struct inode * inode,loff_t i_size)2745 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2746 {
2747 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2748 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2749 
2750 	if (i_size_read(inode) == i_size)
2751 		return;
2752 
2753 	i_size_write(inode, i_size);
2754 	f2fs_mark_inode_dirty_sync(inode, true);
2755 	if (clean || recover)
2756 		set_inode_flag(inode, FI_AUTO_RECOVER);
2757 }
2758 
f2fs_i_depth_write(struct inode * inode,unsigned int depth)2759 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2760 {
2761 	F2FS_I(inode)->i_current_depth = depth;
2762 	f2fs_mark_inode_dirty_sync(inode, true);
2763 }
2764 
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)2765 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2766 					unsigned int count)
2767 {
2768 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2769 	f2fs_mark_inode_dirty_sync(inode, true);
2770 }
2771 
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)2772 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2773 {
2774 	F2FS_I(inode)->i_xattr_nid = xnid;
2775 	f2fs_mark_inode_dirty_sync(inode, true);
2776 }
2777 
f2fs_i_pino_write(struct inode * inode,nid_t pino)2778 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2779 {
2780 	F2FS_I(inode)->i_pino = pino;
2781 	f2fs_mark_inode_dirty_sync(inode, true);
2782 }
2783 
get_inline_info(struct inode * inode,struct f2fs_inode * ri)2784 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2785 {
2786 	struct f2fs_inode_info *fi = F2FS_I(inode);
2787 
2788 	if (ri->i_inline & F2FS_INLINE_XATTR)
2789 		set_bit(FI_INLINE_XATTR, fi->flags);
2790 	if (ri->i_inline & F2FS_INLINE_DATA)
2791 		set_bit(FI_INLINE_DATA, fi->flags);
2792 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2793 		set_bit(FI_INLINE_DENTRY, fi->flags);
2794 	if (ri->i_inline & F2FS_DATA_EXIST)
2795 		set_bit(FI_DATA_EXIST, fi->flags);
2796 	if (ri->i_inline & F2FS_INLINE_DOTS)
2797 		set_bit(FI_INLINE_DOTS, fi->flags);
2798 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2799 		set_bit(FI_EXTRA_ATTR, fi->flags);
2800 	if (ri->i_inline & F2FS_PIN_FILE)
2801 		set_bit(FI_PIN_FILE, fi->flags);
2802 }
2803 
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)2804 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2805 {
2806 	ri->i_inline = 0;
2807 
2808 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2809 		ri->i_inline |= F2FS_INLINE_XATTR;
2810 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2811 		ri->i_inline |= F2FS_INLINE_DATA;
2812 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2813 		ri->i_inline |= F2FS_INLINE_DENTRY;
2814 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2815 		ri->i_inline |= F2FS_DATA_EXIST;
2816 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2817 		ri->i_inline |= F2FS_INLINE_DOTS;
2818 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2819 		ri->i_inline |= F2FS_EXTRA_ATTR;
2820 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2821 		ri->i_inline |= F2FS_PIN_FILE;
2822 }
2823 
f2fs_has_extra_attr(struct inode * inode)2824 static inline int f2fs_has_extra_attr(struct inode *inode)
2825 {
2826 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2827 }
2828 
f2fs_has_inline_xattr(struct inode * inode)2829 static inline int f2fs_has_inline_xattr(struct inode *inode)
2830 {
2831 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2832 }
2833 
f2fs_compressed_file(struct inode * inode)2834 static inline int f2fs_compressed_file(struct inode *inode)
2835 {
2836 	return S_ISREG(inode->i_mode) &&
2837 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2838 }
2839 
f2fs_need_compress_data(struct inode * inode)2840 static inline bool f2fs_need_compress_data(struct inode *inode)
2841 {
2842 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
2843 
2844 	if (!f2fs_compressed_file(inode))
2845 		return false;
2846 
2847 	if (compress_mode == COMPR_MODE_FS)
2848 		return true;
2849 	else if (compress_mode == COMPR_MODE_USER &&
2850 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
2851 		return true;
2852 
2853 	return false;
2854 }
2855 
addrs_per_inode(struct inode * inode)2856 static inline unsigned int addrs_per_inode(struct inode *inode)
2857 {
2858 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2859 				get_inline_xattr_addrs(inode);
2860 
2861 	if (!f2fs_compressed_file(inode))
2862 		return addrs;
2863 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
2864 }
2865 
addrs_per_block(struct inode * inode)2866 static inline unsigned int addrs_per_block(struct inode *inode)
2867 {
2868 	if (!f2fs_compressed_file(inode))
2869 		return DEF_ADDRS_PER_BLOCK;
2870 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
2871 }
2872 
inline_xattr_addr(struct inode * inode,struct page * page)2873 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2874 {
2875 	struct f2fs_inode *ri = F2FS_INODE(page);
2876 
2877 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2878 					get_inline_xattr_addrs(inode)]);
2879 }
2880 
inline_xattr_size(struct inode * inode)2881 static inline int inline_xattr_size(struct inode *inode)
2882 {
2883 	if (f2fs_has_inline_xattr(inode))
2884 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
2885 	return 0;
2886 }
2887 
f2fs_has_inline_data(struct inode * inode)2888 static inline int f2fs_has_inline_data(struct inode *inode)
2889 {
2890 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2891 }
2892 
f2fs_exist_data(struct inode * inode)2893 static inline int f2fs_exist_data(struct inode *inode)
2894 {
2895 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2896 }
2897 
f2fs_has_inline_dots(struct inode * inode)2898 static inline int f2fs_has_inline_dots(struct inode *inode)
2899 {
2900 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2901 }
2902 
f2fs_is_mmap_file(struct inode * inode)2903 static inline int f2fs_is_mmap_file(struct inode *inode)
2904 {
2905 	return is_inode_flag_set(inode, FI_MMAP_FILE);
2906 }
2907 
f2fs_is_pinned_file(struct inode * inode)2908 static inline bool f2fs_is_pinned_file(struct inode *inode)
2909 {
2910 	return is_inode_flag_set(inode, FI_PIN_FILE);
2911 }
2912 
f2fs_is_atomic_file(struct inode * inode)2913 static inline bool f2fs_is_atomic_file(struct inode *inode)
2914 {
2915 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2916 }
2917 
f2fs_is_commit_atomic_write(struct inode * inode)2918 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2919 {
2920 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2921 }
2922 
f2fs_is_volatile_file(struct inode * inode)2923 static inline bool f2fs_is_volatile_file(struct inode *inode)
2924 {
2925 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2926 }
2927 
f2fs_is_first_block_written(struct inode * inode)2928 static inline bool f2fs_is_first_block_written(struct inode *inode)
2929 {
2930 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2931 }
2932 
f2fs_is_drop_cache(struct inode * inode)2933 static inline bool f2fs_is_drop_cache(struct inode *inode)
2934 {
2935 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2936 }
2937 
inline_data_addr(struct inode * inode,struct page * page)2938 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2939 {
2940 	struct f2fs_inode *ri = F2FS_INODE(page);
2941 	int extra_size = get_extra_isize(inode);
2942 
2943 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2944 }
2945 
f2fs_has_inline_dentry(struct inode * inode)2946 static inline int f2fs_has_inline_dentry(struct inode *inode)
2947 {
2948 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2949 }
2950 
is_file(struct inode * inode,int type)2951 static inline int is_file(struct inode *inode, int type)
2952 {
2953 	return F2FS_I(inode)->i_advise & type;
2954 }
2955 
set_file(struct inode * inode,int type)2956 static inline void set_file(struct inode *inode, int type)
2957 {
2958 	F2FS_I(inode)->i_advise |= type;
2959 	f2fs_mark_inode_dirty_sync(inode, true);
2960 }
2961 
clear_file(struct inode * inode,int type)2962 static inline void clear_file(struct inode *inode, int type)
2963 {
2964 	F2FS_I(inode)->i_advise &= ~type;
2965 	f2fs_mark_inode_dirty_sync(inode, true);
2966 }
2967 
f2fs_is_time_consistent(struct inode * inode)2968 static inline bool f2fs_is_time_consistent(struct inode *inode)
2969 {
2970 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2971 		return false;
2972 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2973 		return false;
2974 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2975 		return false;
2976 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2977 						&F2FS_I(inode)->i_crtime))
2978 		return false;
2979 	return true;
2980 }
2981 
f2fs_skip_inode_update(struct inode * inode,int dsync)2982 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2983 {
2984 	bool ret;
2985 
2986 	if (dsync) {
2987 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2988 
2989 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2990 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2991 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2992 		return ret;
2993 	}
2994 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2995 			file_keep_isize(inode) ||
2996 			i_size_read(inode) & ~PAGE_MASK)
2997 		return false;
2998 
2999 	if (!f2fs_is_time_consistent(inode))
3000 		return false;
3001 
3002 	spin_lock(&F2FS_I(inode)->i_size_lock);
3003 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3004 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3005 
3006 	return ret;
3007 }
3008 
f2fs_readonly(struct super_block * sb)3009 static inline bool f2fs_readonly(struct super_block *sb)
3010 {
3011 	return sb_rdonly(sb);
3012 }
3013 
f2fs_cp_error(struct f2fs_sb_info * sbi)3014 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3015 {
3016 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3017 }
3018 
is_dot_dotdot(const u8 * name,size_t len)3019 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3020 {
3021 	if (len == 1 && name[0] == '.')
3022 		return true;
3023 
3024 	if (len == 2 && name[0] == '.' && name[1] == '.')
3025 		return true;
3026 
3027 	return false;
3028 }
3029 
f2fs_may_extent_tree(struct inode * inode)3030 static inline bool f2fs_may_extent_tree(struct inode *inode)
3031 {
3032 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3033 
3034 	if (!test_opt(sbi, EXTENT_CACHE) ||
3035 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
3036 			is_inode_flag_set(inode, FI_COMPRESSED_FILE))
3037 		return false;
3038 
3039 	/*
3040 	 * for recovered files during mount do not create extents
3041 	 * if shrinker is not registered.
3042 	 */
3043 	if (list_empty(&sbi->s_list))
3044 		return false;
3045 
3046 	return S_ISREG(inode->i_mode);
3047 }
3048 
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3049 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3050 					size_t size, gfp_t flags)
3051 {
3052 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
3053 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3054 		return NULL;
3055 	}
3056 
3057 	return kmalloc(size, flags);
3058 }
3059 
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3060 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3061 					size_t size, gfp_t flags)
3062 {
3063 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3064 }
3065 
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3066 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3067 					size_t size, gfp_t flags)
3068 {
3069 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3070 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3071 		return NULL;
3072 	}
3073 
3074 	return kvmalloc(size, flags);
3075 }
3076 
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3077 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3078 					size_t size, gfp_t flags)
3079 {
3080 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3081 }
3082 
get_extra_isize(struct inode * inode)3083 static inline int get_extra_isize(struct inode *inode)
3084 {
3085 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3086 }
3087 
get_inline_xattr_addrs(struct inode * inode)3088 static inline int get_inline_xattr_addrs(struct inode *inode)
3089 {
3090 	return F2FS_I(inode)->i_inline_xattr_size;
3091 }
3092 
3093 #define f2fs_get_inode_mode(i) \
3094 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3095 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3096 
3097 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3098 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3099 	offsetof(struct f2fs_inode, i_extra_isize))	\
3100 
3101 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3102 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3103 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3104 		sizeof((f2fs_inode)->field))			\
3105 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3106 
3107 #define DEFAULT_IOSTAT_PERIOD_MS	3000
3108 #define MIN_IOSTAT_PERIOD_MS		100
3109 /* maximum period of iostat tracing is 1 day */
3110 #define MAX_IOSTAT_PERIOD_MS		8640000
3111 
f2fs_reset_iostat(struct f2fs_sb_info * sbi)3112 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
3113 {
3114 	int i;
3115 
3116 	spin_lock(&sbi->iostat_lock);
3117 	for (i = 0; i < NR_IO_TYPE; i++) {
3118 		sbi->rw_iostat[i] = 0;
3119 		sbi->prev_rw_iostat[i] = 0;
3120 	}
3121 	spin_unlock(&sbi->iostat_lock);
3122 }
3123 
3124 extern void f2fs_record_iostat(struct f2fs_sb_info *sbi);
3125 
f2fs_update_iostat(struct f2fs_sb_info * sbi,enum iostat_type type,unsigned long long io_bytes)3126 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
3127 			enum iostat_type type, unsigned long long io_bytes)
3128 {
3129 	if (!sbi->iostat_enable)
3130 		return;
3131 	spin_lock(&sbi->iostat_lock);
3132 	sbi->rw_iostat[type] += io_bytes;
3133 
3134 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
3135 		sbi->rw_iostat[APP_BUFFERED_IO] =
3136 			sbi->rw_iostat[APP_WRITE_IO] -
3137 			sbi->rw_iostat[APP_DIRECT_IO];
3138 
3139 	if (type == APP_READ_IO || type == APP_DIRECT_READ_IO)
3140 		sbi->rw_iostat[APP_BUFFERED_READ_IO] =
3141 			sbi->rw_iostat[APP_READ_IO] -
3142 			sbi->rw_iostat[APP_DIRECT_READ_IO];
3143 	spin_unlock(&sbi->iostat_lock);
3144 
3145 	f2fs_record_iostat(sbi);
3146 }
3147 
3148 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3149 
3150 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3151 
3152 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3153 					block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3154 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3155 					block_t blkaddr, int type)
3156 {
3157 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3158 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3159 			 blkaddr, type);
3160 		f2fs_bug_on(sbi, 1);
3161 	}
3162 }
3163 
__is_valid_data_blkaddr(block_t blkaddr)3164 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3165 {
3166 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3167 			blkaddr == COMPRESS_ADDR)
3168 		return false;
3169 	return true;
3170 }
3171 
f2fs_set_page_private(struct page * page,unsigned long data)3172 static inline void f2fs_set_page_private(struct page *page,
3173 						unsigned long data)
3174 {
3175 	if (PagePrivate(page))
3176 		return;
3177 
3178 	attach_page_private(page, (void *)data);
3179 }
3180 
f2fs_clear_page_private(struct page * page)3181 static inline void f2fs_clear_page_private(struct page *page)
3182 {
3183 	detach_page_private(page);
3184 }
3185 
3186 /*
3187  * file.c
3188  */
3189 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3190 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3191 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3192 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3193 int f2fs_truncate(struct inode *inode);
3194 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
3195 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3196 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3197 		 struct iattr *attr);
3198 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3199 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3200 int f2fs_precache_extents(struct inode *inode);
3201 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3202 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3203 		      struct dentry *dentry, struct fileattr *fa);
3204 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3205 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3206 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3207 int f2fs_pin_file_control(struct inode *inode, bool inc);
3208 
3209 /*
3210  * inode.c
3211  */
3212 void f2fs_set_inode_flags(struct inode *inode);
3213 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3214 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3215 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3216 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3217 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3218 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3219 void f2fs_update_inode_page(struct inode *inode);
3220 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3221 void f2fs_evict_inode(struct inode *inode);
3222 void f2fs_handle_failed_inode(struct inode *inode);
3223 
3224 /*
3225  * namei.c
3226  */
3227 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3228 							bool hot, bool set);
3229 struct dentry *f2fs_get_parent(struct dentry *child);
3230 
3231 /*
3232  * dir.c
3233  */
3234 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3235 int f2fs_init_casefolded_name(const struct inode *dir,
3236 			      struct f2fs_filename *fname);
3237 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3238 			int lookup, struct f2fs_filename *fname);
3239 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3240 			struct f2fs_filename *fname);
3241 void f2fs_free_filename(struct f2fs_filename *fname);
3242 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3243 			const struct f2fs_filename *fname, int *max_slots);
3244 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3245 			unsigned int start_pos, struct fscrypt_str *fstr);
3246 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3247 			struct f2fs_dentry_ptr *d);
3248 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3249 			const struct f2fs_filename *fname, struct page *dpage);
3250 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3251 			unsigned int current_depth);
3252 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3253 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3254 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3255 					 const struct f2fs_filename *fname,
3256 					 struct page **res_page);
3257 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3258 			const struct qstr *child, struct page **res_page);
3259 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3260 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3261 			struct page **page);
3262 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3263 			struct page *page, struct inode *inode);
3264 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3265 			  const struct f2fs_filename *fname);
3266 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3267 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3268 			unsigned int bit_pos);
3269 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3270 			struct inode *inode, nid_t ino, umode_t mode);
3271 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3272 			struct inode *inode, nid_t ino, umode_t mode);
3273 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3274 			struct inode *inode, nid_t ino, umode_t mode);
3275 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3276 			struct inode *dir, struct inode *inode);
3277 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3278 bool f2fs_empty_dir(struct inode *dir);
3279 
f2fs_add_link(struct dentry * dentry,struct inode * inode)3280 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3281 {
3282 	if (fscrypt_is_nokey_name(dentry))
3283 		return -ENOKEY;
3284 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3285 				inode, inode->i_ino, inode->i_mode);
3286 }
3287 
3288 /*
3289  * super.c
3290  */
3291 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3292 void f2fs_inode_synced(struct inode *inode);
3293 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3294 int f2fs_quota_sync(struct super_block *sb, int type);
3295 loff_t max_file_blocks(struct inode *inode);
3296 void f2fs_quota_off_umount(struct super_block *sb);
3297 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3298 int f2fs_sync_fs(struct super_block *sb, int sync);
3299 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3300 
3301 /*
3302  * hash.c
3303  */
3304 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3305 
3306 /*
3307  * node.c
3308  */
3309 struct node_info;
3310 
3311 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3312 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3313 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3314 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3315 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3316 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3317 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3318 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3319 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3320 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3321 						struct node_info *ni);
3322 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3323 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3324 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3325 int f2fs_truncate_xattr_node(struct inode *inode);
3326 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3327 					unsigned int seq_id);
3328 int f2fs_remove_inode_page(struct inode *inode);
3329 struct page *f2fs_new_inode_page(struct inode *inode);
3330 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3331 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3332 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3333 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3334 int f2fs_move_node_page(struct page *node_page, int gc_type);
3335 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3336 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3337 			struct writeback_control *wbc, bool atomic,
3338 			unsigned int *seq_id);
3339 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3340 			struct writeback_control *wbc,
3341 			bool do_balance, enum iostat_type io_type);
3342 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3343 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3344 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3345 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3346 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3347 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3348 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3349 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3350 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3351 			unsigned int segno, struct f2fs_summary_block *sum);
3352 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3353 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3354 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3355 int __init f2fs_create_node_manager_caches(void);
3356 void f2fs_destroy_node_manager_caches(void);
3357 
3358 /*
3359  * segment.c
3360  */
3361 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3362 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3363 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3364 void f2fs_drop_inmem_pages(struct inode *inode);
3365 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3366 int f2fs_commit_inmem_pages(struct inode *inode);
3367 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3368 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3369 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3370 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3371 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3372 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3373 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3374 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3375 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3376 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3377 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3378 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3379 					struct cp_control *cpc);
3380 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3381 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3382 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3383 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3384 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3385 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3386 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3387 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3388 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3389 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3390 			unsigned int *newseg, bool new_sec, int dir);
3391 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3392 					unsigned int start, unsigned int end);
3393 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3394 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3395 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3396 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3397 					struct cp_control *cpc);
3398 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3399 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3400 					block_t blk_addr);
3401 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3402 						enum iostat_type io_type);
3403 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3404 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3405 			struct f2fs_io_info *fio);
3406 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3407 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3408 			block_t old_blkaddr, block_t new_blkaddr,
3409 			bool recover_curseg, bool recover_newaddr,
3410 			bool from_gc);
3411 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3412 			block_t old_addr, block_t new_addr,
3413 			unsigned char version, bool recover_curseg,
3414 			bool recover_newaddr);
3415 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3416 			block_t old_blkaddr, block_t *new_blkaddr,
3417 			struct f2fs_summary *sum, int type,
3418 			struct f2fs_io_info *fio);
3419 void f2fs_wait_on_page_writeback(struct page *page,
3420 			enum page_type type, bool ordered, bool locked);
3421 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3422 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3423 								block_t len);
3424 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3425 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3426 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3427 			unsigned int val, int alloc);
3428 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3429 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3430 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3431 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3432 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3433 int __init f2fs_create_segment_manager_caches(void);
3434 void f2fs_destroy_segment_manager_caches(void);
3435 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3436 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3437 			enum page_type type, enum temp_type temp);
3438 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3439 			unsigned int segno);
3440 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3441 			unsigned int segno);
3442 
3443 /*
3444  * checkpoint.c
3445  */
3446 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3447 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3448 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3449 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3450 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3451 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3452 					block_t blkaddr, int type);
3453 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3454 			int type, bool sync);
3455 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3456 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3457 			long nr_to_write, enum iostat_type io_type);
3458 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3459 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3460 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3461 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3462 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3463 					unsigned int devidx, int type);
3464 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3465 					unsigned int devidx, int type);
3466 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3467 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3468 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3469 void f2fs_add_orphan_inode(struct inode *inode);
3470 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3471 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3472 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3473 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3474 void f2fs_remove_dirty_inode(struct inode *inode);
3475 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3476 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3477 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3478 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3479 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3480 int __init f2fs_create_checkpoint_caches(void);
3481 void f2fs_destroy_checkpoint_caches(void);
3482 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3483 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3484 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3485 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3486 
3487 /*
3488  * data.c
3489  */
3490 int __init f2fs_init_bioset(void);
3491 void f2fs_destroy_bioset(void);
3492 int f2fs_init_bio_entry_cache(void);
3493 void f2fs_destroy_bio_entry_cache(void);
3494 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3495 				struct bio *bio, enum page_type type);
3496 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3497 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3498 				struct inode *inode, struct page *page,
3499 				nid_t ino, enum page_type type);
3500 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3501 					struct bio **bio, struct page *page);
3502 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3503 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3504 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3505 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3506 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3507 			block_t blk_addr, struct bio *bio);
3508 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3509 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3510 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3511 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3512 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3513 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3514 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3515 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3516 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3517 			int op_flags, bool for_write);
3518 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3519 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3520 			bool for_write);
3521 struct page *f2fs_get_new_data_page(struct inode *inode,
3522 			struct page *ipage, pgoff_t index, bool new_i_size);
3523 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3524 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3525 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3526 			int create, int flag);
3527 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3528 			u64 start, u64 len);
3529 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3530 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3531 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3532 int f2fs_write_single_data_page(struct page *page, int *submitted,
3533 				struct bio **bio, sector_t *last_block,
3534 				struct writeback_control *wbc,
3535 				enum iostat_type io_type,
3536 				int compr_blocks, bool allow_balance);
3537 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3538 			unsigned int length);
3539 int f2fs_release_page(struct page *page, gfp_t wait);
3540 #ifdef CONFIG_MIGRATION
3541 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3542 			struct page *page, enum migrate_mode mode);
3543 #endif
3544 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3545 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3546 int f2fs_init_post_read_processing(void);
3547 void f2fs_destroy_post_read_processing(void);
3548 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3549 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3550 
3551 /*
3552  * gc.c
3553  */
3554 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3555 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3556 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3557 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, bool force,
3558 			unsigned int segno);
3559 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3560 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3561 int __init f2fs_create_garbage_collection_cache(void);
3562 void f2fs_destroy_garbage_collection_cache(void);
3563 
3564 /*
3565  * recovery.c
3566  */
3567 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3568 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3569 
3570 /*
3571  * debug.c
3572  */
3573 #ifdef CONFIG_F2FS_STAT_FS
3574 struct f2fs_stat_info {
3575 	struct list_head stat_list;
3576 	struct f2fs_sb_info *sbi;
3577 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3578 	int main_area_segs, main_area_sections, main_area_zones;
3579 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3580 	unsigned long long hit_total, total_ext;
3581 	int ext_tree, zombie_tree, ext_node;
3582 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3583 	int ndirty_data, ndirty_qdata;
3584 	int inmem_pages;
3585 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3586 	int nats, dirty_nats, sits, dirty_sits;
3587 	int free_nids, avail_nids, alloc_nids;
3588 	int total_count, utilization;
3589 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3590 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3591 	int nr_dio_read, nr_dio_write;
3592 	unsigned int io_skip_bggc, other_skip_bggc;
3593 	int nr_flushing, nr_flushed, flush_list_empty;
3594 	int nr_discarding, nr_discarded;
3595 	int nr_discard_cmd;
3596 	unsigned int undiscard_blks;
3597 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3598 	unsigned int cur_ckpt_time, peak_ckpt_time;
3599 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3600 	int compr_inode;
3601 	unsigned long long compr_blocks;
3602 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3603 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3604 	unsigned int bimodal, avg_vblocks;
3605 	int util_free, util_valid, util_invalid;
3606 	int rsvd_segs, overp_segs;
3607 	int dirty_count, node_pages, meta_pages;
3608 	int prefree_count, call_count, cp_count, bg_cp_count;
3609 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3610 	int bg_node_segs, bg_data_segs;
3611 	int tot_blks, data_blks, node_blks;
3612 	int bg_data_blks, bg_node_blks;
3613 	unsigned long long skipped_atomic_files[2];
3614 	int curseg[NR_CURSEG_TYPE];
3615 	int cursec[NR_CURSEG_TYPE];
3616 	int curzone[NR_CURSEG_TYPE];
3617 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3618 	unsigned int full_seg[NR_CURSEG_TYPE];
3619 	unsigned int valid_blks[NR_CURSEG_TYPE];
3620 
3621 	unsigned int meta_count[META_MAX];
3622 	unsigned int segment_count[2];
3623 	unsigned int block_count[2];
3624 	unsigned int inplace_count;
3625 	unsigned long long base_mem, cache_mem, page_mem;
3626 };
3627 
F2FS_STAT(struct f2fs_sb_info * sbi)3628 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3629 {
3630 	return (struct f2fs_stat_info *)sbi->stat_info;
3631 }
3632 
3633 #define stat_inc_cp_count(si)		((si)->cp_count++)
3634 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3635 #define stat_inc_call_count(si)		((si)->call_count++)
3636 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3637 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3638 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3639 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3640 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3641 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3642 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3643 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3644 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3645 #define stat_inc_inline_xattr(inode)					\
3646 	do {								\
3647 		if (f2fs_has_inline_xattr(inode))			\
3648 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3649 	} while (0)
3650 #define stat_dec_inline_xattr(inode)					\
3651 	do {								\
3652 		if (f2fs_has_inline_xattr(inode))			\
3653 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3654 	} while (0)
3655 #define stat_inc_inline_inode(inode)					\
3656 	do {								\
3657 		if (f2fs_has_inline_data(inode))			\
3658 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3659 	} while (0)
3660 #define stat_dec_inline_inode(inode)					\
3661 	do {								\
3662 		if (f2fs_has_inline_data(inode))			\
3663 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3664 	} while (0)
3665 #define stat_inc_inline_dir(inode)					\
3666 	do {								\
3667 		if (f2fs_has_inline_dentry(inode))			\
3668 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3669 	} while (0)
3670 #define stat_dec_inline_dir(inode)					\
3671 	do {								\
3672 		if (f2fs_has_inline_dentry(inode))			\
3673 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3674 	} while (0)
3675 #define stat_inc_compr_inode(inode)					\
3676 	do {								\
3677 		if (f2fs_compressed_file(inode))			\
3678 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3679 	} while (0)
3680 #define stat_dec_compr_inode(inode)					\
3681 	do {								\
3682 		if (f2fs_compressed_file(inode))			\
3683 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3684 	} while (0)
3685 #define stat_add_compr_blocks(inode, blocks)				\
3686 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3687 #define stat_sub_compr_blocks(inode, blocks)				\
3688 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3689 #define stat_inc_meta_count(sbi, blkaddr)				\
3690 	do {								\
3691 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3692 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3693 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3694 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3695 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3696 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3697 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3698 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3699 	} while (0)
3700 #define stat_inc_seg_type(sbi, curseg)					\
3701 		((sbi)->segment_count[(curseg)->alloc_type]++)
3702 #define stat_inc_block_count(sbi, curseg)				\
3703 		((sbi)->block_count[(curseg)->alloc_type]++)
3704 #define stat_inc_inplace_blocks(sbi)					\
3705 		(atomic_inc(&(sbi)->inplace_count))
3706 #define stat_update_max_atomic_write(inode)				\
3707 	do {								\
3708 		int cur = F2FS_I_SB(inode)->atomic_files;	\
3709 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3710 		if (cur > max)						\
3711 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3712 	} while (0)
3713 #define stat_inc_volatile_write(inode)					\
3714 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3715 #define stat_dec_volatile_write(inode)					\
3716 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3717 #define stat_update_max_volatile_write(inode)				\
3718 	do {								\
3719 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3720 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3721 		if (cur > max)						\
3722 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3723 	} while (0)
3724 #define stat_inc_seg_count(sbi, type, gc_type)				\
3725 	do {								\
3726 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3727 		si->tot_segs++;						\
3728 		if ((type) == SUM_TYPE_DATA) {				\
3729 			si->data_segs++;				\
3730 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3731 		} else {						\
3732 			si->node_segs++;				\
3733 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3734 		}							\
3735 	} while (0)
3736 
3737 #define stat_inc_tot_blk_count(si, blks)				\
3738 	((si)->tot_blks += (blks))
3739 
3740 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3741 	do {								\
3742 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3743 		stat_inc_tot_blk_count(si, blks);			\
3744 		si->data_blks += (blks);				\
3745 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3746 	} while (0)
3747 
3748 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3749 	do {								\
3750 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3751 		stat_inc_tot_blk_count(si, blks);			\
3752 		si->node_blks += (blks);				\
3753 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3754 	} while (0)
3755 
3756 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3757 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3758 void __init f2fs_create_root_stats(void);
3759 void f2fs_destroy_root_stats(void);
3760 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3761 #else
3762 #define stat_inc_cp_count(si)				do { } while (0)
3763 #define stat_inc_bg_cp_count(si)			do { } while (0)
3764 #define stat_inc_call_count(si)				do { } while (0)
3765 #define stat_inc_bggc_count(si)				do { } while (0)
3766 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3767 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3768 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3769 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3770 #define stat_inc_total_hit(sbi)				do { } while (0)
3771 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
3772 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3773 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3774 #define stat_inc_inline_xattr(inode)			do { } while (0)
3775 #define stat_dec_inline_xattr(inode)			do { } while (0)
3776 #define stat_inc_inline_inode(inode)			do { } while (0)
3777 #define stat_dec_inline_inode(inode)			do { } while (0)
3778 #define stat_inc_inline_dir(inode)			do { } while (0)
3779 #define stat_dec_inline_dir(inode)			do { } while (0)
3780 #define stat_inc_compr_inode(inode)			do { } while (0)
3781 #define stat_dec_compr_inode(inode)			do { } while (0)
3782 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
3783 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
3784 #define stat_update_max_atomic_write(inode)		do { } while (0)
3785 #define stat_inc_volatile_write(inode)			do { } while (0)
3786 #define stat_dec_volatile_write(inode)			do { } while (0)
3787 #define stat_update_max_volatile_write(inode)		do { } while (0)
3788 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3789 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3790 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3791 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3792 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3793 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3794 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3795 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3796 
f2fs_build_stats(struct f2fs_sb_info * sbi)3797 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)3798 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)3799 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)3800 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)3801 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3802 #endif
3803 
3804 extern const struct file_operations f2fs_dir_operations;
3805 extern const struct file_operations f2fs_file_operations;
3806 extern const struct inode_operations f2fs_file_inode_operations;
3807 extern const struct address_space_operations f2fs_dblock_aops;
3808 extern const struct address_space_operations f2fs_node_aops;
3809 extern const struct address_space_operations f2fs_meta_aops;
3810 extern const struct inode_operations f2fs_dir_inode_operations;
3811 extern const struct inode_operations f2fs_symlink_inode_operations;
3812 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3813 extern const struct inode_operations f2fs_special_inode_operations;
3814 extern struct kmem_cache *f2fs_inode_entry_slab;
3815 
3816 /*
3817  * inline.c
3818  */
3819 bool f2fs_may_inline_data(struct inode *inode);
3820 bool f2fs_may_inline_dentry(struct inode *inode);
3821 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3822 void f2fs_truncate_inline_inode(struct inode *inode,
3823 						struct page *ipage, u64 from);
3824 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3825 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3826 int f2fs_convert_inline_inode(struct inode *inode);
3827 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3828 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3829 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3830 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3831 					const struct f2fs_filename *fname,
3832 					struct page **res_page);
3833 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3834 			struct page *ipage);
3835 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3836 			struct inode *inode, nid_t ino, umode_t mode);
3837 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3838 				struct page *page, struct inode *dir,
3839 				struct inode *inode);
3840 bool f2fs_empty_inline_dir(struct inode *dir);
3841 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3842 			struct fscrypt_str *fstr);
3843 int f2fs_inline_data_fiemap(struct inode *inode,
3844 			struct fiemap_extent_info *fieinfo,
3845 			__u64 start, __u64 len);
3846 
3847 /*
3848  * shrinker.c
3849  */
3850 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3851 			struct shrink_control *sc);
3852 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3853 			struct shrink_control *sc);
3854 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3855 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3856 
3857 /*
3858  * extent_cache.c
3859  */
3860 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3861 				struct rb_entry *cached_re, unsigned int ofs);
3862 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
3863 				struct rb_root_cached *root,
3864 				struct rb_node **parent,
3865 				unsigned long long key, bool *left_most);
3866 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3867 				struct rb_root_cached *root,
3868 				struct rb_node **parent,
3869 				unsigned int ofs, bool *leftmost);
3870 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3871 		struct rb_entry *cached_re, unsigned int ofs,
3872 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3873 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3874 		bool force, bool *leftmost);
3875 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3876 				struct rb_root_cached *root, bool check_key);
3877 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3878 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
3879 void f2fs_drop_extent_tree(struct inode *inode);
3880 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3881 void f2fs_destroy_extent_tree(struct inode *inode);
3882 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3883 			struct extent_info *ei);
3884 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3885 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3886 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3887 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3888 int __init f2fs_create_extent_cache(void);
3889 void f2fs_destroy_extent_cache(void);
3890 
3891 /*
3892  * sysfs.c
3893  */
3894 int __init f2fs_init_sysfs(void);
3895 void f2fs_exit_sysfs(void);
3896 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3897 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3898 
3899 /* verity.c */
3900 extern const struct fsverity_operations f2fs_verityops;
3901 
3902 /*
3903  * crypto support
3904  */
f2fs_encrypted_file(struct inode * inode)3905 static inline bool f2fs_encrypted_file(struct inode *inode)
3906 {
3907 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3908 }
3909 
f2fs_set_encrypted_inode(struct inode * inode)3910 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3911 {
3912 #ifdef CONFIG_FS_ENCRYPTION
3913 	file_set_encrypt(inode);
3914 	f2fs_set_inode_flags(inode);
3915 #endif
3916 }
3917 
3918 /*
3919  * Returns true if the reads of the inode's data need to undergo some
3920  * postprocessing step, like decryption or authenticity verification.
3921  */
f2fs_post_read_required(struct inode * inode)3922 static inline bool f2fs_post_read_required(struct inode *inode)
3923 {
3924 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
3925 		f2fs_compressed_file(inode);
3926 }
3927 
3928 /*
3929  * compress.c
3930  */
3931 #ifdef CONFIG_F2FS_FS_COMPRESSION
3932 bool f2fs_is_compressed_page(struct page *page);
3933 struct page *f2fs_compress_control_page(struct page *page);
3934 int f2fs_prepare_compress_overwrite(struct inode *inode,
3935 			struct page **pagep, pgoff_t index, void **fsdata);
3936 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
3937 					pgoff_t index, unsigned copied);
3938 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
3939 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
3940 bool f2fs_is_compress_backend_ready(struct inode *inode);
3941 int f2fs_init_compress_mempool(void);
3942 void f2fs_destroy_compress_mempool(void);
3943 void f2fs_end_read_compressed_page(struct page *page, bool failed);
3944 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
3945 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
3946 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
3947 int f2fs_write_multi_pages(struct compress_ctx *cc,
3948 						int *submitted,
3949 						struct writeback_control *wbc,
3950 						enum iostat_type io_type);
3951 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
3952 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
3953 				unsigned nr_pages, sector_t *last_block_in_bio,
3954 				bool is_readahead, bool for_write);
3955 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
3956 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed);
3957 void f2fs_put_page_dic(struct page *page);
3958 int f2fs_init_compress_ctx(struct compress_ctx *cc);
3959 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
3960 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
3961 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
3962 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
3963 int __init f2fs_init_compress_cache(void);
3964 void f2fs_destroy_compress_cache(void);
3965 #define inc_compr_inode_stat(inode)					\
3966 	do {								\
3967 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
3968 		sbi->compr_new_inode++;					\
3969 	} while (0)
3970 #define add_compr_block_stat(inode, blocks)				\
3971 	do {								\
3972 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
3973 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
3974 		sbi->compr_written_block += blocks;			\
3975 		sbi->compr_saved_block += diff;				\
3976 	} while (0)
3977 #else
f2fs_is_compressed_page(struct page * page)3978 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)3979 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
3980 {
3981 	if (!f2fs_compressed_file(inode))
3982 		return true;
3983 	/* not support compression */
3984 	return false;
3985 }
f2fs_compress_control_page(struct page * page)3986 static inline struct page *f2fs_compress_control_page(struct page *page)
3987 {
3988 	WARN_ON_ONCE(1);
3989 	return ERR_PTR(-EINVAL);
3990 }
f2fs_init_compress_mempool(void)3991 static inline int f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)3992 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_end_read_compressed_page(struct page * page,bool failed)3993 static inline void f2fs_end_read_compressed_page(struct page *page, bool failed)
3994 {
3995 	WARN_ON_ONCE(1);
3996 }
f2fs_put_page_dic(struct page * page)3997 static inline void f2fs_put_page_dic(struct page *page)
3998 {
3999 	WARN_ON_ONCE(1);
4000 }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)4001 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)4002 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)4003 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)4004 static inline void f2fs_destroy_compress_cache(void) { }
4005 #define inc_compr_inode_stat(inode)		do { } while (0)
4006 #endif
4007 
set_compress_context(struct inode * inode)4008 static inline void set_compress_context(struct inode *inode)
4009 {
4010 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4011 
4012 	F2FS_I(inode)->i_compress_algorithm =
4013 			F2FS_OPTION(sbi).compress_algorithm;
4014 	F2FS_I(inode)->i_log_cluster_size =
4015 			F2FS_OPTION(sbi).compress_log_size;
4016 	F2FS_I(inode)->i_compress_flag =
4017 			F2FS_OPTION(sbi).compress_chksum ?
4018 				1 << COMPRESS_CHKSUM : 0;
4019 	F2FS_I(inode)->i_cluster_size =
4020 			1 << F2FS_I(inode)->i_log_cluster_size;
4021 	if (F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 &&
4022 			F2FS_OPTION(sbi).compress_level)
4023 		F2FS_I(inode)->i_compress_flag |=
4024 				F2FS_OPTION(sbi).compress_level <<
4025 				COMPRESS_LEVEL_OFFSET;
4026 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4027 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4028 	stat_inc_compr_inode(inode);
4029 	inc_compr_inode_stat(inode);
4030 	f2fs_mark_inode_dirty_sync(inode, true);
4031 }
4032 
f2fs_disable_compressed_file(struct inode * inode)4033 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4034 {
4035 	struct f2fs_inode_info *fi = F2FS_I(inode);
4036 
4037 	if (!f2fs_compressed_file(inode))
4038 		return true;
4039 	if (S_ISREG(inode->i_mode) &&
4040 		(get_dirty_pages(inode) || atomic_read(&fi->i_compr_blocks)))
4041 		return false;
4042 
4043 	fi->i_flags &= ~F2FS_COMPR_FL;
4044 	stat_dec_compr_inode(inode);
4045 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4046 	f2fs_mark_inode_dirty_sync(inode, true);
4047 	return true;
4048 }
4049 
4050 #define F2FS_FEATURE_FUNCS(name, flagname) \
4051 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4052 { \
4053 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4054 }
4055 
4056 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4057 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4058 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4059 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4060 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4061 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4062 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4063 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4064 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4065 F2FS_FEATURE_FUNCS(verity, VERITY);
4066 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4067 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4068 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4069 
4070 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4071 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4072 				    block_t blkaddr)
4073 {
4074 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4075 
4076 	return test_bit(zno, FDEV(devi).blkz_seq);
4077 }
4078 #endif
4079 
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4080 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4081 {
4082 	return f2fs_sb_has_blkzoned(sbi);
4083 }
4084 
f2fs_bdev_support_discard(struct block_device * bdev)4085 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4086 {
4087 	return blk_queue_discard(bdev_get_queue(bdev)) ||
4088 	       bdev_is_zoned(bdev);
4089 }
4090 
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4091 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4092 {
4093 	int i;
4094 
4095 	if (!f2fs_is_multi_device(sbi))
4096 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4097 
4098 	for (i = 0; i < sbi->s_ndevs; i++)
4099 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4100 			return true;
4101 	return false;
4102 }
4103 
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4104 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4105 {
4106 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4107 					f2fs_hw_should_discard(sbi);
4108 }
4109 
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4110 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4111 {
4112 	int i;
4113 
4114 	if (!f2fs_is_multi_device(sbi))
4115 		return bdev_read_only(sbi->sb->s_bdev);
4116 
4117 	for (i = 0; i < sbi->s_ndevs; i++)
4118 		if (bdev_read_only(FDEV(i).bdev))
4119 			return true;
4120 	return false;
4121 }
4122 
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4123 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4124 {
4125 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4126 }
4127 
f2fs_may_compress(struct inode * inode)4128 static inline bool f2fs_may_compress(struct inode *inode)
4129 {
4130 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4131 				f2fs_is_atomic_file(inode) ||
4132 				f2fs_is_volatile_file(inode))
4133 		return false;
4134 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4135 }
4136 
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4137 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4138 						u64 blocks, bool add)
4139 {
4140 	int diff = F2FS_I(inode)->i_cluster_size - blocks;
4141 	struct f2fs_inode_info *fi = F2FS_I(inode);
4142 
4143 	/* don't update i_compr_blocks if saved blocks were released */
4144 	if (!add && !atomic_read(&fi->i_compr_blocks))
4145 		return;
4146 
4147 	if (add) {
4148 		atomic_add(diff, &fi->i_compr_blocks);
4149 		stat_add_compr_blocks(inode, diff);
4150 	} else {
4151 		atomic_sub(diff, &fi->i_compr_blocks);
4152 		stat_sub_compr_blocks(inode, diff);
4153 	}
4154 	f2fs_mark_inode_dirty_sync(inode, true);
4155 }
4156 
block_unaligned_IO(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4157 static inline int block_unaligned_IO(struct inode *inode,
4158 				struct kiocb *iocb, struct iov_iter *iter)
4159 {
4160 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4161 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4162 	loff_t offset = iocb->ki_pos;
4163 	unsigned long align = offset | iov_iter_alignment(iter);
4164 
4165 	return align & blocksize_mask;
4166 }
4167 
allow_outplace_dio(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4168 static inline int allow_outplace_dio(struct inode *inode,
4169 				struct kiocb *iocb, struct iov_iter *iter)
4170 {
4171 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4172 	int rw = iov_iter_rw(iter);
4173 
4174 	return (f2fs_lfs_mode(sbi) && (rw == WRITE) &&
4175 				!block_unaligned_IO(inode, iocb, iter));
4176 }
4177 
f2fs_force_buffered_io(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4178 static inline bool f2fs_force_buffered_io(struct inode *inode,
4179 				struct kiocb *iocb, struct iov_iter *iter)
4180 {
4181 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4182 	int rw = iov_iter_rw(iter);
4183 
4184 	if (f2fs_post_read_required(inode))
4185 		return true;
4186 	if (f2fs_is_multi_device(sbi))
4187 		return true;
4188 	/*
4189 	 * for blkzoned device, fallback direct IO to buffered IO, so
4190 	 * all IOs can be serialized by log-structured write.
4191 	 */
4192 	if (f2fs_sb_has_blkzoned(sbi))
4193 		return true;
4194 	if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4195 		if (block_unaligned_IO(inode, iocb, iter))
4196 			return true;
4197 		if (F2FS_IO_ALIGNED(sbi))
4198 			return true;
4199 	}
4200 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
4201 		return true;
4202 
4203 	return false;
4204 }
4205 
f2fs_need_verity(const struct inode * inode,pgoff_t idx)4206 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4207 {
4208 	return fsverity_active(inode) &&
4209 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4210 }
4211 
4212 #ifdef CONFIG_F2FS_FAULT_INJECTION
4213 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4214 							unsigned int type);
4215 #else
4216 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4217 #endif
4218 
is_journalled_quota(struct f2fs_sb_info * sbi)4219 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4220 {
4221 #ifdef CONFIG_QUOTA
4222 	if (f2fs_sb_has_quota_ino(sbi))
4223 		return true;
4224 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4225 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4226 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4227 		return true;
4228 #endif
4229 	return false;
4230 }
4231 
4232 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4233 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4234 
4235 #endif /* _LINUX_F2FS_H */
4236