1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include <linux/backing-dev.h>
8
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_trace.h"
16 #include "xfs_log.h"
17 #include "xfs_log_recover.h"
18 #include "xfs_trans.h"
19 #include "xfs_buf_item.h"
20 #include "xfs_errortag.h"
21 #include "xfs_error.h"
22
23 static kmem_zone_t *xfs_buf_zone;
24
25 #define xb_to_gfp(flags) \
26 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
27
28 /*
29 * Locking orders
30 *
31 * xfs_buf_ioacct_inc:
32 * xfs_buf_ioacct_dec:
33 * b_sema (caller holds)
34 * b_lock
35 *
36 * xfs_buf_stale:
37 * b_sema (caller holds)
38 * b_lock
39 * lru_lock
40 *
41 * xfs_buf_rele:
42 * b_lock
43 * pag_buf_lock
44 * lru_lock
45 *
46 * xfs_buftarg_drain_rele
47 * lru_lock
48 * b_lock (trylock due to inversion)
49 *
50 * xfs_buftarg_isolate
51 * lru_lock
52 * b_lock (trylock due to inversion)
53 */
54
55 static int __xfs_buf_submit(struct xfs_buf *bp, bool wait);
56
57 static inline int
xfs_buf_submit(struct xfs_buf * bp)58 xfs_buf_submit(
59 struct xfs_buf *bp)
60 {
61 return __xfs_buf_submit(bp, !(bp->b_flags & XBF_ASYNC));
62 }
63
64 static inline int
xfs_buf_is_vmapped(struct xfs_buf * bp)65 xfs_buf_is_vmapped(
66 struct xfs_buf *bp)
67 {
68 /*
69 * Return true if the buffer is vmapped.
70 *
71 * b_addr is null if the buffer is not mapped, but the code is clever
72 * enough to know it doesn't have to map a single page, so the check has
73 * to be both for b_addr and bp->b_page_count > 1.
74 */
75 return bp->b_addr && bp->b_page_count > 1;
76 }
77
78 static inline int
xfs_buf_vmap_len(struct xfs_buf * bp)79 xfs_buf_vmap_len(
80 struct xfs_buf *bp)
81 {
82 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
83 }
84
85 /*
86 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
87 * this buffer. The count is incremented once per buffer (per hold cycle)
88 * because the corresponding decrement is deferred to buffer release. Buffers
89 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
90 * tracking adds unnecessary overhead. This is used for sychronization purposes
91 * with unmount (see xfs_buftarg_drain()), so all we really need is a count of
92 * in-flight buffers.
93 *
94 * Buffers that are never released (e.g., superblock, iclog buffers) must set
95 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
96 * never reaches zero and unmount hangs indefinitely.
97 */
98 static inline void
xfs_buf_ioacct_inc(struct xfs_buf * bp)99 xfs_buf_ioacct_inc(
100 struct xfs_buf *bp)
101 {
102 if (bp->b_flags & XBF_NO_IOACCT)
103 return;
104
105 ASSERT(bp->b_flags & XBF_ASYNC);
106 spin_lock(&bp->b_lock);
107 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
108 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
109 percpu_counter_inc(&bp->b_target->bt_io_count);
110 }
111 spin_unlock(&bp->b_lock);
112 }
113
114 /*
115 * Clear the in-flight state on a buffer about to be released to the LRU or
116 * freed and unaccount from the buftarg.
117 */
118 static inline void
__xfs_buf_ioacct_dec(struct xfs_buf * bp)119 __xfs_buf_ioacct_dec(
120 struct xfs_buf *bp)
121 {
122 lockdep_assert_held(&bp->b_lock);
123
124 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
125 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
126 percpu_counter_dec(&bp->b_target->bt_io_count);
127 }
128 }
129
130 static inline void
xfs_buf_ioacct_dec(struct xfs_buf * bp)131 xfs_buf_ioacct_dec(
132 struct xfs_buf *bp)
133 {
134 spin_lock(&bp->b_lock);
135 __xfs_buf_ioacct_dec(bp);
136 spin_unlock(&bp->b_lock);
137 }
138
139 /*
140 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
141 * b_lru_ref count so that the buffer is freed immediately when the buffer
142 * reference count falls to zero. If the buffer is already on the LRU, we need
143 * to remove the reference that LRU holds on the buffer.
144 *
145 * This prevents build-up of stale buffers on the LRU.
146 */
147 void
xfs_buf_stale(struct xfs_buf * bp)148 xfs_buf_stale(
149 struct xfs_buf *bp)
150 {
151 ASSERT(xfs_buf_islocked(bp));
152
153 bp->b_flags |= XBF_STALE;
154
155 /*
156 * Clear the delwri status so that a delwri queue walker will not
157 * flush this buffer to disk now that it is stale. The delwri queue has
158 * a reference to the buffer, so this is safe to do.
159 */
160 bp->b_flags &= ~_XBF_DELWRI_Q;
161
162 /*
163 * Once the buffer is marked stale and unlocked, a subsequent lookup
164 * could reset b_flags. There is no guarantee that the buffer is
165 * unaccounted (released to LRU) before that occurs. Drop in-flight
166 * status now to preserve accounting consistency.
167 */
168 spin_lock(&bp->b_lock);
169 __xfs_buf_ioacct_dec(bp);
170
171 atomic_set(&bp->b_lru_ref, 0);
172 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
173 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
174 atomic_dec(&bp->b_hold);
175
176 ASSERT(atomic_read(&bp->b_hold) >= 1);
177 spin_unlock(&bp->b_lock);
178 }
179
180 static int
xfs_buf_get_maps(struct xfs_buf * bp,int map_count)181 xfs_buf_get_maps(
182 struct xfs_buf *bp,
183 int map_count)
184 {
185 ASSERT(bp->b_maps == NULL);
186 bp->b_map_count = map_count;
187
188 if (map_count == 1) {
189 bp->b_maps = &bp->__b_map;
190 return 0;
191 }
192
193 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
194 KM_NOFS);
195 if (!bp->b_maps)
196 return -ENOMEM;
197 return 0;
198 }
199
200 /*
201 * Frees b_pages if it was allocated.
202 */
203 static void
xfs_buf_free_maps(struct xfs_buf * bp)204 xfs_buf_free_maps(
205 struct xfs_buf *bp)
206 {
207 if (bp->b_maps != &bp->__b_map) {
208 kmem_free(bp->b_maps);
209 bp->b_maps = NULL;
210 }
211 }
212
213 static int
_xfs_buf_alloc(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,struct xfs_buf ** bpp)214 _xfs_buf_alloc(
215 struct xfs_buftarg *target,
216 struct xfs_buf_map *map,
217 int nmaps,
218 xfs_buf_flags_t flags,
219 struct xfs_buf **bpp)
220 {
221 struct xfs_buf *bp;
222 int error;
223 int i;
224
225 *bpp = NULL;
226 bp = kmem_cache_zalloc(xfs_buf_zone, GFP_NOFS | __GFP_NOFAIL);
227
228 /*
229 * We don't want certain flags to appear in b_flags unless they are
230 * specifically set by later operations on the buffer.
231 */
232 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
233
234 atomic_set(&bp->b_hold, 1);
235 atomic_set(&bp->b_lru_ref, 1);
236 init_completion(&bp->b_iowait);
237 INIT_LIST_HEAD(&bp->b_lru);
238 INIT_LIST_HEAD(&bp->b_list);
239 INIT_LIST_HEAD(&bp->b_li_list);
240 sema_init(&bp->b_sema, 0); /* held, no waiters */
241 spin_lock_init(&bp->b_lock);
242 bp->b_target = target;
243 bp->b_mount = target->bt_mount;
244 bp->b_flags = flags;
245
246 /*
247 * Set length and io_length to the same value initially.
248 * I/O routines should use io_length, which will be the same in
249 * most cases but may be reset (e.g. XFS recovery).
250 */
251 error = xfs_buf_get_maps(bp, nmaps);
252 if (error) {
253 kmem_cache_free(xfs_buf_zone, bp);
254 return error;
255 }
256
257 bp->b_bn = map[0].bm_bn;
258 bp->b_length = 0;
259 for (i = 0; i < nmaps; i++) {
260 bp->b_maps[i].bm_bn = map[i].bm_bn;
261 bp->b_maps[i].bm_len = map[i].bm_len;
262 bp->b_length += map[i].bm_len;
263 }
264
265 atomic_set(&bp->b_pin_count, 0);
266 init_waitqueue_head(&bp->b_waiters);
267
268 XFS_STATS_INC(bp->b_mount, xb_create);
269 trace_xfs_buf_init(bp, _RET_IP_);
270
271 *bpp = bp;
272 return 0;
273 }
274
275 /*
276 * Allocate a page array capable of holding a specified number
277 * of pages, and point the page buf at it.
278 */
279 STATIC int
_xfs_buf_get_pages(struct xfs_buf * bp,int page_count)280 _xfs_buf_get_pages(
281 struct xfs_buf *bp,
282 int page_count)
283 {
284 /* Make sure that we have a page list */
285 if (bp->b_pages == NULL) {
286 bp->b_page_count = page_count;
287 if (page_count <= XB_PAGES) {
288 bp->b_pages = bp->b_page_array;
289 } else {
290 bp->b_pages = kmem_alloc(sizeof(struct page *) *
291 page_count, KM_NOFS);
292 if (bp->b_pages == NULL)
293 return -ENOMEM;
294 }
295 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
296 }
297 return 0;
298 }
299
300 /*
301 * Frees b_pages if it was allocated.
302 */
303 STATIC void
_xfs_buf_free_pages(struct xfs_buf * bp)304 _xfs_buf_free_pages(
305 struct xfs_buf *bp)
306 {
307 if (bp->b_pages != bp->b_page_array) {
308 kmem_free(bp->b_pages);
309 bp->b_pages = NULL;
310 }
311 }
312
313 /*
314 * Releases the specified buffer.
315 *
316 * The modification state of any associated pages is left unchanged.
317 * The buffer must not be on any hash - use xfs_buf_rele instead for
318 * hashed and refcounted buffers
319 */
320 static void
xfs_buf_free(struct xfs_buf * bp)321 xfs_buf_free(
322 struct xfs_buf *bp)
323 {
324 trace_xfs_buf_free(bp, _RET_IP_);
325
326 ASSERT(list_empty(&bp->b_lru));
327
328 if (bp->b_flags & _XBF_PAGES) {
329 uint i;
330
331 if (xfs_buf_is_vmapped(bp))
332 vm_unmap_ram(bp->b_addr - bp->b_offset,
333 bp->b_page_count);
334
335 for (i = 0; i < bp->b_page_count; i++) {
336 struct page *page = bp->b_pages[i];
337
338 __free_page(page);
339 }
340 if (current->reclaim_state)
341 current->reclaim_state->reclaimed_slab +=
342 bp->b_page_count;
343 } else if (bp->b_flags & _XBF_KMEM)
344 kmem_free(bp->b_addr);
345 _xfs_buf_free_pages(bp);
346 xfs_buf_free_maps(bp);
347 kmem_cache_free(xfs_buf_zone, bp);
348 }
349
350 /*
351 * Allocates all the pages for buffer in question and builds it's page list.
352 */
353 STATIC int
xfs_buf_allocate_memory(struct xfs_buf * bp,uint flags)354 xfs_buf_allocate_memory(
355 struct xfs_buf *bp,
356 uint flags)
357 {
358 size_t size;
359 size_t nbytes, offset;
360 gfp_t gfp_mask = xb_to_gfp(flags);
361 unsigned short page_count, i;
362 xfs_off_t start, end;
363 int error;
364 xfs_km_flags_t kmflag_mask = 0;
365
366 /*
367 * assure zeroed buffer for non-read cases.
368 */
369 if (!(flags & XBF_READ)) {
370 kmflag_mask |= KM_ZERO;
371 gfp_mask |= __GFP_ZERO;
372 }
373
374 /*
375 * for buffers that are contained within a single page, just allocate
376 * the memory from the heap - there's no need for the complexity of
377 * page arrays to keep allocation down to order 0.
378 */
379 size = BBTOB(bp->b_length);
380 if (size < PAGE_SIZE) {
381 int align_mask = xfs_buftarg_dma_alignment(bp->b_target);
382 bp->b_addr = kmem_alloc_io(size, align_mask,
383 KM_NOFS | kmflag_mask);
384 if (!bp->b_addr) {
385 /* low memory - use alloc_page loop instead */
386 goto use_alloc_page;
387 }
388
389 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
390 ((unsigned long)bp->b_addr & PAGE_MASK)) {
391 /* b_addr spans two pages - use alloc_page instead */
392 kmem_free(bp->b_addr);
393 bp->b_addr = NULL;
394 goto use_alloc_page;
395 }
396 bp->b_offset = offset_in_page(bp->b_addr);
397 bp->b_pages = bp->b_page_array;
398 bp->b_pages[0] = kmem_to_page(bp->b_addr);
399 bp->b_page_count = 1;
400 bp->b_flags |= _XBF_KMEM;
401 return 0;
402 }
403
404 use_alloc_page:
405 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
406 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
407 >> PAGE_SHIFT;
408 page_count = end - start;
409 error = _xfs_buf_get_pages(bp, page_count);
410 if (unlikely(error))
411 return error;
412
413 offset = bp->b_offset;
414 bp->b_flags |= _XBF_PAGES;
415
416 for (i = 0; i < bp->b_page_count; i++) {
417 struct page *page;
418 uint retries = 0;
419 retry:
420 page = alloc_page(gfp_mask);
421 if (unlikely(page == NULL)) {
422 if (flags & XBF_READ_AHEAD) {
423 bp->b_page_count = i;
424 error = -ENOMEM;
425 goto out_free_pages;
426 }
427
428 /*
429 * This could deadlock.
430 *
431 * But until all the XFS lowlevel code is revamped to
432 * handle buffer allocation failures we can't do much.
433 */
434 if (!(++retries % 100))
435 xfs_err(NULL,
436 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
437 current->comm, current->pid,
438 __func__, gfp_mask);
439
440 XFS_STATS_INC(bp->b_mount, xb_page_retries);
441 congestion_wait(BLK_RW_ASYNC, HZ/50);
442 goto retry;
443 }
444
445 XFS_STATS_INC(bp->b_mount, xb_page_found);
446
447 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
448 size -= nbytes;
449 bp->b_pages[i] = page;
450 offset = 0;
451 }
452 return 0;
453
454 out_free_pages:
455 for (i = 0; i < bp->b_page_count; i++)
456 __free_page(bp->b_pages[i]);
457 bp->b_flags &= ~_XBF_PAGES;
458 return error;
459 }
460
461 /*
462 * Map buffer into kernel address-space if necessary.
463 */
464 STATIC int
_xfs_buf_map_pages(struct xfs_buf * bp,uint flags)465 _xfs_buf_map_pages(
466 struct xfs_buf *bp,
467 uint flags)
468 {
469 ASSERT(bp->b_flags & _XBF_PAGES);
470 if (bp->b_page_count == 1) {
471 /* A single page buffer is always mappable */
472 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
473 } else if (flags & XBF_UNMAPPED) {
474 bp->b_addr = NULL;
475 } else {
476 int retried = 0;
477 unsigned nofs_flag;
478
479 /*
480 * vm_map_ram() will allocate auxiliary structures (e.g.
481 * pagetables) with GFP_KERNEL, yet we are likely to be under
482 * GFP_NOFS context here. Hence we need to tell memory reclaim
483 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
484 * memory reclaim re-entering the filesystem here and
485 * potentially deadlocking.
486 */
487 nofs_flag = memalloc_nofs_save();
488 do {
489 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
490 -1);
491 if (bp->b_addr)
492 break;
493 vm_unmap_aliases();
494 } while (retried++ <= 1);
495 memalloc_nofs_restore(nofs_flag);
496
497 if (!bp->b_addr)
498 return -ENOMEM;
499 bp->b_addr += bp->b_offset;
500 }
501
502 return 0;
503 }
504
505 /*
506 * Finding and Reading Buffers
507 */
508 static int
_xfs_buf_obj_cmp(struct rhashtable_compare_arg * arg,const void * obj)509 _xfs_buf_obj_cmp(
510 struct rhashtable_compare_arg *arg,
511 const void *obj)
512 {
513 const struct xfs_buf_map *map = arg->key;
514 const struct xfs_buf *bp = obj;
515
516 /*
517 * The key hashing in the lookup path depends on the key being the
518 * first element of the compare_arg, make sure to assert this.
519 */
520 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
521
522 if (bp->b_bn != map->bm_bn)
523 return 1;
524
525 if (unlikely(bp->b_length != map->bm_len)) {
526 /*
527 * found a block number match. If the range doesn't
528 * match, the only way this is allowed is if the buffer
529 * in the cache is stale and the transaction that made
530 * it stale has not yet committed. i.e. we are
531 * reallocating a busy extent. Skip this buffer and
532 * continue searching for an exact match.
533 */
534 ASSERT(bp->b_flags & XBF_STALE);
535 return 1;
536 }
537 return 0;
538 }
539
540 static const struct rhashtable_params xfs_buf_hash_params = {
541 .min_size = 32, /* empty AGs have minimal footprint */
542 .nelem_hint = 16,
543 .key_len = sizeof(xfs_daddr_t),
544 .key_offset = offsetof(struct xfs_buf, b_bn),
545 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
546 .automatic_shrinking = true,
547 .obj_cmpfn = _xfs_buf_obj_cmp,
548 };
549
550 int
xfs_buf_hash_init(struct xfs_perag * pag)551 xfs_buf_hash_init(
552 struct xfs_perag *pag)
553 {
554 spin_lock_init(&pag->pag_buf_lock);
555 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
556 }
557
558 void
xfs_buf_hash_destroy(struct xfs_perag * pag)559 xfs_buf_hash_destroy(
560 struct xfs_perag *pag)
561 {
562 rhashtable_destroy(&pag->pag_buf_hash);
563 }
564
565 /*
566 * Look up a buffer in the buffer cache and return it referenced and locked
567 * in @found_bp.
568 *
569 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
570 * cache.
571 *
572 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
573 * -EAGAIN if we fail to lock it.
574 *
575 * Return values are:
576 * -EFSCORRUPTED if have been supplied with an invalid address
577 * -EAGAIN on trylock failure
578 * -ENOENT if we fail to find a match and @new_bp was NULL
579 * 0, with @found_bp:
580 * - @new_bp if we inserted it into the cache
581 * - the buffer we found and locked.
582 */
583 static int
xfs_buf_find(struct xfs_buftarg * btp,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,struct xfs_buf * new_bp,struct xfs_buf ** found_bp)584 xfs_buf_find(
585 struct xfs_buftarg *btp,
586 struct xfs_buf_map *map,
587 int nmaps,
588 xfs_buf_flags_t flags,
589 struct xfs_buf *new_bp,
590 struct xfs_buf **found_bp)
591 {
592 struct xfs_perag *pag;
593 struct xfs_buf *bp;
594 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
595 xfs_daddr_t eofs;
596 int i;
597
598 *found_bp = NULL;
599
600 for (i = 0; i < nmaps; i++)
601 cmap.bm_len += map[i].bm_len;
602
603 /* Check for IOs smaller than the sector size / not sector aligned */
604 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
605 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
606
607 /*
608 * Corrupted block numbers can get through to here, unfortunately, so we
609 * have to check that the buffer falls within the filesystem bounds.
610 */
611 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
612 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
613 xfs_alert(btp->bt_mount,
614 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
615 __func__, cmap.bm_bn, eofs);
616 WARN_ON(1);
617 return -EFSCORRUPTED;
618 }
619
620 pag = xfs_perag_get(btp->bt_mount,
621 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
622
623 spin_lock(&pag->pag_buf_lock);
624 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
625 xfs_buf_hash_params);
626 if (bp) {
627 atomic_inc(&bp->b_hold);
628 goto found;
629 }
630
631 /* No match found */
632 if (!new_bp) {
633 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
634 spin_unlock(&pag->pag_buf_lock);
635 xfs_perag_put(pag);
636 return -ENOENT;
637 }
638
639 /* the buffer keeps the perag reference until it is freed */
640 new_bp->b_pag = pag;
641 rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
642 xfs_buf_hash_params);
643 spin_unlock(&pag->pag_buf_lock);
644 *found_bp = new_bp;
645 return 0;
646
647 found:
648 spin_unlock(&pag->pag_buf_lock);
649 xfs_perag_put(pag);
650
651 if (!xfs_buf_trylock(bp)) {
652 if (flags & XBF_TRYLOCK) {
653 xfs_buf_rele(bp);
654 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
655 return -EAGAIN;
656 }
657 xfs_buf_lock(bp);
658 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
659 }
660
661 /*
662 * if the buffer is stale, clear all the external state associated with
663 * it. We need to keep flags such as how we allocated the buffer memory
664 * intact here.
665 */
666 if (bp->b_flags & XBF_STALE) {
667 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
668 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
669 bp->b_ops = NULL;
670 }
671
672 trace_xfs_buf_find(bp, flags, _RET_IP_);
673 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
674 *found_bp = bp;
675 return 0;
676 }
677
678 struct xfs_buf *
xfs_buf_incore(struct xfs_buftarg * target,xfs_daddr_t blkno,size_t numblks,xfs_buf_flags_t flags)679 xfs_buf_incore(
680 struct xfs_buftarg *target,
681 xfs_daddr_t blkno,
682 size_t numblks,
683 xfs_buf_flags_t flags)
684 {
685 struct xfs_buf *bp;
686 int error;
687 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
688
689 error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
690 if (error)
691 return NULL;
692 return bp;
693 }
694
695 /*
696 * Assembles a buffer covering the specified range. The code is optimised for
697 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
698 * more hits than misses.
699 */
700 int
xfs_buf_get_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,struct xfs_buf ** bpp)701 xfs_buf_get_map(
702 struct xfs_buftarg *target,
703 struct xfs_buf_map *map,
704 int nmaps,
705 xfs_buf_flags_t flags,
706 struct xfs_buf **bpp)
707 {
708 struct xfs_buf *bp;
709 struct xfs_buf *new_bp;
710 int error = 0;
711
712 *bpp = NULL;
713 error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
714 if (!error)
715 goto found;
716 if (error != -ENOENT)
717 return error;
718
719 error = _xfs_buf_alloc(target, map, nmaps, flags, &new_bp);
720 if (error)
721 return error;
722
723 error = xfs_buf_allocate_memory(new_bp, flags);
724 if (error) {
725 xfs_buf_free(new_bp);
726 return error;
727 }
728
729 error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
730 if (error) {
731 xfs_buf_free(new_bp);
732 return error;
733 }
734
735 if (bp != new_bp)
736 xfs_buf_free(new_bp);
737
738 found:
739 if (!bp->b_addr) {
740 error = _xfs_buf_map_pages(bp, flags);
741 if (unlikely(error)) {
742 xfs_warn_ratelimited(target->bt_mount,
743 "%s: failed to map %u pages", __func__,
744 bp->b_page_count);
745 xfs_buf_relse(bp);
746 return error;
747 }
748 }
749
750 /*
751 * Clear b_error if this is a lookup from a caller that doesn't expect
752 * valid data to be found in the buffer.
753 */
754 if (!(flags & XBF_READ))
755 xfs_buf_ioerror(bp, 0);
756
757 XFS_STATS_INC(target->bt_mount, xb_get);
758 trace_xfs_buf_get(bp, flags, _RET_IP_);
759 *bpp = bp;
760 return 0;
761 }
762
763 int
_xfs_buf_read(struct xfs_buf * bp,xfs_buf_flags_t flags)764 _xfs_buf_read(
765 struct xfs_buf *bp,
766 xfs_buf_flags_t flags)
767 {
768 ASSERT(!(flags & XBF_WRITE));
769 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
770
771 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE);
772 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
773
774 return xfs_buf_submit(bp);
775 }
776
777 /*
778 * Reverify a buffer found in cache without an attached ->b_ops.
779 *
780 * If the caller passed an ops structure and the buffer doesn't have ops
781 * assigned, set the ops and use it to verify the contents. If verification
782 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
783 * already in XBF_DONE state on entry.
784 *
785 * Under normal operations, every in-core buffer is verified on read I/O
786 * completion. There are two scenarios that can lead to in-core buffers without
787 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
788 * filesystem, though these buffers are purged at the end of recovery. The
789 * other is online repair, which intentionally reads with a NULL buffer ops to
790 * run several verifiers across an in-core buffer in order to establish buffer
791 * type. If repair can't establish that, the buffer will be left in memory
792 * with NULL buffer ops.
793 */
794 int
xfs_buf_reverify(struct xfs_buf * bp,const struct xfs_buf_ops * ops)795 xfs_buf_reverify(
796 struct xfs_buf *bp,
797 const struct xfs_buf_ops *ops)
798 {
799 ASSERT(bp->b_flags & XBF_DONE);
800 ASSERT(bp->b_error == 0);
801
802 if (!ops || bp->b_ops)
803 return 0;
804
805 bp->b_ops = ops;
806 bp->b_ops->verify_read(bp);
807 if (bp->b_error)
808 bp->b_flags &= ~XBF_DONE;
809 return bp->b_error;
810 }
811
812 int
xfs_buf_read_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,struct xfs_buf ** bpp,const struct xfs_buf_ops * ops,xfs_failaddr_t fa)813 xfs_buf_read_map(
814 struct xfs_buftarg *target,
815 struct xfs_buf_map *map,
816 int nmaps,
817 xfs_buf_flags_t flags,
818 struct xfs_buf **bpp,
819 const struct xfs_buf_ops *ops,
820 xfs_failaddr_t fa)
821 {
822 struct xfs_buf *bp;
823 int error;
824
825 flags |= XBF_READ;
826 *bpp = NULL;
827
828 error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
829 if (error)
830 return error;
831
832 trace_xfs_buf_read(bp, flags, _RET_IP_);
833
834 if (!(bp->b_flags & XBF_DONE)) {
835 /* Initiate the buffer read and wait. */
836 XFS_STATS_INC(target->bt_mount, xb_get_read);
837 bp->b_ops = ops;
838 error = _xfs_buf_read(bp, flags);
839
840 /* Readahead iodone already dropped the buffer, so exit. */
841 if (flags & XBF_ASYNC)
842 return 0;
843 } else {
844 /* Buffer already read; all we need to do is check it. */
845 error = xfs_buf_reverify(bp, ops);
846
847 /* Readahead already finished; drop the buffer and exit. */
848 if (flags & XBF_ASYNC) {
849 xfs_buf_relse(bp);
850 return 0;
851 }
852
853 /* We do not want read in the flags */
854 bp->b_flags &= ~XBF_READ;
855 ASSERT(bp->b_ops != NULL || ops == NULL);
856 }
857
858 /*
859 * If we've had a read error, then the contents of the buffer are
860 * invalid and should not be used. To ensure that a followup read tries
861 * to pull the buffer from disk again, we clear the XBF_DONE flag and
862 * mark the buffer stale. This ensures that anyone who has a current
863 * reference to the buffer will interpret it's contents correctly and
864 * future cache lookups will also treat it as an empty, uninitialised
865 * buffer.
866 */
867 if (error) {
868 if (!XFS_FORCED_SHUTDOWN(target->bt_mount))
869 xfs_buf_ioerror_alert(bp, fa);
870
871 bp->b_flags &= ~XBF_DONE;
872 xfs_buf_stale(bp);
873 xfs_buf_relse(bp);
874
875 /* bad CRC means corrupted metadata */
876 if (error == -EFSBADCRC)
877 error = -EFSCORRUPTED;
878 return error;
879 }
880
881 *bpp = bp;
882 return 0;
883 }
884
885 /*
886 * If we are not low on memory then do the readahead in a deadlock
887 * safe manner.
888 */
889 void
xfs_buf_readahead_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,const struct xfs_buf_ops * ops)890 xfs_buf_readahead_map(
891 struct xfs_buftarg *target,
892 struct xfs_buf_map *map,
893 int nmaps,
894 const struct xfs_buf_ops *ops)
895 {
896 struct xfs_buf *bp;
897
898 if (bdi_read_congested(target->bt_bdev->bd_bdi))
899 return;
900
901 xfs_buf_read_map(target, map, nmaps,
902 XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
903 __this_address);
904 }
905
906 /*
907 * Read an uncached buffer from disk. Allocates and returns a locked
908 * buffer containing the disk contents or nothing.
909 */
910 int
xfs_buf_read_uncached(struct xfs_buftarg * target,xfs_daddr_t daddr,size_t numblks,int flags,struct xfs_buf ** bpp,const struct xfs_buf_ops * ops)911 xfs_buf_read_uncached(
912 struct xfs_buftarg *target,
913 xfs_daddr_t daddr,
914 size_t numblks,
915 int flags,
916 struct xfs_buf **bpp,
917 const struct xfs_buf_ops *ops)
918 {
919 struct xfs_buf *bp;
920 int error;
921
922 *bpp = NULL;
923
924 error = xfs_buf_get_uncached(target, numblks, flags, &bp);
925 if (error)
926 return error;
927
928 /* set up the buffer for a read IO */
929 ASSERT(bp->b_map_count == 1);
930 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
931 bp->b_maps[0].bm_bn = daddr;
932 bp->b_flags |= XBF_READ;
933 bp->b_ops = ops;
934
935 xfs_buf_submit(bp);
936 if (bp->b_error) {
937 error = bp->b_error;
938 xfs_buf_relse(bp);
939 return error;
940 }
941
942 *bpp = bp;
943 return 0;
944 }
945
946 int
xfs_buf_get_uncached(struct xfs_buftarg * target,size_t numblks,int flags,struct xfs_buf ** bpp)947 xfs_buf_get_uncached(
948 struct xfs_buftarg *target,
949 size_t numblks,
950 int flags,
951 struct xfs_buf **bpp)
952 {
953 unsigned long page_count;
954 int error, i;
955 struct xfs_buf *bp;
956 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
957
958 *bpp = NULL;
959
960 /* flags might contain irrelevant bits, pass only what we care about */
961 error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
962 if (error)
963 goto fail;
964
965 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
966 error = _xfs_buf_get_pages(bp, page_count);
967 if (error)
968 goto fail_free_buf;
969
970 for (i = 0; i < page_count; i++) {
971 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
972 if (!bp->b_pages[i]) {
973 error = -ENOMEM;
974 goto fail_free_mem;
975 }
976 }
977 bp->b_flags |= _XBF_PAGES;
978
979 error = _xfs_buf_map_pages(bp, 0);
980 if (unlikely(error)) {
981 xfs_warn(target->bt_mount,
982 "%s: failed to map pages", __func__);
983 goto fail_free_mem;
984 }
985
986 trace_xfs_buf_get_uncached(bp, _RET_IP_);
987 *bpp = bp;
988 return 0;
989
990 fail_free_mem:
991 while (--i >= 0)
992 __free_page(bp->b_pages[i]);
993 _xfs_buf_free_pages(bp);
994 fail_free_buf:
995 xfs_buf_free_maps(bp);
996 kmem_cache_free(xfs_buf_zone, bp);
997 fail:
998 return error;
999 }
1000
1001 /*
1002 * Increment reference count on buffer, to hold the buffer concurrently
1003 * with another thread which may release (free) the buffer asynchronously.
1004 * Must hold the buffer already to call this function.
1005 */
1006 void
xfs_buf_hold(struct xfs_buf * bp)1007 xfs_buf_hold(
1008 struct xfs_buf *bp)
1009 {
1010 trace_xfs_buf_hold(bp, _RET_IP_);
1011 atomic_inc(&bp->b_hold);
1012 }
1013
1014 /*
1015 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
1016 * placed on LRU or freed (depending on b_lru_ref).
1017 */
1018 void
xfs_buf_rele(struct xfs_buf * bp)1019 xfs_buf_rele(
1020 struct xfs_buf *bp)
1021 {
1022 struct xfs_perag *pag = bp->b_pag;
1023 bool release;
1024 bool freebuf = false;
1025
1026 trace_xfs_buf_rele(bp, _RET_IP_);
1027
1028 if (!pag) {
1029 ASSERT(list_empty(&bp->b_lru));
1030 if (atomic_dec_and_test(&bp->b_hold)) {
1031 xfs_buf_ioacct_dec(bp);
1032 xfs_buf_free(bp);
1033 }
1034 return;
1035 }
1036
1037 ASSERT(atomic_read(&bp->b_hold) > 0);
1038
1039 /*
1040 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1041 * calls. The pag_buf_lock being taken on the last reference only
1042 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1043 * to last reference we drop here is not serialised against the last
1044 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1045 * first, the last "release" reference can win the race to the lock and
1046 * free the buffer before the second-to-last reference is processed,
1047 * leading to a use-after-free scenario.
1048 */
1049 spin_lock(&bp->b_lock);
1050 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1051 if (!release) {
1052 /*
1053 * Drop the in-flight state if the buffer is already on the LRU
1054 * and it holds the only reference. This is racy because we
1055 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1056 * ensures the decrement occurs only once per-buf.
1057 */
1058 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1059 __xfs_buf_ioacct_dec(bp);
1060 goto out_unlock;
1061 }
1062
1063 /* the last reference has been dropped ... */
1064 __xfs_buf_ioacct_dec(bp);
1065 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1066 /*
1067 * If the buffer is added to the LRU take a new reference to the
1068 * buffer for the LRU and clear the (now stale) dispose list
1069 * state flag
1070 */
1071 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1072 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1073 atomic_inc(&bp->b_hold);
1074 }
1075 spin_unlock(&pag->pag_buf_lock);
1076 } else {
1077 /*
1078 * most of the time buffers will already be removed from the
1079 * LRU, so optimise that case by checking for the
1080 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1081 * was on was the disposal list
1082 */
1083 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1084 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1085 } else {
1086 ASSERT(list_empty(&bp->b_lru));
1087 }
1088
1089 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1090 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1091 xfs_buf_hash_params);
1092 spin_unlock(&pag->pag_buf_lock);
1093 xfs_perag_put(pag);
1094 freebuf = true;
1095 }
1096
1097 out_unlock:
1098 spin_unlock(&bp->b_lock);
1099
1100 if (freebuf)
1101 xfs_buf_free(bp);
1102 }
1103
1104
1105 /*
1106 * Lock a buffer object, if it is not already locked.
1107 *
1108 * If we come across a stale, pinned, locked buffer, we know that we are
1109 * being asked to lock a buffer that has been reallocated. Because it is
1110 * pinned, we know that the log has not been pushed to disk and hence it
1111 * will still be locked. Rather than continuing to have trylock attempts
1112 * fail until someone else pushes the log, push it ourselves before
1113 * returning. This means that the xfsaild will not get stuck trying
1114 * to push on stale inode buffers.
1115 */
1116 int
xfs_buf_trylock(struct xfs_buf * bp)1117 xfs_buf_trylock(
1118 struct xfs_buf *bp)
1119 {
1120 int locked;
1121
1122 locked = down_trylock(&bp->b_sema) == 0;
1123 if (locked)
1124 trace_xfs_buf_trylock(bp, _RET_IP_);
1125 else
1126 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1127 return locked;
1128 }
1129
1130 /*
1131 * Lock a buffer object.
1132 *
1133 * If we come across a stale, pinned, locked buffer, we know that we
1134 * are being asked to lock a buffer that has been reallocated. Because
1135 * it is pinned, we know that the log has not been pushed to disk and
1136 * hence it will still be locked. Rather than sleeping until someone
1137 * else pushes the log, push it ourselves before trying to get the lock.
1138 */
1139 void
xfs_buf_lock(struct xfs_buf * bp)1140 xfs_buf_lock(
1141 struct xfs_buf *bp)
1142 {
1143 trace_xfs_buf_lock(bp, _RET_IP_);
1144
1145 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1146 xfs_log_force(bp->b_mount, 0);
1147 down(&bp->b_sema);
1148
1149 trace_xfs_buf_lock_done(bp, _RET_IP_);
1150 }
1151
1152 void
xfs_buf_unlock(struct xfs_buf * bp)1153 xfs_buf_unlock(
1154 struct xfs_buf *bp)
1155 {
1156 ASSERT(xfs_buf_islocked(bp));
1157
1158 up(&bp->b_sema);
1159 trace_xfs_buf_unlock(bp, _RET_IP_);
1160 }
1161
1162 STATIC void
xfs_buf_wait_unpin(struct xfs_buf * bp)1163 xfs_buf_wait_unpin(
1164 struct xfs_buf *bp)
1165 {
1166 DECLARE_WAITQUEUE (wait, current);
1167
1168 if (atomic_read(&bp->b_pin_count) == 0)
1169 return;
1170
1171 add_wait_queue(&bp->b_waiters, &wait);
1172 for (;;) {
1173 set_current_state(TASK_UNINTERRUPTIBLE);
1174 if (atomic_read(&bp->b_pin_count) == 0)
1175 break;
1176 io_schedule();
1177 }
1178 remove_wait_queue(&bp->b_waiters, &wait);
1179 set_current_state(TASK_RUNNING);
1180 }
1181
1182 static void
xfs_buf_ioerror_alert_ratelimited(struct xfs_buf * bp)1183 xfs_buf_ioerror_alert_ratelimited(
1184 struct xfs_buf *bp)
1185 {
1186 static unsigned long lasttime;
1187 static struct xfs_buftarg *lasttarg;
1188
1189 if (bp->b_target != lasttarg ||
1190 time_after(jiffies, (lasttime + 5*HZ))) {
1191 lasttime = jiffies;
1192 xfs_buf_ioerror_alert(bp, __this_address);
1193 }
1194 lasttarg = bp->b_target;
1195 }
1196
1197 /*
1198 * Account for this latest trip around the retry handler, and decide if
1199 * we've failed enough times to constitute a permanent failure.
1200 */
1201 static bool
xfs_buf_ioerror_permanent(struct xfs_buf * bp,struct xfs_error_cfg * cfg)1202 xfs_buf_ioerror_permanent(
1203 struct xfs_buf *bp,
1204 struct xfs_error_cfg *cfg)
1205 {
1206 struct xfs_mount *mp = bp->b_mount;
1207
1208 if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1209 ++bp->b_retries > cfg->max_retries)
1210 return true;
1211 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1212 time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1213 return true;
1214
1215 /* At unmount we may treat errors differently */
1216 if ((mp->m_flags & XFS_MOUNT_UNMOUNTING) && mp->m_fail_unmount)
1217 return true;
1218
1219 return false;
1220 }
1221
1222 /*
1223 * On a sync write or shutdown we just want to stale the buffer and let the
1224 * caller handle the error in bp->b_error appropriately.
1225 *
1226 * If the write was asynchronous then no one will be looking for the error. If
1227 * this is the first failure of this type, clear the error state and write the
1228 * buffer out again. This means we always retry an async write failure at least
1229 * once, but we also need to set the buffer up to behave correctly now for
1230 * repeated failures.
1231 *
1232 * If we get repeated async write failures, then we take action according to the
1233 * error configuration we have been set up to use.
1234 *
1235 * Returns true if this function took care of error handling and the caller must
1236 * not touch the buffer again. Return false if the caller should proceed with
1237 * normal I/O completion handling.
1238 */
1239 static bool
xfs_buf_ioend_handle_error(struct xfs_buf * bp)1240 xfs_buf_ioend_handle_error(
1241 struct xfs_buf *bp)
1242 {
1243 struct xfs_mount *mp = bp->b_mount;
1244 struct xfs_error_cfg *cfg;
1245
1246 /*
1247 * If we've already decided to shutdown the filesystem because of I/O
1248 * errors, there's no point in giving this a retry.
1249 */
1250 if (XFS_FORCED_SHUTDOWN(mp))
1251 goto out_stale;
1252
1253 xfs_buf_ioerror_alert_ratelimited(bp);
1254
1255 /*
1256 * We're not going to bother about retrying this during recovery.
1257 * One strike!
1258 */
1259 if (bp->b_flags & _XBF_LOGRECOVERY) {
1260 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1261 return false;
1262 }
1263
1264 /*
1265 * Synchronous writes will have callers process the error.
1266 */
1267 if (!(bp->b_flags & XBF_ASYNC))
1268 goto out_stale;
1269
1270 trace_xfs_buf_iodone_async(bp, _RET_IP_);
1271
1272 cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1273 if (bp->b_last_error != bp->b_error ||
1274 !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) {
1275 bp->b_last_error = bp->b_error;
1276 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1277 !bp->b_first_retry_time)
1278 bp->b_first_retry_time = jiffies;
1279 goto resubmit;
1280 }
1281
1282 /*
1283 * Permanent error - we need to trigger a shutdown if we haven't already
1284 * to indicate that inconsistency will result from this action.
1285 */
1286 if (xfs_buf_ioerror_permanent(bp, cfg)) {
1287 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1288 goto out_stale;
1289 }
1290
1291 /* Still considered a transient error. Caller will schedule retries. */
1292 if (bp->b_flags & _XBF_INODES)
1293 xfs_buf_inode_io_fail(bp);
1294 else if (bp->b_flags & _XBF_DQUOTS)
1295 xfs_buf_dquot_io_fail(bp);
1296 else
1297 ASSERT(list_empty(&bp->b_li_list));
1298 xfs_buf_ioerror(bp, 0);
1299 xfs_buf_relse(bp);
1300 return true;
1301
1302 resubmit:
1303 xfs_buf_ioerror(bp, 0);
1304 bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL);
1305 xfs_buf_submit(bp);
1306 return true;
1307 out_stale:
1308 xfs_buf_stale(bp);
1309 bp->b_flags |= XBF_DONE;
1310 bp->b_flags &= ~XBF_WRITE;
1311 trace_xfs_buf_error_relse(bp, _RET_IP_);
1312 return false;
1313 }
1314
1315 static void
xfs_buf_ioend(struct xfs_buf * bp)1316 xfs_buf_ioend(
1317 struct xfs_buf *bp)
1318 {
1319 trace_xfs_buf_iodone(bp, _RET_IP_);
1320
1321 /*
1322 * Pull in IO completion errors now. We are guaranteed to be running
1323 * single threaded, so we don't need the lock to read b_io_error.
1324 */
1325 if (!bp->b_error && bp->b_io_error)
1326 xfs_buf_ioerror(bp, bp->b_io_error);
1327
1328 if (bp->b_flags & XBF_READ) {
1329 if (!bp->b_error && bp->b_ops)
1330 bp->b_ops->verify_read(bp);
1331 if (!bp->b_error)
1332 bp->b_flags |= XBF_DONE;
1333 } else {
1334 if (!bp->b_error) {
1335 bp->b_flags &= ~XBF_WRITE_FAIL;
1336 bp->b_flags |= XBF_DONE;
1337 }
1338
1339 if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp))
1340 return;
1341
1342 /* clear the retry state */
1343 bp->b_last_error = 0;
1344 bp->b_retries = 0;
1345 bp->b_first_retry_time = 0;
1346
1347 /*
1348 * Note that for things like remote attribute buffers, there may
1349 * not be a buffer log item here, so processing the buffer log
1350 * item must remain optional.
1351 */
1352 if (bp->b_log_item)
1353 xfs_buf_item_done(bp);
1354
1355 if (bp->b_flags & _XBF_INODES)
1356 xfs_buf_inode_iodone(bp);
1357 else if (bp->b_flags & _XBF_DQUOTS)
1358 xfs_buf_dquot_iodone(bp);
1359
1360 }
1361
1362 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD |
1363 _XBF_LOGRECOVERY);
1364
1365 if (bp->b_flags & XBF_ASYNC)
1366 xfs_buf_relse(bp);
1367 else
1368 complete(&bp->b_iowait);
1369 }
1370
1371 static void
xfs_buf_ioend_work(struct work_struct * work)1372 xfs_buf_ioend_work(
1373 struct work_struct *work)
1374 {
1375 struct xfs_buf *bp =
1376 container_of(work, struct xfs_buf, b_ioend_work);
1377
1378 xfs_buf_ioend(bp);
1379 }
1380
1381 static void
xfs_buf_ioend_async(struct xfs_buf * bp)1382 xfs_buf_ioend_async(
1383 struct xfs_buf *bp)
1384 {
1385 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1386 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1387 }
1388
1389 void
__xfs_buf_ioerror(struct xfs_buf * bp,int error,xfs_failaddr_t failaddr)1390 __xfs_buf_ioerror(
1391 struct xfs_buf *bp,
1392 int error,
1393 xfs_failaddr_t failaddr)
1394 {
1395 ASSERT(error <= 0 && error >= -1000);
1396 bp->b_error = error;
1397 trace_xfs_buf_ioerror(bp, error, failaddr);
1398 }
1399
1400 void
xfs_buf_ioerror_alert(struct xfs_buf * bp,xfs_failaddr_t func)1401 xfs_buf_ioerror_alert(
1402 struct xfs_buf *bp,
1403 xfs_failaddr_t func)
1404 {
1405 xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error",
1406 "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1407 func, (uint64_t)XFS_BUF_ADDR(bp),
1408 bp->b_length, -bp->b_error);
1409 }
1410
1411 /*
1412 * To simulate an I/O failure, the buffer must be locked and held with at least
1413 * three references. The LRU reference is dropped by the stale call. The buf
1414 * item reference is dropped via ioend processing. The third reference is owned
1415 * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1416 */
1417 void
xfs_buf_ioend_fail(struct xfs_buf * bp)1418 xfs_buf_ioend_fail(
1419 struct xfs_buf *bp)
1420 {
1421 bp->b_flags &= ~XBF_DONE;
1422 xfs_buf_stale(bp);
1423 xfs_buf_ioerror(bp, -EIO);
1424 xfs_buf_ioend(bp);
1425 }
1426
1427 int
xfs_bwrite(struct xfs_buf * bp)1428 xfs_bwrite(
1429 struct xfs_buf *bp)
1430 {
1431 int error;
1432
1433 ASSERT(xfs_buf_islocked(bp));
1434
1435 bp->b_flags |= XBF_WRITE;
1436 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1437 XBF_DONE);
1438
1439 error = xfs_buf_submit(bp);
1440 if (error)
1441 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1442 return error;
1443 }
1444
1445 static void
xfs_buf_bio_end_io(struct bio * bio)1446 xfs_buf_bio_end_io(
1447 struct bio *bio)
1448 {
1449 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1450
1451 if (!bio->bi_status &&
1452 (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) &&
1453 XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR))
1454 bio->bi_status = BLK_STS_IOERR;
1455
1456 /*
1457 * don't overwrite existing errors - otherwise we can lose errors on
1458 * buffers that require multiple bios to complete.
1459 */
1460 if (bio->bi_status) {
1461 int error = blk_status_to_errno(bio->bi_status);
1462
1463 cmpxchg(&bp->b_io_error, 0, error);
1464 }
1465
1466 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1467 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1468
1469 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1470 xfs_buf_ioend_async(bp);
1471 bio_put(bio);
1472 }
1473
1474 static void
xfs_buf_ioapply_map(struct xfs_buf * bp,int map,int * buf_offset,int * count,int op)1475 xfs_buf_ioapply_map(
1476 struct xfs_buf *bp,
1477 int map,
1478 int *buf_offset,
1479 int *count,
1480 int op)
1481 {
1482 int page_index;
1483 unsigned int total_nr_pages = bp->b_page_count;
1484 int nr_pages;
1485 struct bio *bio;
1486 sector_t sector = bp->b_maps[map].bm_bn;
1487 int size;
1488 int offset;
1489
1490 /* skip the pages in the buffer before the start offset */
1491 page_index = 0;
1492 offset = *buf_offset;
1493 while (offset >= PAGE_SIZE) {
1494 page_index++;
1495 offset -= PAGE_SIZE;
1496 }
1497
1498 /*
1499 * Limit the IO size to the length of the current vector, and update the
1500 * remaining IO count for the next time around.
1501 */
1502 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1503 *count -= size;
1504 *buf_offset += size;
1505
1506 next_chunk:
1507 atomic_inc(&bp->b_io_remaining);
1508 nr_pages = bio_max_segs(total_nr_pages);
1509
1510 bio = bio_alloc(GFP_NOIO, nr_pages);
1511 bio_set_dev(bio, bp->b_target->bt_bdev);
1512 bio->bi_iter.bi_sector = sector;
1513 bio->bi_end_io = xfs_buf_bio_end_io;
1514 bio->bi_private = bp;
1515 bio->bi_opf = op;
1516
1517 for (; size && nr_pages; nr_pages--, page_index++) {
1518 int rbytes, nbytes = PAGE_SIZE - offset;
1519
1520 if (nbytes > size)
1521 nbytes = size;
1522
1523 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1524 offset);
1525 if (rbytes < nbytes)
1526 break;
1527
1528 offset = 0;
1529 sector += BTOBB(nbytes);
1530 size -= nbytes;
1531 total_nr_pages--;
1532 }
1533
1534 if (likely(bio->bi_iter.bi_size)) {
1535 if (xfs_buf_is_vmapped(bp)) {
1536 flush_kernel_vmap_range(bp->b_addr,
1537 xfs_buf_vmap_len(bp));
1538 }
1539 submit_bio(bio);
1540 if (size)
1541 goto next_chunk;
1542 } else {
1543 /*
1544 * This is guaranteed not to be the last io reference count
1545 * because the caller (xfs_buf_submit) holds a count itself.
1546 */
1547 atomic_dec(&bp->b_io_remaining);
1548 xfs_buf_ioerror(bp, -EIO);
1549 bio_put(bio);
1550 }
1551
1552 }
1553
1554 STATIC void
_xfs_buf_ioapply(struct xfs_buf * bp)1555 _xfs_buf_ioapply(
1556 struct xfs_buf *bp)
1557 {
1558 struct blk_plug plug;
1559 int op;
1560 int offset;
1561 int size;
1562 int i;
1563
1564 /*
1565 * Make sure we capture only current IO errors rather than stale errors
1566 * left over from previous use of the buffer (e.g. failed readahead).
1567 */
1568 bp->b_error = 0;
1569
1570 if (bp->b_flags & XBF_WRITE) {
1571 op = REQ_OP_WRITE;
1572
1573 /*
1574 * Run the write verifier callback function if it exists. If
1575 * this function fails it will mark the buffer with an error and
1576 * the IO should not be dispatched.
1577 */
1578 if (bp->b_ops) {
1579 bp->b_ops->verify_write(bp);
1580 if (bp->b_error) {
1581 xfs_force_shutdown(bp->b_mount,
1582 SHUTDOWN_CORRUPT_INCORE);
1583 return;
1584 }
1585 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1586 struct xfs_mount *mp = bp->b_mount;
1587
1588 /*
1589 * non-crc filesystems don't attach verifiers during
1590 * log recovery, so don't warn for such filesystems.
1591 */
1592 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1593 xfs_warn(mp,
1594 "%s: no buf ops on daddr 0x%llx len %d",
1595 __func__, bp->b_bn, bp->b_length);
1596 xfs_hex_dump(bp->b_addr,
1597 XFS_CORRUPTION_DUMP_LEN);
1598 dump_stack();
1599 }
1600 }
1601 } else {
1602 op = REQ_OP_READ;
1603 if (bp->b_flags & XBF_READ_AHEAD)
1604 op |= REQ_RAHEAD;
1605 }
1606
1607 /* we only use the buffer cache for meta-data */
1608 op |= REQ_META;
1609
1610 /*
1611 * Walk all the vectors issuing IO on them. Set up the initial offset
1612 * into the buffer and the desired IO size before we start -
1613 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1614 * subsequent call.
1615 */
1616 offset = bp->b_offset;
1617 size = BBTOB(bp->b_length);
1618 blk_start_plug(&plug);
1619 for (i = 0; i < bp->b_map_count; i++) {
1620 xfs_buf_ioapply_map(bp, i, &offset, &size, op);
1621 if (bp->b_error)
1622 break;
1623 if (size <= 0)
1624 break; /* all done */
1625 }
1626 blk_finish_plug(&plug);
1627 }
1628
1629 /*
1630 * Wait for I/O completion of a sync buffer and return the I/O error code.
1631 */
1632 static int
xfs_buf_iowait(struct xfs_buf * bp)1633 xfs_buf_iowait(
1634 struct xfs_buf *bp)
1635 {
1636 ASSERT(!(bp->b_flags & XBF_ASYNC));
1637
1638 trace_xfs_buf_iowait(bp, _RET_IP_);
1639 wait_for_completion(&bp->b_iowait);
1640 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1641
1642 return bp->b_error;
1643 }
1644
1645 /*
1646 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1647 * the buffer lock ownership and the current reference to the IO. It is not
1648 * safe to reference the buffer after a call to this function unless the caller
1649 * holds an additional reference itself.
1650 */
1651 static int
__xfs_buf_submit(struct xfs_buf * bp,bool wait)1652 __xfs_buf_submit(
1653 struct xfs_buf *bp,
1654 bool wait)
1655 {
1656 int error = 0;
1657
1658 trace_xfs_buf_submit(bp, _RET_IP_);
1659
1660 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1661
1662 /* on shutdown we stale and complete the buffer immediately */
1663 if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1664 xfs_buf_ioend_fail(bp);
1665 return -EIO;
1666 }
1667
1668 /*
1669 * Grab a reference so the buffer does not go away underneath us. For
1670 * async buffers, I/O completion drops the callers reference, which
1671 * could occur before submission returns.
1672 */
1673 xfs_buf_hold(bp);
1674
1675 if (bp->b_flags & XBF_WRITE)
1676 xfs_buf_wait_unpin(bp);
1677
1678 /* clear the internal error state to avoid spurious errors */
1679 bp->b_io_error = 0;
1680
1681 /*
1682 * Set the count to 1 initially, this will stop an I/O completion
1683 * callout which happens before we have started all the I/O from calling
1684 * xfs_buf_ioend too early.
1685 */
1686 atomic_set(&bp->b_io_remaining, 1);
1687 if (bp->b_flags & XBF_ASYNC)
1688 xfs_buf_ioacct_inc(bp);
1689 _xfs_buf_ioapply(bp);
1690
1691 /*
1692 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1693 * reference we took above. If we drop it to zero, run completion so
1694 * that we don't return to the caller with completion still pending.
1695 */
1696 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1697 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1698 xfs_buf_ioend(bp);
1699 else
1700 xfs_buf_ioend_async(bp);
1701 }
1702
1703 if (wait)
1704 error = xfs_buf_iowait(bp);
1705
1706 /*
1707 * Release the hold that keeps the buffer referenced for the entire
1708 * I/O. Note that if the buffer is async, it is not safe to reference
1709 * after this release.
1710 */
1711 xfs_buf_rele(bp);
1712 return error;
1713 }
1714
1715 void *
xfs_buf_offset(struct xfs_buf * bp,size_t offset)1716 xfs_buf_offset(
1717 struct xfs_buf *bp,
1718 size_t offset)
1719 {
1720 struct page *page;
1721
1722 if (bp->b_addr)
1723 return bp->b_addr + offset;
1724
1725 offset += bp->b_offset;
1726 page = bp->b_pages[offset >> PAGE_SHIFT];
1727 return page_address(page) + (offset & (PAGE_SIZE-1));
1728 }
1729
1730 void
xfs_buf_zero(struct xfs_buf * bp,size_t boff,size_t bsize)1731 xfs_buf_zero(
1732 struct xfs_buf *bp,
1733 size_t boff,
1734 size_t bsize)
1735 {
1736 size_t bend;
1737
1738 bend = boff + bsize;
1739 while (boff < bend) {
1740 struct page *page;
1741 int page_index, page_offset, csize;
1742
1743 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1744 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1745 page = bp->b_pages[page_index];
1746 csize = min_t(size_t, PAGE_SIZE - page_offset,
1747 BBTOB(bp->b_length) - boff);
1748
1749 ASSERT((csize + page_offset) <= PAGE_SIZE);
1750
1751 memset(page_address(page) + page_offset, 0, csize);
1752
1753 boff += csize;
1754 }
1755 }
1756
1757 /*
1758 * Log a message about and stale a buffer that a caller has decided is corrupt.
1759 *
1760 * This function should be called for the kinds of metadata corruption that
1761 * cannot be detect from a verifier, such as incorrect inter-block relationship
1762 * data. Do /not/ call this function from a verifier function.
1763 *
1764 * The buffer must be XBF_DONE prior to the call. Afterwards, the buffer will
1765 * be marked stale, but b_error will not be set. The caller is responsible for
1766 * releasing the buffer or fixing it.
1767 */
1768 void
__xfs_buf_mark_corrupt(struct xfs_buf * bp,xfs_failaddr_t fa)1769 __xfs_buf_mark_corrupt(
1770 struct xfs_buf *bp,
1771 xfs_failaddr_t fa)
1772 {
1773 ASSERT(bp->b_flags & XBF_DONE);
1774
1775 xfs_buf_corruption_error(bp, fa);
1776 xfs_buf_stale(bp);
1777 }
1778
1779 /*
1780 * Handling of buffer targets (buftargs).
1781 */
1782
1783 /*
1784 * Wait for any bufs with callbacks that have been submitted but have not yet
1785 * returned. These buffers will have an elevated hold count, so wait on those
1786 * while freeing all the buffers only held by the LRU.
1787 */
1788 static enum lru_status
xfs_buftarg_drain_rele(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1789 xfs_buftarg_drain_rele(
1790 struct list_head *item,
1791 struct list_lru_one *lru,
1792 spinlock_t *lru_lock,
1793 void *arg)
1794
1795 {
1796 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1797 struct list_head *dispose = arg;
1798
1799 if (atomic_read(&bp->b_hold) > 1) {
1800 /* need to wait, so skip it this pass */
1801 trace_xfs_buf_drain_buftarg(bp, _RET_IP_);
1802 return LRU_SKIP;
1803 }
1804 if (!spin_trylock(&bp->b_lock))
1805 return LRU_SKIP;
1806
1807 /*
1808 * clear the LRU reference count so the buffer doesn't get
1809 * ignored in xfs_buf_rele().
1810 */
1811 atomic_set(&bp->b_lru_ref, 0);
1812 bp->b_state |= XFS_BSTATE_DISPOSE;
1813 list_lru_isolate_move(lru, item, dispose);
1814 spin_unlock(&bp->b_lock);
1815 return LRU_REMOVED;
1816 }
1817
1818 /*
1819 * Wait for outstanding I/O on the buftarg to complete.
1820 */
1821 void
xfs_buftarg_wait(struct xfs_buftarg * btp)1822 xfs_buftarg_wait(
1823 struct xfs_buftarg *btp)
1824 {
1825 /*
1826 * First wait on the buftarg I/O count for all in-flight buffers to be
1827 * released. This is critical as new buffers do not make the LRU until
1828 * they are released.
1829 *
1830 * Next, flush the buffer workqueue to ensure all completion processing
1831 * has finished. Just waiting on buffer locks is not sufficient for
1832 * async IO as the reference count held over IO is not released until
1833 * after the buffer lock is dropped. Hence we need to ensure here that
1834 * all reference counts have been dropped before we start walking the
1835 * LRU list.
1836 */
1837 while (percpu_counter_sum(&btp->bt_io_count))
1838 delay(100);
1839 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1840 }
1841
1842 void
xfs_buftarg_drain(struct xfs_buftarg * btp)1843 xfs_buftarg_drain(
1844 struct xfs_buftarg *btp)
1845 {
1846 LIST_HEAD(dispose);
1847 int loop = 0;
1848 bool write_fail = false;
1849
1850 xfs_buftarg_wait(btp);
1851
1852 /* loop until there is nothing left on the lru list. */
1853 while (list_lru_count(&btp->bt_lru)) {
1854 list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele,
1855 &dispose, LONG_MAX);
1856
1857 while (!list_empty(&dispose)) {
1858 struct xfs_buf *bp;
1859 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1860 list_del_init(&bp->b_lru);
1861 if (bp->b_flags & XBF_WRITE_FAIL) {
1862 write_fail = true;
1863 xfs_buf_alert_ratelimited(bp,
1864 "XFS: Corruption Alert",
1865 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1866 (long long)bp->b_bn);
1867 }
1868 xfs_buf_rele(bp);
1869 }
1870 if (loop++ != 0)
1871 delay(100);
1872 }
1873
1874 /*
1875 * If one or more failed buffers were freed, that means dirty metadata
1876 * was thrown away. This should only ever happen after I/O completion
1877 * handling has elevated I/O error(s) to permanent failures and shuts
1878 * down the fs.
1879 */
1880 if (write_fail) {
1881 ASSERT(XFS_FORCED_SHUTDOWN(btp->bt_mount));
1882 xfs_alert(btp->bt_mount,
1883 "Please run xfs_repair to determine the extent of the problem.");
1884 }
1885 }
1886
1887 static enum lru_status
xfs_buftarg_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1888 xfs_buftarg_isolate(
1889 struct list_head *item,
1890 struct list_lru_one *lru,
1891 spinlock_t *lru_lock,
1892 void *arg)
1893 {
1894 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1895 struct list_head *dispose = arg;
1896
1897 /*
1898 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1899 * If we fail to get the lock, just skip it.
1900 */
1901 if (!spin_trylock(&bp->b_lock))
1902 return LRU_SKIP;
1903 /*
1904 * Decrement the b_lru_ref count unless the value is already
1905 * zero. If the value is already zero, we need to reclaim the
1906 * buffer, otherwise it gets another trip through the LRU.
1907 */
1908 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1909 spin_unlock(&bp->b_lock);
1910 return LRU_ROTATE;
1911 }
1912
1913 bp->b_state |= XFS_BSTATE_DISPOSE;
1914 list_lru_isolate_move(lru, item, dispose);
1915 spin_unlock(&bp->b_lock);
1916 return LRU_REMOVED;
1917 }
1918
1919 static unsigned long
xfs_buftarg_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1920 xfs_buftarg_shrink_scan(
1921 struct shrinker *shrink,
1922 struct shrink_control *sc)
1923 {
1924 struct xfs_buftarg *btp = container_of(shrink,
1925 struct xfs_buftarg, bt_shrinker);
1926 LIST_HEAD(dispose);
1927 unsigned long freed;
1928
1929 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1930 xfs_buftarg_isolate, &dispose);
1931
1932 while (!list_empty(&dispose)) {
1933 struct xfs_buf *bp;
1934 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1935 list_del_init(&bp->b_lru);
1936 xfs_buf_rele(bp);
1937 }
1938
1939 return freed;
1940 }
1941
1942 static unsigned long
xfs_buftarg_shrink_count(struct shrinker * shrink,struct shrink_control * sc)1943 xfs_buftarg_shrink_count(
1944 struct shrinker *shrink,
1945 struct shrink_control *sc)
1946 {
1947 struct xfs_buftarg *btp = container_of(shrink,
1948 struct xfs_buftarg, bt_shrinker);
1949 return list_lru_shrink_count(&btp->bt_lru, sc);
1950 }
1951
1952 void
xfs_free_buftarg(struct xfs_buftarg * btp)1953 xfs_free_buftarg(
1954 struct xfs_buftarg *btp)
1955 {
1956 unregister_shrinker(&btp->bt_shrinker);
1957 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1958 percpu_counter_destroy(&btp->bt_io_count);
1959 list_lru_destroy(&btp->bt_lru);
1960
1961 xfs_blkdev_issue_flush(btp);
1962
1963 kmem_free(btp);
1964 }
1965
1966 int
xfs_setsize_buftarg(xfs_buftarg_t * btp,unsigned int sectorsize)1967 xfs_setsize_buftarg(
1968 xfs_buftarg_t *btp,
1969 unsigned int sectorsize)
1970 {
1971 /* Set up metadata sector size info */
1972 btp->bt_meta_sectorsize = sectorsize;
1973 btp->bt_meta_sectormask = sectorsize - 1;
1974
1975 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1976 xfs_warn(btp->bt_mount,
1977 "Cannot set_blocksize to %u on device %pg",
1978 sectorsize, btp->bt_bdev);
1979 return -EINVAL;
1980 }
1981
1982 /* Set up device logical sector size mask */
1983 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1984 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1985
1986 return 0;
1987 }
1988
1989 /*
1990 * When allocating the initial buffer target we have not yet
1991 * read in the superblock, so don't know what sized sectors
1992 * are being used at this early stage. Play safe.
1993 */
1994 STATIC int
xfs_setsize_buftarg_early(xfs_buftarg_t * btp,struct block_device * bdev)1995 xfs_setsize_buftarg_early(
1996 xfs_buftarg_t *btp,
1997 struct block_device *bdev)
1998 {
1999 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
2000 }
2001
2002 xfs_buftarg_t *
xfs_alloc_buftarg(struct xfs_mount * mp,struct block_device * bdev,struct dax_device * dax_dev)2003 xfs_alloc_buftarg(
2004 struct xfs_mount *mp,
2005 struct block_device *bdev,
2006 struct dax_device *dax_dev)
2007 {
2008 xfs_buftarg_t *btp;
2009
2010 btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
2011
2012 btp->bt_mount = mp;
2013 btp->bt_dev = bdev->bd_dev;
2014 btp->bt_bdev = bdev;
2015 btp->bt_daxdev = dax_dev;
2016
2017 /*
2018 * Buffer IO error rate limiting. Limit it to no more than 10 messages
2019 * per 30 seconds so as to not spam logs too much on repeated errors.
2020 */
2021 ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ,
2022 DEFAULT_RATELIMIT_BURST);
2023
2024 if (xfs_setsize_buftarg_early(btp, bdev))
2025 goto error_free;
2026
2027 if (list_lru_init(&btp->bt_lru))
2028 goto error_free;
2029
2030 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
2031 goto error_lru;
2032
2033 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
2034 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
2035 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
2036 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
2037 if (register_shrinker(&btp->bt_shrinker))
2038 goto error_pcpu;
2039 return btp;
2040
2041 error_pcpu:
2042 percpu_counter_destroy(&btp->bt_io_count);
2043 error_lru:
2044 list_lru_destroy(&btp->bt_lru);
2045 error_free:
2046 kmem_free(btp);
2047 return NULL;
2048 }
2049
2050 /*
2051 * Cancel a delayed write list.
2052 *
2053 * Remove each buffer from the list, clear the delwri queue flag and drop the
2054 * associated buffer reference.
2055 */
2056 void
xfs_buf_delwri_cancel(struct list_head * list)2057 xfs_buf_delwri_cancel(
2058 struct list_head *list)
2059 {
2060 struct xfs_buf *bp;
2061
2062 while (!list_empty(list)) {
2063 bp = list_first_entry(list, struct xfs_buf, b_list);
2064
2065 xfs_buf_lock(bp);
2066 bp->b_flags &= ~_XBF_DELWRI_Q;
2067 list_del_init(&bp->b_list);
2068 xfs_buf_relse(bp);
2069 }
2070 }
2071
2072 /*
2073 * Add a buffer to the delayed write list.
2074 *
2075 * This queues a buffer for writeout if it hasn't already been. Note that
2076 * neither this routine nor the buffer list submission functions perform
2077 * any internal synchronization. It is expected that the lists are thread-local
2078 * to the callers.
2079 *
2080 * Returns true if we queued up the buffer, or false if it already had
2081 * been on the buffer list.
2082 */
2083 bool
xfs_buf_delwri_queue(struct xfs_buf * bp,struct list_head * list)2084 xfs_buf_delwri_queue(
2085 struct xfs_buf *bp,
2086 struct list_head *list)
2087 {
2088 ASSERT(xfs_buf_islocked(bp));
2089 ASSERT(!(bp->b_flags & XBF_READ));
2090
2091 /*
2092 * If the buffer is already marked delwri it already is queued up
2093 * by someone else for imediate writeout. Just ignore it in that
2094 * case.
2095 */
2096 if (bp->b_flags & _XBF_DELWRI_Q) {
2097 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
2098 return false;
2099 }
2100
2101 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
2102
2103 /*
2104 * If a buffer gets written out synchronously or marked stale while it
2105 * is on a delwri list we lazily remove it. To do this, the other party
2106 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
2107 * It remains referenced and on the list. In a rare corner case it
2108 * might get readded to a delwri list after the synchronous writeout, in
2109 * which case we need just need to re-add the flag here.
2110 */
2111 bp->b_flags |= _XBF_DELWRI_Q;
2112 if (list_empty(&bp->b_list)) {
2113 atomic_inc(&bp->b_hold);
2114 list_add_tail(&bp->b_list, list);
2115 }
2116
2117 return true;
2118 }
2119
2120 /*
2121 * Compare function is more complex than it needs to be because
2122 * the return value is only 32 bits and we are doing comparisons
2123 * on 64 bit values
2124 */
2125 static int
xfs_buf_cmp(void * priv,const struct list_head * a,const struct list_head * b)2126 xfs_buf_cmp(
2127 void *priv,
2128 const struct list_head *a,
2129 const struct list_head *b)
2130 {
2131 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
2132 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
2133 xfs_daddr_t diff;
2134
2135 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
2136 if (diff < 0)
2137 return -1;
2138 if (diff > 0)
2139 return 1;
2140 return 0;
2141 }
2142
2143 /*
2144 * Submit buffers for write. If wait_list is specified, the buffers are
2145 * submitted using sync I/O and placed on the wait list such that the caller can
2146 * iowait each buffer. Otherwise async I/O is used and the buffers are released
2147 * at I/O completion time. In either case, buffers remain locked until I/O
2148 * completes and the buffer is released from the queue.
2149 */
2150 static int
xfs_buf_delwri_submit_buffers(struct list_head * buffer_list,struct list_head * wait_list)2151 xfs_buf_delwri_submit_buffers(
2152 struct list_head *buffer_list,
2153 struct list_head *wait_list)
2154 {
2155 struct xfs_buf *bp, *n;
2156 int pinned = 0;
2157 struct blk_plug plug;
2158
2159 list_sort(NULL, buffer_list, xfs_buf_cmp);
2160
2161 blk_start_plug(&plug);
2162 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2163 if (!wait_list) {
2164 if (xfs_buf_ispinned(bp)) {
2165 pinned++;
2166 continue;
2167 }
2168 if (!xfs_buf_trylock(bp))
2169 continue;
2170 } else {
2171 xfs_buf_lock(bp);
2172 }
2173
2174 /*
2175 * Someone else might have written the buffer synchronously or
2176 * marked it stale in the meantime. In that case only the
2177 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2178 * reference and remove it from the list here.
2179 */
2180 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2181 list_del_init(&bp->b_list);
2182 xfs_buf_relse(bp);
2183 continue;
2184 }
2185
2186 trace_xfs_buf_delwri_split(bp, _RET_IP_);
2187
2188 /*
2189 * If we have a wait list, each buffer (and associated delwri
2190 * queue reference) transfers to it and is submitted
2191 * synchronously. Otherwise, drop the buffer from the delwri
2192 * queue and submit async.
2193 */
2194 bp->b_flags &= ~_XBF_DELWRI_Q;
2195 bp->b_flags |= XBF_WRITE;
2196 if (wait_list) {
2197 bp->b_flags &= ~XBF_ASYNC;
2198 list_move_tail(&bp->b_list, wait_list);
2199 } else {
2200 bp->b_flags |= XBF_ASYNC;
2201 list_del_init(&bp->b_list);
2202 }
2203 __xfs_buf_submit(bp, false);
2204 }
2205 blk_finish_plug(&plug);
2206
2207 return pinned;
2208 }
2209
2210 /*
2211 * Write out a buffer list asynchronously.
2212 *
2213 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2214 * out and not wait for I/O completion on any of the buffers. This interface
2215 * is only safely useable for callers that can track I/O completion by higher
2216 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2217 * function.
2218 *
2219 * Note: this function will skip buffers it would block on, and in doing so
2220 * leaves them on @buffer_list so they can be retried on a later pass. As such,
2221 * it is up to the caller to ensure that the buffer list is fully submitted or
2222 * cancelled appropriately when they are finished with the list. Failure to
2223 * cancel or resubmit the list until it is empty will result in leaked buffers
2224 * at unmount time.
2225 */
2226 int
xfs_buf_delwri_submit_nowait(struct list_head * buffer_list)2227 xfs_buf_delwri_submit_nowait(
2228 struct list_head *buffer_list)
2229 {
2230 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2231 }
2232
2233 /*
2234 * Write out a buffer list synchronously.
2235 *
2236 * This will take the @buffer_list, write all buffers out and wait for I/O
2237 * completion on all of the buffers. @buffer_list is consumed by the function,
2238 * so callers must have some other way of tracking buffers if they require such
2239 * functionality.
2240 */
2241 int
xfs_buf_delwri_submit(struct list_head * buffer_list)2242 xfs_buf_delwri_submit(
2243 struct list_head *buffer_list)
2244 {
2245 LIST_HEAD (wait_list);
2246 int error = 0, error2;
2247 struct xfs_buf *bp;
2248
2249 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2250
2251 /* Wait for IO to complete. */
2252 while (!list_empty(&wait_list)) {
2253 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2254
2255 list_del_init(&bp->b_list);
2256
2257 /*
2258 * Wait on the locked buffer, check for errors and unlock and
2259 * release the delwri queue reference.
2260 */
2261 error2 = xfs_buf_iowait(bp);
2262 xfs_buf_relse(bp);
2263 if (!error)
2264 error = error2;
2265 }
2266
2267 return error;
2268 }
2269
2270 /*
2271 * Push a single buffer on a delwri queue.
2272 *
2273 * The purpose of this function is to submit a single buffer of a delwri queue
2274 * and return with the buffer still on the original queue. The waiting delwri
2275 * buffer submission infrastructure guarantees transfer of the delwri queue
2276 * buffer reference to a temporary wait list. We reuse this infrastructure to
2277 * transfer the buffer back to the original queue.
2278 *
2279 * Note the buffer transitions from the queued state, to the submitted and wait
2280 * listed state and back to the queued state during this call. The buffer
2281 * locking and queue management logic between _delwri_pushbuf() and
2282 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2283 * before returning.
2284 */
2285 int
xfs_buf_delwri_pushbuf(struct xfs_buf * bp,struct list_head * buffer_list)2286 xfs_buf_delwri_pushbuf(
2287 struct xfs_buf *bp,
2288 struct list_head *buffer_list)
2289 {
2290 LIST_HEAD (submit_list);
2291 int error;
2292
2293 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2294
2295 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2296
2297 /*
2298 * Isolate the buffer to a new local list so we can submit it for I/O
2299 * independently from the rest of the original list.
2300 */
2301 xfs_buf_lock(bp);
2302 list_move(&bp->b_list, &submit_list);
2303 xfs_buf_unlock(bp);
2304
2305 /*
2306 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2307 * the buffer on the wait list with the original reference. Rather than
2308 * bounce the buffer from a local wait list back to the original list
2309 * after I/O completion, reuse the original list as the wait list.
2310 */
2311 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2312
2313 /*
2314 * The buffer is now locked, under I/O and wait listed on the original
2315 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2316 * return with the buffer unlocked and on the original queue.
2317 */
2318 error = xfs_buf_iowait(bp);
2319 bp->b_flags |= _XBF_DELWRI_Q;
2320 xfs_buf_unlock(bp);
2321
2322 return error;
2323 }
2324
2325 int __init
xfs_buf_init(void)2326 xfs_buf_init(void)
2327 {
2328 xfs_buf_zone = kmem_cache_create("xfs_buf", sizeof(struct xfs_buf), 0,
2329 SLAB_HWCACHE_ALIGN |
2330 SLAB_RECLAIM_ACCOUNT |
2331 SLAB_MEM_SPREAD,
2332 NULL);
2333 if (!xfs_buf_zone)
2334 goto out;
2335
2336 return 0;
2337
2338 out:
2339 return -ENOMEM;
2340 }
2341
2342 void
xfs_buf_terminate(void)2343 xfs_buf_terminate(void)
2344 {
2345 kmem_cache_destroy(xfs_buf_zone);
2346 }
2347
xfs_buf_set_ref(struct xfs_buf * bp,int lru_ref)2348 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2349 {
2350 /*
2351 * Set the lru reference count to 0 based on the error injection tag.
2352 * This allows userspace to disrupt buffer caching for debug/testing
2353 * purposes.
2354 */
2355 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2356 lru_ref = 0;
2357
2358 atomic_set(&bp->b_lru_ref, lru_ref);
2359 }
2360
2361 /*
2362 * Verify an on-disk magic value against the magic value specified in the
2363 * verifier structure. The verifier magic is in disk byte order so the caller is
2364 * expected to pass the value directly from disk.
2365 */
2366 bool
xfs_verify_magic(struct xfs_buf * bp,__be32 dmagic)2367 xfs_verify_magic(
2368 struct xfs_buf *bp,
2369 __be32 dmagic)
2370 {
2371 struct xfs_mount *mp = bp->b_mount;
2372 int idx;
2373
2374 idx = xfs_sb_version_hascrc(&mp->m_sb);
2375 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2376 return false;
2377 return dmagic == bp->b_ops->magic[idx];
2378 }
2379 /*
2380 * Verify an on-disk magic value against the magic value specified in the
2381 * verifier structure. The verifier magic is in disk byte order so the caller is
2382 * expected to pass the value directly from disk.
2383 */
2384 bool
xfs_verify_magic16(struct xfs_buf * bp,__be16 dmagic)2385 xfs_verify_magic16(
2386 struct xfs_buf *bp,
2387 __be16 dmagic)
2388 {
2389 struct xfs_mount *mp = bp->b_mount;
2390 int idx;
2391
2392 idx = xfs_sb_version_hascrc(&mp->m_sb);
2393 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2394 return false;
2395 return dmagic == bp->b_ops->magic16[idx];
2396 }
2397