1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  *
4  * Copyright (c) 2011, Microsoft Corporation.
5  *
6  * Authors:
7  *   Haiyang Zhang <haiyangz@microsoft.com>
8  *   Hank Janssen  <hjanssen@microsoft.com>
9  *   K. Y. Srinivasan <kys@microsoft.com>
10  */
11 
12 #ifndef _HYPERV_H
13 #define _HYPERV_H
14 
15 #include <uapi/linux/hyperv.h>
16 
17 #include <linux/mm.h>
18 #include <linux/types.h>
19 #include <linux/scatterlist.h>
20 #include <linux/list.h>
21 #include <linux/timer.h>
22 #include <linux/completion.h>
23 #include <linux/device.h>
24 #include <linux/mod_devicetable.h>
25 #include <linux/interrupt.h>
26 #include <linux/reciprocal_div.h>
27 #include <asm/hyperv-tlfs.h>
28 
29 #define MAX_PAGE_BUFFER_COUNT				32
30 #define MAX_MULTIPAGE_BUFFER_COUNT			32 /* 128K */
31 
32 #pragma pack(push, 1)
33 
34 /*
35  * Types for GPADL, decides is how GPADL header is created.
36  *
37  * It doesn't make much difference between BUFFER and RING if PAGE_SIZE is the
38  * same as HV_HYP_PAGE_SIZE.
39  *
40  * If PAGE_SIZE is bigger than HV_HYP_PAGE_SIZE, the headers of ring buffers
41  * will be of PAGE_SIZE, however, only the first HV_HYP_PAGE will be put
42  * into gpadl, therefore the number for HV_HYP_PAGE and the indexes of each
43  * HV_HYP_PAGE will be different between different types of GPADL, for example
44  * if PAGE_SIZE is 64K:
45  *
46  * BUFFER:
47  *
48  * gva:    |--       64k      --|--       64k      --| ... |
49  * gpa:    | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k |
50  * index:  0    1    2     15   16   17   18 .. 31   32 ...
51  *         |    |    ...   |    |    |   ...    |   ...
52  *         v    V          V    V    V          V
53  * gpadl:  | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k | ... |
54  * index:  0    1    2 ... 15   16   17   18 .. 31   32 ...
55  *
56  * RING:
57  *
58  *         | header  |           data           | header  |     data      |
59  * gva:    |-- 64k --|--       64k      --| ... |-- 64k --|-- 64k --| ... |
60  * gpa:    | 4k | .. | 4k | 4k | ... | 4k | ... | 4k | .. | 4k | .. | ... |
61  * index:  0    1    16   17   18    31   ...   n   n+1  n+16 ...         2n
62  *         |         /    /          /          |         /               /
63  *         |        /    /          /           |        /               /
64  *         |       /    /   ...    /    ...     |       /      ...      /
65  *         |      /    /          /             |      /               /
66  *         |     /    /          /              |     /               /
67  *         V    V    V          V               V    V               v
68  * gpadl:  | 4k | 4k |   ...    |    ...        | 4k | 4k |  ...     |
69  * index:  0    1    2   ...    16   ...       n-15 n-14 n-13  ...  2n-30
70  */
71 enum hv_gpadl_type {
72 	HV_GPADL_BUFFER,
73 	HV_GPADL_RING
74 };
75 
76 /* Single-page buffer */
77 struct hv_page_buffer {
78 	u32 len;
79 	u32 offset;
80 	u64 pfn;
81 };
82 
83 /* Multiple-page buffer */
84 struct hv_multipage_buffer {
85 	/* Length and Offset determines the # of pfns in the array */
86 	u32 len;
87 	u32 offset;
88 	u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
89 };
90 
91 /*
92  * Multiple-page buffer array; the pfn array is variable size:
93  * The number of entries in the PFN array is determined by
94  * "len" and "offset".
95  */
96 struct hv_mpb_array {
97 	/* Length and Offset determines the # of pfns in the array */
98 	u32 len;
99 	u32 offset;
100 	u64 pfn_array[];
101 };
102 
103 /* 0x18 includes the proprietary packet header */
104 #define MAX_PAGE_BUFFER_PACKET		(0x18 +			\
105 					(sizeof(struct hv_page_buffer) * \
106 					 MAX_PAGE_BUFFER_COUNT))
107 #define MAX_MULTIPAGE_BUFFER_PACKET	(0x18 +			\
108 					 sizeof(struct hv_multipage_buffer))
109 
110 
111 #pragma pack(pop)
112 
113 struct hv_ring_buffer {
114 	/* Offset in bytes from the start of ring data below */
115 	u32 write_index;
116 
117 	/* Offset in bytes from the start of ring data below */
118 	u32 read_index;
119 
120 	u32 interrupt_mask;
121 
122 	/*
123 	 * WS2012/Win8 and later versions of Hyper-V implement interrupt
124 	 * driven flow management. The feature bit feat_pending_send_sz
125 	 * is set by the host on the host->guest ring buffer, and by the
126 	 * guest on the guest->host ring buffer.
127 	 *
128 	 * The meaning of the feature bit is a bit complex in that it has
129 	 * semantics that apply to both ring buffers.  If the guest sets
130 	 * the feature bit in the guest->host ring buffer, the guest is
131 	 * telling the host that:
132 	 * 1) It will set the pending_send_sz field in the guest->host ring
133 	 *    buffer when it is waiting for space to become available, and
134 	 * 2) It will read the pending_send_sz field in the host->guest
135 	 *    ring buffer and interrupt the host when it frees enough space
136 	 *
137 	 * Similarly, if the host sets the feature bit in the host->guest
138 	 * ring buffer, the host is telling the guest that:
139 	 * 1) It will set the pending_send_sz field in the host->guest ring
140 	 *    buffer when it is waiting for space to become available, and
141 	 * 2) It will read the pending_send_sz field in the guest->host
142 	 *    ring buffer and interrupt the guest when it frees enough space
143 	 *
144 	 * If either the guest or host does not set the feature bit that it
145 	 * owns, that guest or host must do polling if it encounters a full
146 	 * ring buffer, and not signal the other end with an interrupt.
147 	 */
148 	u32 pending_send_sz;
149 	u32 reserved1[12];
150 	union {
151 		struct {
152 			u32 feat_pending_send_sz:1;
153 		};
154 		u32 value;
155 	} feature_bits;
156 
157 	/* Pad it to PAGE_SIZE so that data starts on page boundary */
158 	u8	reserved2[PAGE_SIZE - 68];
159 
160 	/*
161 	 * Ring data starts here + RingDataStartOffset
162 	 * !!! DO NOT place any fields below this !!!
163 	 */
164 	u8 buffer[];
165 } __packed;
166 
167 /* Calculate the proper size of a ringbuffer, it must be page-aligned */
168 #define VMBUS_RING_SIZE(payload_sz) PAGE_ALIGN(sizeof(struct hv_ring_buffer) + \
169 					       (payload_sz))
170 
171 struct hv_ring_buffer_info {
172 	struct hv_ring_buffer *ring_buffer;
173 	u32 ring_size;			/* Include the shared header */
174 	struct reciprocal_value ring_size_div10_reciprocal;
175 	spinlock_t ring_lock;
176 
177 	u32 ring_datasize;		/* < ring_size */
178 	u32 priv_read_index;
179 	/*
180 	 * The ring buffer mutex lock. This lock prevents the ring buffer from
181 	 * being freed while the ring buffer is being accessed.
182 	 */
183 	struct mutex ring_buffer_mutex;
184 };
185 
186 
hv_get_bytes_to_read(const struct hv_ring_buffer_info * rbi)187 static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi)
188 {
189 	u32 read_loc, write_loc, dsize, read;
190 
191 	dsize = rbi->ring_datasize;
192 	read_loc = rbi->ring_buffer->read_index;
193 	write_loc = READ_ONCE(rbi->ring_buffer->write_index);
194 
195 	read = write_loc >= read_loc ? (write_loc - read_loc) :
196 		(dsize - read_loc) + write_loc;
197 
198 	return read;
199 }
200 
hv_get_bytes_to_write(const struct hv_ring_buffer_info * rbi)201 static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi)
202 {
203 	u32 read_loc, write_loc, dsize, write;
204 
205 	dsize = rbi->ring_datasize;
206 	read_loc = READ_ONCE(rbi->ring_buffer->read_index);
207 	write_loc = rbi->ring_buffer->write_index;
208 
209 	write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
210 		read_loc - write_loc;
211 	return write;
212 }
213 
hv_get_avail_to_write_percent(const struct hv_ring_buffer_info * rbi)214 static inline u32 hv_get_avail_to_write_percent(
215 		const struct hv_ring_buffer_info *rbi)
216 {
217 	u32 avail_write = hv_get_bytes_to_write(rbi);
218 
219 	return reciprocal_divide(
220 			(avail_write  << 3) + (avail_write << 1),
221 			rbi->ring_size_div10_reciprocal);
222 }
223 
224 /*
225  * VMBUS version is 32 bit entity broken up into
226  * two 16 bit quantities: major_number. minor_number.
227  *
228  * 0 . 13 (Windows Server 2008)
229  * 1 . 1  (Windows 7)
230  * 2 . 4  (Windows 8)
231  * 3 . 0  (Windows 8 R2)
232  * 4 . 0  (Windows 10)
233  * 4 . 1  (Windows 10 RS3)
234  * 5 . 0  (Newer Windows 10)
235  * 5 . 1  (Windows 10 RS4)
236  * 5 . 2  (Windows Server 2019, RS5)
237  * 5 . 3  (Windows Server 2022)
238  */
239 
240 #define VERSION_WS2008  ((0 << 16) | (13))
241 #define VERSION_WIN7    ((1 << 16) | (1))
242 #define VERSION_WIN8    ((2 << 16) | (4))
243 #define VERSION_WIN8_1    ((3 << 16) | (0))
244 #define VERSION_WIN10 ((4 << 16) | (0))
245 #define VERSION_WIN10_V4_1 ((4 << 16) | (1))
246 #define VERSION_WIN10_V5 ((5 << 16) | (0))
247 #define VERSION_WIN10_V5_1 ((5 << 16) | (1))
248 #define VERSION_WIN10_V5_2 ((5 << 16) | (2))
249 #define VERSION_WIN10_V5_3 ((5 << 16) | (3))
250 
251 /* Make maximum size of pipe payload of 16K */
252 #define MAX_PIPE_DATA_PAYLOAD		(sizeof(u8) * 16384)
253 
254 /* Define PipeMode values. */
255 #define VMBUS_PIPE_TYPE_BYTE		0x00000000
256 #define VMBUS_PIPE_TYPE_MESSAGE		0x00000004
257 
258 /* The size of the user defined data buffer for non-pipe offers. */
259 #define MAX_USER_DEFINED_BYTES		120
260 
261 /* The size of the user defined data buffer for pipe offers. */
262 #define MAX_PIPE_USER_DEFINED_BYTES	116
263 
264 /*
265  * At the center of the Channel Management library is the Channel Offer. This
266  * struct contains the fundamental information about an offer.
267  */
268 struct vmbus_channel_offer {
269 	guid_t if_type;
270 	guid_t if_instance;
271 
272 	/*
273 	 * These two fields are not currently used.
274 	 */
275 	u64 reserved1;
276 	u64 reserved2;
277 
278 	u16 chn_flags;
279 	u16 mmio_megabytes;		/* in bytes * 1024 * 1024 */
280 
281 	union {
282 		/* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
283 		struct {
284 			unsigned char user_def[MAX_USER_DEFINED_BYTES];
285 		} std;
286 
287 		/*
288 		 * Pipes:
289 		 * The following structure is an integrated pipe protocol, which
290 		 * is implemented on top of standard user-defined data. Pipe
291 		 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
292 		 * use.
293 		 */
294 		struct {
295 			u32  pipe_mode;
296 			unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
297 		} pipe;
298 	} u;
299 	/*
300 	 * The sub_channel_index is defined in Win8: a value of zero means a
301 	 * primary channel and a value of non-zero means a sub-channel.
302 	 *
303 	 * Before Win8, the field is reserved, meaning it's always zero.
304 	 */
305 	u16 sub_channel_index;
306 	u16 reserved3;
307 } __packed;
308 
309 /* Server Flags */
310 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE	1
311 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES	2
312 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS		4
313 #define VMBUS_CHANNEL_NAMED_PIPE_MODE			0x10
314 #define VMBUS_CHANNEL_LOOPBACK_OFFER			0x100
315 #define VMBUS_CHANNEL_PARENT_OFFER			0x200
316 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION	0x400
317 #define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER		0x2000
318 
319 struct vmpacket_descriptor {
320 	u16 type;
321 	u16 offset8;
322 	u16 len8;
323 	u16 flags;
324 	u64 trans_id;
325 } __packed;
326 
327 struct vmpacket_header {
328 	u32 prev_pkt_start_offset;
329 	struct vmpacket_descriptor descriptor;
330 } __packed;
331 
332 struct vmtransfer_page_range {
333 	u32 byte_count;
334 	u32 byte_offset;
335 } __packed;
336 
337 struct vmtransfer_page_packet_header {
338 	struct vmpacket_descriptor d;
339 	u16 xfer_pageset_id;
340 	u8  sender_owns_set;
341 	u8 reserved;
342 	u32 range_cnt;
343 	struct vmtransfer_page_range ranges[1];
344 } __packed;
345 
346 struct vmgpadl_packet_header {
347 	struct vmpacket_descriptor d;
348 	u32 gpadl;
349 	u32 reserved;
350 } __packed;
351 
352 struct vmadd_remove_transfer_page_set {
353 	struct vmpacket_descriptor d;
354 	u32 gpadl;
355 	u16 xfer_pageset_id;
356 	u16 reserved;
357 } __packed;
358 
359 /*
360  * This structure defines a range in guest physical space that can be made to
361  * look virtually contiguous.
362  */
363 struct gpa_range {
364 	u32 byte_count;
365 	u32 byte_offset;
366 	u64 pfn_array[];
367 };
368 
369 /*
370  * This is the format for an Establish Gpadl packet, which contains a handle by
371  * which this GPADL will be known and a set of GPA ranges associated with it.
372  * This can be converted to a MDL by the guest OS.  If there are multiple GPA
373  * ranges, then the resulting MDL will be "chained," representing multiple VA
374  * ranges.
375  */
376 struct vmestablish_gpadl {
377 	struct vmpacket_descriptor d;
378 	u32 gpadl;
379 	u32 range_cnt;
380 	struct gpa_range range[1];
381 } __packed;
382 
383 /*
384  * This is the format for a Teardown Gpadl packet, which indicates that the
385  * GPADL handle in the Establish Gpadl packet will never be referenced again.
386  */
387 struct vmteardown_gpadl {
388 	struct vmpacket_descriptor d;
389 	u32 gpadl;
390 	u32 reserved;	/* for alignment to a 8-byte boundary */
391 } __packed;
392 
393 /*
394  * This is the format for a GPA-Direct packet, which contains a set of GPA
395  * ranges, in addition to commands and/or data.
396  */
397 struct vmdata_gpa_direct {
398 	struct vmpacket_descriptor d;
399 	u32 reserved;
400 	u32 range_cnt;
401 	struct gpa_range range[1];
402 } __packed;
403 
404 /* This is the format for a Additional Data Packet. */
405 struct vmadditional_data {
406 	struct vmpacket_descriptor d;
407 	u64 total_bytes;
408 	u32 offset;
409 	u32 byte_cnt;
410 	unsigned char data[1];
411 } __packed;
412 
413 union vmpacket_largest_possible_header {
414 	struct vmpacket_descriptor simple_hdr;
415 	struct vmtransfer_page_packet_header xfer_page_hdr;
416 	struct vmgpadl_packet_header gpadl_hdr;
417 	struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
418 	struct vmestablish_gpadl establish_gpadl_hdr;
419 	struct vmteardown_gpadl teardown_gpadl_hdr;
420 	struct vmdata_gpa_direct data_gpa_direct_hdr;
421 };
422 
423 #define VMPACKET_DATA_START_ADDRESS(__packet)	\
424 	(void *)(((unsigned char *)__packet) +	\
425 	 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
426 
427 #define VMPACKET_DATA_LENGTH(__packet)		\
428 	((((struct vmpacket_descriptor)__packet)->len8 -	\
429 	  ((struct vmpacket_descriptor)__packet)->offset8) * 8)
430 
431 #define VMPACKET_TRANSFER_MODE(__packet)	\
432 	(((struct IMPACT)__packet)->type)
433 
434 enum vmbus_packet_type {
435 	VM_PKT_INVALID				= 0x0,
436 	VM_PKT_SYNCH				= 0x1,
437 	VM_PKT_ADD_XFER_PAGESET			= 0x2,
438 	VM_PKT_RM_XFER_PAGESET			= 0x3,
439 	VM_PKT_ESTABLISH_GPADL			= 0x4,
440 	VM_PKT_TEARDOWN_GPADL			= 0x5,
441 	VM_PKT_DATA_INBAND			= 0x6,
442 	VM_PKT_DATA_USING_XFER_PAGES		= 0x7,
443 	VM_PKT_DATA_USING_GPADL			= 0x8,
444 	VM_PKT_DATA_USING_GPA_DIRECT		= 0x9,
445 	VM_PKT_CANCEL_REQUEST			= 0xa,
446 	VM_PKT_COMP				= 0xb,
447 	VM_PKT_DATA_USING_ADDITIONAL_PKT	= 0xc,
448 	VM_PKT_ADDITIONAL_DATA			= 0xd
449 };
450 
451 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED	1
452 
453 
454 /* Version 1 messages */
455 enum vmbus_channel_message_type {
456 	CHANNELMSG_INVALID			=  0,
457 	CHANNELMSG_OFFERCHANNEL		=  1,
458 	CHANNELMSG_RESCIND_CHANNELOFFER	=  2,
459 	CHANNELMSG_REQUESTOFFERS		=  3,
460 	CHANNELMSG_ALLOFFERS_DELIVERED	=  4,
461 	CHANNELMSG_OPENCHANNEL		=  5,
462 	CHANNELMSG_OPENCHANNEL_RESULT		=  6,
463 	CHANNELMSG_CLOSECHANNEL		=  7,
464 	CHANNELMSG_GPADL_HEADER		=  8,
465 	CHANNELMSG_GPADL_BODY			=  9,
466 	CHANNELMSG_GPADL_CREATED		= 10,
467 	CHANNELMSG_GPADL_TEARDOWN		= 11,
468 	CHANNELMSG_GPADL_TORNDOWN		= 12,
469 	CHANNELMSG_RELID_RELEASED		= 13,
470 	CHANNELMSG_INITIATE_CONTACT		= 14,
471 	CHANNELMSG_VERSION_RESPONSE		= 15,
472 	CHANNELMSG_UNLOAD			= 16,
473 	CHANNELMSG_UNLOAD_RESPONSE		= 17,
474 	CHANNELMSG_18				= 18,
475 	CHANNELMSG_19				= 19,
476 	CHANNELMSG_20				= 20,
477 	CHANNELMSG_TL_CONNECT_REQUEST		= 21,
478 	CHANNELMSG_MODIFYCHANNEL		= 22,
479 	CHANNELMSG_TL_CONNECT_RESULT		= 23,
480 	CHANNELMSG_MODIFYCHANNEL_RESPONSE	= 24,
481 	CHANNELMSG_COUNT
482 };
483 
484 /* Hyper-V supports about 2048 channels, and the RELIDs start with 1. */
485 #define INVALID_RELID	U32_MAX
486 
487 struct vmbus_channel_message_header {
488 	enum vmbus_channel_message_type msgtype;
489 	u32 padding;
490 } __packed;
491 
492 /* Query VMBus Version parameters */
493 struct vmbus_channel_query_vmbus_version {
494 	struct vmbus_channel_message_header header;
495 	u32 version;
496 } __packed;
497 
498 /* VMBus Version Supported parameters */
499 struct vmbus_channel_version_supported {
500 	struct vmbus_channel_message_header header;
501 	u8 version_supported;
502 } __packed;
503 
504 /* Offer Channel parameters */
505 struct vmbus_channel_offer_channel {
506 	struct vmbus_channel_message_header header;
507 	struct vmbus_channel_offer offer;
508 	u32 child_relid;
509 	u8 monitorid;
510 	/*
511 	 * win7 and beyond splits this field into a bit field.
512 	 */
513 	u8 monitor_allocated:1;
514 	u8 reserved:7;
515 	/*
516 	 * These are new fields added in win7 and later.
517 	 * Do not access these fields without checking the
518 	 * negotiated protocol.
519 	 *
520 	 * If "is_dedicated_interrupt" is set, we must not set the
521 	 * associated bit in the channel bitmap while sending the
522 	 * interrupt to the host.
523 	 *
524 	 * connection_id is to be used in signaling the host.
525 	 */
526 	u16 is_dedicated_interrupt:1;
527 	u16 reserved1:15;
528 	u32 connection_id;
529 } __packed;
530 
531 /* Rescind Offer parameters */
532 struct vmbus_channel_rescind_offer {
533 	struct vmbus_channel_message_header header;
534 	u32 child_relid;
535 } __packed;
536 
537 static inline u32
hv_ringbuffer_pending_size(const struct hv_ring_buffer_info * rbi)538 hv_ringbuffer_pending_size(const struct hv_ring_buffer_info *rbi)
539 {
540 	return rbi->ring_buffer->pending_send_sz;
541 }
542 
543 /*
544  * Request Offer -- no parameters, SynIC message contains the partition ID
545  * Set Snoop -- no parameters, SynIC message contains the partition ID
546  * Clear Snoop -- no parameters, SynIC message contains the partition ID
547  * All Offers Delivered -- no parameters, SynIC message contains the partition
548  *		           ID
549  * Flush Client -- no parameters, SynIC message contains the partition ID
550  */
551 
552 /* Open Channel parameters */
553 struct vmbus_channel_open_channel {
554 	struct vmbus_channel_message_header header;
555 
556 	/* Identifies the specific VMBus channel that is being opened. */
557 	u32 child_relid;
558 
559 	/* ID making a particular open request at a channel offer unique. */
560 	u32 openid;
561 
562 	/* GPADL for the channel's ring buffer. */
563 	u32 ringbuffer_gpadlhandle;
564 
565 	/*
566 	 * Starting with win8, this field will be used to specify
567 	 * the target virtual processor on which to deliver the interrupt for
568 	 * the host to guest communication.
569 	 * Prior to win8, incoming channel interrupts would only
570 	 * be delivered on cpu 0. Setting this value to 0 would
571 	 * preserve the earlier behavior.
572 	 */
573 	u32 target_vp;
574 
575 	/*
576 	 * The upstream ring buffer begins at offset zero in the memory
577 	 * described by RingBufferGpadlHandle. The downstream ring buffer
578 	 * follows it at this offset (in pages).
579 	 */
580 	u32 downstream_ringbuffer_pageoffset;
581 
582 	/* User-specific data to be passed along to the server endpoint. */
583 	unsigned char userdata[MAX_USER_DEFINED_BYTES];
584 } __packed;
585 
586 /* Open Channel Result parameters */
587 struct vmbus_channel_open_result {
588 	struct vmbus_channel_message_header header;
589 	u32 child_relid;
590 	u32 openid;
591 	u32 status;
592 } __packed;
593 
594 /* Modify Channel Result parameters */
595 struct vmbus_channel_modifychannel_response {
596 	struct vmbus_channel_message_header header;
597 	u32 child_relid;
598 	u32 status;
599 } __packed;
600 
601 /* Close channel parameters; */
602 struct vmbus_channel_close_channel {
603 	struct vmbus_channel_message_header header;
604 	u32 child_relid;
605 } __packed;
606 
607 /* Channel Message GPADL */
608 #define GPADL_TYPE_RING_BUFFER		1
609 #define GPADL_TYPE_SERVER_SAVE_AREA	2
610 #define GPADL_TYPE_TRANSACTION		8
611 
612 /*
613  * The number of PFNs in a GPADL message is defined by the number of
614  * pages that would be spanned by ByteCount and ByteOffset.  If the
615  * implied number of PFNs won't fit in this packet, there will be a
616  * follow-up packet that contains more.
617  */
618 struct vmbus_channel_gpadl_header {
619 	struct vmbus_channel_message_header header;
620 	u32 child_relid;
621 	u32 gpadl;
622 	u16 range_buflen;
623 	u16 rangecount;
624 	struct gpa_range range[];
625 } __packed;
626 
627 /* This is the followup packet that contains more PFNs. */
628 struct vmbus_channel_gpadl_body {
629 	struct vmbus_channel_message_header header;
630 	u32 msgnumber;
631 	u32 gpadl;
632 	u64 pfn[];
633 } __packed;
634 
635 struct vmbus_channel_gpadl_created {
636 	struct vmbus_channel_message_header header;
637 	u32 child_relid;
638 	u32 gpadl;
639 	u32 creation_status;
640 } __packed;
641 
642 struct vmbus_channel_gpadl_teardown {
643 	struct vmbus_channel_message_header header;
644 	u32 child_relid;
645 	u32 gpadl;
646 } __packed;
647 
648 struct vmbus_channel_gpadl_torndown {
649 	struct vmbus_channel_message_header header;
650 	u32 gpadl;
651 } __packed;
652 
653 struct vmbus_channel_relid_released {
654 	struct vmbus_channel_message_header header;
655 	u32 child_relid;
656 } __packed;
657 
658 struct vmbus_channel_initiate_contact {
659 	struct vmbus_channel_message_header header;
660 	u32 vmbus_version_requested;
661 	u32 target_vcpu; /* The VCPU the host should respond to */
662 	union {
663 		u64 interrupt_page;
664 		struct {
665 			u8	msg_sint;
666 			u8	padding1[3];
667 			u32	padding2;
668 		};
669 	};
670 	u64 monitor_page1;
671 	u64 monitor_page2;
672 } __packed;
673 
674 /* Hyper-V socket: guest's connect()-ing to host */
675 struct vmbus_channel_tl_connect_request {
676 	struct vmbus_channel_message_header header;
677 	guid_t guest_endpoint_id;
678 	guid_t host_service_id;
679 } __packed;
680 
681 /* Modify Channel parameters, cf. vmbus_send_modifychannel() */
682 struct vmbus_channel_modifychannel {
683 	struct vmbus_channel_message_header header;
684 	u32 child_relid;
685 	u32 target_vp;
686 } __packed;
687 
688 struct vmbus_channel_version_response {
689 	struct vmbus_channel_message_header header;
690 	u8 version_supported;
691 
692 	u8 connection_state;
693 	u16 padding;
694 
695 	/*
696 	 * On new hosts that support VMBus protocol 5.0, we must use
697 	 * VMBUS_MESSAGE_CONNECTION_ID_4 for the Initiate Contact Message,
698 	 * and for subsequent messages, we must use the Message Connection ID
699 	 * field in the host-returned Version Response Message.
700 	 *
701 	 * On old hosts, we should always use VMBUS_MESSAGE_CONNECTION_ID (1).
702 	 */
703 	u32 msg_conn_id;
704 } __packed;
705 
706 enum vmbus_channel_state {
707 	CHANNEL_OFFER_STATE,
708 	CHANNEL_OPENING_STATE,
709 	CHANNEL_OPEN_STATE,
710 	CHANNEL_OPENED_STATE,
711 };
712 
713 /*
714  * Represents each channel msg on the vmbus connection This is a
715  * variable-size data structure depending on the msg type itself
716  */
717 struct vmbus_channel_msginfo {
718 	/* Bookkeeping stuff */
719 	struct list_head msglistentry;
720 
721 	/* So far, this is only used to handle gpadl body message */
722 	struct list_head submsglist;
723 
724 	/* Synchronize the request/response if needed */
725 	struct completion  waitevent;
726 	struct vmbus_channel *waiting_channel;
727 	union {
728 		struct vmbus_channel_version_supported version_supported;
729 		struct vmbus_channel_open_result open_result;
730 		struct vmbus_channel_gpadl_torndown gpadl_torndown;
731 		struct vmbus_channel_gpadl_created gpadl_created;
732 		struct vmbus_channel_version_response version_response;
733 		struct vmbus_channel_modifychannel_response modify_response;
734 	} response;
735 
736 	u32 msgsize;
737 	/*
738 	 * The channel message that goes out on the "wire".
739 	 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
740 	 */
741 	unsigned char msg[];
742 };
743 
744 struct vmbus_close_msg {
745 	struct vmbus_channel_msginfo info;
746 	struct vmbus_channel_close_channel msg;
747 };
748 
749 /* Define connection identifier type. */
750 union hv_connection_id {
751 	u32 asu32;
752 	struct {
753 		u32 id:24;
754 		u32 reserved:8;
755 	} u;
756 };
757 
758 enum vmbus_device_type {
759 	HV_IDE = 0,
760 	HV_SCSI,
761 	HV_FC,
762 	HV_NIC,
763 	HV_ND,
764 	HV_PCIE,
765 	HV_FB,
766 	HV_KBD,
767 	HV_MOUSE,
768 	HV_KVP,
769 	HV_TS,
770 	HV_HB,
771 	HV_SHUTDOWN,
772 	HV_FCOPY,
773 	HV_BACKUP,
774 	HV_DM,
775 	HV_UNKNOWN,
776 };
777 
778 /*
779  * Provides request ids for VMBus. Encapsulates guest memory
780  * addresses and stores the next available slot in req_arr
781  * to generate new ids in constant time.
782  */
783 struct vmbus_requestor {
784 	u64 *req_arr;
785 	unsigned long *req_bitmap; /* is a given slot available? */
786 	u32 size;
787 	u64 next_request_id;
788 	spinlock_t req_lock; /* provides atomicity */
789 };
790 
791 #define VMBUS_NO_RQSTOR U64_MAX
792 #define VMBUS_RQST_ERROR (U64_MAX - 1)
793 #define VMBUS_RQST_ID_NO_RESPONSE (U64_MAX - 2)
794 
795 struct vmbus_device {
796 	u16  dev_type;
797 	guid_t guid;
798 	bool perf_device;
799 	bool allowed_in_isolated;
800 };
801 
802 struct vmbus_channel {
803 	struct list_head listentry;
804 
805 	struct hv_device *device_obj;
806 
807 	enum vmbus_channel_state state;
808 
809 	struct vmbus_channel_offer_channel offermsg;
810 	/*
811 	 * These are based on the OfferMsg.MonitorId.
812 	 * Save it here for easy access.
813 	 */
814 	u8 monitor_grp;
815 	u8 monitor_bit;
816 
817 	bool rescind; /* got rescind msg */
818 	bool rescind_ref; /* got rescind msg, got channel reference */
819 	struct completion rescind_event;
820 
821 	u32 ringbuffer_gpadlhandle;
822 
823 	/* Allocated memory for ring buffer */
824 	struct page *ringbuffer_page;
825 	u32 ringbuffer_pagecount;
826 	u32 ringbuffer_send_offset;
827 	struct hv_ring_buffer_info outbound;	/* send to parent */
828 	struct hv_ring_buffer_info inbound;	/* receive from parent */
829 
830 	struct vmbus_close_msg close_msg;
831 
832 	/* Statistics */
833 	u64	interrupts;	/* Host to Guest interrupts */
834 	u64	sig_events;	/* Guest to Host events */
835 
836 	/*
837 	 * Guest to host interrupts caused by the outbound ring buffer changing
838 	 * from empty to not empty.
839 	 */
840 	u64 intr_out_empty;
841 
842 	/*
843 	 * Indicates that a full outbound ring buffer was encountered. The flag
844 	 * is set to true when a full outbound ring buffer is encountered and
845 	 * set to false when a write to the outbound ring buffer is completed.
846 	 */
847 	bool out_full_flag;
848 
849 	/* Channel callback's invoked in softirq context */
850 	struct tasklet_struct callback_event;
851 	void (*onchannel_callback)(void *context);
852 	void *channel_callback_context;
853 
854 	void (*change_target_cpu_callback)(struct vmbus_channel *channel,
855 			u32 old, u32 new);
856 
857 	/*
858 	 * Synchronize channel scheduling and channel removal; see the inline
859 	 * comments in vmbus_chan_sched() and vmbus_reset_channel_cb().
860 	 */
861 	spinlock_t sched_lock;
862 
863 	/*
864 	 * A channel can be marked for one of three modes of reading:
865 	 *   BATCHED - callback called from taslket and should read
866 	 *            channel until empty. Interrupts from the host
867 	 *            are masked while read is in process (default).
868 	 *   DIRECT - callback called from tasklet (softirq).
869 	 *   ISR - callback called in interrupt context and must
870 	 *         invoke its own deferred processing.
871 	 *         Host interrupts are disabled and must be re-enabled
872 	 *         when ring is empty.
873 	 */
874 	enum hv_callback_mode {
875 		HV_CALL_BATCHED,
876 		HV_CALL_DIRECT,
877 		HV_CALL_ISR
878 	} callback_mode;
879 
880 	bool is_dedicated_interrupt;
881 	u64 sig_event;
882 
883 	/*
884 	 * Starting with win8, this field will be used to specify the
885 	 * target CPU on which to deliver the interrupt for the host
886 	 * to guest communication.
887 	 *
888 	 * Prior to win8, incoming channel interrupts would only be
889 	 * delivered on CPU 0. Setting this value to 0 would preserve
890 	 * the earlier behavior.
891 	 */
892 	u32 target_cpu;
893 	/*
894 	 * Support for sub-channels. For high performance devices,
895 	 * it will be useful to have multiple sub-channels to support
896 	 * a scalable communication infrastructure with the host.
897 	 * The support for sub-channels is implemented as an extension
898 	 * to the current infrastructure.
899 	 * The initial offer is considered the primary channel and this
900 	 * offer message will indicate if the host supports sub-channels.
901 	 * The guest is free to ask for sub-channels to be offered and can
902 	 * open these sub-channels as a normal "primary" channel. However,
903 	 * all sub-channels will have the same type and instance guids as the
904 	 * primary channel. Requests sent on a given channel will result in a
905 	 * response on the same channel.
906 	 */
907 
908 	/*
909 	 * Sub-channel creation callback. This callback will be called in
910 	 * process context when a sub-channel offer is received from the host.
911 	 * The guest can open the sub-channel in the context of this callback.
912 	 */
913 	void (*sc_creation_callback)(struct vmbus_channel *new_sc);
914 
915 	/*
916 	 * Channel rescind callback. Some channels (the hvsock ones), need to
917 	 * register a callback which is invoked in vmbus_onoffer_rescind().
918 	 */
919 	void (*chn_rescind_callback)(struct vmbus_channel *channel);
920 
921 	/*
922 	 * All Sub-channels of a primary channel are linked here.
923 	 */
924 	struct list_head sc_list;
925 	/*
926 	 * The primary channel this sub-channel belongs to.
927 	 * This will be NULL for the primary channel.
928 	 */
929 	struct vmbus_channel *primary_channel;
930 	/*
931 	 * Support per-channel state for use by vmbus drivers.
932 	 */
933 	void *per_channel_state;
934 
935 	/*
936 	 * Defer freeing channel until after all cpu's have
937 	 * gone through grace period.
938 	 */
939 	struct rcu_head rcu;
940 
941 	/*
942 	 * For sysfs per-channel properties.
943 	 */
944 	struct kobject			kobj;
945 
946 	/*
947 	 * For performance critical channels (storage, networking
948 	 * etc,), Hyper-V has a mechanism to enhance the throughput
949 	 * at the expense of latency:
950 	 * When the host is to be signaled, we just set a bit in a shared page
951 	 * and this bit will be inspected by the hypervisor within a certain
952 	 * window and if the bit is set, the host will be signaled. The window
953 	 * of time is the monitor latency - currently around 100 usecs. This
954 	 * mechanism improves throughput by:
955 	 *
956 	 * A) Making the host more efficient - each time it wakes up,
957 	 *    potentially it will process morev number of packets. The
958 	 *    monitor latency allows a batch to build up.
959 	 * B) By deferring the hypercall to signal, we will also minimize
960 	 *    the interrupts.
961 	 *
962 	 * Clearly, these optimizations improve throughput at the expense of
963 	 * latency. Furthermore, since the channel is shared for both
964 	 * control and data messages, control messages currently suffer
965 	 * unnecessary latency adversely impacting performance and boot
966 	 * time. To fix this issue, permit tagging the channel as being
967 	 * in "low latency" mode. In this mode, we will bypass the monitor
968 	 * mechanism.
969 	 */
970 	bool low_latency;
971 
972 	bool probe_done;
973 
974 	/*
975 	 * Cache the device ID here for easy access; this is useful, in
976 	 * particular, in situations where the channel's device_obj has
977 	 * not been allocated/initialized yet.
978 	 */
979 	u16 device_id;
980 
981 	/*
982 	 * We must offload the handling of the primary/sub channels
983 	 * from the single-threaded vmbus_connection.work_queue to
984 	 * two different workqueue, otherwise we can block
985 	 * vmbus_connection.work_queue and hang: see vmbus_process_offer().
986 	 */
987 	struct work_struct add_channel_work;
988 
989 	/*
990 	 * Guest to host interrupts caused by the inbound ring buffer changing
991 	 * from full to not full while a packet is waiting.
992 	 */
993 	u64 intr_in_full;
994 
995 	/*
996 	 * The total number of write operations that encountered a full
997 	 * outbound ring buffer.
998 	 */
999 	u64 out_full_total;
1000 
1001 	/*
1002 	 * The number of write operations that were the first to encounter a
1003 	 * full outbound ring buffer.
1004 	 */
1005 	u64 out_full_first;
1006 
1007 	/* enabling/disabling fuzz testing on the channel (default is false)*/
1008 	bool fuzz_testing_state;
1009 
1010 	/*
1011 	 * Interrupt delay will delay the guest from emptying the ring buffer
1012 	 * for a specific amount of time. The delay is in microseconds and will
1013 	 * be between 1 to a maximum of 1000, its default is 0 (no delay).
1014 	 * The  Message delay will delay guest reading on a per message basis
1015 	 * in microseconds between 1 to 1000 with the default being 0
1016 	 * (no delay).
1017 	 */
1018 	u32 fuzz_testing_interrupt_delay;
1019 	u32 fuzz_testing_message_delay;
1020 
1021 	/* request/transaction ids for VMBus */
1022 	struct vmbus_requestor requestor;
1023 	u32 rqstor_size;
1024 };
1025 
1026 u64 vmbus_next_request_id(struct vmbus_requestor *rqstor, u64 rqst_addr);
1027 u64 vmbus_request_addr(struct vmbus_requestor *rqstor, u64 trans_id);
1028 
is_hvsock_channel(const struct vmbus_channel * c)1029 static inline bool is_hvsock_channel(const struct vmbus_channel *c)
1030 {
1031 	return !!(c->offermsg.offer.chn_flags &
1032 		  VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
1033 }
1034 
is_sub_channel(const struct vmbus_channel * c)1035 static inline bool is_sub_channel(const struct vmbus_channel *c)
1036 {
1037 	return c->offermsg.offer.sub_channel_index != 0;
1038 }
1039 
set_channel_read_mode(struct vmbus_channel * c,enum hv_callback_mode mode)1040 static inline void set_channel_read_mode(struct vmbus_channel *c,
1041 					enum hv_callback_mode mode)
1042 {
1043 	c->callback_mode = mode;
1044 }
1045 
set_per_channel_state(struct vmbus_channel * c,void * s)1046 static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
1047 {
1048 	c->per_channel_state = s;
1049 }
1050 
get_per_channel_state(struct vmbus_channel * c)1051 static inline void *get_per_channel_state(struct vmbus_channel *c)
1052 {
1053 	return c->per_channel_state;
1054 }
1055 
set_channel_pending_send_size(struct vmbus_channel * c,u32 size)1056 static inline void set_channel_pending_send_size(struct vmbus_channel *c,
1057 						 u32 size)
1058 {
1059 	unsigned long flags;
1060 
1061 	if (size) {
1062 		spin_lock_irqsave(&c->outbound.ring_lock, flags);
1063 		++c->out_full_total;
1064 
1065 		if (!c->out_full_flag) {
1066 			++c->out_full_first;
1067 			c->out_full_flag = true;
1068 		}
1069 		spin_unlock_irqrestore(&c->outbound.ring_lock, flags);
1070 	} else {
1071 		c->out_full_flag = false;
1072 	}
1073 
1074 	c->outbound.ring_buffer->pending_send_sz = size;
1075 }
1076 
set_low_latency_mode(struct vmbus_channel * c)1077 static inline void set_low_latency_mode(struct vmbus_channel *c)
1078 {
1079 	c->low_latency = true;
1080 }
1081 
clear_low_latency_mode(struct vmbus_channel * c)1082 static inline void clear_low_latency_mode(struct vmbus_channel *c)
1083 {
1084 	c->low_latency = false;
1085 }
1086 
1087 void vmbus_onmessage(struct vmbus_channel_message_header *hdr);
1088 
1089 int vmbus_request_offers(void);
1090 
1091 /*
1092  * APIs for managing sub-channels.
1093  */
1094 
1095 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
1096 			void (*sc_cr_cb)(struct vmbus_channel *new_sc));
1097 
1098 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
1099 		void (*chn_rescind_cb)(struct vmbus_channel *));
1100 
1101 /*
1102  * Check if sub-channels have already been offerred. This API will be useful
1103  * when the driver is unloaded after establishing sub-channels. In this case,
1104  * when the driver is re-loaded, the driver would have to check if the
1105  * subchannels have already been established before attempting to request
1106  * the creation of sub-channels.
1107  * This function returns TRUE to indicate that subchannels have already been
1108  * created.
1109  * This function should be invoked after setting the callback function for
1110  * sub-channel creation.
1111  */
1112 bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
1113 
1114 /* The format must be the same as struct vmdata_gpa_direct */
1115 struct vmbus_channel_packet_page_buffer {
1116 	u16 type;
1117 	u16 dataoffset8;
1118 	u16 length8;
1119 	u16 flags;
1120 	u64 transactionid;
1121 	u32 reserved;
1122 	u32 rangecount;
1123 	struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
1124 } __packed;
1125 
1126 /* The format must be the same as struct vmdata_gpa_direct */
1127 struct vmbus_channel_packet_multipage_buffer {
1128 	u16 type;
1129 	u16 dataoffset8;
1130 	u16 length8;
1131 	u16 flags;
1132 	u64 transactionid;
1133 	u32 reserved;
1134 	u32 rangecount;		/* Always 1 in this case */
1135 	struct hv_multipage_buffer range;
1136 } __packed;
1137 
1138 /* The format must be the same as struct vmdata_gpa_direct */
1139 struct vmbus_packet_mpb_array {
1140 	u16 type;
1141 	u16 dataoffset8;
1142 	u16 length8;
1143 	u16 flags;
1144 	u64 transactionid;
1145 	u32 reserved;
1146 	u32 rangecount;         /* Always 1 in this case */
1147 	struct hv_mpb_array range;
1148 } __packed;
1149 
1150 int vmbus_alloc_ring(struct vmbus_channel *channel,
1151 		     u32 send_size, u32 recv_size);
1152 void vmbus_free_ring(struct vmbus_channel *channel);
1153 
1154 int vmbus_connect_ring(struct vmbus_channel *channel,
1155 		       void (*onchannel_callback)(void *context),
1156 		       void *context);
1157 int vmbus_disconnect_ring(struct vmbus_channel *channel);
1158 
1159 extern int vmbus_open(struct vmbus_channel *channel,
1160 			    u32 send_ringbuffersize,
1161 			    u32 recv_ringbuffersize,
1162 			    void *userdata,
1163 			    u32 userdatalen,
1164 			    void (*onchannel_callback)(void *context),
1165 			    void *context);
1166 
1167 extern void vmbus_close(struct vmbus_channel *channel);
1168 
1169 extern int vmbus_sendpacket(struct vmbus_channel *channel,
1170 				  void *buffer,
1171 				  u32 bufferLen,
1172 				  u64 requestid,
1173 				  enum vmbus_packet_type type,
1174 				  u32 flags);
1175 
1176 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1177 					    struct hv_page_buffer pagebuffers[],
1178 					    u32 pagecount,
1179 					    void *buffer,
1180 					    u32 bufferlen,
1181 					    u64 requestid);
1182 
1183 extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
1184 				     struct vmbus_packet_mpb_array *mpb,
1185 				     u32 desc_size,
1186 				     void *buffer,
1187 				     u32 bufferlen,
1188 				     u64 requestid);
1189 
1190 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1191 				      void *kbuffer,
1192 				      u32 size,
1193 				      u32 *gpadl_handle);
1194 
1195 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1196 				     u32 gpadl_handle);
1197 
1198 void vmbus_reset_channel_cb(struct vmbus_channel *channel);
1199 
1200 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1201 				  void *buffer,
1202 				  u32 bufferlen,
1203 				  u32 *buffer_actual_len,
1204 				  u64 *requestid);
1205 
1206 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1207 				     void *buffer,
1208 				     u32 bufferlen,
1209 				     u32 *buffer_actual_len,
1210 				     u64 *requestid);
1211 
1212 
1213 extern void vmbus_ontimer(unsigned long data);
1214 
1215 /* Base driver object */
1216 struct hv_driver {
1217 	const char *name;
1218 
1219 	/*
1220 	 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
1221 	 * channel flag, actually doesn't mean a synthetic device because the
1222 	 * offer's if_type/if_instance can change for every new hvsock
1223 	 * connection.
1224 	 *
1225 	 * However, to facilitate the notification of new-offer/rescind-offer
1226 	 * from vmbus driver to hvsock driver, we can handle hvsock offer as
1227 	 * a special vmbus device, and hence we need the below flag to
1228 	 * indicate if the driver is the hvsock driver or not: we need to
1229 	 * specially treat the hvosck offer & driver in vmbus_match().
1230 	 */
1231 	bool hvsock;
1232 
1233 	/* the device type supported by this driver */
1234 	guid_t dev_type;
1235 	const struct hv_vmbus_device_id *id_table;
1236 
1237 	struct device_driver driver;
1238 
1239 	/* dynamic device GUID's */
1240 	struct  {
1241 		spinlock_t lock;
1242 		struct list_head list;
1243 	} dynids;
1244 
1245 	int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1246 	int (*remove)(struct hv_device *);
1247 	void (*shutdown)(struct hv_device *);
1248 
1249 	int (*suspend)(struct hv_device *);
1250 	int (*resume)(struct hv_device *);
1251 
1252 };
1253 
1254 /* Base device object */
1255 struct hv_device {
1256 	/* the device type id of this device */
1257 	guid_t dev_type;
1258 
1259 	/* the device instance id of this device */
1260 	guid_t dev_instance;
1261 	u16 vendor_id;
1262 	u16 device_id;
1263 
1264 	struct device device;
1265 	char *driver_override; /* Driver name to force a match */
1266 
1267 	struct vmbus_channel *channel;
1268 	struct kset	     *channels_kset;
1269 
1270 	/* place holder to keep track of the dir for hv device in debugfs */
1271 	struct dentry *debug_dir;
1272 
1273 };
1274 
1275 
device_to_hv_device(struct device * d)1276 static inline struct hv_device *device_to_hv_device(struct device *d)
1277 {
1278 	return container_of(d, struct hv_device, device);
1279 }
1280 
drv_to_hv_drv(struct device_driver * d)1281 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1282 {
1283 	return container_of(d, struct hv_driver, driver);
1284 }
1285 
hv_set_drvdata(struct hv_device * dev,void * data)1286 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1287 {
1288 	dev_set_drvdata(&dev->device, data);
1289 }
1290 
hv_get_drvdata(struct hv_device * dev)1291 static inline void *hv_get_drvdata(struct hv_device *dev)
1292 {
1293 	return dev_get_drvdata(&dev->device);
1294 }
1295 
1296 struct hv_ring_buffer_debug_info {
1297 	u32 current_interrupt_mask;
1298 	u32 current_read_index;
1299 	u32 current_write_index;
1300 	u32 bytes_avail_toread;
1301 	u32 bytes_avail_towrite;
1302 };
1303 
1304 
1305 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
1306 				struct hv_ring_buffer_debug_info *debug_info);
1307 
1308 /* Vmbus interface */
1309 #define vmbus_driver_register(driver)	\
1310 	__vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1311 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1312 					 struct module *owner,
1313 					 const char *mod_name);
1314 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1315 
1316 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
1317 
1318 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1319 			resource_size_t min, resource_size_t max,
1320 			resource_size_t size, resource_size_t align,
1321 			bool fb_overlap_ok);
1322 void vmbus_free_mmio(resource_size_t start, resource_size_t size);
1323 
1324 /*
1325  * GUID definitions of various offer types - services offered to the guest.
1326  */
1327 
1328 /*
1329  * Network GUID
1330  * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1331  */
1332 #define HV_NIC_GUID \
1333 	.guid = GUID_INIT(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
1334 			  0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
1335 
1336 /*
1337  * IDE GUID
1338  * {32412632-86cb-44a2-9b5c-50d1417354f5}
1339  */
1340 #define HV_IDE_GUID \
1341 	.guid = GUID_INIT(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
1342 			  0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
1343 
1344 /*
1345  * SCSI GUID
1346  * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1347  */
1348 #define HV_SCSI_GUID \
1349 	.guid = GUID_INIT(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
1350 			  0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
1351 
1352 /*
1353  * Shutdown GUID
1354  * {0e0b6031-5213-4934-818b-38d90ced39db}
1355  */
1356 #define HV_SHUTDOWN_GUID \
1357 	.guid = GUID_INIT(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
1358 			  0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
1359 
1360 /*
1361  * Time Synch GUID
1362  * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1363  */
1364 #define HV_TS_GUID \
1365 	.guid = GUID_INIT(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
1366 			  0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
1367 
1368 /*
1369  * Heartbeat GUID
1370  * {57164f39-9115-4e78-ab55-382f3bd5422d}
1371  */
1372 #define HV_HEART_BEAT_GUID \
1373 	.guid = GUID_INIT(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
1374 			  0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
1375 
1376 /*
1377  * KVP GUID
1378  * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1379  */
1380 #define HV_KVP_GUID \
1381 	.guid = GUID_INIT(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
1382 			  0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
1383 
1384 /*
1385  * Dynamic memory GUID
1386  * {525074dc-8985-46e2-8057-a307dc18a502}
1387  */
1388 #define HV_DM_GUID \
1389 	.guid = GUID_INIT(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
1390 			  0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
1391 
1392 /*
1393  * Mouse GUID
1394  * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1395  */
1396 #define HV_MOUSE_GUID \
1397 	.guid = GUID_INIT(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
1398 			  0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
1399 
1400 /*
1401  * Keyboard GUID
1402  * {f912ad6d-2b17-48ea-bd65-f927a61c7684}
1403  */
1404 #define HV_KBD_GUID \
1405 	.guid = GUID_INIT(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
1406 			  0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
1407 
1408 /*
1409  * VSS (Backup/Restore) GUID
1410  */
1411 #define HV_VSS_GUID \
1412 	.guid = GUID_INIT(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
1413 			  0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
1414 /*
1415  * Synthetic Video GUID
1416  * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1417  */
1418 #define HV_SYNTHVID_GUID \
1419 	.guid = GUID_INIT(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
1420 			  0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
1421 
1422 /*
1423  * Synthetic FC GUID
1424  * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1425  */
1426 #define HV_SYNTHFC_GUID \
1427 	.guid = GUID_INIT(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
1428 			  0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
1429 
1430 /*
1431  * Guest File Copy Service
1432  * {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
1433  */
1434 
1435 #define HV_FCOPY_GUID \
1436 	.guid = GUID_INIT(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
1437 			  0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
1438 
1439 /*
1440  * NetworkDirect. This is the guest RDMA service.
1441  * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
1442  */
1443 #define HV_ND_GUID \
1444 	.guid = GUID_INIT(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
1445 			  0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
1446 
1447 /*
1448  * PCI Express Pass Through
1449  * {44C4F61D-4444-4400-9D52-802E27EDE19F}
1450  */
1451 
1452 #define HV_PCIE_GUID \
1453 	.guid = GUID_INIT(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
1454 			  0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
1455 
1456 /*
1457  * Linux doesn't support the 3 devices: the first two are for
1458  * Automatic Virtual Machine Activation, and the third is for
1459  * Remote Desktop Virtualization.
1460  * {f8e65716-3cb3-4a06-9a60-1889c5cccab5}
1461  * {3375baf4-9e15-4b30-b765-67acb10d607b}
1462  * {276aacf4-ac15-426c-98dd-7521ad3f01fe}
1463  */
1464 
1465 #define HV_AVMA1_GUID \
1466 	.guid = GUID_INIT(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \
1467 			  0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5)
1468 
1469 #define HV_AVMA2_GUID \
1470 	.guid = GUID_INIT(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \
1471 			  0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b)
1472 
1473 #define HV_RDV_GUID \
1474 	.guid = GUID_INIT(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \
1475 			  0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe)
1476 
1477 /*
1478  * Common header for Hyper-V ICs
1479  */
1480 
1481 #define ICMSGTYPE_NEGOTIATE		0
1482 #define ICMSGTYPE_HEARTBEAT		1
1483 #define ICMSGTYPE_KVPEXCHANGE		2
1484 #define ICMSGTYPE_SHUTDOWN		3
1485 #define ICMSGTYPE_TIMESYNC		4
1486 #define ICMSGTYPE_VSS			5
1487 #define ICMSGTYPE_FCOPY			7
1488 
1489 #define ICMSGHDRFLAG_TRANSACTION	1
1490 #define ICMSGHDRFLAG_REQUEST		2
1491 #define ICMSGHDRFLAG_RESPONSE		4
1492 
1493 
1494 /*
1495  * While we want to handle util services as regular devices,
1496  * there is only one instance of each of these services; so
1497  * we statically allocate the service specific state.
1498  */
1499 
1500 struct hv_util_service {
1501 	u8 *recv_buffer;
1502 	void *channel;
1503 	void (*util_cb)(void *);
1504 	int (*util_init)(struct hv_util_service *);
1505 	void (*util_deinit)(void);
1506 	int (*util_pre_suspend)(void);
1507 	int (*util_pre_resume)(void);
1508 };
1509 
1510 struct vmbuspipe_hdr {
1511 	u32 flags;
1512 	u32 msgsize;
1513 } __packed;
1514 
1515 struct ic_version {
1516 	u16 major;
1517 	u16 minor;
1518 } __packed;
1519 
1520 struct icmsg_hdr {
1521 	struct ic_version icverframe;
1522 	u16 icmsgtype;
1523 	struct ic_version icvermsg;
1524 	u16 icmsgsize;
1525 	u32 status;
1526 	u8 ictransaction_id;
1527 	u8 icflags;
1528 	u8 reserved[2];
1529 } __packed;
1530 
1531 #define IC_VERSION_NEGOTIATION_MAX_VER_COUNT 100
1532 #define ICMSG_HDR (sizeof(struct vmbuspipe_hdr) + sizeof(struct icmsg_hdr))
1533 #define ICMSG_NEGOTIATE_PKT_SIZE(icframe_vercnt, icmsg_vercnt) \
1534 	(ICMSG_HDR + sizeof(struct icmsg_negotiate) + \
1535 	 (((icframe_vercnt) + (icmsg_vercnt)) * sizeof(struct ic_version)))
1536 
1537 struct icmsg_negotiate {
1538 	u16 icframe_vercnt;
1539 	u16 icmsg_vercnt;
1540 	u32 reserved;
1541 	struct ic_version icversion_data[]; /* any size array */
1542 } __packed;
1543 
1544 struct shutdown_msg_data {
1545 	u32 reason_code;
1546 	u32 timeout_seconds;
1547 	u32 flags;
1548 	u8  display_message[2048];
1549 } __packed;
1550 
1551 struct heartbeat_msg_data {
1552 	u64 seq_num;
1553 	u32 reserved[8];
1554 } __packed;
1555 
1556 /* Time Sync IC defs */
1557 #define ICTIMESYNCFLAG_PROBE	0
1558 #define ICTIMESYNCFLAG_SYNC	1
1559 #define ICTIMESYNCFLAG_SAMPLE	2
1560 
1561 #ifdef __x86_64__
1562 #define WLTIMEDELTA	116444736000000000L	/* in 100ns unit */
1563 #else
1564 #define WLTIMEDELTA	116444736000000000LL
1565 #endif
1566 
1567 struct ictimesync_data {
1568 	u64 parenttime;
1569 	u64 childtime;
1570 	u64 roundtriptime;
1571 	u8 flags;
1572 } __packed;
1573 
1574 struct ictimesync_ref_data {
1575 	u64 parenttime;
1576 	u64 vmreferencetime;
1577 	u8 flags;
1578 	char leapflags;
1579 	char stratum;
1580 	u8 reserved[3];
1581 } __packed;
1582 
1583 struct hyperv_service_callback {
1584 	u8 msg_type;
1585 	char *log_msg;
1586 	guid_t data;
1587 	struct vmbus_channel *channel;
1588 	void (*callback)(void *context);
1589 };
1590 
1591 #define MAX_SRV_VER	0x7ffffff
1592 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf, u32 buflen,
1593 				const int *fw_version, int fw_vercnt,
1594 				const int *srv_version, int srv_vercnt,
1595 				int *nego_fw_version, int *nego_srv_version);
1596 
1597 void hv_process_channel_removal(struct vmbus_channel *channel);
1598 
1599 void vmbus_setevent(struct vmbus_channel *channel);
1600 /*
1601  * Negotiated version with the Host.
1602  */
1603 
1604 extern __u32 vmbus_proto_version;
1605 
1606 int vmbus_send_tl_connect_request(const guid_t *shv_guest_servie_id,
1607 				  const guid_t *shv_host_servie_id);
1608 int vmbus_send_modifychannel(struct vmbus_channel *channel, u32 target_vp);
1609 void vmbus_set_event(struct vmbus_channel *channel);
1610 
1611 /* Get the start of the ring buffer. */
1612 static inline void *
hv_get_ring_buffer(const struct hv_ring_buffer_info * ring_info)1613 hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info)
1614 {
1615 	return ring_info->ring_buffer->buffer;
1616 }
1617 
1618 /*
1619  * Mask off host interrupt callback notifications
1620  */
hv_begin_read(struct hv_ring_buffer_info * rbi)1621 static inline void hv_begin_read(struct hv_ring_buffer_info *rbi)
1622 {
1623 	rbi->ring_buffer->interrupt_mask = 1;
1624 
1625 	/* make sure mask update is not reordered */
1626 	virt_mb();
1627 }
1628 
1629 /*
1630  * Re-enable host callback and return number of outstanding bytes
1631  */
hv_end_read(struct hv_ring_buffer_info * rbi)1632 static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi)
1633 {
1634 
1635 	rbi->ring_buffer->interrupt_mask = 0;
1636 
1637 	/* make sure mask update is not reordered */
1638 	virt_mb();
1639 
1640 	/*
1641 	 * Now check to see if the ring buffer is still empty.
1642 	 * If it is not, we raced and we need to process new
1643 	 * incoming messages.
1644 	 */
1645 	return hv_get_bytes_to_read(rbi);
1646 }
1647 
1648 /*
1649  * An API to support in-place processing of incoming VMBUS packets.
1650  */
1651 
1652 /* Get data payload associated with descriptor */
hv_pkt_data(const struct vmpacket_descriptor * desc)1653 static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc)
1654 {
1655 	return (void *)((unsigned long)desc + (desc->offset8 << 3));
1656 }
1657 
1658 /* Get data size associated with descriptor */
hv_pkt_datalen(const struct vmpacket_descriptor * desc)1659 static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc)
1660 {
1661 	return (desc->len8 << 3) - (desc->offset8 << 3);
1662 }
1663 
1664 
1665 struct vmpacket_descriptor *
1666 hv_pkt_iter_first(struct vmbus_channel *channel);
1667 
1668 struct vmpacket_descriptor *
1669 __hv_pkt_iter_next(struct vmbus_channel *channel,
1670 		   const struct vmpacket_descriptor *pkt);
1671 
1672 void hv_pkt_iter_close(struct vmbus_channel *channel);
1673 
1674 /*
1675  * Get next packet descriptor from iterator
1676  * If at end of list, return NULL and update host.
1677  */
1678 static inline struct vmpacket_descriptor *
hv_pkt_iter_next(struct vmbus_channel * channel,const struct vmpacket_descriptor * pkt)1679 hv_pkt_iter_next(struct vmbus_channel *channel,
1680 		 const struct vmpacket_descriptor *pkt)
1681 {
1682 	struct vmpacket_descriptor *nxt;
1683 
1684 	nxt = __hv_pkt_iter_next(channel, pkt);
1685 	if (!nxt)
1686 		hv_pkt_iter_close(channel);
1687 
1688 	return nxt;
1689 }
1690 
1691 #define foreach_vmbus_pkt(pkt, channel) \
1692 	for (pkt = hv_pkt_iter_first(channel); pkt; \
1693 	    pkt = hv_pkt_iter_next(channel, pkt))
1694 
1695 /*
1696  * Interface for passing data between SR-IOV PF and VF drivers. The VF driver
1697  * sends requests to read and write blocks. Each block must be 128 bytes or
1698  * smaller. Optionally, the VF driver can register a callback function which
1699  * will be invoked when the host says that one or more of the first 64 block
1700  * IDs is "invalid" which means that the VF driver should reread them.
1701  */
1702 #define HV_CONFIG_BLOCK_SIZE_MAX 128
1703 
1704 int hyperv_read_cfg_blk(struct pci_dev *dev, void *buf, unsigned int buf_len,
1705 			unsigned int block_id, unsigned int *bytes_returned);
1706 int hyperv_write_cfg_blk(struct pci_dev *dev, void *buf, unsigned int len,
1707 			 unsigned int block_id);
1708 int hyperv_reg_block_invalidate(struct pci_dev *dev, void *context,
1709 				void (*block_invalidate)(void *context,
1710 							 u64 block_mask));
1711 
1712 struct hyperv_pci_block_ops {
1713 	int (*read_block)(struct pci_dev *dev, void *buf, unsigned int buf_len,
1714 			  unsigned int block_id, unsigned int *bytes_returned);
1715 	int (*write_block)(struct pci_dev *dev, void *buf, unsigned int len,
1716 			   unsigned int block_id);
1717 	int (*reg_blk_invalidate)(struct pci_dev *dev, void *context,
1718 				  void (*block_invalidate)(void *context,
1719 							   u64 block_mask));
1720 };
1721 
1722 extern struct hyperv_pci_block_ops hvpci_block_ops;
1723 
virt_to_hvpfn(void * addr)1724 static inline unsigned long virt_to_hvpfn(void *addr)
1725 {
1726 	phys_addr_t paddr;
1727 
1728 	if (is_vmalloc_addr(addr))
1729 		paddr = page_to_phys(vmalloc_to_page(addr)) +
1730 				     offset_in_page(addr);
1731 	else
1732 		paddr = __pa(addr);
1733 
1734 	return  paddr >> HV_HYP_PAGE_SHIFT;
1735 }
1736 
1737 #define NR_HV_HYP_PAGES_IN_PAGE	(PAGE_SIZE / HV_HYP_PAGE_SIZE)
1738 #define offset_in_hvpage(ptr)	((unsigned long)(ptr) & ~HV_HYP_PAGE_MASK)
1739 #define HVPFN_UP(x)	(((x) + HV_HYP_PAGE_SIZE-1) >> HV_HYP_PAGE_SHIFT)
1740 #define HVPFN_DOWN(x)	((x) >> HV_HYP_PAGE_SHIFT)
1741 #define page_to_hvpfn(page)	(page_to_pfn(page) * NR_HV_HYP_PAGES_IN_PAGE)
1742 
1743 #endif /* _HYPERV_H */
1744