1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_RMAP_H
3 #define _LINUX_RMAP_H
4 /*
5  * Declarations for Reverse Mapping functions in mm/rmap.c
6  */
7 
8 #include <linux/list.h>
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/rwsem.h>
12 #include <linux/memcontrol.h>
13 #include <linux/highmem.h>
14 
15 /*
16  * The anon_vma heads a list of private "related" vmas, to scan if
17  * an anonymous page pointing to this anon_vma needs to be unmapped:
18  * the vmas on the list will be related by forking, or by splitting.
19  *
20  * Since vmas come and go as they are split and merged (particularly
21  * in mprotect), the mapping field of an anonymous page cannot point
22  * directly to a vma: instead it points to an anon_vma, on whose list
23  * the related vmas can be easily linked or unlinked.
24  *
25  * After unlinking the last vma on the list, we must garbage collect
26  * the anon_vma object itself: we're guaranteed no page can be
27  * pointing to this anon_vma once its vma list is empty.
28  */
29 struct anon_vma {
30 	struct anon_vma *root;		/* Root of this anon_vma tree */
31 	struct rw_semaphore rwsem;	/* W: modification, R: walking the list */
32 	/*
33 	 * The refcount is taken on an anon_vma when there is no
34 	 * guarantee that the vma of page tables will exist for
35 	 * the duration of the operation. A caller that takes
36 	 * the reference is responsible for clearing up the
37 	 * anon_vma if they are the last user on release
38 	 */
39 	atomic_t refcount;
40 
41 	/*
42 	 * Count of child anon_vmas and VMAs which points to this anon_vma.
43 	 *
44 	 * This counter is used for making decision about reusing anon_vma
45 	 * instead of forking new one. See comments in function anon_vma_clone.
46 	 */
47 	unsigned degree;
48 
49 	struct anon_vma *parent;	/* Parent of this anon_vma */
50 
51 	/*
52 	 * NOTE: the LSB of the rb_root.rb_node is set by
53 	 * mm_take_all_locks() _after_ taking the above lock. So the
54 	 * rb_root must only be read/written after taking the above lock
55 	 * to be sure to see a valid next pointer. The LSB bit itself
56 	 * is serialized by a system wide lock only visible to
57 	 * mm_take_all_locks() (mm_all_locks_mutex).
58 	 */
59 
60 	/* Interval tree of private "related" vmas */
61 	struct rb_root_cached rb_root;
62 };
63 
64 /*
65  * The copy-on-write semantics of fork mean that an anon_vma
66  * can become associated with multiple processes. Furthermore,
67  * each child process will have its own anon_vma, where new
68  * pages for that process are instantiated.
69  *
70  * This structure allows us to find the anon_vmas associated
71  * with a VMA, or the VMAs associated with an anon_vma.
72  * The "same_vma" list contains the anon_vma_chains linking
73  * all the anon_vmas associated with this VMA.
74  * The "rb" field indexes on an interval tree the anon_vma_chains
75  * which link all the VMAs associated with this anon_vma.
76  */
77 struct anon_vma_chain {
78 	struct vm_area_struct *vma;
79 	struct anon_vma *anon_vma;
80 	struct list_head same_vma;   /* locked by mmap_lock & page_table_lock */
81 	struct rb_node rb;			/* locked by anon_vma->rwsem */
82 	unsigned long rb_subtree_last;
83 #ifdef CONFIG_DEBUG_VM_RB
84 	unsigned long cached_vma_start, cached_vma_last;
85 #endif
86 };
87 
88 enum ttu_flags {
89 	TTU_MIGRATION		= 0x1,	/* migration mode */
90 	TTU_MUNLOCK		= 0x2,	/* munlock mode */
91 
92 	TTU_SPLIT_HUGE_PMD	= 0x4,	/* split huge PMD if any */
93 	TTU_IGNORE_MLOCK	= 0x8,	/* ignore mlock */
94 	TTU_IGNORE_HWPOISON	= 0x20,	/* corrupted page is recoverable */
95 	TTU_BATCH_FLUSH		= 0x40,	/* Batch TLB flushes where possible
96 					 * and caller guarantees they will
97 					 * do a final flush if necessary */
98 	TTU_RMAP_LOCKED		= 0x80,	/* do not grab rmap lock:
99 					 * caller holds it */
100 	TTU_SPLIT_FREEZE	= 0x100,		/* freeze pte under splitting thp */
101 };
102 
103 #ifdef CONFIG_MMU
get_anon_vma(struct anon_vma * anon_vma)104 static inline void get_anon_vma(struct anon_vma *anon_vma)
105 {
106 	atomic_inc(&anon_vma->refcount);
107 }
108 
109 void __put_anon_vma(struct anon_vma *anon_vma);
110 
put_anon_vma(struct anon_vma * anon_vma)111 static inline void put_anon_vma(struct anon_vma *anon_vma)
112 {
113 	if (atomic_dec_and_test(&anon_vma->refcount))
114 		__put_anon_vma(anon_vma);
115 }
116 
anon_vma_lock_write(struct anon_vma * anon_vma)117 static inline void anon_vma_lock_write(struct anon_vma *anon_vma)
118 {
119 	down_write(&anon_vma->root->rwsem);
120 }
121 
anon_vma_unlock_write(struct anon_vma * anon_vma)122 static inline void anon_vma_unlock_write(struct anon_vma *anon_vma)
123 {
124 	up_write(&anon_vma->root->rwsem);
125 }
126 
anon_vma_lock_read(struct anon_vma * anon_vma)127 static inline void anon_vma_lock_read(struct anon_vma *anon_vma)
128 {
129 	down_read(&anon_vma->root->rwsem);
130 }
131 
anon_vma_unlock_read(struct anon_vma * anon_vma)132 static inline void anon_vma_unlock_read(struct anon_vma *anon_vma)
133 {
134 	up_read(&anon_vma->root->rwsem);
135 }
136 
137 
138 /*
139  * anon_vma helper functions.
140  */
141 void anon_vma_init(void);	/* create anon_vma_cachep */
142 int  __anon_vma_prepare(struct vm_area_struct *);
143 void unlink_anon_vmas(struct vm_area_struct *);
144 int anon_vma_clone(struct vm_area_struct *, struct vm_area_struct *);
145 int anon_vma_fork(struct vm_area_struct *, struct vm_area_struct *);
146 
anon_vma_prepare(struct vm_area_struct * vma)147 static inline int anon_vma_prepare(struct vm_area_struct *vma)
148 {
149 	if (likely(vma->anon_vma))
150 		return 0;
151 
152 	return __anon_vma_prepare(vma);
153 }
154 
anon_vma_merge(struct vm_area_struct * vma,struct vm_area_struct * next)155 static inline void anon_vma_merge(struct vm_area_struct *vma,
156 				  struct vm_area_struct *next)
157 {
158 	VM_BUG_ON_VMA(vma->anon_vma != next->anon_vma, vma);
159 	unlink_anon_vmas(next);
160 }
161 
162 struct anon_vma *page_get_anon_vma(struct page *page);
163 
164 /* bitflags for do_page_add_anon_rmap() */
165 #define RMAP_EXCLUSIVE 0x01
166 #define RMAP_COMPOUND 0x02
167 
168 /*
169  * rmap interfaces called when adding or removing pte of page
170  */
171 void page_move_anon_rmap(struct page *, struct vm_area_struct *);
172 void page_add_anon_rmap(struct page *, struct vm_area_struct *,
173 		unsigned long, bool);
174 void do_page_add_anon_rmap(struct page *, struct vm_area_struct *,
175 			   unsigned long, int);
176 void page_add_new_anon_rmap(struct page *, struct vm_area_struct *,
177 		unsigned long, bool);
178 void page_add_file_rmap(struct page *, bool);
179 void page_remove_rmap(struct page *, bool);
180 
181 void hugepage_add_anon_rmap(struct page *, struct vm_area_struct *,
182 			    unsigned long);
183 void hugepage_add_new_anon_rmap(struct page *, struct vm_area_struct *,
184 				unsigned long);
185 
page_dup_rmap(struct page * page,bool compound)186 static inline void page_dup_rmap(struct page *page, bool compound)
187 {
188 	atomic_inc(compound ? compound_mapcount_ptr(page) : &page->_mapcount);
189 }
190 
191 /*
192  * Called from mm/vmscan.c to handle paging out
193  */
194 int page_referenced(struct page *, int is_locked,
195 			struct mem_cgroup *memcg, unsigned long *vm_flags);
196 
197 bool try_to_unmap(struct page *, enum ttu_flags flags);
198 
199 /* Avoid racy checks */
200 #define PVMW_SYNC		(1 << 0)
201 /* Look for migarion entries rather than present PTEs */
202 #define PVMW_MIGRATION		(1 << 1)
203 
204 struct page_vma_mapped_walk {
205 	struct page *page;
206 	struct vm_area_struct *vma;
207 	unsigned long address;
208 	pmd_t *pmd;
209 	pte_t *pte;
210 	spinlock_t *ptl;
211 	unsigned int flags;
212 };
213 
page_vma_mapped_walk_done(struct page_vma_mapped_walk * pvmw)214 static inline void page_vma_mapped_walk_done(struct page_vma_mapped_walk *pvmw)
215 {
216 	/* HugeTLB pte is set to the relevant page table entry without pte_mapped. */
217 	if (pvmw->pte && !PageHuge(pvmw->page))
218 		pte_unmap(pvmw->pte);
219 	if (pvmw->ptl)
220 		spin_unlock(pvmw->ptl);
221 }
222 
223 bool page_vma_mapped_walk(struct page_vma_mapped_walk *pvmw);
224 
225 /*
226  * Used by swapoff to help locate where page is expected in vma.
227  */
228 unsigned long page_address_in_vma(struct page *, struct vm_area_struct *);
229 
230 /*
231  * Cleans the PTEs of shared mappings.
232  * (and since clean PTEs should also be readonly, write protects them too)
233  *
234  * returns the number of cleaned PTEs.
235  */
236 int page_mkclean(struct page *);
237 
238 /*
239  * called in munlock()/munmap() path to check for other vmas holding
240  * the page mlocked.
241  */
242 void try_to_munlock(struct page *);
243 
244 void remove_migration_ptes(struct page *old, struct page *new, bool locked);
245 
246 /*
247  * Called by memory-failure.c to kill processes.
248  */
249 struct anon_vma *page_lock_anon_vma_read(struct page *page);
250 void page_unlock_anon_vma_read(struct anon_vma *anon_vma);
251 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma);
252 
253 /*
254  * rmap_walk_control: To control rmap traversing for specific needs
255  *
256  * arg: passed to rmap_one() and invalid_vma()
257  * rmap_one: executed on each vma where page is mapped
258  * done: for checking traversing termination condition
259  * anon_lock: for getting anon_lock by optimized way rather than default
260  * invalid_vma: for skipping uninterested vma
261  */
262 struct rmap_walk_control {
263 	void *arg;
264 	/*
265 	 * Return false if page table scanning in rmap_walk should be stopped.
266 	 * Otherwise, return true.
267 	 */
268 	bool (*rmap_one)(struct page *page, struct vm_area_struct *vma,
269 					unsigned long addr, void *arg);
270 	int (*done)(struct page *page);
271 	struct anon_vma *(*anon_lock)(struct page *page);
272 	bool (*invalid_vma)(struct vm_area_struct *vma, void *arg);
273 };
274 
275 void rmap_walk(struct page *page, struct rmap_walk_control *rwc);
276 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc);
277 
278 #else	/* !CONFIG_MMU */
279 
280 #define anon_vma_init()		do {} while (0)
281 #define anon_vma_prepare(vma)	(0)
282 #define anon_vma_link(vma)	do {} while (0)
283 
page_referenced(struct page * page,int is_locked,struct mem_cgroup * memcg,unsigned long * vm_flags)284 static inline int page_referenced(struct page *page, int is_locked,
285 				  struct mem_cgroup *memcg,
286 				  unsigned long *vm_flags)
287 {
288 	*vm_flags = 0;
289 	return 0;
290 }
291 
292 #define try_to_unmap(page, refs) false
293 
page_mkclean(struct page * page)294 static inline int page_mkclean(struct page *page)
295 {
296 	return 0;
297 }
298 
299 
300 #endif	/* CONFIG_MMU */
301 
302 #endif	/* _LINUX_RMAP_H */
303