1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Scheduler topology setup/handling methods
4 */
5 #include "sched.h"
6
7 DEFINE_MUTEX(sched_domains_mutex);
8
9 /* Protected by sched_domains_mutex: */
10 static cpumask_var_t sched_domains_tmpmask;
11 static cpumask_var_t sched_domains_tmpmask2;
12
13 #ifdef CONFIG_SCHED_DEBUG
14
sched_debug_setup(char * str)15 static int __init sched_debug_setup(char *str)
16 {
17 sched_debug_verbose = true;
18
19 return 0;
20 }
21 early_param("sched_verbose", sched_debug_setup);
22
sched_debug(void)23 static inline bool sched_debug(void)
24 {
25 return sched_debug_verbose;
26 }
27
28 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
29 const struct sd_flag_debug sd_flag_debug[] = {
30 #include <linux/sched/sd_flags.h>
31 };
32 #undef SD_FLAG
33
sched_domain_debug_one(struct sched_domain * sd,int cpu,int level,struct cpumask * groupmask)34 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
35 struct cpumask *groupmask)
36 {
37 struct sched_group *group = sd->groups;
38 unsigned long flags = sd->flags;
39 unsigned int idx;
40
41 cpumask_clear(groupmask);
42
43 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
44 printk(KERN_CONT "span=%*pbl level=%s\n",
45 cpumask_pr_args(sched_domain_span(sd)), sd->name);
46
47 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
48 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
49 }
50 if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
51 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
52 }
53
54 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
55 unsigned int flag = BIT(idx);
56 unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
57
58 if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
59 !(sd->child->flags & flag))
60 printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
61 sd_flag_debug[idx].name);
62
63 if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
64 !(sd->parent->flags & flag))
65 printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
66 sd_flag_debug[idx].name);
67 }
68
69 printk(KERN_DEBUG "%*s groups:", level + 1, "");
70 do {
71 if (!group) {
72 printk("\n");
73 printk(KERN_ERR "ERROR: group is NULL\n");
74 break;
75 }
76
77 if (!cpumask_weight(sched_group_span(group))) {
78 printk(KERN_CONT "\n");
79 printk(KERN_ERR "ERROR: empty group\n");
80 break;
81 }
82
83 if (!(sd->flags & SD_OVERLAP) &&
84 cpumask_intersects(groupmask, sched_group_span(group))) {
85 printk(KERN_CONT "\n");
86 printk(KERN_ERR "ERROR: repeated CPUs\n");
87 break;
88 }
89
90 cpumask_or(groupmask, groupmask, sched_group_span(group));
91
92 printk(KERN_CONT " %d:{ span=%*pbl",
93 group->sgc->id,
94 cpumask_pr_args(sched_group_span(group)));
95
96 if ((sd->flags & SD_OVERLAP) &&
97 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
98 printk(KERN_CONT " mask=%*pbl",
99 cpumask_pr_args(group_balance_mask(group)));
100 }
101
102 if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
103 printk(KERN_CONT " cap=%lu", group->sgc->capacity);
104
105 if (group == sd->groups && sd->child &&
106 !cpumask_equal(sched_domain_span(sd->child),
107 sched_group_span(group))) {
108 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
109 }
110
111 printk(KERN_CONT " }");
112
113 group = group->next;
114
115 if (group != sd->groups)
116 printk(KERN_CONT ",");
117
118 } while (group != sd->groups);
119 printk(KERN_CONT "\n");
120
121 if (!cpumask_equal(sched_domain_span(sd), groupmask))
122 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
123
124 if (sd->parent &&
125 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
126 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
127 return 0;
128 }
129
sched_domain_debug(struct sched_domain * sd,int cpu)130 static void sched_domain_debug(struct sched_domain *sd, int cpu)
131 {
132 int level = 0;
133
134 if (!sched_debug_verbose)
135 return;
136
137 if (!sd) {
138 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
139 return;
140 }
141
142 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
143
144 for (;;) {
145 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
146 break;
147 level++;
148 sd = sd->parent;
149 if (!sd)
150 break;
151 }
152 }
153 #else /* !CONFIG_SCHED_DEBUG */
154
155 # define sched_debug_verbose 0
156 # define sched_domain_debug(sd, cpu) do { } while (0)
sched_debug(void)157 static inline bool sched_debug(void)
158 {
159 return false;
160 }
161 #endif /* CONFIG_SCHED_DEBUG */
162
163 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
164 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
165 static const unsigned int SD_DEGENERATE_GROUPS_MASK =
166 #include <linux/sched/sd_flags.h>
167 0;
168 #undef SD_FLAG
169
sd_degenerate(struct sched_domain * sd)170 static int sd_degenerate(struct sched_domain *sd)
171 {
172 if (cpumask_weight(sched_domain_span(sd)) == 1)
173 return 1;
174
175 /* Following flags need at least 2 groups */
176 if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
177 (sd->groups != sd->groups->next))
178 return 0;
179
180 /* Following flags don't use groups */
181 if (sd->flags & (SD_WAKE_AFFINE))
182 return 0;
183
184 return 1;
185 }
186
187 static int
sd_parent_degenerate(struct sched_domain * sd,struct sched_domain * parent)188 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
189 {
190 unsigned long cflags = sd->flags, pflags = parent->flags;
191
192 if (sd_degenerate(parent))
193 return 1;
194
195 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
196 return 0;
197
198 /* Flags needing groups don't count if only 1 group in parent */
199 if (parent->groups == parent->groups->next)
200 pflags &= ~SD_DEGENERATE_GROUPS_MASK;
201
202 if (~cflags & pflags)
203 return 0;
204
205 return 1;
206 }
207
208 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
209 DEFINE_STATIC_KEY_FALSE(sched_energy_present);
210 unsigned int sysctl_sched_energy_aware = 1;
211 DEFINE_MUTEX(sched_energy_mutex);
212 bool sched_energy_update;
213
rebuild_sched_domains_energy(void)214 void rebuild_sched_domains_energy(void)
215 {
216 mutex_lock(&sched_energy_mutex);
217 sched_energy_update = true;
218 rebuild_sched_domains();
219 sched_energy_update = false;
220 mutex_unlock(&sched_energy_mutex);
221 }
222
223 #ifdef CONFIG_PROC_SYSCTL
sched_energy_aware_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)224 int sched_energy_aware_handler(struct ctl_table *table, int write,
225 void *buffer, size_t *lenp, loff_t *ppos)
226 {
227 int ret, state;
228
229 if (write && !capable(CAP_SYS_ADMIN))
230 return -EPERM;
231
232 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
233 if (!ret && write) {
234 state = static_branch_unlikely(&sched_energy_present);
235 if (state != sysctl_sched_energy_aware)
236 rebuild_sched_domains_energy();
237 }
238
239 return ret;
240 }
241 #endif
242
free_pd(struct perf_domain * pd)243 static void free_pd(struct perf_domain *pd)
244 {
245 struct perf_domain *tmp;
246
247 while (pd) {
248 tmp = pd->next;
249 kfree(pd);
250 pd = tmp;
251 }
252 }
253
find_pd(struct perf_domain * pd,int cpu)254 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
255 {
256 while (pd) {
257 if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
258 return pd;
259 pd = pd->next;
260 }
261
262 return NULL;
263 }
264
pd_init(int cpu)265 static struct perf_domain *pd_init(int cpu)
266 {
267 struct em_perf_domain *obj = em_cpu_get(cpu);
268 struct perf_domain *pd;
269
270 if (!obj) {
271 if (sched_debug())
272 pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
273 return NULL;
274 }
275
276 pd = kzalloc(sizeof(*pd), GFP_KERNEL);
277 if (!pd)
278 return NULL;
279 pd->em_pd = obj;
280
281 return pd;
282 }
283
perf_domain_debug(const struct cpumask * cpu_map,struct perf_domain * pd)284 static void perf_domain_debug(const struct cpumask *cpu_map,
285 struct perf_domain *pd)
286 {
287 if (!sched_debug() || !pd)
288 return;
289
290 printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
291
292 while (pd) {
293 printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
294 cpumask_first(perf_domain_span(pd)),
295 cpumask_pr_args(perf_domain_span(pd)),
296 em_pd_nr_perf_states(pd->em_pd));
297 pd = pd->next;
298 }
299
300 printk(KERN_CONT "\n");
301 }
302
destroy_perf_domain_rcu(struct rcu_head * rp)303 static void destroy_perf_domain_rcu(struct rcu_head *rp)
304 {
305 struct perf_domain *pd;
306
307 pd = container_of(rp, struct perf_domain, rcu);
308 free_pd(pd);
309 }
310
sched_energy_set(bool has_eas)311 static void sched_energy_set(bool has_eas)
312 {
313 if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
314 if (sched_debug())
315 pr_info("%s: stopping EAS\n", __func__);
316 static_branch_disable_cpuslocked(&sched_energy_present);
317 } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
318 if (sched_debug())
319 pr_info("%s: starting EAS\n", __func__);
320 static_branch_enable_cpuslocked(&sched_energy_present);
321 }
322 }
323
324 /*
325 * EAS can be used on a root domain if it meets all the following conditions:
326 * 1. an Energy Model (EM) is available;
327 * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
328 * 3. no SMT is detected.
329 * 4. the EM complexity is low enough to keep scheduling overheads low;
330 * 5. schedutil is driving the frequency of all CPUs of the rd;
331 * 6. frequency invariance support is present;
332 *
333 * The complexity of the Energy Model is defined as:
334 *
335 * C = nr_pd * (nr_cpus + nr_ps)
336 *
337 * with parameters defined as:
338 * - nr_pd: the number of performance domains
339 * - nr_cpus: the number of CPUs
340 * - nr_ps: the sum of the number of performance states of all performance
341 * domains (for example, on a system with 2 performance domains,
342 * with 10 performance states each, nr_ps = 2 * 10 = 20).
343 *
344 * It is generally not a good idea to use such a model in the wake-up path on
345 * very complex platforms because of the associated scheduling overheads. The
346 * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
347 * with per-CPU DVFS and less than 8 performance states each, for example.
348 */
349 #define EM_MAX_COMPLEXITY 2048
350
351 extern struct cpufreq_governor schedutil_gov;
build_perf_domains(const struct cpumask * cpu_map)352 static bool build_perf_domains(const struct cpumask *cpu_map)
353 {
354 int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map);
355 struct perf_domain *pd = NULL, *tmp;
356 int cpu = cpumask_first(cpu_map);
357 struct root_domain *rd = cpu_rq(cpu)->rd;
358 struct cpufreq_policy *policy;
359 struct cpufreq_governor *gov;
360
361 if (!sysctl_sched_energy_aware)
362 goto free;
363
364 /* EAS is enabled for asymmetric CPU capacity topologies. */
365 if (!per_cpu(sd_asym_cpucapacity, cpu)) {
366 if (sched_debug()) {
367 pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
368 cpumask_pr_args(cpu_map));
369 }
370 goto free;
371 }
372
373 /* EAS definitely does *not* handle SMT */
374 if (sched_smt_active()) {
375 pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n",
376 cpumask_pr_args(cpu_map));
377 goto free;
378 }
379
380 if (!arch_scale_freq_invariant()) {
381 if (sched_debug()) {
382 pr_warn("rd %*pbl: Disabling EAS: frequency-invariant load tracking not yet supported",
383 cpumask_pr_args(cpu_map));
384 }
385 goto free;
386 }
387
388 for_each_cpu(i, cpu_map) {
389 /* Skip already covered CPUs. */
390 if (find_pd(pd, i))
391 continue;
392
393 /* Do not attempt EAS if schedutil is not being used. */
394 policy = cpufreq_cpu_get(i);
395 if (!policy)
396 goto free;
397 gov = policy->governor;
398 cpufreq_cpu_put(policy);
399 if (gov != &schedutil_gov) {
400 if (rd->pd)
401 pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
402 cpumask_pr_args(cpu_map));
403 goto free;
404 }
405
406 /* Create the new pd and add it to the local list. */
407 tmp = pd_init(i);
408 if (!tmp)
409 goto free;
410 tmp->next = pd;
411 pd = tmp;
412
413 /*
414 * Count performance domains and performance states for the
415 * complexity check.
416 */
417 nr_pd++;
418 nr_ps += em_pd_nr_perf_states(pd->em_pd);
419 }
420
421 /* Bail out if the Energy Model complexity is too high. */
422 if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) {
423 WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
424 cpumask_pr_args(cpu_map));
425 goto free;
426 }
427
428 perf_domain_debug(cpu_map, pd);
429
430 /* Attach the new list of performance domains to the root domain. */
431 tmp = rd->pd;
432 rcu_assign_pointer(rd->pd, pd);
433 if (tmp)
434 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
435
436 return !!pd;
437
438 free:
439 free_pd(pd);
440 tmp = rd->pd;
441 rcu_assign_pointer(rd->pd, NULL);
442 if (tmp)
443 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
444
445 return false;
446 }
447 #else
free_pd(struct perf_domain * pd)448 static void free_pd(struct perf_domain *pd) { }
449 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
450
free_rootdomain(struct rcu_head * rcu)451 static void free_rootdomain(struct rcu_head *rcu)
452 {
453 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
454
455 cpupri_cleanup(&rd->cpupri);
456 cpudl_cleanup(&rd->cpudl);
457 free_cpumask_var(rd->dlo_mask);
458 free_cpumask_var(rd->rto_mask);
459 free_cpumask_var(rd->online);
460 free_cpumask_var(rd->span);
461 free_pd(rd->pd);
462 kfree(rd);
463 }
464
rq_attach_root(struct rq * rq,struct root_domain * rd)465 void rq_attach_root(struct rq *rq, struct root_domain *rd)
466 {
467 struct root_domain *old_rd = NULL;
468 unsigned long flags;
469
470 raw_spin_lock_irqsave(&rq->lock, flags);
471
472 if (rq->rd) {
473 old_rd = rq->rd;
474
475 if (cpumask_test_cpu(rq->cpu, old_rd->online))
476 set_rq_offline(rq);
477
478 cpumask_clear_cpu(rq->cpu, old_rd->span);
479
480 /*
481 * If we dont want to free the old_rd yet then
482 * set old_rd to NULL to skip the freeing later
483 * in this function:
484 */
485 if (!atomic_dec_and_test(&old_rd->refcount))
486 old_rd = NULL;
487 }
488
489 atomic_inc(&rd->refcount);
490 rq->rd = rd;
491
492 cpumask_set_cpu(rq->cpu, rd->span);
493 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
494 set_rq_online(rq);
495
496 raw_spin_unlock_irqrestore(&rq->lock, flags);
497
498 if (old_rd)
499 call_rcu(&old_rd->rcu, free_rootdomain);
500 }
501
sched_get_rd(struct root_domain * rd)502 void sched_get_rd(struct root_domain *rd)
503 {
504 atomic_inc(&rd->refcount);
505 }
506
sched_put_rd(struct root_domain * rd)507 void sched_put_rd(struct root_domain *rd)
508 {
509 if (!atomic_dec_and_test(&rd->refcount))
510 return;
511
512 call_rcu(&rd->rcu, free_rootdomain);
513 }
514
init_rootdomain(struct root_domain * rd)515 static int init_rootdomain(struct root_domain *rd)
516 {
517 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
518 goto out;
519 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
520 goto free_span;
521 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
522 goto free_online;
523 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
524 goto free_dlo_mask;
525
526 #ifdef HAVE_RT_PUSH_IPI
527 rd->rto_cpu = -1;
528 raw_spin_lock_init(&rd->rto_lock);
529 init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
530 #endif
531
532 rd->visit_gen = 0;
533 init_dl_bw(&rd->dl_bw);
534 if (cpudl_init(&rd->cpudl) != 0)
535 goto free_rto_mask;
536
537 if (cpupri_init(&rd->cpupri) != 0)
538 goto free_cpudl;
539 return 0;
540
541 free_cpudl:
542 cpudl_cleanup(&rd->cpudl);
543 free_rto_mask:
544 free_cpumask_var(rd->rto_mask);
545 free_dlo_mask:
546 free_cpumask_var(rd->dlo_mask);
547 free_online:
548 free_cpumask_var(rd->online);
549 free_span:
550 free_cpumask_var(rd->span);
551 out:
552 return -ENOMEM;
553 }
554
555 /*
556 * By default the system creates a single root-domain with all CPUs as
557 * members (mimicking the global state we have today).
558 */
559 struct root_domain def_root_domain;
560
init_defrootdomain(void)561 void init_defrootdomain(void)
562 {
563 init_rootdomain(&def_root_domain);
564
565 atomic_set(&def_root_domain.refcount, 1);
566 }
567
alloc_rootdomain(void)568 static struct root_domain *alloc_rootdomain(void)
569 {
570 struct root_domain *rd;
571
572 rd = kzalloc(sizeof(*rd), GFP_KERNEL);
573 if (!rd)
574 return NULL;
575
576 if (init_rootdomain(rd) != 0) {
577 kfree(rd);
578 return NULL;
579 }
580
581 return rd;
582 }
583
free_sched_groups(struct sched_group * sg,int free_sgc)584 static void free_sched_groups(struct sched_group *sg, int free_sgc)
585 {
586 struct sched_group *tmp, *first;
587
588 if (!sg)
589 return;
590
591 first = sg;
592 do {
593 tmp = sg->next;
594
595 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
596 kfree(sg->sgc);
597
598 if (atomic_dec_and_test(&sg->ref))
599 kfree(sg);
600 sg = tmp;
601 } while (sg != first);
602 }
603
destroy_sched_domain(struct sched_domain * sd)604 static void destroy_sched_domain(struct sched_domain *sd)
605 {
606 /*
607 * A normal sched domain may have multiple group references, an
608 * overlapping domain, having private groups, only one. Iterate,
609 * dropping group/capacity references, freeing where none remain.
610 */
611 free_sched_groups(sd->groups, 1);
612
613 if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
614 kfree(sd->shared);
615 kfree(sd);
616 }
617
destroy_sched_domains_rcu(struct rcu_head * rcu)618 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
619 {
620 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
621
622 while (sd) {
623 struct sched_domain *parent = sd->parent;
624 destroy_sched_domain(sd);
625 sd = parent;
626 }
627 }
628
destroy_sched_domains(struct sched_domain * sd)629 static void destroy_sched_domains(struct sched_domain *sd)
630 {
631 if (sd)
632 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
633 }
634
635 /*
636 * Keep a special pointer to the highest sched_domain that has
637 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
638 * allows us to avoid some pointer chasing select_idle_sibling().
639 *
640 * Also keep a unique ID per domain (we use the first CPU number in
641 * the cpumask of the domain), this allows us to quickly tell if
642 * two CPUs are in the same cache domain, see cpus_share_cache().
643 */
644 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
645 DEFINE_PER_CPU(int, sd_llc_size);
646 DEFINE_PER_CPU(int, sd_llc_id);
647 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
648 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
649 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
650 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
651 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
652
update_top_cache_domain(int cpu)653 static void update_top_cache_domain(int cpu)
654 {
655 struct sched_domain_shared *sds = NULL;
656 struct sched_domain *sd;
657 int id = cpu;
658 int size = 1;
659
660 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
661 if (sd) {
662 id = cpumask_first(sched_domain_span(sd));
663 size = cpumask_weight(sched_domain_span(sd));
664 sds = sd->shared;
665 }
666
667 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
668 per_cpu(sd_llc_size, cpu) = size;
669 per_cpu(sd_llc_id, cpu) = id;
670 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
671
672 sd = lowest_flag_domain(cpu, SD_NUMA);
673 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
674
675 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
676 rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
677
678 sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY);
679 rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
680 }
681
682 /*
683 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
684 * hold the hotplug lock.
685 */
686 static void
cpu_attach_domain(struct sched_domain * sd,struct root_domain * rd,int cpu)687 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
688 {
689 struct rq *rq = cpu_rq(cpu);
690 struct sched_domain *tmp;
691 int numa_distance = 0;
692
693 /* Remove the sched domains which do not contribute to scheduling. */
694 for (tmp = sd; tmp; ) {
695 struct sched_domain *parent = tmp->parent;
696 if (!parent)
697 break;
698
699 if (sd_parent_degenerate(tmp, parent)) {
700 tmp->parent = parent->parent;
701 if (parent->parent)
702 parent->parent->child = tmp;
703 /*
704 * Transfer SD_PREFER_SIBLING down in case of a
705 * degenerate parent; the spans match for this
706 * so the property transfers.
707 */
708 if (parent->flags & SD_PREFER_SIBLING)
709 tmp->flags |= SD_PREFER_SIBLING;
710 destroy_sched_domain(parent);
711 } else
712 tmp = tmp->parent;
713 }
714
715 if (sd && sd_degenerate(sd)) {
716 tmp = sd;
717 sd = sd->parent;
718 destroy_sched_domain(tmp);
719 if (sd)
720 sd->child = NULL;
721 }
722
723 for (tmp = sd; tmp; tmp = tmp->parent)
724 numa_distance += !!(tmp->flags & SD_NUMA);
725
726 sched_domain_debug(sd, cpu);
727
728 rq_attach_root(rq, rd);
729 tmp = rq->sd;
730 rcu_assign_pointer(rq->sd, sd);
731 dirty_sched_domain_sysctl(cpu);
732 destroy_sched_domains(tmp);
733
734 update_top_cache_domain(cpu);
735 }
736
737 struct s_data {
738 struct sched_domain * __percpu *sd;
739 struct root_domain *rd;
740 };
741
742 enum s_alloc {
743 sa_rootdomain,
744 sa_sd,
745 sa_sd_storage,
746 sa_none,
747 };
748
749 /*
750 * Return the canonical balance CPU for this group, this is the first CPU
751 * of this group that's also in the balance mask.
752 *
753 * The balance mask are all those CPUs that could actually end up at this
754 * group. See build_balance_mask().
755 *
756 * Also see should_we_balance().
757 */
group_balance_cpu(struct sched_group * sg)758 int group_balance_cpu(struct sched_group *sg)
759 {
760 return cpumask_first(group_balance_mask(sg));
761 }
762
763
764 /*
765 * NUMA topology (first read the regular topology blurb below)
766 *
767 * Given a node-distance table, for example:
768 *
769 * node 0 1 2 3
770 * 0: 10 20 30 20
771 * 1: 20 10 20 30
772 * 2: 30 20 10 20
773 * 3: 20 30 20 10
774 *
775 * which represents a 4 node ring topology like:
776 *
777 * 0 ----- 1
778 * | |
779 * | |
780 * | |
781 * 3 ----- 2
782 *
783 * We want to construct domains and groups to represent this. The way we go
784 * about doing this is to build the domains on 'hops'. For each NUMA level we
785 * construct the mask of all nodes reachable in @level hops.
786 *
787 * For the above NUMA topology that gives 3 levels:
788 *
789 * NUMA-2 0-3 0-3 0-3 0-3
790 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2}
791 *
792 * NUMA-1 0-1,3 0-2 1-3 0,2-3
793 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3}
794 *
795 * NUMA-0 0 1 2 3
796 *
797 *
798 * As can be seen; things don't nicely line up as with the regular topology.
799 * When we iterate a domain in child domain chunks some nodes can be
800 * represented multiple times -- hence the "overlap" naming for this part of
801 * the topology.
802 *
803 * In order to minimize this overlap, we only build enough groups to cover the
804 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
805 *
806 * Because:
807 *
808 * - the first group of each domain is its child domain; this
809 * gets us the first 0-1,3
810 * - the only uncovered node is 2, who's child domain is 1-3.
811 *
812 * However, because of the overlap, computing a unique CPU for each group is
813 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
814 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
815 * end up at those groups (they would end up in group: 0-1,3).
816 *
817 * To correct this we have to introduce the group balance mask. This mask
818 * will contain those CPUs in the group that can reach this group given the
819 * (child) domain tree.
820 *
821 * With this we can once again compute balance_cpu and sched_group_capacity
822 * relations.
823 *
824 * XXX include words on how balance_cpu is unique and therefore can be
825 * used for sched_group_capacity links.
826 *
827 *
828 * Another 'interesting' topology is:
829 *
830 * node 0 1 2 3
831 * 0: 10 20 20 30
832 * 1: 20 10 20 20
833 * 2: 20 20 10 20
834 * 3: 30 20 20 10
835 *
836 * Which looks a little like:
837 *
838 * 0 ----- 1
839 * | / |
840 * | / |
841 * | / |
842 * 2 ----- 3
843 *
844 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
845 * are not.
846 *
847 * This leads to a few particularly weird cases where the sched_domain's are
848 * not of the same number for each CPU. Consider:
849 *
850 * NUMA-2 0-3 0-3
851 * groups: {0-2},{1-3} {1-3},{0-2}
852 *
853 * NUMA-1 0-2 0-3 0-3 1-3
854 *
855 * NUMA-0 0 1 2 3
856 *
857 */
858
859
860 /*
861 * Build the balance mask; it contains only those CPUs that can arrive at this
862 * group and should be considered to continue balancing.
863 *
864 * We do this during the group creation pass, therefore the group information
865 * isn't complete yet, however since each group represents a (child) domain we
866 * can fully construct this using the sched_domain bits (which are already
867 * complete).
868 */
869 static void
build_balance_mask(struct sched_domain * sd,struct sched_group * sg,struct cpumask * mask)870 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
871 {
872 const struct cpumask *sg_span = sched_group_span(sg);
873 struct sd_data *sdd = sd->private;
874 struct sched_domain *sibling;
875 int i;
876
877 cpumask_clear(mask);
878
879 for_each_cpu(i, sg_span) {
880 sibling = *per_cpu_ptr(sdd->sd, i);
881
882 /*
883 * Can happen in the asymmetric case, where these siblings are
884 * unused. The mask will not be empty because those CPUs that
885 * do have the top domain _should_ span the domain.
886 */
887 if (!sibling->child)
888 continue;
889
890 /* If we would not end up here, we can't continue from here */
891 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
892 continue;
893
894 cpumask_set_cpu(i, mask);
895 }
896
897 /* We must not have empty masks here */
898 WARN_ON_ONCE(cpumask_empty(mask));
899 }
900
901 /*
902 * XXX: This creates per-node group entries; since the load-balancer will
903 * immediately access remote memory to construct this group's load-balance
904 * statistics having the groups node local is of dubious benefit.
905 */
906 static struct sched_group *
build_group_from_child_sched_domain(struct sched_domain * sd,int cpu)907 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
908 {
909 struct sched_group *sg;
910 struct cpumask *sg_span;
911
912 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
913 GFP_KERNEL, cpu_to_node(cpu));
914
915 if (!sg)
916 return NULL;
917
918 sg_span = sched_group_span(sg);
919 if (sd->child)
920 cpumask_copy(sg_span, sched_domain_span(sd->child));
921 else
922 cpumask_copy(sg_span, sched_domain_span(sd));
923
924 atomic_inc(&sg->ref);
925 return sg;
926 }
927
init_overlap_sched_group(struct sched_domain * sd,struct sched_group * sg)928 static void init_overlap_sched_group(struct sched_domain *sd,
929 struct sched_group *sg)
930 {
931 struct cpumask *mask = sched_domains_tmpmask2;
932 struct sd_data *sdd = sd->private;
933 struct cpumask *sg_span;
934 int cpu;
935
936 build_balance_mask(sd, sg, mask);
937 cpu = cpumask_first(mask);
938
939 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
940 if (atomic_inc_return(&sg->sgc->ref) == 1)
941 cpumask_copy(group_balance_mask(sg), mask);
942 else
943 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
944
945 /*
946 * Initialize sgc->capacity such that even if we mess up the
947 * domains and no possible iteration will get us here, we won't
948 * die on a /0 trap.
949 */
950 sg_span = sched_group_span(sg);
951 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
952 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
953 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
954 }
955
956 static struct sched_domain *
find_descended_sibling(struct sched_domain * sd,struct sched_domain * sibling)957 find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)
958 {
959 /*
960 * The proper descendant would be the one whose child won't span out
961 * of sd
962 */
963 while (sibling->child &&
964 !cpumask_subset(sched_domain_span(sibling->child),
965 sched_domain_span(sd)))
966 sibling = sibling->child;
967
968 /*
969 * As we are referencing sgc across different topology level, we need
970 * to go down to skip those sched_domains which don't contribute to
971 * scheduling because they will be degenerated in cpu_attach_domain
972 */
973 while (sibling->child &&
974 cpumask_equal(sched_domain_span(sibling->child),
975 sched_domain_span(sibling)))
976 sibling = sibling->child;
977
978 return sibling;
979 }
980
981 static int
build_overlap_sched_groups(struct sched_domain * sd,int cpu)982 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
983 {
984 struct sched_group *first = NULL, *last = NULL, *sg;
985 const struct cpumask *span = sched_domain_span(sd);
986 struct cpumask *covered = sched_domains_tmpmask;
987 struct sd_data *sdd = sd->private;
988 struct sched_domain *sibling;
989 int i;
990
991 cpumask_clear(covered);
992
993 for_each_cpu_wrap(i, span, cpu) {
994 struct cpumask *sg_span;
995
996 if (cpumask_test_cpu(i, covered))
997 continue;
998
999 sibling = *per_cpu_ptr(sdd->sd, i);
1000
1001 /*
1002 * Asymmetric node setups can result in situations where the
1003 * domain tree is of unequal depth, make sure to skip domains
1004 * that already cover the entire range.
1005 *
1006 * In that case build_sched_domains() will have terminated the
1007 * iteration early and our sibling sd spans will be empty.
1008 * Domains should always include the CPU they're built on, so
1009 * check that.
1010 */
1011 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1012 continue;
1013
1014 /*
1015 * Usually we build sched_group by sibling's child sched_domain
1016 * But for machines whose NUMA diameter are 3 or above, we move
1017 * to build sched_group by sibling's proper descendant's child
1018 * domain because sibling's child sched_domain will span out of
1019 * the sched_domain being built as below.
1020 *
1021 * Smallest diameter=3 topology is:
1022 *
1023 * node 0 1 2 3
1024 * 0: 10 20 30 40
1025 * 1: 20 10 20 30
1026 * 2: 30 20 10 20
1027 * 3: 40 30 20 10
1028 *
1029 * 0 --- 1 --- 2 --- 3
1030 *
1031 * NUMA-3 0-3 N/A N/A 0-3
1032 * groups: {0-2},{1-3} {1-3},{0-2}
1033 *
1034 * NUMA-2 0-2 0-3 0-3 1-3
1035 * groups: {0-1},{1-3} {0-2},{2-3} {1-3},{0-1} {2-3},{0-2}
1036 *
1037 * NUMA-1 0-1 0-2 1-3 2-3
1038 * groups: {0},{1} {1},{2},{0} {2},{3},{1} {3},{2}
1039 *
1040 * NUMA-0 0 1 2 3
1041 *
1042 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
1043 * group span isn't a subset of the domain span.
1044 */
1045 if (sibling->child &&
1046 !cpumask_subset(sched_domain_span(sibling->child), span))
1047 sibling = find_descended_sibling(sd, sibling);
1048
1049 sg = build_group_from_child_sched_domain(sibling, cpu);
1050 if (!sg)
1051 goto fail;
1052
1053 sg_span = sched_group_span(sg);
1054 cpumask_or(covered, covered, sg_span);
1055
1056 init_overlap_sched_group(sibling, sg);
1057
1058 if (!first)
1059 first = sg;
1060 if (last)
1061 last->next = sg;
1062 last = sg;
1063 last->next = first;
1064 }
1065 sd->groups = first;
1066
1067 return 0;
1068
1069 fail:
1070 free_sched_groups(first, 0);
1071
1072 return -ENOMEM;
1073 }
1074
1075
1076 /*
1077 * Package topology (also see the load-balance blurb in fair.c)
1078 *
1079 * The scheduler builds a tree structure to represent a number of important
1080 * topology features. By default (default_topology[]) these include:
1081 *
1082 * - Simultaneous multithreading (SMT)
1083 * - Multi-Core Cache (MC)
1084 * - Package (DIE)
1085 *
1086 * Where the last one more or less denotes everything up to a NUMA node.
1087 *
1088 * The tree consists of 3 primary data structures:
1089 *
1090 * sched_domain -> sched_group -> sched_group_capacity
1091 * ^ ^ ^ ^
1092 * `-' `-'
1093 *
1094 * The sched_domains are per-CPU and have a two way link (parent & child) and
1095 * denote the ever growing mask of CPUs belonging to that level of topology.
1096 *
1097 * Each sched_domain has a circular (double) linked list of sched_group's, each
1098 * denoting the domains of the level below (or individual CPUs in case of the
1099 * first domain level). The sched_group linked by a sched_domain includes the
1100 * CPU of that sched_domain [*].
1101 *
1102 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1103 *
1104 * CPU 0 1 2 3 4 5 6 7
1105 *
1106 * DIE [ ]
1107 * MC [ ] [ ]
1108 * SMT [ ] [ ] [ ] [ ]
1109 *
1110 * - or -
1111 *
1112 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1113 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1114 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1115 *
1116 * CPU 0 1 2 3 4 5 6 7
1117 *
1118 * One way to think about it is: sched_domain moves you up and down among these
1119 * topology levels, while sched_group moves you sideways through it, at child
1120 * domain granularity.
1121 *
1122 * sched_group_capacity ensures each unique sched_group has shared storage.
1123 *
1124 * There are two related construction problems, both require a CPU that
1125 * uniquely identify each group (for a given domain):
1126 *
1127 * - The first is the balance_cpu (see should_we_balance() and the
1128 * load-balance blub in fair.c); for each group we only want 1 CPU to
1129 * continue balancing at a higher domain.
1130 *
1131 * - The second is the sched_group_capacity; we want all identical groups
1132 * to share a single sched_group_capacity.
1133 *
1134 * Since these topologies are exclusive by construction. That is, its
1135 * impossible for an SMT thread to belong to multiple cores, and cores to
1136 * be part of multiple caches. There is a very clear and unique location
1137 * for each CPU in the hierarchy.
1138 *
1139 * Therefore computing a unique CPU for each group is trivial (the iteration
1140 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1141 * group), we can simply pick the first CPU in each group.
1142 *
1143 *
1144 * [*] in other words, the first group of each domain is its child domain.
1145 */
1146
get_group(int cpu,struct sd_data * sdd)1147 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1148 {
1149 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1150 struct sched_domain *child = sd->child;
1151 struct sched_group *sg;
1152 bool already_visited;
1153
1154 if (child)
1155 cpu = cpumask_first(sched_domain_span(child));
1156
1157 sg = *per_cpu_ptr(sdd->sg, cpu);
1158 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1159
1160 /* Increase refcounts for claim_allocations: */
1161 already_visited = atomic_inc_return(&sg->ref) > 1;
1162 /* sgc visits should follow a similar trend as sg */
1163 WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1164
1165 /* If we have already visited that group, it's already initialized. */
1166 if (already_visited)
1167 return sg;
1168
1169 if (child) {
1170 cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1171 cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1172 } else {
1173 cpumask_set_cpu(cpu, sched_group_span(sg));
1174 cpumask_set_cpu(cpu, group_balance_mask(sg));
1175 }
1176
1177 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1178 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1179 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1180
1181 return sg;
1182 }
1183
1184 /*
1185 * build_sched_groups will build a circular linked list of the groups
1186 * covered by the given span, will set each group's ->cpumask correctly,
1187 * and will initialize their ->sgc.
1188 *
1189 * Assumes the sched_domain tree is fully constructed
1190 */
1191 static int
build_sched_groups(struct sched_domain * sd,int cpu)1192 build_sched_groups(struct sched_domain *sd, int cpu)
1193 {
1194 struct sched_group *first = NULL, *last = NULL;
1195 struct sd_data *sdd = sd->private;
1196 const struct cpumask *span = sched_domain_span(sd);
1197 struct cpumask *covered;
1198 int i;
1199
1200 lockdep_assert_held(&sched_domains_mutex);
1201 covered = sched_domains_tmpmask;
1202
1203 cpumask_clear(covered);
1204
1205 for_each_cpu_wrap(i, span, cpu) {
1206 struct sched_group *sg;
1207
1208 if (cpumask_test_cpu(i, covered))
1209 continue;
1210
1211 sg = get_group(i, sdd);
1212
1213 cpumask_or(covered, covered, sched_group_span(sg));
1214
1215 if (!first)
1216 first = sg;
1217 if (last)
1218 last->next = sg;
1219 last = sg;
1220 }
1221 last->next = first;
1222 sd->groups = first;
1223
1224 return 0;
1225 }
1226
1227 /*
1228 * Initialize sched groups cpu_capacity.
1229 *
1230 * cpu_capacity indicates the capacity of sched group, which is used while
1231 * distributing the load between different sched groups in a sched domain.
1232 * Typically cpu_capacity for all the groups in a sched domain will be same
1233 * unless there are asymmetries in the topology. If there are asymmetries,
1234 * group having more cpu_capacity will pickup more load compared to the
1235 * group having less cpu_capacity.
1236 */
init_sched_groups_capacity(int cpu,struct sched_domain * sd)1237 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1238 {
1239 struct sched_group *sg = sd->groups;
1240
1241 WARN_ON(!sg);
1242
1243 do {
1244 int cpu, max_cpu = -1;
1245
1246 sg->group_weight = cpumask_weight(sched_group_span(sg));
1247
1248 if (!(sd->flags & SD_ASYM_PACKING))
1249 goto next;
1250
1251 for_each_cpu(cpu, sched_group_span(sg)) {
1252 if (max_cpu < 0)
1253 max_cpu = cpu;
1254 else if (sched_asym_prefer(cpu, max_cpu))
1255 max_cpu = cpu;
1256 }
1257 sg->asym_prefer_cpu = max_cpu;
1258
1259 next:
1260 sg = sg->next;
1261 } while (sg != sd->groups);
1262
1263 if (cpu != group_balance_cpu(sg))
1264 return;
1265
1266 update_group_capacity(sd, cpu);
1267 }
1268
1269 /*
1270 * Initializers for schedule domains
1271 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1272 */
1273
1274 static int default_relax_domain_level = -1;
1275 int sched_domain_level_max;
1276
setup_relax_domain_level(char * str)1277 static int __init setup_relax_domain_level(char *str)
1278 {
1279 if (kstrtoint(str, 0, &default_relax_domain_level))
1280 pr_warn("Unable to set relax_domain_level\n");
1281
1282 return 1;
1283 }
1284 __setup("relax_domain_level=", setup_relax_domain_level);
1285
set_domain_attribute(struct sched_domain * sd,struct sched_domain_attr * attr)1286 static void set_domain_attribute(struct sched_domain *sd,
1287 struct sched_domain_attr *attr)
1288 {
1289 int request;
1290
1291 if (!attr || attr->relax_domain_level < 0) {
1292 if (default_relax_domain_level < 0)
1293 return;
1294 request = default_relax_domain_level;
1295 } else
1296 request = attr->relax_domain_level;
1297
1298 if (sd->level > request) {
1299 /* Turn off idle balance on this domain: */
1300 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1301 }
1302 }
1303
1304 static void __sdt_free(const struct cpumask *cpu_map);
1305 static int __sdt_alloc(const struct cpumask *cpu_map);
1306
__free_domain_allocs(struct s_data * d,enum s_alloc what,const struct cpumask * cpu_map)1307 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1308 const struct cpumask *cpu_map)
1309 {
1310 switch (what) {
1311 case sa_rootdomain:
1312 if (!atomic_read(&d->rd->refcount))
1313 free_rootdomain(&d->rd->rcu);
1314 fallthrough;
1315 case sa_sd:
1316 free_percpu(d->sd);
1317 fallthrough;
1318 case sa_sd_storage:
1319 __sdt_free(cpu_map);
1320 fallthrough;
1321 case sa_none:
1322 break;
1323 }
1324 }
1325
1326 static enum s_alloc
__visit_domain_allocation_hell(struct s_data * d,const struct cpumask * cpu_map)1327 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1328 {
1329 memset(d, 0, sizeof(*d));
1330
1331 if (__sdt_alloc(cpu_map))
1332 return sa_sd_storage;
1333 d->sd = alloc_percpu(struct sched_domain *);
1334 if (!d->sd)
1335 return sa_sd_storage;
1336 d->rd = alloc_rootdomain();
1337 if (!d->rd)
1338 return sa_sd;
1339
1340 return sa_rootdomain;
1341 }
1342
1343 /*
1344 * NULL the sd_data elements we've used to build the sched_domain and
1345 * sched_group structure so that the subsequent __free_domain_allocs()
1346 * will not free the data we're using.
1347 */
claim_allocations(int cpu,struct sched_domain * sd)1348 static void claim_allocations(int cpu, struct sched_domain *sd)
1349 {
1350 struct sd_data *sdd = sd->private;
1351
1352 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1353 *per_cpu_ptr(sdd->sd, cpu) = NULL;
1354
1355 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1356 *per_cpu_ptr(sdd->sds, cpu) = NULL;
1357
1358 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1359 *per_cpu_ptr(sdd->sg, cpu) = NULL;
1360
1361 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1362 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
1363 }
1364
1365 #ifdef CONFIG_NUMA
1366 enum numa_topology_type sched_numa_topology_type;
1367
1368 static int sched_domains_numa_levels;
1369 static int sched_domains_curr_level;
1370
1371 int sched_max_numa_distance;
1372 static int *sched_domains_numa_distance;
1373 static struct cpumask ***sched_domains_numa_masks;
1374 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
1375 #endif
1376
1377 /*
1378 * SD_flags allowed in topology descriptions.
1379 *
1380 * These flags are purely descriptive of the topology and do not prescribe
1381 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1382 * function:
1383 *
1384 * SD_SHARE_CPUCAPACITY - describes SMT topologies
1385 * SD_SHARE_PKG_RESOURCES - describes shared caches
1386 * SD_NUMA - describes NUMA topologies
1387 *
1388 * Odd one out, which beside describing the topology has a quirk also
1389 * prescribes the desired behaviour that goes along with it:
1390 *
1391 * SD_ASYM_PACKING - describes SMT quirks
1392 */
1393 #define TOPOLOGY_SD_FLAGS \
1394 (SD_SHARE_CPUCAPACITY | \
1395 SD_SHARE_PKG_RESOURCES | \
1396 SD_NUMA | \
1397 SD_ASYM_PACKING)
1398
1399 static struct sched_domain *
sd_init(struct sched_domain_topology_level * tl,const struct cpumask * cpu_map,struct sched_domain * child,int dflags,int cpu)1400 sd_init(struct sched_domain_topology_level *tl,
1401 const struct cpumask *cpu_map,
1402 struct sched_domain *child, int dflags, int cpu)
1403 {
1404 struct sd_data *sdd = &tl->data;
1405 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1406 int sd_id, sd_weight, sd_flags = 0;
1407
1408 #ifdef CONFIG_NUMA
1409 /*
1410 * Ugly hack to pass state to sd_numa_mask()...
1411 */
1412 sched_domains_curr_level = tl->numa_level;
1413 #endif
1414
1415 sd_weight = cpumask_weight(tl->mask(cpu));
1416
1417 if (tl->sd_flags)
1418 sd_flags = (*tl->sd_flags)();
1419 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1420 "wrong sd_flags in topology description\n"))
1421 sd_flags &= TOPOLOGY_SD_FLAGS;
1422
1423 /* Apply detected topology flags */
1424 sd_flags |= dflags;
1425
1426 *sd = (struct sched_domain){
1427 .min_interval = sd_weight,
1428 .max_interval = 2*sd_weight,
1429 .busy_factor = 16,
1430 .imbalance_pct = 117,
1431
1432 .cache_nice_tries = 0,
1433
1434 .flags = 1*SD_BALANCE_NEWIDLE
1435 | 1*SD_BALANCE_EXEC
1436 | 1*SD_BALANCE_FORK
1437 | 0*SD_BALANCE_WAKE
1438 | 1*SD_WAKE_AFFINE
1439 | 0*SD_SHARE_CPUCAPACITY
1440 | 0*SD_SHARE_PKG_RESOURCES
1441 | 0*SD_SERIALIZE
1442 | 1*SD_PREFER_SIBLING
1443 | 0*SD_NUMA
1444 | sd_flags
1445 ,
1446
1447 .last_balance = jiffies,
1448 .balance_interval = sd_weight,
1449 .max_newidle_lb_cost = 0,
1450 .next_decay_max_lb_cost = jiffies,
1451 .child = child,
1452 #ifdef CONFIG_SCHED_DEBUG
1453 .name = tl->name,
1454 #endif
1455 };
1456
1457 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1458 sd_id = cpumask_first(sched_domain_span(sd));
1459
1460 /*
1461 * Convert topological properties into behaviour.
1462 */
1463
1464 /* Don't attempt to spread across CPUs of different capacities. */
1465 if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1466 sd->child->flags &= ~SD_PREFER_SIBLING;
1467
1468 if (sd->flags & SD_SHARE_CPUCAPACITY) {
1469 sd->imbalance_pct = 110;
1470
1471 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1472 sd->imbalance_pct = 117;
1473 sd->cache_nice_tries = 1;
1474
1475 #ifdef CONFIG_NUMA
1476 } else if (sd->flags & SD_NUMA) {
1477 sd->cache_nice_tries = 2;
1478
1479 sd->flags &= ~SD_PREFER_SIBLING;
1480 sd->flags |= SD_SERIALIZE;
1481 if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1482 sd->flags &= ~(SD_BALANCE_EXEC |
1483 SD_BALANCE_FORK |
1484 SD_WAKE_AFFINE);
1485 }
1486
1487 #endif
1488 } else {
1489 sd->cache_nice_tries = 1;
1490 }
1491
1492 /*
1493 * For all levels sharing cache; connect a sched_domain_shared
1494 * instance.
1495 */
1496 if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1497 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1498 atomic_inc(&sd->shared->ref);
1499 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1500 }
1501
1502 sd->private = sdd;
1503
1504 return sd;
1505 }
1506
1507 /*
1508 * Topology list, bottom-up.
1509 */
1510 static struct sched_domain_topology_level default_topology[] = {
1511 #ifdef CONFIG_SCHED_SMT
1512 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1513 #endif
1514 #ifdef CONFIG_SCHED_MC
1515 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1516 #endif
1517 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1518 { NULL, },
1519 };
1520
1521 static struct sched_domain_topology_level *sched_domain_topology =
1522 default_topology;
1523
1524 #define for_each_sd_topology(tl) \
1525 for (tl = sched_domain_topology; tl->mask; tl++)
1526
set_sched_topology(struct sched_domain_topology_level * tl)1527 void set_sched_topology(struct sched_domain_topology_level *tl)
1528 {
1529 if (WARN_ON_ONCE(sched_smp_initialized))
1530 return;
1531
1532 sched_domain_topology = tl;
1533 }
1534
1535 #ifdef CONFIG_NUMA
1536
sd_numa_mask(int cpu)1537 static const struct cpumask *sd_numa_mask(int cpu)
1538 {
1539 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1540 }
1541
sched_numa_warn(const char * str)1542 static void sched_numa_warn(const char *str)
1543 {
1544 static int done = false;
1545 int i,j;
1546
1547 if (done)
1548 return;
1549
1550 done = true;
1551
1552 printk(KERN_WARNING "ERROR: %s\n\n", str);
1553
1554 for (i = 0; i < nr_node_ids; i++) {
1555 printk(KERN_WARNING " ");
1556 for (j = 0; j < nr_node_ids; j++)
1557 printk(KERN_CONT "%02d ", node_distance(i,j));
1558 printk(KERN_CONT "\n");
1559 }
1560 printk(KERN_WARNING "\n");
1561 }
1562
find_numa_distance(int distance)1563 bool find_numa_distance(int distance)
1564 {
1565 int i;
1566
1567 if (distance == node_distance(0, 0))
1568 return true;
1569
1570 for (i = 0; i < sched_domains_numa_levels; i++) {
1571 if (sched_domains_numa_distance[i] == distance)
1572 return true;
1573 }
1574
1575 return false;
1576 }
1577
1578 /*
1579 * A system can have three types of NUMA topology:
1580 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1581 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1582 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1583 *
1584 * The difference between a glueless mesh topology and a backplane
1585 * topology lies in whether communication between not directly
1586 * connected nodes goes through intermediary nodes (where programs
1587 * could run), or through backplane controllers. This affects
1588 * placement of programs.
1589 *
1590 * The type of topology can be discerned with the following tests:
1591 * - If the maximum distance between any nodes is 1 hop, the system
1592 * is directly connected.
1593 * - If for two nodes A and B, located N > 1 hops away from each other,
1594 * there is an intermediary node C, which is < N hops away from both
1595 * nodes A and B, the system is a glueless mesh.
1596 */
init_numa_topology_type(void)1597 static void init_numa_topology_type(void)
1598 {
1599 int a, b, c, n;
1600
1601 n = sched_max_numa_distance;
1602
1603 if (sched_domains_numa_levels <= 2) {
1604 sched_numa_topology_type = NUMA_DIRECT;
1605 return;
1606 }
1607
1608 for_each_online_node(a) {
1609 for_each_online_node(b) {
1610 /* Find two nodes furthest removed from each other. */
1611 if (node_distance(a, b) < n)
1612 continue;
1613
1614 /* Is there an intermediary node between a and b? */
1615 for_each_online_node(c) {
1616 if (node_distance(a, c) < n &&
1617 node_distance(b, c) < n) {
1618 sched_numa_topology_type =
1619 NUMA_GLUELESS_MESH;
1620 return;
1621 }
1622 }
1623
1624 sched_numa_topology_type = NUMA_BACKPLANE;
1625 return;
1626 }
1627 }
1628 }
1629
1630
1631 #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1632
sched_init_numa(void)1633 void sched_init_numa(void)
1634 {
1635 struct sched_domain_topology_level *tl;
1636 unsigned long *distance_map;
1637 int nr_levels = 0;
1638 int i, j;
1639
1640 /*
1641 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1642 * unique distances in the node_distance() table.
1643 */
1644 distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1645 if (!distance_map)
1646 return;
1647
1648 bitmap_zero(distance_map, NR_DISTANCE_VALUES);
1649 for (i = 0; i < nr_node_ids; i++) {
1650 for (j = 0; j < nr_node_ids; j++) {
1651 int distance = node_distance(i, j);
1652
1653 if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1654 sched_numa_warn("Invalid distance value range");
1655 return;
1656 }
1657
1658 bitmap_set(distance_map, distance, 1);
1659 }
1660 }
1661 /*
1662 * We can now figure out how many unique distance values there are and
1663 * allocate memory accordingly.
1664 */
1665 nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
1666
1667 sched_domains_numa_distance = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
1668 if (!sched_domains_numa_distance) {
1669 bitmap_free(distance_map);
1670 return;
1671 }
1672
1673 for (i = 0, j = 0; i < nr_levels; i++, j++) {
1674 j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
1675 sched_domains_numa_distance[i] = j;
1676 }
1677
1678 bitmap_free(distance_map);
1679
1680 /*
1681 * 'nr_levels' contains the number of unique distances
1682 *
1683 * The sched_domains_numa_distance[] array includes the actual distance
1684 * numbers.
1685 */
1686
1687 /*
1688 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1689 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1690 * the array will contain less then 'nr_levels' members. This could be
1691 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1692 * in other functions.
1693 *
1694 * We reset it to 'nr_levels' at the end of this function.
1695 */
1696 sched_domains_numa_levels = 0;
1697
1698 sched_domains_numa_masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
1699 if (!sched_domains_numa_masks)
1700 return;
1701
1702 /*
1703 * Now for each level, construct a mask per node which contains all
1704 * CPUs of nodes that are that many hops away from us.
1705 */
1706 for (i = 0; i < nr_levels; i++) {
1707 sched_domains_numa_masks[i] =
1708 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1709 if (!sched_domains_numa_masks[i])
1710 return;
1711
1712 for (j = 0; j < nr_node_ids; j++) {
1713 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1714 int k;
1715
1716 if (!mask)
1717 return;
1718
1719 sched_domains_numa_masks[i][j] = mask;
1720
1721 for_each_node(k) {
1722 if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
1723 sched_numa_warn("Node-distance not symmetric");
1724
1725 if (node_distance(j, k) > sched_domains_numa_distance[i])
1726 continue;
1727
1728 cpumask_or(mask, mask, cpumask_of_node(k));
1729 }
1730 }
1731 }
1732
1733 /* Compute default topology size */
1734 for (i = 0; sched_domain_topology[i].mask; i++);
1735
1736 tl = kzalloc((i + nr_levels + 1) *
1737 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1738 if (!tl)
1739 return;
1740
1741 /*
1742 * Copy the default topology bits..
1743 */
1744 for (i = 0; sched_domain_topology[i].mask; i++)
1745 tl[i] = sched_domain_topology[i];
1746
1747 /*
1748 * Add the NUMA identity distance, aka single NODE.
1749 */
1750 tl[i++] = (struct sched_domain_topology_level){
1751 .mask = sd_numa_mask,
1752 .numa_level = 0,
1753 SD_INIT_NAME(NODE)
1754 };
1755
1756 /*
1757 * .. and append 'j' levels of NUMA goodness.
1758 */
1759 for (j = 1; j < nr_levels; i++, j++) {
1760 tl[i] = (struct sched_domain_topology_level){
1761 .mask = sd_numa_mask,
1762 .sd_flags = cpu_numa_flags,
1763 .flags = SDTL_OVERLAP,
1764 .numa_level = j,
1765 SD_INIT_NAME(NUMA)
1766 };
1767 }
1768
1769 sched_domain_topology = tl;
1770
1771 sched_domains_numa_levels = nr_levels;
1772 sched_max_numa_distance = sched_domains_numa_distance[nr_levels - 1];
1773
1774 init_numa_topology_type();
1775 }
1776
sched_domains_numa_masks_set(unsigned int cpu)1777 void sched_domains_numa_masks_set(unsigned int cpu)
1778 {
1779 int node = cpu_to_node(cpu);
1780 int i, j;
1781
1782 for (i = 0; i < sched_domains_numa_levels; i++) {
1783 for (j = 0; j < nr_node_ids; j++) {
1784 if (node_distance(j, node) <= sched_domains_numa_distance[i])
1785 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1786 }
1787 }
1788 }
1789
sched_domains_numa_masks_clear(unsigned int cpu)1790 void sched_domains_numa_masks_clear(unsigned int cpu)
1791 {
1792 int i, j;
1793
1794 for (i = 0; i < sched_domains_numa_levels; i++) {
1795 for (j = 0; j < nr_node_ids; j++)
1796 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1797 }
1798 }
1799
1800 /*
1801 * sched_numa_find_closest() - given the NUMA topology, find the cpu
1802 * closest to @cpu from @cpumask.
1803 * cpumask: cpumask to find a cpu from
1804 * cpu: cpu to be close to
1805 *
1806 * returns: cpu, or nr_cpu_ids when nothing found.
1807 */
sched_numa_find_closest(const struct cpumask * cpus,int cpu)1808 int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1809 {
1810 int i, j = cpu_to_node(cpu);
1811
1812 for (i = 0; i < sched_domains_numa_levels; i++) {
1813 cpu = cpumask_any_and(cpus, sched_domains_numa_masks[i][j]);
1814 if (cpu < nr_cpu_ids)
1815 return cpu;
1816 }
1817 return nr_cpu_ids;
1818 }
1819
1820 #endif /* CONFIG_NUMA */
1821
__sdt_alloc(const struct cpumask * cpu_map)1822 static int __sdt_alloc(const struct cpumask *cpu_map)
1823 {
1824 struct sched_domain_topology_level *tl;
1825 int j;
1826
1827 for_each_sd_topology(tl) {
1828 struct sd_data *sdd = &tl->data;
1829
1830 sdd->sd = alloc_percpu(struct sched_domain *);
1831 if (!sdd->sd)
1832 return -ENOMEM;
1833
1834 sdd->sds = alloc_percpu(struct sched_domain_shared *);
1835 if (!sdd->sds)
1836 return -ENOMEM;
1837
1838 sdd->sg = alloc_percpu(struct sched_group *);
1839 if (!sdd->sg)
1840 return -ENOMEM;
1841
1842 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1843 if (!sdd->sgc)
1844 return -ENOMEM;
1845
1846 for_each_cpu(j, cpu_map) {
1847 struct sched_domain *sd;
1848 struct sched_domain_shared *sds;
1849 struct sched_group *sg;
1850 struct sched_group_capacity *sgc;
1851
1852 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1853 GFP_KERNEL, cpu_to_node(j));
1854 if (!sd)
1855 return -ENOMEM;
1856
1857 *per_cpu_ptr(sdd->sd, j) = sd;
1858
1859 sds = kzalloc_node(sizeof(struct sched_domain_shared),
1860 GFP_KERNEL, cpu_to_node(j));
1861 if (!sds)
1862 return -ENOMEM;
1863
1864 *per_cpu_ptr(sdd->sds, j) = sds;
1865
1866 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1867 GFP_KERNEL, cpu_to_node(j));
1868 if (!sg)
1869 return -ENOMEM;
1870
1871 sg->next = sg;
1872
1873 *per_cpu_ptr(sdd->sg, j) = sg;
1874
1875 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1876 GFP_KERNEL, cpu_to_node(j));
1877 if (!sgc)
1878 return -ENOMEM;
1879
1880 #ifdef CONFIG_SCHED_DEBUG
1881 sgc->id = j;
1882 #endif
1883
1884 *per_cpu_ptr(sdd->sgc, j) = sgc;
1885 }
1886 }
1887
1888 return 0;
1889 }
1890
__sdt_free(const struct cpumask * cpu_map)1891 static void __sdt_free(const struct cpumask *cpu_map)
1892 {
1893 struct sched_domain_topology_level *tl;
1894 int j;
1895
1896 for_each_sd_topology(tl) {
1897 struct sd_data *sdd = &tl->data;
1898
1899 for_each_cpu(j, cpu_map) {
1900 struct sched_domain *sd;
1901
1902 if (sdd->sd) {
1903 sd = *per_cpu_ptr(sdd->sd, j);
1904 if (sd && (sd->flags & SD_OVERLAP))
1905 free_sched_groups(sd->groups, 0);
1906 kfree(*per_cpu_ptr(sdd->sd, j));
1907 }
1908
1909 if (sdd->sds)
1910 kfree(*per_cpu_ptr(sdd->sds, j));
1911 if (sdd->sg)
1912 kfree(*per_cpu_ptr(sdd->sg, j));
1913 if (sdd->sgc)
1914 kfree(*per_cpu_ptr(sdd->sgc, j));
1915 }
1916 free_percpu(sdd->sd);
1917 sdd->sd = NULL;
1918 free_percpu(sdd->sds);
1919 sdd->sds = NULL;
1920 free_percpu(sdd->sg);
1921 sdd->sg = NULL;
1922 free_percpu(sdd->sgc);
1923 sdd->sgc = NULL;
1924 }
1925 }
1926
build_sched_domain(struct sched_domain_topology_level * tl,const struct cpumask * cpu_map,struct sched_domain_attr * attr,struct sched_domain * child,int dflags,int cpu)1927 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1928 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1929 struct sched_domain *child, int dflags, int cpu)
1930 {
1931 struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu);
1932
1933 if (child) {
1934 sd->level = child->level + 1;
1935 sched_domain_level_max = max(sched_domain_level_max, sd->level);
1936 child->parent = sd;
1937
1938 if (!cpumask_subset(sched_domain_span(child),
1939 sched_domain_span(sd))) {
1940 pr_err("BUG: arch topology borken\n");
1941 #ifdef CONFIG_SCHED_DEBUG
1942 pr_err(" the %s domain not a subset of the %s domain\n",
1943 child->name, sd->name);
1944 #endif
1945 /* Fixup, ensure @sd has at least @child CPUs. */
1946 cpumask_or(sched_domain_span(sd),
1947 sched_domain_span(sd),
1948 sched_domain_span(child));
1949 }
1950
1951 }
1952 set_domain_attribute(sd, attr);
1953
1954 return sd;
1955 }
1956
1957 /*
1958 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
1959 * any two given CPUs at this (non-NUMA) topology level.
1960 */
topology_span_sane(struct sched_domain_topology_level * tl,const struct cpumask * cpu_map,int cpu)1961 static bool topology_span_sane(struct sched_domain_topology_level *tl,
1962 const struct cpumask *cpu_map, int cpu)
1963 {
1964 int i;
1965
1966 /* NUMA levels are allowed to overlap */
1967 if (tl->flags & SDTL_OVERLAP)
1968 return true;
1969
1970 /*
1971 * Non-NUMA levels cannot partially overlap - they must be either
1972 * completely equal or completely disjoint. Otherwise we can end up
1973 * breaking the sched_group lists - i.e. a later get_group() pass
1974 * breaks the linking done for an earlier span.
1975 */
1976 for_each_cpu(i, cpu_map) {
1977 if (i == cpu)
1978 continue;
1979 /*
1980 * We should 'and' all those masks with 'cpu_map' to exactly
1981 * match the topology we're about to build, but that can only
1982 * remove CPUs, which only lessens our ability to detect
1983 * overlaps
1984 */
1985 if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
1986 cpumask_intersects(tl->mask(cpu), tl->mask(i)))
1987 return false;
1988 }
1989
1990 return true;
1991 }
1992
1993 /*
1994 * Find the sched_domain_topology_level where all CPU capacities are visible
1995 * for all CPUs.
1996 */
1997 static struct sched_domain_topology_level
asym_cpu_capacity_level(const struct cpumask * cpu_map)1998 *asym_cpu_capacity_level(const struct cpumask *cpu_map)
1999 {
2000 int i, j, asym_level = 0;
2001 bool asym = false;
2002 struct sched_domain_topology_level *tl, *asym_tl = NULL;
2003 unsigned long cap;
2004
2005 /* Is there any asymmetry? */
2006 cap = arch_scale_cpu_capacity(cpumask_first(cpu_map));
2007
2008 for_each_cpu(i, cpu_map) {
2009 if (arch_scale_cpu_capacity(i) != cap) {
2010 asym = true;
2011 break;
2012 }
2013 }
2014
2015 if (!asym)
2016 return NULL;
2017
2018 /*
2019 * Examine topology from all CPU's point of views to detect the lowest
2020 * sched_domain_topology_level where a highest capacity CPU is visible
2021 * to everyone.
2022 */
2023 for_each_cpu(i, cpu_map) {
2024 unsigned long max_capacity = arch_scale_cpu_capacity(i);
2025 int tl_id = 0;
2026
2027 for_each_sd_topology(tl) {
2028 if (tl_id < asym_level)
2029 goto next_level;
2030
2031 for_each_cpu_and(j, tl->mask(i), cpu_map) {
2032 unsigned long capacity;
2033
2034 capacity = arch_scale_cpu_capacity(j);
2035
2036 if (capacity <= max_capacity)
2037 continue;
2038
2039 max_capacity = capacity;
2040 asym_level = tl_id;
2041 asym_tl = tl;
2042 }
2043 next_level:
2044 tl_id++;
2045 }
2046 }
2047
2048 return asym_tl;
2049 }
2050
2051
2052 /*
2053 * Build sched domains for a given set of CPUs and attach the sched domains
2054 * to the individual CPUs
2055 */
2056 static int
build_sched_domains(const struct cpumask * cpu_map,struct sched_domain_attr * attr)2057 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2058 {
2059 enum s_alloc alloc_state = sa_none;
2060 struct sched_domain *sd;
2061 struct s_data d;
2062 struct rq *rq = NULL;
2063 int i, ret = -ENOMEM;
2064 struct sched_domain_topology_level *tl_asym;
2065 bool has_asym = false;
2066
2067 if (WARN_ON(cpumask_empty(cpu_map)))
2068 goto error;
2069
2070 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2071 if (alloc_state != sa_rootdomain)
2072 goto error;
2073
2074 tl_asym = asym_cpu_capacity_level(cpu_map);
2075
2076 /* Set up domains for CPUs specified by the cpu_map: */
2077 for_each_cpu(i, cpu_map) {
2078 struct sched_domain_topology_level *tl;
2079 int dflags = 0;
2080
2081 sd = NULL;
2082 for_each_sd_topology(tl) {
2083 if (tl == tl_asym) {
2084 dflags |= SD_ASYM_CPUCAPACITY;
2085 has_asym = true;
2086 }
2087
2088 if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2089 goto error;
2090
2091 sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i);
2092
2093 if (tl == sched_domain_topology)
2094 *per_cpu_ptr(d.sd, i) = sd;
2095 if (tl->flags & SDTL_OVERLAP)
2096 sd->flags |= SD_OVERLAP;
2097 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2098 break;
2099 }
2100 }
2101
2102 /* Build the groups for the domains */
2103 for_each_cpu(i, cpu_map) {
2104 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2105 sd->span_weight = cpumask_weight(sched_domain_span(sd));
2106 if (sd->flags & SD_OVERLAP) {
2107 if (build_overlap_sched_groups(sd, i))
2108 goto error;
2109 } else {
2110 if (build_sched_groups(sd, i))
2111 goto error;
2112 }
2113 }
2114 }
2115
2116 /* Calculate CPU capacity for physical packages and nodes */
2117 for (i = nr_cpumask_bits-1; i >= 0; i--) {
2118 if (!cpumask_test_cpu(i, cpu_map))
2119 continue;
2120
2121 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2122 claim_allocations(i, sd);
2123 init_sched_groups_capacity(i, sd);
2124 }
2125 }
2126
2127 /* Attach the domains */
2128 rcu_read_lock();
2129 for_each_cpu(i, cpu_map) {
2130 rq = cpu_rq(i);
2131 sd = *per_cpu_ptr(d.sd, i);
2132
2133 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2134 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
2135 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
2136
2137 cpu_attach_domain(sd, d.rd, i);
2138 }
2139 rcu_read_unlock();
2140
2141 if (has_asym)
2142 static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2143
2144 if (rq && sched_debug_verbose) {
2145 pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2146 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2147 }
2148
2149 ret = 0;
2150 error:
2151 __free_domain_allocs(&d, alloc_state, cpu_map);
2152
2153 return ret;
2154 }
2155
2156 /* Current sched domains: */
2157 static cpumask_var_t *doms_cur;
2158
2159 /* Number of sched domains in 'doms_cur': */
2160 static int ndoms_cur;
2161
2162 /* Attributes of custom domains in 'doms_cur' */
2163 static struct sched_domain_attr *dattr_cur;
2164
2165 /*
2166 * Special case: If a kmalloc() of a doms_cur partition (array of
2167 * cpumask) fails, then fallback to a single sched domain,
2168 * as determined by the single cpumask fallback_doms.
2169 */
2170 static cpumask_var_t fallback_doms;
2171
2172 /*
2173 * arch_update_cpu_topology lets virtualized architectures update the
2174 * CPU core maps. It is supposed to return 1 if the topology changed
2175 * or 0 if it stayed the same.
2176 */
arch_update_cpu_topology(void)2177 int __weak arch_update_cpu_topology(void)
2178 {
2179 return 0;
2180 }
2181
alloc_sched_domains(unsigned int ndoms)2182 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2183 {
2184 int i;
2185 cpumask_var_t *doms;
2186
2187 doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2188 if (!doms)
2189 return NULL;
2190 for (i = 0; i < ndoms; i++) {
2191 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2192 free_sched_domains(doms, i);
2193 return NULL;
2194 }
2195 }
2196 return doms;
2197 }
2198
free_sched_domains(cpumask_var_t doms[],unsigned int ndoms)2199 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2200 {
2201 unsigned int i;
2202 for (i = 0; i < ndoms; i++)
2203 free_cpumask_var(doms[i]);
2204 kfree(doms);
2205 }
2206
2207 /*
2208 * Set up scheduler domains and groups. For now this just excludes isolated
2209 * CPUs, but could be used to exclude other special cases in the future.
2210 */
sched_init_domains(const struct cpumask * cpu_map)2211 int sched_init_domains(const struct cpumask *cpu_map)
2212 {
2213 int err;
2214
2215 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2216 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2217 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2218
2219 arch_update_cpu_topology();
2220 ndoms_cur = 1;
2221 doms_cur = alloc_sched_domains(ndoms_cur);
2222 if (!doms_cur)
2223 doms_cur = &fallback_doms;
2224 cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
2225 err = build_sched_domains(doms_cur[0], NULL);
2226
2227 return err;
2228 }
2229
2230 /*
2231 * Detach sched domains from a group of CPUs specified in cpu_map
2232 * These CPUs will now be attached to the NULL domain
2233 */
detach_destroy_domains(const struct cpumask * cpu_map)2234 static void detach_destroy_domains(const struct cpumask *cpu_map)
2235 {
2236 unsigned int cpu = cpumask_any(cpu_map);
2237 int i;
2238
2239 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2240 static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2241
2242 rcu_read_lock();
2243 for_each_cpu(i, cpu_map)
2244 cpu_attach_domain(NULL, &def_root_domain, i);
2245 rcu_read_unlock();
2246 }
2247
2248 /* handle null as "default" */
dattrs_equal(struct sched_domain_attr * cur,int idx_cur,struct sched_domain_attr * new,int idx_new)2249 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2250 struct sched_domain_attr *new, int idx_new)
2251 {
2252 struct sched_domain_attr tmp;
2253
2254 /* Fast path: */
2255 if (!new && !cur)
2256 return 1;
2257
2258 tmp = SD_ATTR_INIT;
2259
2260 return !memcmp(cur ? (cur + idx_cur) : &tmp,
2261 new ? (new + idx_new) : &tmp,
2262 sizeof(struct sched_domain_attr));
2263 }
2264
2265 /*
2266 * Partition sched domains as specified by the 'ndoms_new'
2267 * cpumasks in the array doms_new[] of cpumasks. This compares
2268 * doms_new[] to the current sched domain partitioning, doms_cur[].
2269 * It destroys each deleted domain and builds each new domain.
2270 *
2271 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2272 * The masks don't intersect (don't overlap.) We should setup one
2273 * sched domain for each mask. CPUs not in any of the cpumasks will
2274 * not be load balanced. If the same cpumask appears both in the
2275 * current 'doms_cur' domains and in the new 'doms_new', we can leave
2276 * it as it is.
2277 *
2278 * The passed in 'doms_new' should be allocated using
2279 * alloc_sched_domains. This routine takes ownership of it and will
2280 * free_sched_domains it when done with it. If the caller failed the
2281 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2282 * and partition_sched_domains() will fallback to the single partition
2283 * 'fallback_doms', it also forces the domains to be rebuilt.
2284 *
2285 * If doms_new == NULL it will be replaced with cpu_online_mask.
2286 * ndoms_new == 0 is a special case for destroying existing domains,
2287 * and it will not create the default domain.
2288 *
2289 * Call with hotplug lock and sched_domains_mutex held
2290 */
partition_sched_domains_locked(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)2291 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2292 struct sched_domain_attr *dattr_new)
2293 {
2294 bool __maybe_unused has_eas = false;
2295 int i, j, n;
2296 int new_topology;
2297
2298 lockdep_assert_held(&sched_domains_mutex);
2299
2300 /* Let the architecture update CPU core mappings: */
2301 new_topology = arch_update_cpu_topology();
2302
2303 if (!doms_new) {
2304 WARN_ON_ONCE(dattr_new);
2305 n = 0;
2306 doms_new = alloc_sched_domains(1);
2307 if (doms_new) {
2308 n = 1;
2309 cpumask_and(doms_new[0], cpu_active_mask,
2310 housekeeping_cpumask(HK_FLAG_DOMAIN));
2311 }
2312 } else {
2313 n = ndoms_new;
2314 }
2315
2316 /* Destroy deleted domains: */
2317 for (i = 0; i < ndoms_cur; i++) {
2318 for (j = 0; j < n && !new_topology; j++) {
2319 if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2320 dattrs_equal(dattr_cur, i, dattr_new, j)) {
2321 struct root_domain *rd;
2322
2323 /*
2324 * This domain won't be destroyed and as such
2325 * its dl_bw->total_bw needs to be cleared. It
2326 * will be recomputed in function
2327 * update_tasks_root_domain().
2328 */
2329 rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2330 dl_clear_root_domain(rd);
2331 goto match1;
2332 }
2333 }
2334 /* No match - a current sched domain not in new doms_new[] */
2335 detach_destroy_domains(doms_cur[i]);
2336 match1:
2337 ;
2338 }
2339
2340 n = ndoms_cur;
2341 if (!doms_new) {
2342 n = 0;
2343 doms_new = &fallback_doms;
2344 cpumask_and(doms_new[0], cpu_active_mask,
2345 housekeeping_cpumask(HK_FLAG_DOMAIN));
2346 }
2347
2348 /* Build new domains: */
2349 for (i = 0; i < ndoms_new; i++) {
2350 for (j = 0; j < n && !new_topology; j++) {
2351 if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2352 dattrs_equal(dattr_new, i, dattr_cur, j))
2353 goto match2;
2354 }
2355 /* No match - add a new doms_new */
2356 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2357 match2:
2358 ;
2359 }
2360
2361 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2362 /* Build perf. domains: */
2363 for (i = 0; i < ndoms_new; i++) {
2364 for (j = 0; j < n && !sched_energy_update; j++) {
2365 if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2366 cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2367 has_eas = true;
2368 goto match3;
2369 }
2370 }
2371 /* No match - add perf. domains for a new rd */
2372 has_eas |= build_perf_domains(doms_new[i]);
2373 match3:
2374 ;
2375 }
2376 sched_energy_set(has_eas);
2377 #endif
2378
2379 /* Remember the new sched domains: */
2380 if (doms_cur != &fallback_doms)
2381 free_sched_domains(doms_cur, ndoms_cur);
2382
2383 kfree(dattr_cur);
2384 doms_cur = doms_new;
2385 dattr_cur = dattr_new;
2386 ndoms_cur = ndoms_new;
2387
2388 update_sched_domain_debugfs();
2389 }
2390
2391 /*
2392 * Call with hotplug lock held
2393 */
partition_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)2394 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2395 struct sched_domain_attr *dattr_new)
2396 {
2397 mutex_lock(&sched_domains_mutex);
2398 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2399 mutex_unlock(&sched_domains_mutex);
2400 }
2401