1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Accelerated GHASH implementation with ARMv8 PMULL instructions.
4 *
5 * Copyright (C) 2014 - 2018 Linaro Ltd. <ard.biesheuvel@linaro.org>
6 */
7
8 #include <asm/neon.h>
9 #include <asm/simd.h>
10 #include <asm/unaligned.h>
11 #include <crypto/aes.h>
12 #include <crypto/algapi.h>
13 #include <crypto/b128ops.h>
14 #include <crypto/gf128mul.h>
15 #include <crypto/internal/aead.h>
16 #include <crypto/internal/hash.h>
17 #include <crypto/internal/simd.h>
18 #include <crypto/internal/skcipher.h>
19 #include <crypto/scatterwalk.h>
20 #include <linux/cpufeature.h>
21 #include <linux/crypto.h>
22 #include <linux/module.h>
23
24 MODULE_DESCRIPTION("GHASH and AES-GCM using ARMv8 Crypto Extensions");
25 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
26 MODULE_LICENSE("GPL v2");
27 MODULE_ALIAS_CRYPTO("ghash");
28
29 #define GHASH_BLOCK_SIZE 16
30 #define GHASH_DIGEST_SIZE 16
31 #define GCM_IV_SIZE 12
32
33 struct ghash_key {
34 be128 k;
35 u64 h[][2];
36 };
37
38 struct ghash_desc_ctx {
39 u64 digest[GHASH_DIGEST_SIZE/sizeof(u64)];
40 u8 buf[GHASH_BLOCK_SIZE];
41 u32 count;
42 };
43
44 struct gcm_aes_ctx {
45 struct crypto_aes_ctx aes_key;
46 struct ghash_key ghash_key;
47 };
48
49 asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src,
50 u64 const h[][2], const char *head);
51
52 asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src,
53 u64 const h[][2], const char *head);
54
55 asmlinkage void pmull_gcm_encrypt(int bytes, u8 dst[], const u8 src[],
56 u64 const h[][2], u64 dg[], u8 ctr[],
57 u32 const rk[], int rounds, u8 tag[]);
58 asmlinkage int pmull_gcm_decrypt(int bytes, u8 dst[], const u8 src[],
59 u64 const h[][2], u64 dg[], u8 ctr[],
60 u32 const rk[], int rounds, const u8 l[],
61 const u8 tag[], u64 authsize);
62
ghash_init(struct shash_desc * desc)63 static int ghash_init(struct shash_desc *desc)
64 {
65 struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
66
67 *ctx = (struct ghash_desc_ctx){};
68 return 0;
69 }
70
ghash_do_update(int blocks,u64 dg[],const char * src,struct ghash_key * key,const char * head)71 static void ghash_do_update(int blocks, u64 dg[], const char *src,
72 struct ghash_key *key, const char *head)
73 {
74 be128 dst = { cpu_to_be64(dg[1]), cpu_to_be64(dg[0]) };
75
76 do {
77 const u8 *in = src;
78
79 if (head) {
80 in = head;
81 blocks++;
82 head = NULL;
83 } else {
84 src += GHASH_BLOCK_SIZE;
85 }
86
87 crypto_xor((u8 *)&dst, in, GHASH_BLOCK_SIZE);
88 gf128mul_lle(&dst, &key->k);
89 } while (--blocks);
90
91 dg[0] = be64_to_cpu(dst.b);
92 dg[1] = be64_to_cpu(dst.a);
93 }
94
95 static __always_inline
ghash_do_simd_update(int blocks,u64 dg[],const char * src,struct ghash_key * key,const char * head,void (* simd_update)(int blocks,u64 dg[],const char * src,u64 const h[][2],const char * head))96 void ghash_do_simd_update(int blocks, u64 dg[], const char *src,
97 struct ghash_key *key, const char *head,
98 void (*simd_update)(int blocks, u64 dg[],
99 const char *src,
100 u64 const h[][2],
101 const char *head))
102 {
103 if (likely(crypto_simd_usable())) {
104 kernel_neon_begin();
105 simd_update(blocks, dg, src, key->h, head);
106 kernel_neon_end();
107 } else {
108 ghash_do_update(blocks, dg, src, key, head);
109 }
110 }
111
112 /* avoid hogging the CPU for too long */
113 #define MAX_BLOCKS (SZ_64K / GHASH_BLOCK_SIZE)
114
ghash_update(struct shash_desc * desc,const u8 * src,unsigned int len)115 static int ghash_update(struct shash_desc *desc, const u8 *src,
116 unsigned int len)
117 {
118 struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
119 unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
120
121 ctx->count += len;
122
123 if ((partial + len) >= GHASH_BLOCK_SIZE) {
124 struct ghash_key *key = crypto_shash_ctx(desc->tfm);
125 int blocks;
126
127 if (partial) {
128 int p = GHASH_BLOCK_SIZE - partial;
129
130 memcpy(ctx->buf + partial, src, p);
131 src += p;
132 len -= p;
133 }
134
135 blocks = len / GHASH_BLOCK_SIZE;
136 len %= GHASH_BLOCK_SIZE;
137
138 do {
139 int chunk = min(blocks, MAX_BLOCKS);
140
141 ghash_do_simd_update(chunk, ctx->digest, src, key,
142 partial ? ctx->buf : NULL,
143 pmull_ghash_update_p8);
144
145 blocks -= chunk;
146 src += chunk * GHASH_BLOCK_SIZE;
147 partial = 0;
148 } while (unlikely(blocks > 0));
149 }
150 if (len)
151 memcpy(ctx->buf + partial, src, len);
152 return 0;
153 }
154
ghash_final(struct shash_desc * desc,u8 * dst)155 static int ghash_final(struct shash_desc *desc, u8 *dst)
156 {
157 struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
158 unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
159
160 if (partial) {
161 struct ghash_key *key = crypto_shash_ctx(desc->tfm);
162
163 memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial);
164
165 ghash_do_simd_update(1, ctx->digest, ctx->buf, key, NULL,
166 pmull_ghash_update_p8);
167 }
168 put_unaligned_be64(ctx->digest[1], dst);
169 put_unaligned_be64(ctx->digest[0], dst + 8);
170
171 memzero_explicit(ctx, sizeof(*ctx));
172 return 0;
173 }
174
ghash_reflect(u64 h[],const be128 * k)175 static void ghash_reflect(u64 h[], const be128 *k)
176 {
177 u64 carry = be64_to_cpu(k->a) & BIT(63) ? 1 : 0;
178
179 h[0] = (be64_to_cpu(k->b) << 1) | carry;
180 h[1] = (be64_to_cpu(k->a) << 1) | (be64_to_cpu(k->b) >> 63);
181
182 if (carry)
183 h[1] ^= 0xc200000000000000UL;
184 }
185
ghash_setkey(struct crypto_shash * tfm,const u8 * inkey,unsigned int keylen)186 static int ghash_setkey(struct crypto_shash *tfm,
187 const u8 *inkey, unsigned int keylen)
188 {
189 struct ghash_key *key = crypto_shash_ctx(tfm);
190
191 if (keylen != GHASH_BLOCK_SIZE)
192 return -EINVAL;
193
194 /* needed for the fallback */
195 memcpy(&key->k, inkey, GHASH_BLOCK_SIZE);
196
197 ghash_reflect(key->h[0], &key->k);
198 return 0;
199 }
200
201 static struct shash_alg ghash_alg = {
202 .base.cra_name = "ghash",
203 .base.cra_driver_name = "ghash-neon",
204 .base.cra_priority = 150,
205 .base.cra_blocksize = GHASH_BLOCK_SIZE,
206 .base.cra_ctxsize = sizeof(struct ghash_key) + sizeof(u64[2]),
207 .base.cra_module = THIS_MODULE,
208
209 .digestsize = GHASH_DIGEST_SIZE,
210 .init = ghash_init,
211 .update = ghash_update,
212 .final = ghash_final,
213 .setkey = ghash_setkey,
214 .descsize = sizeof(struct ghash_desc_ctx),
215 };
216
num_rounds(struct crypto_aes_ctx * ctx)217 static int num_rounds(struct crypto_aes_ctx *ctx)
218 {
219 /*
220 * # of rounds specified by AES:
221 * 128 bit key 10 rounds
222 * 192 bit key 12 rounds
223 * 256 bit key 14 rounds
224 * => n byte key => 6 + (n/4) rounds
225 */
226 return 6 + ctx->key_length / 4;
227 }
228
gcm_setkey(struct crypto_aead * tfm,const u8 * inkey,unsigned int keylen)229 static int gcm_setkey(struct crypto_aead *tfm, const u8 *inkey,
230 unsigned int keylen)
231 {
232 struct gcm_aes_ctx *ctx = crypto_aead_ctx(tfm);
233 u8 key[GHASH_BLOCK_SIZE];
234 be128 h;
235 int ret;
236
237 ret = aes_expandkey(&ctx->aes_key, inkey, keylen);
238 if (ret)
239 return -EINVAL;
240
241 aes_encrypt(&ctx->aes_key, key, (u8[AES_BLOCK_SIZE]){});
242
243 /* needed for the fallback */
244 memcpy(&ctx->ghash_key.k, key, GHASH_BLOCK_SIZE);
245
246 ghash_reflect(ctx->ghash_key.h[0], &ctx->ghash_key.k);
247
248 h = ctx->ghash_key.k;
249 gf128mul_lle(&h, &ctx->ghash_key.k);
250 ghash_reflect(ctx->ghash_key.h[1], &h);
251
252 gf128mul_lle(&h, &ctx->ghash_key.k);
253 ghash_reflect(ctx->ghash_key.h[2], &h);
254
255 gf128mul_lle(&h, &ctx->ghash_key.k);
256 ghash_reflect(ctx->ghash_key.h[3], &h);
257
258 return 0;
259 }
260
gcm_setauthsize(struct crypto_aead * tfm,unsigned int authsize)261 static int gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
262 {
263 switch (authsize) {
264 case 4:
265 case 8:
266 case 12 ... 16:
267 break;
268 default:
269 return -EINVAL;
270 }
271 return 0;
272 }
273
gcm_update_mac(u64 dg[],const u8 * src,int count,u8 buf[],int * buf_count,struct gcm_aes_ctx * ctx)274 static void gcm_update_mac(u64 dg[], const u8 *src, int count, u8 buf[],
275 int *buf_count, struct gcm_aes_ctx *ctx)
276 {
277 if (*buf_count > 0) {
278 int buf_added = min(count, GHASH_BLOCK_SIZE - *buf_count);
279
280 memcpy(&buf[*buf_count], src, buf_added);
281
282 *buf_count += buf_added;
283 src += buf_added;
284 count -= buf_added;
285 }
286
287 if (count >= GHASH_BLOCK_SIZE || *buf_count == GHASH_BLOCK_SIZE) {
288 int blocks = count / GHASH_BLOCK_SIZE;
289
290 ghash_do_simd_update(blocks, dg, src, &ctx->ghash_key,
291 *buf_count ? buf : NULL,
292 pmull_ghash_update_p64);
293
294 src += blocks * GHASH_BLOCK_SIZE;
295 count %= GHASH_BLOCK_SIZE;
296 *buf_count = 0;
297 }
298
299 if (count > 0) {
300 memcpy(buf, src, count);
301 *buf_count = count;
302 }
303 }
304
gcm_calculate_auth_mac(struct aead_request * req,u64 dg[])305 static void gcm_calculate_auth_mac(struct aead_request *req, u64 dg[])
306 {
307 struct crypto_aead *aead = crypto_aead_reqtfm(req);
308 struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
309 u8 buf[GHASH_BLOCK_SIZE];
310 struct scatter_walk walk;
311 u32 len = req->assoclen;
312 int buf_count = 0;
313
314 scatterwalk_start(&walk, req->src);
315
316 do {
317 u32 n = scatterwalk_clamp(&walk, len);
318 u8 *p;
319
320 if (!n) {
321 scatterwalk_start(&walk, sg_next(walk.sg));
322 n = scatterwalk_clamp(&walk, len);
323 }
324 p = scatterwalk_map(&walk);
325
326 gcm_update_mac(dg, p, n, buf, &buf_count, ctx);
327 len -= n;
328
329 scatterwalk_unmap(p);
330 scatterwalk_advance(&walk, n);
331 scatterwalk_done(&walk, 0, len);
332 } while (len);
333
334 if (buf_count) {
335 memset(&buf[buf_count], 0, GHASH_BLOCK_SIZE - buf_count);
336 ghash_do_simd_update(1, dg, buf, &ctx->ghash_key, NULL,
337 pmull_ghash_update_p64);
338 }
339 }
340
gcm_encrypt(struct aead_request * req)341 static int gcm_encrypt(struct aead_request *req)
342 {
343 struct crypto_aead *aead = crypto_aead_reqtfm(req);
344 struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
345 int nrounds = num_rounds(&ctx->aes_key);
346 struct skcipher_walk walk;
347 u8 buf[AES_BLOCK_SIZE];
348 u8 iv[AES_BLOCK_SIZE];
349 u64 dg[2] = {};
350 be128 lengths;
351 u8 *tag;
352 int err;
353
354 lengths.a = cpu_to_be64(req->assoclen * 8);
355 lengths.b = cpu_to_be64(req->cryptlen * 8);
356
357 if (req->assoclen)
358 gcm_calculate_auth_mac(req, dg);
359
360 memcpy(iv, req->iv, GCM_IV_SIZE);
361 put_unaligned_be32(2, iv + GCM_IV_SIZE);
362
363 err = skcipher_walk_aead_encrypt(&walk, req, false);
364
365 if (likely(crypto_simd_usable())) {
366 do {
367 const u8 *src = walk.src.virt.addr;
368 u8 *dst = walk.dst.virt.addr;
369 int nbytes = walk.nbytes;
370
371 tag = (u8 *)&lengths;
372
373 if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE)) {
374 src = dst = memcpy(buf + sizeof(buf) - nbytes,
375 src, nbytes);
376 } else if (nbytes < walk.total) {
377 nbytes &= ~(AES_BLOCK_SIZE - 1);
378 tag = NULL;
379 }
380
381 kernel_neon_begin();
382 pmull_gcm_encrypt(nbytes, dst, src, ctx->ghash_key.h,
383 dg, iv, ctx->aes_key.key_enc, nrounds,
384 tag);
385 kernel_neon_end();
386
387 if (unlikely(!nbytes))
388 break;
389
390 if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE))
391 memcpy(walk.dst.virt.addr,
392 buf + sizeof(buf) - nbytes, nbytes);
393
394 err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
395 } while (walk.nbytes);
396 } else {
397 while (walk.nbytes >= AES_BLOCK_SIZE) {
398 int blocks = walk.nbytes / AES_BLOCK_SIZE;
399 const u8 *src = walk.src.virt.addr;
400 u8 *dst = walk.dst.virt.addr;
401 int remaining = blocks;
402
403 do {
404 aes_encrypt(&ctx->aes_key, buf, iv);
405 crypto_xor_cpy(dst, src, buf, AES_BLOCK_SIZE);
406 crypto_inc(iv, AES_BLOCK_SIZE);
407
408 dst += AES_BLOCK_SIZE;
409 src += AES_BLOCK_SIZE;
410 } while (--remaining > 0);
411
412 ghash_do_update(blocks, dg, walk.dst.virt.addr,
413 &ctx->ghash_key, NULL);
414
415 err = skcipher_walk_done(&walk,
416 walk.nbytes % AES_BLOCK_SIZE);
417 }
418
419 /* handle the tail */
420 if (walk.nbytes) {
421 aes_encrypt(&ctx->aes_key, buf, iv);
422
423 crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr,
424 buf, walk.nbytes);
425
426 memcpy(buf, walk.dst.virt.addr, walk.nbytes);
427 memset(buf + walk.nbytes, 0, sizeof(buf) - walk.nbytes);
428 }
429
430 tag = (u8 *)&lengths;
431 ghash_do_update(1, dg, tag, &ctx->ghash_key,
432 walk.nbytes ? buf : NULL);
433
434 if (walk.nbytes)
435 err = skcipher_walk_done(&walk, 0);
436
437 put_unaligned_be64(dg[1], tag);
438 put_unaligned_be64(dg[0], tag + 8);
439 put_unaligned_be32(1, iv + GCM_IV_SIZE);
440 aes_encrypt(&ctx->aes_key, iv, iv);
441 crypto_xor(tag, iv, AES_BLOCK_SIZE);
442 }
443
444 if (err)
445 return err;
446
447 /* copy authtag to end of dst */
448 scatterwalk_map_and_copy(tag, req->dst, req->assoclen + req->cryptlen,
449 crypto_aead_authsize(aead), 1);
450
451 return 0;
452 }
453
gcm_decrypt(struct aead_request * req)454 static int gcm_decrypt(struct aead_request *req)
455 {
456 struct crypto_aead *aead = crypto_aead_reqtfm(req);
457 struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
458 unsigned int authsize = crypto_aead_authsize(aead);
459 int nrounds = num_rounds(&ctx->aes_key);
460 struct skcipher_walk walk;
461 u8 otag[AES_BLOCK_SIZE];
462 u8 buf[AES_BLOCK_SIZE];
463 u8 iv[AES_BLOCK_SIZE];
464 u64 dg[2] = {};
465 be128 lengths;
466 u8 *tag;
467 int err;
468
469 lengths.a = cpu_to_be64(req->assoclen * 8);
470 lengths.b = cpu_to_be64((req->cryptlen - authsize) * 8);
471
472 if (req->assoclen)
473 gcm_calculate_auth_mac(req, dg);
474
475 memcpy(iv, req->iv, GCM_IV_SIZE);
476 put_unaligned_be32(2, iv + GCM_IV_SIZE);
477
478 scatterwalk_map_and_copy(otag, req->src,
479 req->assoclen + req->cryptlen - authsize,
480 authsize, 0);
481
482 err = skcipher_walk_aead_decrypt(&walk, req, false);
483
484 if (likely(crypto_simd_usable())) {
485 int ret;
486
487 do {
488 const u8 *src = walk.src.virt.addr;
489 u8 *dst = walk.dst.virt.addr;
490 int nbytes = walk.nbytes;
491
492 tag = (u8 *)&lengths;
493
494 if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE)) {
495 src = dst = memcpy(buf + sizeof(buf) - nbytes,
496 src, nbytes);
497 } else if (nbytes < walk.total) {
498 nbytes &= ~(AES_BLOCK_SIZE - 1);
499 tag = NULL;
500 }
501
502 kernel_neon_begin();
503 ret = pmull_gcm_decrypt(nbytes, dst, src,
504 ctx->ghash_key.h,
505 dg, iv, ctx->aes_key.key_enc,
506 nrounds, tag, otag, authsize);
507 kernel_neon_end();
508
509 if (unlikely(!nbytes))
510 break;
511
512 if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE))
513 memcpy(walk.dst.virt.addr,
514 buf + sizeof(buf) - nbytes, nbytes);
515
516 err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
517 } while (walk.nbytes);
518
519 if (err)
520 return err;
521 if (ret)
522 return -EBADMSG;
523 } else {
524 while (walk.nbytes >= AES_BLOCK_SIZE) {
525 int blocks = walk.nbytes / AES_BLOCK_SIZE;
526 const u8 *src = walk.src.virt.addr;
527 u8 *dst = walk.dst.virt.addr;
528
529 ghash_do_update(blocks, dg, walk.src.virt.addr,
530 &ctx->ghash_key, NULL);
531
532 do {
533 aes_encrypt(&ctx->aes_key, buf, iv);
534 crypto_xor_cpy(dst, src, buf, AES_BLOCK_SIZE);
535 crypto_inc(iv, AES_BLOCK_SIZE);
536
537 dst += AES_BLOCK_SIZE;
538 src += AES_BLOCK_SIZE;
539 } while (--blocks > 0);
540
541 err = skcipher_walk_done(&walk,
542 walk.nbytes % AES_BLOCK_SIZE);
543 }
544
545 /* handle the tail */
546 if (walk.nbytes) {
547 memcpy(buf, walk.src.virt.addr, walk.nbytes);
548 memset(buf + walk.nbytes, 0, sizeof(buf) - walk.nbytes);
549 }
550
551 tag = (u8 *)&lengths;
552 ghash_do_update(1, dg, tag, &ctx->ghash_key,
553 walk.nbytes ? buf : NULL);
554
555 if (walk.nbytes) {
556 aes_encrypt(&ctx->aes_key, buf, iv);
557
558 crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr,
559 buf, walk.nbytes);
560
561 err = skcipher_walk_done(&walk, 0);
562 }
563
564 if (err)
565 return err;
566
567 put_unaligned_be64(dg[1], tag);
568 put_unaligned_be64(dg[0], tag + 8);
569 put_unaligned_be32(1, iv + GCM_IV_SIZE);
570 aes_encrypt(&ctx->aes_key, iv, iv);
571 crypto_xor(tag, iv, AES_BLOCK_SIZE);
572
573 if (crypto_memneq(tag, otag, authsize)) {
574 memzero_explicit(tag, AES_BLOCK_SIZE);
575 return -EBADMSG;
576 }
577 }
578 return 0;
579 }
580
581 static struct aead_alg gcm_aes_alg = {
582 .ivsize = GCM_IV_SIZE,
583 .chunksize = AES_BLOCK_SIZE,
584 .maxauthsize = AES_BLOCK_SIZE,
585 .setkey = gcm_setkey,
586 .setauthsize = gcm_setauthsize,
587 .encrypt = gcm_encrypt,
588 .decrypt = gcm_decrypt,
589
590 .base.cra_name = "gcm(aes)",
591 .base.cra_driver_name = "gcm-aes-ce",
592 .base.cra_priority = 300,
593 .base.cra_blocksize = 1,
594 .base.cra_ctxsize = sizeof(struct gcm_aes_ctx) +
595 4 * sizeof(u64[2]),
596 .base.cra_module = THIS_MODULE,
597 };
598
ghash_ce_mod_init(void)599 static int __init ghash_ce_mod_init(void)
600 {
601 if (!cpu_have_named_feature(ASIMD))
602 return -ENODEV;
603
604 if (cpu_have_named_feature(PMULL))
605 return crypto_register_aead(&gcm_aes_alg);
606
607 return crypto_register_shash(&ghash_alg);
608 }
609
ghash_ce_mod_exit(void)610 static void __exit ghash_ce_mod_exit(void)
611 {
612 if (cpu_have_named_feature(PMULL))
613 crypto_unregister_aead(&gcm_aes_alg);
614 else
615 crypto_unregister_shash(&ghash_alg);
616 }
617
618 static const struct cpu_feature ghash_cpu_feature[] = {
619 { cpu_feature(PMULL) }, { }
620 };
621 MODULE_DEVICE_TABLE(cpu, ghash_cpu_feature);
622
623 module_init(ghash_ce_mod_init);
624 module_exit(ghash_ce_mod_exit);
625