1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AArch64 loadable module support.
4  *
5  * Copyright (C) 2012 ARM Limited
6  *
7  * Author: Will Deacon <will.deacon@arm.com>
8  */
9 
10 #include <linux/bitops.h>
11 #include <linux/elf.h>
12 #include <linux/ftrace.h>
13 #include <linux/gfp.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/mm.h>
17 #include <linux/moduleloader.h>
18 #include <linux/vmalloc.h>
19 #include <asm/alternative.h>
20 #include <asm/insn.h>
21 #include <asm/sections.h>
22 
module_alloc(unsigned long size)23 void *module_alloc(unsigned long size)
24 {
25 	u64 module_alloc_end = module_alloc_base + MODULES_VSIZE;
26 	gfp_t gfp_mask = GFP_KERNEL;
27 	void *p;
28 
29 	/* Silence the initial allocation */
30 	if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS))
31 		gfp_mask |= __GFP_NOWARN;
32 
33 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
34 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
35 		/* don't exceed the static module region - see below */
36 		module_alloc_end = MODULES_END;
37 
38 	p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
39 				module_alloc_end, gfp_mask, PAGE_KERNEL, 0,
40 				NUMA_NO_NODE, __builtin_return_address(0));
41 
42 	if (!p && IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
43 	    (IS_ENABLED(CONFIG_KASAN_VMALLOC) ||
44 	     (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
45 	      !IS_ENABLED(CONFIG_KASAN_SW_TAGS))))
46 		/*
47 		 * KASAN without KASAN_VMALLOC can only deal with module
48 		 * allocations being served from the reserved module region,
49 		 * since the remainder of the vmalloc region is already
50 		 * backed by zero shadow pages, and punching holes into it
51 		 * is non-trivial. Since the module region is not randomized
52 		 * when KASAN is enabled without KASAN_VMALLOC, it is even
53 		 * less likely that the module region gets exhausted, so we
54 		 * can simply omit this fallback in that case.
55 		 */
56 		p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
57 				module_alloc_base + SZ_2G, GFP_KERNEL,
58 				PAGE_KERNEL, 0, NUMA_NO_NODE,
59 				__builtin_return_address(0));
60 
61 	if (p && (kasan_module_alloc(p, size) < 0)) {
62 		vfree(p);
63 		return NULL;
64 	}
65 
66 	return p;
67 }
68 
69 enum aarch64_reloc_op {
70 	RELOC_OP_NONE,
71 	RELOC_OP_ABS,
72 	RELOC_OP_PREL,
73 	RELOC_OP_PAGE,
74 };
75 
do_reloc(enum aarch64_reloc_op reloc_op,__le32 * place,u64 val)76 static u64 do_reloc(enum aarch64_reloc_op reloc_op, __le32 *place, u64 val)
77 {
78 	switch (reloc_op) {
79 	case RELOC_OP_ABS:
80 		return val;
81 	case RELOC_OP_PREL:
82 		return val - (u64)place;
83 	case RELOC_OP_PAGE:
84 		return (val & ~0xfff) - ((u64)place & ~0xfff);
85 	case RELOC_OP_NONE:
86 		return 0;
87 	}
88 
89 	pr_err("do_reloc: unknown relocation operation %d\n", reloc_op);
90 	return 0;
91 }
92 
reloc_data(enum aarch64_reloc_op op,void * place,u64 val,int len)93 static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len)
94 {
95 	s64 sval = do_reloc(op, place, val);
96 
97 	/*
98 	 * The ELF psABI for AArch64 documents the 16-bit and 32-bit place
99 	 * relative and absolute relocations as having a range of [-2^15, 2^16)
100 	 * or [-2^31, 2^32), respectively. However, in order to be able to
101 	 * detect overflows reliably, we have to choose whether we interpret
102 	 * such quantities as signed or as unsigned, and stick with it.
103 	 * The way we organize our address space requires a signed
104 	 * interpretation of 32-bit relative references, so let's use that
105 	 * for all R_AARCH64_PRELxx relocations. This means our upper
106 	 * bound for overflow detection should be Sxx_MAX rather than Uxx_MAX.
107 	 */
108 
109 	switch (len) {
110 	case 16:
111 		*(s16 *)place = sval;
112 		switch (op) {
113 		case RELOC_OP_ABS:
114 			if (sval < 0 || sval > U16_MAX)
115 				return -ERANGE;
116 			break;
117 		case RELOC_OP_PREL:
118 			if (sval < S16_MIN || sval > S16_MAX)
119 				return -ERANGE;
120 			break;
121 		default:
122 			pr_err("Invalid 16-bit data relocation (%d)\n", op);
123 			return 0;
124 		}
125 		break;
126 	case 32:
127 		*(s32 *)place = sval;
128 		switch (op) {
129 		case RELOC_OP_ABS:
130 			if (sval < 0 || sval > U32_MAX)
131 				return -ERANGE;
132 			break;
133 		case RELOC_OP_PREL:
134 			if (sval < S32_MIN || sval > S32_MAX)
135 				return -ERANGE;
136 			break;
137 		default:
138 			pr_err("Invalid 32-bit data relocation (%d)\n", op);
139 			return 0;
140 		}
141 		break;
142 	case 64:
143 		*(s64 *)place = sval;
144 		break;
145 	default:
146 		pr_err("Invalid length (%d) for data relocation\n", len);
147 		return 0;
148 	}
149 	return 0;
150 }
151 
152 enum aarch64_insn_movw_imm_type {
153 	AARCH64_INSN_IMM_MOVNZ,
154 	AARCH64_INSN_IMM_MOVKZ,
155 };
156 
reloc_insn_movw(enum aarch64_reloc_op op,__le32 * place,u64 val,int lsb,enum aarch64_insn_movw_imm_type imm_type)157 static int reloc_insn_movw(enum aarch64_reloc_op op, __le32 *place, u64 val,
158 			   int lsb, enum aarch64_insn_movw_imm_type imm_type)
159 {
160 	u64 imm;
161 	s64 sval;
162 	u32 insn = le32_to_cpu(*place);
163 
164 	sval = do_reloc(op, place, val);
165 	imm = sval >> lsb;
166 
167 	if (imm_type == AARCH64_INSN_IMM_MOVNZ) {
168 		/*
169 		 * For signed MOVW relocations, we have to manipulate the
170 		 * instruction encoding depending on whether or not the
171 		 * immediate is less than zero.
172 		 */
173 		insn &= ~(3 << 29);
174 		if (sval >= 0) {
175 			/* >=0: Set the instruction to MOVZ (opcode 10b). */
176 			insn |= 2 << 29;
177 		} else {
178 			/*
179 			 * <0: Set the instruction to MOVN (opcode 00b).
180 			 *     Since we've masked the opcode already, we
181 			 *     don't need to do anything other than
182 			 *     inverting the new immediate field.
183 			 */
184 			imm = ~imm;
185 		}
186 	}
187 
188 	/* Update the instruction with the new encoding. */
189 	insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm);
190 	*place = cpu_to_le32(insn);
191 
192 	if (imm > U16_MAX)
193 		return -ERANGE;
194 
195 	return 0;
196 }
197 
reloc_insn_imm(enum aarch64_reloc_op op,__le32 * place,u64 val,int lsb,int len,enum aarch64_insn_imm_type imm_type)198 static int reloc_insn_imm(enum aarch64_reloc_op op, __le32 *place, u64 val,
199 			  int lsb, int len, enum aarch64_insn_imm_type imm_type)
200 {
201 	u64 imm, imm_mask;
202 	s64 sval;
203 	u32 insn = le32_to_cpu(*place);
204 
205 	/* Calculate the relocation value. */
206 	sval = do_reloc(op, place, val);
207 	sval >>= lsb;
208 
209 	/* Extract the value bits and shift them to bit 0. */
210 	imm_mask = (BIT(lsb + len) - 1) >> lsb;
211 	imm = sval & imm_mask;
212 
213 	/* Update the instruction's immediate field. */
214 	insn = aarch64_insn_encode_immediate(imm_type, insn, imm);
215 	*place = cpu_to_le32(insn);
216 
217 	/*
218 	 * Extract the upper value bits (including the sign bit) and
219 	 * shift them to bit 0.
220 	 */
221 	sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1);
222 
223 	/*
224 	 * Overflow has occurred if the upper bits are not all equal to
225 	 * the sign bit of the value.
226 	 */
227 	if ((u64)(sval + 1) >= 2)
228 		return -ERANGE;
229 
230 	return 0;
231 }
232 
reloc_insn_adrp(struct module * mod,Elf64_Shdr * sechdrs,__le32 * place,u64 val)233 static int reloc_insn_adrp(struct module *mod, Elf64_Shdr *sechdrs,
234 			   __le32 *place, u64 val)
235 {
236 	u32 insn;
237 
238 	if (!is_forbidden_offset_for_adrp(place))
239 		return reloc_insn_imm(RELOC_OP_PAGE, place, val, 12, 21,
240 				      AARCH64_INSN_IMM_ADR);
241 
242 	/* patch ADRP to ADR if it is in range */
243 	if (!reloc_insn_imm(RELOC_OP_PREL, place, val & ~0xfff, 0, 21,
244 			    AARCH64_INSN_IMM_ADR)) {
245 		insn = le32_to_cpu(*place);
246 		insn &= ~BIT(31);
247 	} else {
248 		/* out of range for ADR -> emit a veneer */
249 		val = module_emit_veneer_for_adrp(mod, sechdrs, place, val & ~0xfff);
250 		if (!val)
251 			return -ENOEXEC;
252 		insn = aarch64_insn_gen_branch_imm((u64)place, val,
253 						   AARCH64_INSN_BRANCH_NOLINK);
254 	}
255 
256 	*place = cpu_to_le32(insn);
257 	return 0;
258 }
259 
apply_relocate_add(Elf64_Shdr * sechdrs,const char * strtab,unsigned int symindex,unsigned int relsec,struct module * me)260 int apply_relocate_add(Elf64_Shdr *sechdrs,
261 		       const char *strtab,
262 		       unsigned int symindex,
263 		       unsigned int relsec,
264 		       struct module *me)
265 {
266 	unsigned int i;
267 	int ovf;
268 	bool overflow_check;
269 	Elf64_Sym *sym;
270 	void *loc;
271 	u64 val;
272 	Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
273 
274 	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
275 		/* loc corresponds to P in the AArch64 ELF document. */
276 		loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
277 			+ rel[i].r_offset;
278 
279 		/* sym is the ELF symbol we're referring to. */
280 		sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
281 			+ ELF64_R_SYM(rel[i].r_info);
282 
283 		/* val corresponds to (S + A) in the AArch64 ELF document. */
284 		val = sym->st_value + rel[i].r_addend;
285 
286 		/* Check for overflow by default. */
287 		overflow_check = true;
288 
289 		/* Perform the static relocation. */
290 		switch (ELF64_R_TYPE(rel[i].r_info)) {
291 		/* Null relocations. */
292 		case R_ARM_NONE:
293 		case R_AARCH64_NONE:
294 			ovf = 0;
295 			break;
296 
297 		/* Data relocations. */
298 		case R_AARCH64_ABS64:
299 			overflow_check = false;
300 			ovf = reloc_data(RELOC_OP_ABS, loc, val, 64);
301 			break;
302 		case R_AARCH64_ABS32:
303 			ovf = reloc_data(RELOC_OP_ABS, loc, val, 32);
304 			break;
305 		case R_AARCH64_ABS16:
306 			ovf = reloc_data(RELOC_OP_ABS, loc, val, 16);
307 			break;
308 		case R_AARCH64_PREL64:
309 			overflow_check = false;
310 			ovf = reloc_data(RELOC_OP_PREL, loc, val, 64);
311 			break;
312 		case R_AARCH64_PREL32:
313 			ovf = reloc_data(RELOC_OP_PREL, loc, val, 32);
314 			break;
315 		case R_AARCH64_PREL16:
316 			ovf = reloc_data(RELOC_OP_PREL, loc, val, 16);
317 			break;
318 
319 		/* MOVW instruction relocations. */
320 		case R_AARCH64_MOVW_UABS_G0_NC:
321 			overflow_check = false;
322 			fallthrough;
323 		case R_AARCH64_MOVW_UABS_G0:
324 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
325 					      AARCH64_INSN_IMM_MOVKZ);
326 			break;
327 		case R_AARCH64_MOVW_UABS_G1_NC:
328 			overflow_check = false;
329 			fallthrough;
330 		case R_AARCH64_MOVW_UABS_G1:
331 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
332 					      AARCH64_INSN_IMM_MOVKZ);
333 			break;
334 		case R_AARCH64_MOVW_UABS_G2_NC:
335 			overflow_check = false;
336 			fallthrough;
337 		case R_AARCH64_MOVW_UABS_G2:
338 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
339 					      AARCH64_INSN_IMM_MOVKZ);
340 			break;
341 		case R_AARCH64_MOVW_UABS_G3:
342 			/* We're using the top bits so we can't overflow. */
343 			overflow_check = false;
344 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48,
345 					      AARCH64_INSN_IMM_MOVKZ);
346 			break;
347 		case R_AARCH64_MOVW_SABS_G0:
348 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
349 					      AARCH64_INSN_IMM_MOVNZ);
350 			break;
351 		case R_AARCH64_MOVW_SABS_G1:
352 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
353 					      AARCH64_INSN_IMM_MOVNZ);
354 			break;
355 		case R_AARCH64_MOVW_SABS_G2:
356 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
357 					      AARCH64_INSN_IMM_MOVNZ);
358 			break;
359 		case R_AARCH64_MOVW_PREL_G0_NC:
360 			overflow_check = false;
361 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
362 					      AARCH64_INSN_IMM_MOVKZ);
363 			break;
364 		case R_AARCH64_MOVW_PREL_G0:
365 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
366 					      AARCH64_INSN_IMM_MOVNZ);
367 			break;
368 		case R_AARCH64_MOVW_PREL_G1_NC:
369 			overflow_check = false;
370 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
371 					      AARCH64_INSN_IMM_MOVKZ);
372 			break;
373 		case R_AARCH64_MOVW_PREL_G1:
374 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
375 					      AARCH64_INSN_IMM_MOVNZ);
376 			break;
377 		case R_AARCH64_MOVW_PREL_G2_NC:
378 			overflow_check = false;
379 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
380 					      AARCH64_INSN_IMM_MOVKZ);
381 			break;
382 		case R_AARCH64_MOVW_PREL_G2:
383 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
384 					      AARCH64_INSN_IMM_MOVNZ);
385 			break;
386 		case R_AARCH64_MOVW_PREL_G3:
387 			/* We're using the top bits so we can't overflow. */
388 			overflow_check = false;
389 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48,
390 					      AARCH64_INSN_IMM_MOVNZ);
391 			break;
392 
393 		/* Immediate instruction relocations. */
394 		case R_AARCH64_LD_PREL_LO19:
395 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
396 					     AARCH64_INSN_IMM_19);
397 			break;
398 		case R_AARCH64_ADR_PREL_LO21:
399 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21,
400 					     AARCH64_INSN_IMM_ADR);
401 			break;
402 		case R_AARCH64_ADR_PREL_PG_HI21_NC:
403 			overflow_check = false;
404 			fallthrough;
405 		case R_AARCH64_ADR_PREL_PG_HI21:
406 			ovf = reloc_insn_adrp(me, sechdrs, loc, val);
407 			if (ovf && ovf != -ERANGE)
408 				return ovf;
409 			break;
410 		case R_AARCH64_ADD_ABS_LO12_NC:
411 		case R_AARCH64_LDST8_ABS_LO12_NC:
412 			overflow_check = false;
413 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12,
414 					     AARCH64_INSN_IMM_12);
415 			break;
416 		case R_AARCH64_LDST16_ABS_LO12_NC:
417 			overflow_check = false;
418 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11,
419 					     AARCH64_INSN_IMM_12);
420 			break;
421 		case R_AARCH64_LDST32_ABS_LO12_NC:
422 			overflow_check = false;
423 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10,
424 					     AARCH64_INSN_IMM_12);
425 			break;
426 		case R_AARCH64_LDST64_ABS_LO12_NC:
427 			overflow_check = false;
428 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9,
429 					     AARCH64_INSN_IMM_12);
430 			break;
431 		case R_AARCH64_LDST128_ABS_LO12_NC:
432 			overflow_check = false;
433 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8,
434 					     AARCH64_INSN_IMM_12);
435 			break;
436 		case R_AARCH64_TSTBR14:
437 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14,
438 					     AARCH64_INSN_IMM_14);
439 			break;
440 		case R_AARCH64_CONDBR19:
441 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
442 					     AARCH64_INSN_IMM_19);
443 			break;
444 		case R_AARCH64_JUMP26:
445 		case R_AARCH64_CALL26:
446 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26,
447 					     AARCH64_INSN_IMM_26);
448 
449 			if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
450 			    ovf == -ERANGE) {
451 				val = module_emit_plt_entry(me, sechdrs, loc, &rel[i], sym);
452 				if (!val)
453 					return -ENOEXEC;
454 				ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2,
455 						     26, AARCH64_INSN_IMM_26);
456 			}
457 			break;
458 
459 		default:
460 			pr_err("module %s: unsupported RELA relocation: %llu\n",
461 			       me->name, ELF64_R_TYPE(rel[i].r_info));
462 			return -ENOEXEC;
463 		}
464 
465 		if (overflow_check && ovf == -ERANGE)
466 			goto overflow;
467 
468 	}
469 
470 	return 0;
471 
472 overflow:
473 	pr_err("module %s: overflow in relocation type %d val %Lx\n",
474 	       me->name, (int)ELF64_R_TYPE(rel[i].r_info), val);
475 	return -ENOEXEC;
476 }
477 
find_section(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,const char * name)478 static const Elf_Shdr *find_section(const Elf_Ehdr *hdr,
479 				    const Elf_Shdr *sechdrs,
480 				    const char *name)
481 {
482 	const Elf_Shdr *s, *se;
483 	const char *secstrs = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
484 
485 	for (s = sechdrs, se = sechdrs + hdr->e_shnum; s < se; s++) {
486 		if (strcmp(name, secstrs + s->sh_name) == 0)
487 			return s;
488 	}
489 
490 	return NULL;
491 }
492 
__init_plt(struct plt_entry * plt,unsigned long addr)493 static inline void __init_plt(struct plt_entry *plt, unsigned long addr)
494 {
495 	*plt = get_plt_entry(addr, plt);
496 }
497 
module_init_ftrace_plt(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * mod)498 static int module_init_ftrace_plt(const Elf_Ehdr *hdr,
499 				  const Elf_Shdr *sechdrs,
500 				  struct module *mod)
501 {
502 #if defined(CONFIG_ARM64_MODULE_PLTS) && defined(CONFIG_DYNAMIC_FTRACE)
503 	const Elf_Shdr *s;
504 	struct plt_entry *plts;
505 
506 	s = find_section(hdr, sechdrs, ".text.ftrace_trampoline");
507 	if (!s)
508 		return -ENOEXEC;
509 
510 	plts = (void *)s->sh_addr;
511 
512 	__init_plt(&plts[FTRACE_PLT_IDX], FTRACE_ADDR);
513 
514 	if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE_WITH_REGS))
515 		__init_plt(&plts[FTRACE_REGS_PLT_IDX], FTRACE_REGS_ADDR);
516 
517 	mod->arch.ftrace_trampolines = plts;
518 #endif
519 	return 0;
520 }
521 
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)522 int module_finalize(const Elf_Ehdr *hdr,
523 		    const Elf_Shdr *sechdrs,
524 		    struct module *me)
525 {
526 	const Elf_Shdr *s;
527 	s = find_section(hdr, sechdrs, ".altinstructions");
528 	if (s)
529 		apply_alternatives_module((void *)s->sh_addr, s->sh_size);
530 
531 	return module_init_ftrace_plt(hdr, sechdrs, me);
532 }
533