1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * SMP initialisation and IPI support
4 * Based on arch/arm/kernel/smp.c
5 *
6 * Copyright (C) 2012 ARM Ltd.
7 */
8
9 #include <linux/acpi.h>
10 #include <linux/arm_sdei.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/smp.h>
25 #include <linux/seq_file.h>
26 #include <linux/irq.h>
27 #include <linux/irqchip/arm-gic-v3.h>
28 #include <linux/percpu.h>
29 #include <linux/clockchips.h>
30 #include <linux/completion.h>
31 #include <linux/of.h>
32 #include <linux/irq_work.h>
33 #include <linux/kernel_stat.h>
34 #include <linux/kexec.h>
35 #include <linux/kvm_host.h>
36
37 #include <asm/alternative.h>
38 #include <asm/atomic.h>
39 #include <asm/cacheflush.h>
40 #include <asm/cpu.h>
41 #include <asm/cputype.h>
42 #include <asm/cpu_ops.h>
43 #include <asm/daifflags.h>
44 #include <asm/kvm_mmu.h>
45 #include <asm/mmu_context.h>
46 #include <asm/numa.h>
47 #include <asm/processor.h>
48 #include <asm/smp_plat.h>
49 #include <asm/sections.h>
50 #include <asm/tlbflush.h>
51 #include <asm/ptrace.h>
52 #include <asm/virt.h>
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ipi.h>
56
57 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
58 EXPORT_PER_CPU_SYMBOL(cpu_number);
59
60 /*
61 * as from 2.5, kernels no longer have an init_tasks structure
62 * so we need some other way of telling a new secondary core
63 * where to place its SVC stack
64 */
65 struct secondary_data secondary_data;
66 /* Number of CPUs which aren't online, but looping in kernel text. */
67 static int cpus_stuck_in_kernel;
68
69 enum ipi_msg_type {
70 IPI_RESCHEDULE,
71 IPI_CALL_FUNC,
72 IPI_CPU_STOP,
73 IPI_CPU_CRASH_STOP,
74 IPI_TIMER,
75 IPI_IRQ_WORK,
76 IPI_WAKEUP,
77 NR_IPI
78 };
79
80 static int ipi_irq_base __read_mostly;
81 static int nr_ipi __read_mostly = NR_IPI;
82 static struct irq_desc *ipi_desc[NR_IPI] __read_mostly;
83
84 static void ipi_setup(int cpu);
85
86 #ifdef CONFIG_HOTPLUG_CPU
87 static void ipi_teardown(int cpu);
88 static int op_cpu_kill(unsigned int cpu);
89 #else
op_cpu_kill(unsigned int cpu)90 static inline int op_cpu_kill(unsigned int cpu)
91 {
92 return -ENOSYS;
93 }
94 #endif
95
96
97 /*
98 * Boot a secondary CPU, and assign it the specified idle task.
99 * This also gives us the initial stack to use for this CPU.
100 */
boot_secondary(unsigned int cpu,struct task_struct * idle)101 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
102 {
103 const struct cpu_operations *ops = get_cpu_ops(cpu);
104
105 if (ops->cpu_boot)
106 return ops->cpu_boot(cpu);
107
108 return -EOPNOTSUPP;
109 }
110
111 static DECLARE_COMPLETION(cpu_running);
112
__cpu_up(unsigned int cpu,struct task_struct * idle)113 int __cpu_up(unsigned int cpu, struct task_struct *idle)
114 {
115 int ret;
116 long status;
117
118 /*
119 * We need to tell the secondary core where to find its stack and the
120 * page tables.
121 */
122 secondary_data.task = idle;
123 secondary_data.stack = task_stack_page(idle) + THREAD_SIZE;
124 update_cpu_boot_status(CPU_MMU_OFF);
125 __flush_dcache_area(&secondary_data, sizeof(secondary_data));
126
127 /* Now bring the CPU into our world */
128 ret = boot_secondary(cpu, idle);
129 if (ret) {
130 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
131 return ret;
132 }
133
134 /*
135 * CPU was successfully started, wait for it to come online or
136 * time out.
137 */
138 wait_for_completion_timeout(&cpu_running,
139 msecs_to_jiffies(5000));
140 if (cpu_online(cpu))
141 return 0;
142
143 pr_crit("CPU%u: failed to come online\n", cpu);
144 secondary_data.task = NULL;
145 secondary_data.stack = NULL;
146 __flush_dcache_area(&secondary_data, sizeof(secondary_data));
147 status = READ_ONCE(secondary_data.status);
148 if (status == CPU_MMU_OFF)
149 status = READ_ONCE(__early_cpu_boot_status);
150
151 switch (status & CPU_BOOT_STATUS_MASK) {
152 default:
153 pr_err("CPU%u: failed in unknown state : 0x%lx\n",
154 cpu, status);
155 cpus_stuck_in_kernel++;
156 break;
157 case CPU_KILL_ME:
158 if (!op_cpu_kill(cpu)) {
159 pr_crit("CPU%u: died during early boot\n", cpu);
160 break;
161 }
162 pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
163 fallthrough;
164 case CPU_STUCK_IN_KERNEL:
165 pr_crit("CPU%u: is stuck in kernel\n", cpu);
166 if (status & CPU_STUCK_REASON_52_BIT_VA)
167 pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
168 if (status & CPU_STUCK_REASON_NO_GRAN) {
169 pr_crit("CPU%u: does not support %luK granule\n",
170 cpu, PAGE_SIZE / SZ_1K);
171 }
172 cpus_stuck_in_kernel++;
173 break;
174 case CPU_PANIC_KERNEL:
175 panic("CPU%u detected unsupported configuration\n", cpu);
176 }
177
178 return -EIO;
179 }
180
init_gic_priority_masking(void)181 static void init_gic_priority_masking(void)
182 {
183 u32 cpuflags;
184
185 if (WARN_ON(!gic_enable_sre()))
186 return;
187
188 cpuflags = read_sysreg(daif);
189
190 WARN_ON(!(cpuflags & PSR_I_BIT));
191 WARN_ON(!(cpuflags & PSR_F_BIT));
192
193 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
194 }
195
196 /*
197 * This is the secondary CPU boot entry. We're using this CPUs
198 * idle thread stack, but a set of temporary page tables.
199 */
secondary_start_kernel(void)200 asmlinkage notrace void secondary_start_kernel(void)
201 {
202 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
203 struct mm_struct *mm = &init_mm;
204 const struct cpu_operations *ops;
205 unsigned int cpu;
206
207 cpu = task_cpu(current);
208 set_my_cpu_offset(per_cpu_offset(cpu));
209
210 /*
211 * All kernel threads share the same mm context; grab a
212 * reference and switch to it.
213 */
214 mmgrab(mm);
215 current->active_mm = mm;
216
217 /*
218 * TTBR0 is only used for the identity mapping at this stage. Make it
219 * point to zero page to avoid speculatively fetching new entries.
220 */
221 cpu_uninstall_idmap();
222
223 if (system_uses_irq_prio_masking())
224 init_gic_priority_masking();
225
226 rcu_cpu_starting(cpu);
227 preempt_disable();
228 trace_hardirqs_off();
229
230 /*
231 * If the system has established the capabilities, make sure
232 * this CPU ticks all of those. If it doesn't, the CPU will
233 * fail to come online.
234 */
235 check_local_cpu_capabilities();
236
237 ops = get_cpu_ops(cpu);
238 if (ops->cpu_postboot)
239 ops->cpu_postboot();
240
241 /*
242 * Log the CPU info before it is marked online and might get read.
243 */
244 cpuinfo_store_cpu();
245
246 /*
247 * Enable GIC and timers.
248 */
249 notify_cpu_starting(cpu);
250
251 ipi_setup(cpu);
252
253 store_cpu_topology(cpu);
254 numa_add_cpu(cpu);
255
256 /*
257 * OK, now it's safe to let the boot CPU continue. Wait for
258 * the CPU migration code to notice that the CPU is online
259 * before we continue.
260 */
261 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
262 cpu, (unsigned long)mpidr,
263 read_cpuid_id());
264 update_cpu_boot_status(CPU_BOOT_SUCCESS);
265 set_cpu_online(cpu, true);
266 complete(&cpu_running);
267
268 local_daif_restore(DAIF_PROCCTX);
269
270 /*
271 * OK, it's off to the idle thread for us
272 */
273 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
274 }
275
276 #ifdef CONFIG_HOTPLUG_CPU
op_cpu_disable(unsigned int cpu)277 static int op_cpu_disable(unsigned int cpu)
278 {
279 const struct cpu_operations *ops = get_cpu_ops(cpu);
280
281 /*
282 * If we don't have a cpu_die method, abort before we reach the point
283 * of no return. CPU0 may not have an cpu_ops, so test for it.
284 */
285 if (!ops || !ops->cpu_die)
286 return -EOPNOTSUPP;
287
288 /*
289 * We may need to abort a hot unplug for some other mechanism-specific
290 * reason.
291 */
292 if (ops->cpu_disable)
293 return ops->cpu_disable(cpu);
294
295 return 0;
296 }
297
298 /*
299 * __cpu_disable runs on the processor to be shutdown.
300 */
__cpu_disable(void)301 int __cpu_disable(void)
302 {
303 unsigned int cpu = smp_processor_id();
304 int ret;
305
306 ret = op_cpu_disable(cpu);
307 if (ret)
308 return ret;
309
310 remove_cpu_topology(cpu);
311 numa_remove_cpu(cpu);
312
313 /*
314 * Take this CPU offline. Once we clear this, we can't return,
315 * and we must not schedule until we're ready to give up the cpu.
316 */
317 set_cpu_online(cpu, false);
318 ipi_teardown(cpu);
319
320 /*
321 * OK - migrate IRQs away from this CPU
322 */
323 irq_migrate_all_off_this_cpu();
324
325 return 0;
326 }
327
op_cpu_kill(unsigned int cpu)328 static int op_cpu_kill(unsigned int cpu)
329 {
330 const struct cpu_operations *ops = get_cpu_ops(cpu);
331
332 /*
333 * If we have no means of synchronising with the dying CPU, then assume
334 * that it is really dead. We can only wait for an arbitrary length of
335 * time and hope that it's dead, so let's skip the wait and just hope.
336 */
337 if (!ops->cpu_kill)
338 return 0;
339
340 return ops->cpu_kill(cpu);
341 }
342
343 /*
344 * called on the thread which is asking for a CPU to be shutdown -
345 * waits until shutdown has completed, or it is timed out.
346 */
__cpu_die(unsigned int cpu)347 void __cpu_die(unsigned int cpu)
348 {
349 int err;
350
351 if (!cpu_wait_death(cpu, 5)) {
352 pr_crit("CPU%u: cpu didn't die\n", cpu);
353 return;
354 }
355 pr_notice("CPU%u: shutdown\n", cpu);
356
357 /*
358 * Now that the dying CPU is beyond the point of no return w.r.t.
359 * in-kernel synchronisation, try to get the firwmare to help us to
360 * verify that it has really left the kernel before we consider
361 * clobbering anything it might still be using.
362 */
363 err = op_cpu_kill(cpu);
364 if (err)
365 pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err);
366 }
367
368 /*
369 * Called from the idle thread for the CPU which has been shutdown.
370 *
371 */
cpu_die(void)372 void cpu_die(void)
373 {
374 unsigned int cpu = smp_processor_id();
375 const struct cpu_operations *ops = get_cpu_ops(cpu);
376
377 idle_task_exit();
378
379 local_daif_mask();
380
381 /* Tell __cpu_die() that this CPU is now safe to dispose of */
382 (void)cpu_report_death();
383
384 /*
385 * Actually shutdown the CPU. This must never fail. The specific hotplug
386 * mechanism must perform all required cache maintenance to ensure that
387 * no dirty lines are lost in the process of shutting down the CPU.
388 */
389 ops->cpu_die(cpu);
390
391 BUG();
392 }
393 #endif
394
__cpu_try_die(int cpu)395 static void __cpu_try_die(int cpu)
396 {
397 #ifdef CONFIG_HOTPLUG_CPU
398 const struct cpu_operations *ops = get_cpu_ops(cpu);
399
400 if (ops && ops->cpu_die)
401 ops->cpu_die(cpu);
402 #endif
403 }
404
405 /*
406 * Kill the calling secondary CPU, early in bringup before it is turned
407 * online.
408 */
cpu_die_early(void)409 void cpu_die_early(void)
410 {
411 int cpu = smp_processor_id();
412
413 pr_crit("CPU%d: will not boot\n", cpu);
414
415 /* Mark this CPU absent */
416 set_cpu_present(cpu, 0);
417 rcu_report_dead(cpu);
418
419 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
420 update_cpu_boot_status(CPU_KILL_ME);
421 __cpu_try_die(cpu);
422 }
423
424 update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
425
426 cpu_park_loop();
427 }
428
hyp_mode_check(void)429 static void __init hyp_mode_check(void)
430 {
431 if (is_hyp_mode_available())
432 pr_info("CPU: All CPU(s) started at EL2\n");
433 else if (is_hyp_mode_mismatched())
434 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
435 "CPU: CPUs started in inconsistent modes");
436 else
437 pr_info("CPU: All CPU(s) started at EL1\n");
438 if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) {
439 kvm_compute_layout();
440 kvm_apply_hyp_relocations();
441 }
442 }
443
smp_cpus_done(unsigned int max_cpus)444 void __init smp_cpus_done(unsigned int max_cpus)
445 {
446 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
447 setup_cpu_features();
448 hyp_mode_check();
449 apply_alternatives_all();
450 mark_linear_text_alias_ro();
451 }
452
smp_prepare_boot_cpu(void)453 void __init smp_prepare_boot_cpu(void)
454 {
455 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
456 cpuinfo_store_boot_cpu();
457
458 /*
459 * We now know enough about the boot CPU to apply the
460 * alternatives that cannot wait until interrupt handling
461 * and/or scheduling is enabled.
462 */
463 apply_boot_alternatives();
464
465 /* Conditionally switch to GIC PMR for interrupt masking */
466 if (system_uses_irq_prio_masking())
467 init_gic_priority_masking();
468
469 kasan_init_hw_tags();
470 }
471
of_get_cpu_mpidr(struct device_node * dn)472 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
473 {
474 const __be32 *cell;
475 u64 hwid;
476
477 /*
478 * A cpu node with missing "reg" property is
479 * considered invalid to build a cpu_logical_map
480 * entry.
481 */
482 cell = of_get_property(dn, "reg", NULL);
483 if (!cell) {
484 pr_err("%pOF: missing reg property\n", dn);
485 return INVALID_HWID;
486 }
487
488 hwid = of_read_number(cell, of_n_addr_cells(dn));
489 /*
490 * Non affinity bits must be set to 0 in the DT
491 */
492 if (hwid & ~MPIDR_HWID_BITMASK) {
493 pr_err("%pOF: invalid reg property\n", dn);
494 return INVALID_HWID;
495 }
496 return hwid;
497 }
498
499 /*
500 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
501 * entries and check for duplicates. If any is found just ignore the
502 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
503 * matching valid MPIDR values.
504 */
is_mpidr_duplicate(unsigned int cpu,u64 hwid)505 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
506 {
507 unsigned int i;
508
509 for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
510 if (cpu_logical_map(i) == hwid)
511 return true;
512 return false;
513 }
514
515 /*
516 * Initialize cpu operations for a logical cpu and
517 * set it in the possible mask on success
518 */
smp_cpu_setup(int cpu)519 static int __init smp_cpu_setup(int cpu)
520 {
521 const struct cpu_operations *ops;
522
523 if (init_cpu_ops(cpu))
524 return -ENODEV;
525
526 ops = get_cpu_ops(cpu);
527 if (ops->cpu_init(cpu))
528 return -ENODEV;
529
530 set_cpu_possible(cpu, true);
531
532 return 0;
533 }
534
535 static bool bootcpu_valid __initdata;
536 static unsigned int cpu_count = 1;
537
538 #ifdef CONFIG_ACPI
539 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
540
acpi_cpu_get_madt_gicc(int cpu)541 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
542 {
543 return &cpu_madt_gicc[cpu];
544 }
545
546 /*
547 * acpi_map_gic_cpu_interface - parse processor MADT entry
548 *
549 * Carry out sanity checks on MADT processor entry and initialize
550 * cpu_logical_map on success
551 */
552 static void __init
acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt * processor)553 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
554 {
555 u64 hwid = processor->arm_mpidr;
556
557 if (!(processor->flags & ACPI_MADT_ENABLED)) {
558 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
559 return;
560 }
561
562 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
563 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
564 return;
565 }
566
567 if (is_mpidr_duplicate(cpu_count, hwid)) {
568 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
569 return;
570 }
571
572 /* Check if GICC structure of boot CPU is available in the MADT */
573 if (cpu_logical_map(0) == hwid) {
574 if (bootcpu_valid) {
575 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
576 hwid);
577 return;
578 }
579 bootcpu_valid = true;
580 cpu_madt_gicc[0] = *processor;
581 return;
582 }
583
584 if (cpu_count >= NR_CPUS)
585 return;
586
587 /* map the logical cpu id to cpu MPIDR */
588 set_cpu_logical_map(cpu_count, hwid);
589
590 cpu_madt_gicc[cpu_count] = *processor;
591
592 /*
593 * Set-up the ACPI parking protocol cpu entries
594 * while initializing the cpu_logical_map to
595 * avoid parsing MADT entries multiple times for
596 * nothing (ie a valid cpu_logical_map entry should
597 * contain a valid parking protocol data set to
598 * initialize the cpu if the parking protocol is
599 * the only available enable method).
600 */
601 acpi_set_mailbox_entry(cpu_count, processor);
602
603 cpu_count++;
604 }
605
606 static int __init
acpi_parse_gic_cpu_interface(union acpi_subtable_headers * header,const unsigned long end)607 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
608 const unsigned long end)
609 {
610 struct acpi_madt_generic_interrupt *processor;
611
612 processor = (struct acpi_madt_generic_interrupt *)header;
613 if (BAD_MADT_GICC_ENTRY(processor, end))
614 return -EINVAL;
615
616 acpi_table_print_madt_entry(&header->common);
617
618 acpi_map_gic_cpu_interface(processor);
619
620 return 0;
621 }
622
acpi_parse_and_init_cpus(void)623 static void __init acpi_parse_and_init_cpus(void)
624 {
625 int i;
626
627 /*
628 * do a walk of MADT to determine how many CPUs
629 * we have including disabled CPUs, and get information
630 * we need for SMP init.
631 */
632 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
633 acpi_parse_gic_cpu_interface, 0);
634
635 /*
636 * In ACPI, SMP and CPU NUMA information is provided in separate
637 * static tables, namely the MADT and the SRAT.
638 *
639 * Thus, it is simpler to first create the cpu logical map through
640 * an MADT walk and then map the logical cpus to their node ids
641 * as separate steps.
642 */
643 acpi_map_cpus_to_nodes();
644
645 for (i = 0; i < nr_cpu_ids; i++)
646 early_map_cpu_to_node(i, acpi_numa_get_nid(i));
647 }
648 #else
649 #define acpi_parse_and_init_cpus(...) do { } while (0)
650 #endif
651
652 /*
653 * Enumerate the possible CPU set from the device tree and build the
654 * cpu logical map array containing MPIDR values related to logical
655 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
656 */
of_parse_and_init_cpus(void)657 static void __init of_parse_and_init_cpus(void)
658 {
659 struct device_node *dn;
660
661 for_each_of_cpu_node(dn) {
662 u64 hwid = of_get_cpu_mpidr(dn);
663
664 if (hwid == INVALID_HWID)
665 goto next;
666
667 if (is_mpidr_duplicate(cpu_count, hwid)) {
668 pr_err("%pOF: duplicate cpu reg properties in the DT\n",
669 dn);
670 goto next;
671 }
672
673 /*
674 * The numbering scheme requires that the boot CPU
675 * must be assigned logical id 0. Record it so that
676 * the logical map built from DT is validated and can
677 * be used.
678 */
679 if (hwid == cpu_logical_map(0)) {
680 if (bootcpu_valid) {
681 pr_err("%pOF: duplicate boot cpu reg property in DT\n",
682 dn);
683 goto next;
684 }
685
686 bootcpu_valid = true;
687 early_map_cpu_to_node(0, of_node_to_nid(dn));
688
689 /*
690 * cpu_logical_map has already been
691 * initialized and the boot cpu doesn't need
692 * the enable-method so continue without
693 * incrementing cpu.
694 */
695 continue;
696 }
697
698 if (cpu_count >= NR_CPUS)
699 goto next;
700
701 pr_debug("cpu logical map 0x%llx\n", hwid);
702 set_cpu_logical_map(cpu_count, hwid);
703
704 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
705 next:
706 cpu_count++;
707 }
708 }
709
710 /*
711 * Enumerate the possible CPU set from the device tree or ACPI and build the
712 * cpu logical map array containing MPIDR values related to logical
713 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
714 */
smp_init_cpus(void)715 void __init smp_init_cpus(void)
716 {
717 int i;
718
719 if (acpi_disabled)
720 of_parse_and_init_cpus();
721 else
722 acpi_parse_and_init_cpus();
723
724 if (cpu_count > nr_cpu_ids)
725 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
726 cpu_count, nr_cpu_ids);
727
728 if (!bootcpu_valid) {
729 pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
730 return;
731 }
732
733 /*
734 * We need to set the cpu_logical_map entries before enabling
735 * the cpus so that cpu processor description entries (DT cpu nodes
736 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
737 * with entries in cpu_logical_map while initializing the cpus.
738 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
739 */
740 for (i = 1; i < nr_cpu_ids; i++) {
741 if (cpu_logical_map(i) != INVALID_HWID) {
742 if (smp_cpu_setup(i))
743 set_cpu_logical_map(i, INVALID_HWID);
744 }
745 }
746 }
747
smp_prepare_cpus(unsigned int max_cpus)748 void __init smp_prepare_cpus(unsigned int max_cpus)
749 {
750 const struct cpu_operations *ops;
751 int err;
752 unsigned int cpu;
753 unsigned int this_cpu;
754
755 init_cpu_topology();
756
757 this_cpu = smp_processor_id();
758 store_cpu_topology(this_cpu);
759 numa_store_cpu_info(this_cpu);
760 numa_add_cpu(this_cpu);
761
762 /*
763 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
764 * secondary CPUs present.
765 */
766 if (max_cpus == 0)
767 return;
768
769 /*
770 * Initialise the present map (which describes the set of CPUs
771 * actually populated at the present time) and release the
772 * secondaries from the bootloader.
773 */
774 for_each_possible_cpu(cpu) {
775
776 per_cpu(cpu_number, cpu) = cpu;
777
778 if (cpu == smp_processor_id())
779 continue;
780
781 ops = get_cpu_ops(cpu);
782 if (!ops)
783 continue;
784
785 err = ops->cpu_prepare(cpu);
786 if (err)
787 continue;
788
789 set_cpu_present(cpu, true);
790 numa_store_cpu_info(cpu);
791 }
792 }
793
794 static const char *ipi_types[NR_IPI] __tracepoint_string = {
795 [IPI_RESCHEDULE] = "Rescheduling interrupts",
796 [IPI_CALL_FUNC] = "Function call interrupts",
797 [IPI_CPU_STOP] = "CPU stop interrupts",
798 [IPI_CPU_CRASH_STOP] = "CPU stop (for crash dump) interrupts",
799 [IPI_TIMER] = "Timer broadcast interrupts",
800 [IPI_IRQ_WORK] = "IRQ work interrupts",
801 [IPI_WAKEUP] = "CPU wake-up interrupts",
802 };
803
804 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
805
806 unsigned long irq_err_count;
807
arch_show_interrupts(struct seq_file * p,int prec)808 int arch_show_interrupts(struct seq_file *p, int prec)
809 {
810 unsigned int cpu, i;
811
812 for (i = 0; i < NR_IPI; i++) {
813 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
814 prec >= 4 ? " " : "");
815 for_each_online_cpu(cpu)
816 seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu));
817 seq_printf(p, " %s\n", ipi_types[i]);
818 }
819
820 seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count);
821 return 0;
822 }
823
arch_send_call_function_ipi_mask(const struct cpumask * mask)824 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
825 {
826 smp_cross_call(mask, IPI_CALL_FUNC);
827 }
828
arch_send_call_function_single_ipi(int cpu)829 void arch_send_call_function_single_ipi(int cpu)
830 {
831 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
832 }
833
834 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
arch_send_wakeup_ipi_mask(const struct cpumask * mask)835 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
836 {
837 smp_cross_call(mask, IPI_WAKEUP);
838 }
839 #endif
840
841 #ifdef CONFIG_IRQ_WORK
arch_irq_work_raise(void)842 void arch_irq_work_raise(void)
843 {
844 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
845 }
846 #endif
847
local_cpu_stop(void)848 static void local_cpu_stop(void)
849 {
850 set_cpu_online(smp_processor_id(), false);
851
852 local_daif_mask();
853 sdei_mask_local_cpu();
854 cpu_park_loop();
855 }
856
857 /*
858 * We need to implement panic_smp_self_stop() for parallel panic() calls, so
859 * that cpu_online_mask gets correctly updated and smp_send_stop() can skip
860 * CPUs that have already stopped themselves.
861 */
panic_smp_self_stop(void)862 void panic_smp_self_stop(void)
863 {
864 local_cpu_stop();
865 }
866
867 #ifdef CONFIG_KEXEC_CORE
868 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
869 #endif
870
ipi_cpu_crash_stop(unsigned int cpu,struct pt_regs * regs)871 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
872 {
873 #ifdef CONFIG_KEXEC_CORE
874 crash_save_cpu(regs, cpu);
875
876 atomic_dec(&waiting_for_crash_ipi);
877
878 local_irq_disable();
879 sdei_mask_local_cpu();
880
881 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
882 __cpu_try_die(cpu);
883
884 /* just in case */
885 cpu_park_loop();
886 #endif
887 }
888
889 /*
890 * Main handler for inter-processor interrupts
891 */
do_handle_IPI(int ipinr)892 static void do_handle_IPI(int ipinr)
893 {
894 unsigned int cpu = smp_processor_id();
895
896 if ((unsigned)ipinr < NR_IPI)
897 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
898
899 switch (ipinr) {
900 case IPI_RESCHEDULE:
901 scheduler_ipi();
902 break;
903
904 case IPI_CALL_FUNC:
905 generic_smp_call_function_interrupt();
906 break;
907
908 case IPI_CPU_STOP:
909 local_cpu_stop();
910 break;
911
912 case IPI_CPU_CRASH_STOP:
913 if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
914 ipi_cpu_crash_stop(cpu, get_irq_regs());
915
916 unreachable();
917 }
918 break;
919
920 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
921 case IPI_TIMER:
922 tick_receive_broadcast();
923 break;
924 #endif
925
926 #ifdef CONFIG_IRQ_WORK
927 case IPI_IRQ_WORK:
928 irq_work_run();
929 break;
930 #endif
931
932 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
933 case IPI_WAKEUP:
934 WARN_ONCE(!acpi_parking_protocol_valid(cpu),
935 "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
936 cpu);
937 break;
938 #endif
939
940 default:
941 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
942 break;
943 }
944
945 if ((unsigned)ipinr < NR_IPI)
946 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
947 }
948
ipi_handler(int irq,void * data)949 static irqreturn_t ipi_handler(int irq, void *data)
950 {
951 do_handle_IPI(irq - ipi_irq_base);
952 return IRQ_HANDLED;
953 }
954
smp_cross_call(const struct cpumask * target,unsigned int ipinr)955 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
956 {
957 trace_ipi_raise(target, ipi_types[ipinr]);
958 __ipi_send_mask(ipi_desc[ipinr], target);
959 }
960
ipi_setup(int cpu)961 static void ipi_setup(int cpu)
962 {
963 int i;
964
965 if (WARN_ON_ONCE(!ipi_irq_base))
966 return;
967
968 for (i = 0; i < nr_ipi; i++)
969 enable_percpu_irq(ipi_irq_base + i, 0);
970 }
971
972 #ifdef CONFIG_HOTPLUG_CPU
ipi_teardown(int cpu)973 static void ipi_teardown(int cpu)
974 {
975 int i;
976
977 if (WARN_ON_ONCE(!ipi_irq_base))
978 return;
979
980 for (i = 0; i < nr_ipi; i++)
981 disable_percpu_irq(ipi_irq_base + i);
982 }
983 #endif
984
set_smp_ipi_range(int ipi_base,int n)985 void __init set_smp_ipi_range(int ipi_base, int n)
986 {
987 int i;
988
989 WARN_ON(n < NR_IPI);
990 nr_ipi = min(n, NR_IPI);
991
992 for (i = 0; i < nr_ipi; i++) {
993 int err;
994
995 err = request_percpu_irq(ipi_base + i, ipi_handler,
996 "IPI", &cpu_number);
997 WARN_ON(err);
998
999 ipi_desc[i] = irq_to_desc(ipi_base + i);
1000 irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
1001 }
1002
1003 ipi_irq_base = ipi_base;
1004
1005 /* Setup the boot CPU immediately */
1006 ipi_setup(smp_processor_id());
1007 }
1008
smp_send_reschedule(int cpu)1009 void smp_send_reschedule(int cpu)
1010 {
1011 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
1012 }
1013
1014 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast(const struct cpumask * mask)1015 void tick_broadcast(const struct cpumask *mask)
1016 {
1017 smp_cross_call(mask, IPI_TIMER);
1018 }
1019 #endif
1020
1021 /*
1022 * The number of CPUs online, not counting this CPU (which may not be
1023 * fully online and so not counted in num_online_cpus()).
1024 */
num_other_online_cpus(void)1025 static inline unsigned int num_other_online_cpus(void)
1026 {
1027 unsigned int this_cpu_online = cpu_online(smp_processor_id());
1028
1029 return num_online_cpus() - this_cpu_online;
1030 }
1031
smp_send_stop(void)1032 void smp_send_stop(void)
1033 {
1034 unsigned long timeout;
1035
1036 if (num_other_online_cpus()) {
1037 cpumask_t mask;
1038
1039 cpumask_copy(&mask, cpu_online_mask);
1040 cpumask_clear_cpu(smp_processor_id(), &mask);
1041
1042 if (system_state <= SYSTEM_RUNNING)
1043 pr_crit("SMP: stopping secondary CPUs\n");
1044 smp_cross_call(&mask, IPI_CPU_STOP);
1045 }
1046
1047 /* Wait up to one second for other CPUs to stop */
1048 timeout = USEC_PER_SEC;
1049 while (num_other_online_cpus() && timeout--)
1050 udelay(1);
1051
1052 if (num_other_online_cpus())
1053 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1054 cpumask_pr_args(cpu_online_mask));
1055
1056 sdei_mask_local_cpu();
1057 }
1058
1059 #ifdef CONFIG_KEXEC_CORE
crash_smp_send_stop(void)1060 void crash_smp_send_stop(void)
1061 {
1062 static int cpus_stopped;
1063 cpumask_t mask;
1064 unsigned long timeout;
1065
1066 /*
1067 * This function can be called twice in panic path, but obviously
1068 * we execute this only once.
1069 */
1070 if (cpus_stopped)
1071 return;
1072
1073 cpus_stopped = 1;
1074
1075 /*
1076 * If this cpu is the only one alive at this point in time, online or
1077 * not, there are no stop messages to be sent around, so just back out.
1078 */
1079 if (num_other_online_cpus() == 0) {
1080 sdei_mask_local_cpu();
1081 return;
1082 }
1083
1084 cpumask_copy(&mask, cpu_online_mask);
1085 cpumask_clear_cpu(smp_processor_id(), &mask);
1086
1087 atomic_set(&waiting_for_crash_ipi, num_other_online_cpus());
1088
1089 pr_crit("SMP: stopping secondary CPUs\n");
1090 smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
1091
1092 /* Wait up to one second for other CPUs to stop */
1093 timeout = USEC_PER_SEC;
1094 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
1095 udelay(1);
1096
1097 if (atomic_read(&waiting_for_crash_ipi) > 0)
1098 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1099 cpumask_pr_args(&mask));
1100
1101 sdei_mask_local_cpu();
1102 }
1103
smp_crash_stop_failed(void)1104 bool smp_crash_stop_failed(void)
1105 {
1106 return (atomic_read(&waiting_for_crash_ipi) > 0);
1107 }
1108 #endif
1109
1110 /*
1111 * not supported here
1112 */
setup_profiling_timer(unsigned int multiplier)1113 int setup_profiling_timer(unsigned int multiplier)
1114 {
1115 return -EINVAL;
1116 }
1117
have_cpu_die(void)1118 static bool have_cpu_die(void)
1119 {
1120 #ifdef CONFIG_HOTPLUG_CPU
1121 int any_cpu = raw_smp_processor_id();
1122 const struct cpu_operations *ops = get_cpu_ops(any_cpu);
1123
1124 if (ops && ops->cpu_die)
1125 return true;
1126 #endif
1127 return false;
1128 }
1129
cpus_are_stuck_in_kernel(void)1130 bool cpus_are_stuck_in_kernel(void)
1131 {
1132 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1133
1134 return !!cpus_stuck_in_kernel || smp_spin_tables;
1135 }
1136