1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * AMD SVM support
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Yaniv Kamay <yaniv@qumranet.com>
12 * Avi Kivity <avi@qumranet.com>
13 */
14
15 #define pr_fmt(fmt) "SVM: " fmt
16
17 #include <linux/kvm_types.h>
18 #include <linux/hashtable.h>
19 #include <linux/amd-iommu.h>
20 #include <linux/kvm_host.h>
21
22 #include <asm/irq_remapping.h>
23
24 #include "trace.h"
25 #include "lapic.h"
26 #include "x86.h"
27 #include "irq.h"
28 #include "svm.h"
29
30 /* enable / disable AVIC */
31 int avic;
32 #ifdef CONFIG_X86_LOCAL_APIC
33 module_param(avic, int, S_IRUGO);
34 #endif
35
36 #define SVM_AVIC_DOORBELL 0xc001011b
37
38 #define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF)
39
40 /*
41 * 0xff is broadcast, so the max index allowed for physical APIC ID
42 * table is 0xfe. APIC IDs above 0xff are reserved.
43 */
44 #define AVIC_MAX_PHYSICAL_ID_COUNT 255
45
46 #define AVIC_UNACCEL_ACCESS_WRITE_MASK 1
47 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0
48 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF
49
50 /* AVIC GATAG is encoded using VM and VCPU IDs */
51 #define AVIC_VCPU_ID_BITS 8
52 #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
53
54 #define AVIC_VM_ID_BITS 24
55 #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
56 #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
57
58 #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
59 (y & AVIC_VCPU_ID_MASK))
60 #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
61 #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
62
63 /* Note:
64 * This hash table is used to map VM_ID to a struct kvm_svm,
65 * when handling AMD IOMMU GALOG notification to schedule in
66 * a particular vCPU.
67 */
68 #define SVM_VM_DATA_HASH_BITS 8
69 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
70 static u32 next_vm_id = 0;
71 static bool next_vm_id_wrapped = 0;
72 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
73
74 /*
75 * This is a wrapper of struct amd_iommu_ir_data.
76 */
77 struct amd_svm_iommu_ir {
78 struct list_head node; /* Used by SVM for per-vcpu ir_list */
79 void *data; /* Storing pointer to struct amd_ir_data */
80 };
81
82 enum avic_ipi_failure_cause {
83 AVIC_IPI_FAILURE_INVALID_INT_TYPE,
84 AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
85 AVIC_IPI_FAILURE_INVALID_TARGET,
86 AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
87 };
88
89 /* Note:
90 * This function is called from IOMMU driver to notify
91 * SVM to schedule in a particular vCPU of a particular VM.
92 */
avic_ga_log_notifier(u32 ga_tag)93 int avic_ga_log_notifier(u32 ga_tag)
94 {
95 unsigned long flags;
96 struct kvm_svm *kvm_svm;
97 struct kvm_vcpu *vcpu = NULL;
98 u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
99 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
100
101 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
102 trace_kvm_avic_ga_log(vm_id, vcpu_id);
103
104 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
105 hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
106 if (kvm_svm->avic_vm_id != vm_id)
107 continue;
108 vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
109 break;
110 }
111 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
112
113 /* Note:
114 * At this point, the IOMMU should have already set the pending
115 * bit in the vAPIC backing page. So, we just need to schedule
116 * in the vcpu.
117 */
118 if (vcpu)
119 kvm_vcpu_wake_up(vcpu);
120
121 return 0;
122 }
123
avic_vm_destroy(struct kvm * kvm)124 void avic_vm_destroy(struct kvm *kvm)
125 {
126 unsigned long flags;
127 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
128
129 if (!avic)
130 return;
131
132 if (kvm_svm->avic_logical_id_table_page)
133 __free_page(kvm_svm->avic_logical_id_table_page);
134 if (kvm_svm->avic_physical_id_table_page)
135 __free_page(kvm_svm->avic_physical_id_table_page);
136
137 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
138 hash_del(&kvm_svm->hnode);
139 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
140 }
141
avic_vm_init(struct kvm * kvm)142 int avic_vm_init(struct kvm *kvm)
143 {
144 unsigned long flags;
145 int err = -ENOMEM;
146 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
147 struct kvm_svm *k2;
148 struct page *p_page;
149 struct page *l_page;
150 u32 vm_id;
151
152 if (!avic)
153 return 0;
154
155 /* Allocating physical APIC ID table (4KB) */
156 p_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
157 if (!p_page)
158 goto free_avic;
159
160 kvm_svm->avic_physical_id_table_page = p_page;
161
162 /* Allocating logical APIC ID table (4KB) */
163 l_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
164 if (!l_page)
165 goto free_avic;
166
167 kvm_svm->avic_logical_id_table_page = l_page;
168
169 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
170 again:
171 vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
172 if (vm_id == 0) { /* id is 1-based, zero is not okay */
173 next_vm_id_wrapped = 1;
174 goto again;
175 }
176 /* Is it still in use? Only possible if wrapped at least once */
177 if (next_vm_id_wrapped) {
178 hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
179 if (k2->avic_vm_id == vm_id)
180 goto again;
181 }
182 }
183 kvm_svm->avic_vm_id = vm_id;
184 hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
185 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
186
187 return 0;
188
189 free_avic:
190 avic_vm_destroy(kvm);
191 return err;
192 }
193
avic_init_vmcb(struct vcpu_svm * svm)194 void avic_init_vmcb(struct vcpu_svm *svm)
195 {
196 struct vmcb *vmcb = svm->vmcb;
197 struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
198 phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
199 phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
200 phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
201
202 vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
203 vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
204 vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
205 vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
206 if (kvm_apicv_activated(svm->vcpu.kvm))
207 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
208 else
209 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
210 }
211
avic_get_physical_id_entry(struct kvm_vcpu * vcpu,unsigned int index)212 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
213 unsigned int index)
214 {
215 u64 *avic_physical_id_table;
216 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
217
218 if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
219 return NULL;
220
221 avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
222
223 return &avic_physical_id_table[index];
224 }
225
226 /**
227 * Note:
228 * AVIC hardware walks the nested page table to check permissions,
229 * but does not use the SPA address specified in the leaf page
230 * table entry since it uses address in the AVIC_BACKING_PAGE pointer
231 * field of the VMCB. Therefore, we set up the
232 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
233 */
avic_update_access_page(struct kvm * kvm,bool activate)234 static int avic_update_access_page(struct kvm *kvm, bool activate)
235 {
236 void __user *ret;
237 int r = 0;
238
239 mutex_lock(&kvm->slots_lock);
240 /*
241 * During kvm_destroy_vm(), kvm_pit_set_reinject() could trigger
242 * APICv mode change, which update APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
243 * memory region. So, we need to ensure that kvm->mm == current->mm.
244 */
245 if ((kvm->arch.apic_access_page_done == activate) ||
246 (kvm->mm != current->mm))
247 goto out;
248
249 ret = __x86_set_memory_region(kvm,
250 APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
251 APIC_DEFAULT_PHYS_BASE,
252 activate ? PAGE_SIZE : 0);
253 if (IS_ERR(ret)) {
254 r = PTR_ERR(ret);
255 goto out;
256 }
257
258 kvm->arch.apic_access_page_done = activate;
259 out:
260 mutex_unlock(&kvm->slots_lock);
261 return r;
262 }
263
avic_init_backing_page(struct kvm_vcpu * vcpu)264 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
265 {
266 u64 *entry, new_entry;
267 int id = vcpu->vcpu_id;
268 struct vcpu_svm *svm = to_svm(vcpu);
269
270 if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
271 return -EINVAL;
272
273 if (!vcpu->arch.apic->regs)
274 return -EINVAL;
275
276 if (kvm_apicv_activated(vcpu->kvm)) {
277 int ret;
278
279 ret = avic_update_access_page(vcpu->kvm, true);
280 if (ret)
281 return ret;
282 }
283
284 svm->avic_backing_page = virt_to_page(vcpu->arch.apic->regs);
285
286 /* Setting AVIC backing page address in the phy APIC ID table */
287 entry = avic_get_physical_id_entry(vcpu, id);
288 if (!entry)
289 return -EINVAL;
290
291 new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
292 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
293 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
294 WRITE_ONCE(*entry, new_entry);
295
296 svm->avic_physical_id_cache = entry;
297
298 return 0;
299 }
300
avic_kick_target_vcpus(struct kvm * kvm,struct kvm_lapic * source,u32 icrl,u32 icrh)301 static void avic_kick_target_vcpus(struct kvm *kvm, struct kvm_lapic *source,
302 u32 icrl, u32 icrh)
303 {
304 struct kvm_vcpu *vcpu;
305 int i;
306
307 kvm_for_each_vcpu(i, vcpu, kvm) {
308 bool m = kvm_apic_match_dest(vcpu, source,
309 icrl & APIC_SHORT_MASK,
310 GET_APIC_DEST_FIELD(icrh),
311 icrl & APIC_DEST_MASK);
312
313 if (m && !avic_vcpu_is_running(vcpu))
314 kvm_vcpu_wake_up(vcpu);
315 }
316 }
317
avic_incomplete_ipi_interception(struct kvm_vcpu * vcpu)318 int avic_incomplete_ipi_interception(struct kvm_vcpu *vcpu)
319 {
320 struct vcpu_svm *svm = to_svm(vcpu);
321 u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
322 u32 icrl = svm->vmcb->control.exit_info_1;
323 u32 id = svm->vmcb->control.exit_info_2 >> 32;
324 u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
325 struct kvm_lapic *apic = vcpu->arch.apic;
326
327 trace_kvm_avic_incomplete_ipi(vcpu->vcpu_id, icrh, icrl, id, index);
328
329 switch (id) {
330 case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
331 /*
332 * AVIC hardware handles the generation of
333 * IPIs when the specified Message Type is Fixed
334 * (also known as fixed delivery mode) and
335 * the Trigger Mode is edge-triggered. The hardware
336 * also supports self and broadcast delivery modes
337 * specified via the Destination Shorthand(DSH)
338 * field of the ICRL. Logical and physical APIC ID
339 * formats are supported. All other IPI types cause
340 * a #VMEXIT, which needs to emulated.
341 */
342 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
343 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
344 break;
345 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING:
346 /*
347 * At this point, we expect that the AVIC HW has already
348 * set the appropriate IRR bits on the valid target
349 * vcpus. So, we just need to kick the appropriate vcpu.
350 */
351 avic_kick_target_vcpus(vcpu->kvm, apic, icrl, icrh);
352 break;
353 case AVIC_IPI_FAILURE_INVALID_TARGET:
354 WARN_ONCE(1, "Invalid IPI target: index=%u, vcpu=%d, icr=%#0x:%#0x\n",
355 index, vcpu->vcpu_id, icrh, icrl);
356 break;
357 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
358 WARN_ONCE(1, "Invalid backing page\n");
359 break;
360 default:
361 pr_err("Unknown IPI interception\n");
362 }
363
364 return 1;
365 }
366
avic_get_logical_id_entry(struct kvm_vcpu * vcpu,u32 ldr,bool flat)367 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
368 {
369 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
370 int index;
371 u32 *logical_apic_id_table;
372 int dlid = GET_APIC_LOGICAL_ID(ldr);
373
374 if (!dlid)
375 return NULL;
376
377 if (flat) { /* flat */
378 index = ffs(dlid) - 1;
379 if (index > 7)
380 return NULL;
381 } else { /* cluster */
382 int cluster = (dlid & 0xf0) >> 4;
383 int apic = ffs(dlid & 0x0f) - 1;
384
385 if ((apic < 0) || (apic > 7) ||
386 (cluster >= 0xf))
387 return NULL;
388 index = (cluster << 2) + apic;
389 }
390
391 logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
392
393 return &logical_apic_id_table[index];
394 }
395
avic_ldr_write(struct kvm_vcpu * vcpu,u8 g_physical_id,u32 ldr)396 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
397 {
398 bool flat;
399 u32 *entry, new_entry;
400
401 flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
402 entry = avic_get_logical_id_entry(vcpu, ldr, flat);
403 if (!entry)
404 return -EINVAL;
405
406 new_entry = READ_ONCE(*entry);
407 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
408 new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
409 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
410 WRITE_ONCE(*entry, new_entry);
411
412 return 0;
413 }
414
avic_invalidate_logical_id_entry(struct kvm_vcpu * vcpu)415 static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
416 {
417 struct vcpu_svm *svm = to_svm(vcpu);
418 bool flat = svm->dfr_reg == APIC_DFR_FLAT;
419 u32 *entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
420
421 if (entry)
422 clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
423 }
424
avic_handle_ldr_update(struct kvm_vcpu * vcpu)425 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
426 {
427 int ret = 0;
428 struct vcpu_svm *svm = to_svm(vcpu);
429 u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
430 u32 id = kvm_xapic_id(vcpu->arch.apic);
431
432 if (ldr == svm->ldr_reg)
433 return 0;
434
435 avic_invalidate_logical_id_entry(vcpu);
436
437 if (ldr)
438 ret = avic_ldr_write(vcpu, id, ldr);
439
440 if (!ret)
441 svm->ldr_reg = ldr;
442
443 return ret;
444 }
445
avic_handle_apic_id_update(struct kvm_vcpu * vcpu)446 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
447 {
448 u64 *old, *new;
449 struct vcpu_svm *svm = to_svm(vcpu);
450 u32 id = kvm_xapic_id(vcpu->arch.apic);
451
452 if (vcpu->vcpu_id == id)
453 return 0;
454
455 old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
456 new = avic_get_physical_id_entry(vcpu, id);
457 if (!new || !old)
458 return 1;
459
460 /* We need to move physical_id_entry to new offset */
461 *new = *old;
462 *old = 0ULL;
463 to_svm(vcpu)->avic_physical_id_cache = new;
464
465 /*
466 * Also update the guest physical APIC ID in the logical
467 * APIC ID table entry if already setup the LDR.
468 */
469 if (svm->ldr_reg)
470 avic_handle_ldr_update(vcpu);
471
472 return 0;
473 }
474
avic_handle_dfr_update(struct kvm_vcpu * vcpu)475 static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
476 {
477 struct vcpu_svm *svm = to_svm(vcpu);
478 u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
479
480 if (svm->dfr_reg == dfr)
481 return;
482
483 avic_invalidate_logical_id_entry(vcpu);
484 svm->dfr_reg = dfr;
485 }
486
avic_unaccel_trap_write(struct vcpu_svm * svm)487 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
488 {
489 struct kvm_lapic *apic = svm->vcpu.arch.apic;
490 u32 offset = svm->vmcb->control.exit_info_1 &
491 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
492
493 switch (offset) {
494 case APIC_ID:
495 if (avic_handle_apic_id_update(&svm->vcpu))
496 return 0;
497 break;
498 case APIC_LDR:
499 if (avic_handle_ldr_update(&svm->vcpu))
500 return 0;
501 break;
502 case APIC_DFR:
503 avic_handle_dfr_update(&svm->vcpu);
504 break;
505 default:
506 break;
507 }
508
509 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
510
511 return 1;
512 }
513
is_avic_unaccelerated_access_trap(u32 offset)514 static bool is_avic_unaccelerated_access_trap(u32 offset)
515 {
516 bool ret = false;
517
518 switch (offset) {
519 case APIC_ID:
520 case APIC_EOI:
521 case APIC_RRR:
522 case APIC_LDR:
523 case APIC_DFR:
524 case APIC_SPIV:
525 case APIC_ESR:
526 case APIC_ICR:
527 case APIC_LVTT:
528 case APIC_LVTTHMR:
529 case APIC_LVTPC:
530 case APIC_LVT0:
531 case APIC_LVT1:
532 case APIC_LVTERR:
533 case APIC_TMICT:
534 case APIC_TDCR:
535 ret = true;
536 break;
537 default:
538 break;
539 }
540 return ret;
541 }
542
avic_unaccelerated_access_interception(struct kvm_vcpu * vcpu)543 int avic_unaccelerated_access_interception(struct kvm_vcpu *vcpu)
544 {
545 struct vcpu_svm *svm = to_svm(vcpu);
546 int ret = 0;
547 u32 offset = svm->vmcb->control.exit_info_1 &
548 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
549 u32 vector = svm->vmcb->control.exit_info_2 &
550 AVIC_UNACCEL_ACCESS_VECTOR_MASK;
551 bool write = (svm->vmcb->control.exit_info_1 >> 32) &
552 AVIC_UNACCEL_ACCESS_WRITE_MASK;
553 bool trap = is_avic_unaccelerated_access_trap(offset);
554
555 trace_kvm_avic_unaccelerated_access(vcpu->vcpu_id, offset,
556 trap, write, vector);
557 if (trap) {
558 /* Handling Trap */
559 WARN_ONCE(!write, "svm: Handling trap read.\n");
560 ret = avic_unaccel_trap_write(svm);
561 } else {
562 /* Handling Fault */
563 ret = kvm_emulate_instruction(vcpu, 0);
564 }
565
566 return ret;
567 }
568
avic_init_vcpu(struct vcpu_svm * svm)569 int avic_init_vcpu(struct vcpu_svm *svm)
570 {
571 int ret;
572 struct kvm_vcpu *vcpu = &svm->vcpu;
573
574 if (!avic || !irqchip_in_kernel(vcpu->kvm))
575 return 0;
576
577 ret = avic_init_backing_page(vcpu);
578 if (ret)
579 return ret;
580
581 INIT_LIST_HEAD(&svm->ir_list);
582 spin_lock_init(&svm->ir_list_lock);
583 svm->dfr_reg = APIC_DFR_FLAT;
584
585 return ret;
586 }
587
avic_post_state_restore(struct kvm_vcpu * vcpu)588 void avic_post_state_restore(struct kvm_vcpu *vcpu)
589 {
590 if (avic_handle_apic_id_update(vcpu) != 0)
591 return;
592 avic_handle_dfr_update(vcpu);
593 avic_handle_ldr_update(vcpu);
594 }
595
svm_toggle_avic_for_irq_window(struct kvm_vcpu * vcpu,bool activate)596 void svm_toggle_avic_for_irq_window(struct kvm_vcpu *vcpu, bool activate)
597 {
598 if (!avic || !lapic_in_kernel(vcpu))
599 return;
600
601 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
602 kvm_request_apicv_update(vcpu->kvm, activate,
603 APICV_INHIBIT_REASON_IRQWIN);
604 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
605 }
606
svm_set_virtual_apic_mode(struct kvm_vcpu * vcpu)607 void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
608 {
609 return;
610 }
611
svm_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)612 void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
613 {
614 }
615
svm_hwapic_isr_update(struct kvm_vcpu * vcpu,int max_isr)616 void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
617 {
618 }
619
svm_set_pi_irte_mode(struct kvm_vcpu * vcpu,bool activate)620 static int svm_set_pi_irte_mode(struct kvm_vcpu *vcpu, bool activate)
621 {
622 int ret = 0;
623 unsigned long flags;
624 struct amd_svm_iommu_ir *ir;
625 struct vcpu_svm *svm = to_svm(vcpu);
626
627 if (!kvm_arch_has_assigned_device(vcpu->kvm))
628 return 0;
629
630 /*
631 * Here, we go through the per-vcpu ir_list to update all existing
632 * interrupt remapping table entry targeting this vcpu.
633 */
634 spin_lock_irqsave(&svm->ir_list_lock, flags);
635
636 if (list_empty(&svm->ir_list))
637 goto out;
638
639 list_for_each_entry(ir, &svm->ir_list, node) {
640 if (activate)
641 ret = amd_iommu_activate_guest_mode(ir->data);
642 else
643 ret = amd_iommu_deactivate_guest_mode(ir->data);
644 if (ret)
645 break;
646 }
647 out:
648 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
649 return ret;
650 }
651
svm_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)652 void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
653 {
654 struct vcpu_svm *svm = to_svm(vcpu);
655 struct vmcb *vmcb = svm->vmcb;
656 bool activated = kvm_vcpu_apicv_active(vcpu);
657
658 if (!avic)
659 return;
660
661 if (activated) {
662 /**
663 * During AVIC temporary deactivation, guest could update
664 * APIC ID, DFR and LDR registers, which would not be trapped
665 * by avic_unaccelerated_access_interception(). In this case,
666 * we need to check and update the AVIC logical APIC ID table
667 * accordingly before re-activating.
668 */
669 avic_post_state_restore(vcpu);
670 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
671 } else {
672 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
673 }
674 vmcb_mark_dirty(vmcb, VMCB_AVIC);
675
676 svm_set_pi_irte_mode(vcpu, activated);
677 }
678
svm_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)679 void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
680 {
681 return;
682 }
683
svm_deliver_avic_intr(struct kvm_vcpu * vcpu,int vec)684 int svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
685 {
686 if (!vcpu->arch.apicv_active)
687 return -1;
688
689 kvm_lapic_set_irr(vec, vcpu->arch.apic);
690 smp_mb__after_atomic();
691
692 if (avic_vcpu_is_running(vcpu)) {
693 int cpuid = vcpu->cpu;
694
695 if (cpuid != get_cpu())
696 wrmsrl(SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpuid));
697 put_cpu();
698 } else
699 kvm_vcpu_wake_up(vcpu);
700
701 return 0;
702 }
703
svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu * vcpu)704 bool svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
705 {
706 return false;
707 }
708
svm_ir_list_del(struct vcpu_svm * svm,struct amd_iommu_pi_data * pi)709 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
710 {
711 unsigned long flags;
712 struct amd_svm_iommu_ir *cur;
713
714 spin_lock_irqsave(&svm->ir_list_lock, flags);
715 list_for_each_entry(cur, &svm->ir_list, node) {
716 if (cur->data != pi->ir_data)
717 continue;
718 list_del(&cur->node);
719 kfree(cur);
720 break;
721 }
722 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
723 }
724
svm_ir_list_add(struct vcpu_svm * svm,struct amd_iommu_pi_data * pi)725 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
726 {
727 int ret = 0;
728 unsigned long flags;
729 struct amd_svm_iommu_ir *ir;
730
731 /**
732 * In some cases, the existing irte is updated and re-set,
733 * so we need to check here if it's already been * added
734 * to the ir_list.
735 */
736 if (pi->ir_data && (pi->prev_ga_tag != 0)) {
737 struct kvm *kvm = svm->vcpu.kvm;
738 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
739 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
740 struct vcpu_svm *prev_svm;
741
742 if (!prev_vcpu) {
743 ret = -EINVAL;
744 goto out;
745 }
746
747 prev_svm = to_svm(prev_vcpu);
748 svm_ir_list_del(prev_svm, pi);
749 }
750
751 /**
752 * Allocating new amd_iommu_pi_data, which will get
753 * add to the per-vcpu ir_list.
754 */
755 ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
756 if (!ir) {
757 ret = -ENOMEM;
758 goto out;
759 }
760 ir->data = pi->ir_data;
761
762 spin_lock_irqsave(&svm->ir_list_lock, flags);
763 list_add(&ir->node, &svm->ir_list);
764 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
765 out:
766 return ret;
767 }
768
769 /**
770 * Note:
771 * The HW cannot support posting multicast/broadcast
772 * interrupts to a vCPU. So, we still use legacy interrupt
773 * remapping for these kind of interrupts.
774 *
775 * For lowest-priority interrupts, we only support
776 * those with single CPU as the destination, e.g. user
777 * configures the interrupts via /proc/irq or uses
778 * irqbalance to make the interrupts single-CPU.
779 */
780 static int
get_pi_vcpu_info(struct kvm * kvm,struct kvm_kernel_irq_routing_entry * e,struct vcpu_data * vcpu_info,struct vcpu_svm ** svm)781 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
782 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
783 {
784 struct kvm_lapic_irq irq;
785 struct kvm_vcpu *vcpu = NULL;
786
787 kvm_set_msi_irq(kvm, e, &irq);
788
789 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
790 !kvm_irq_is_postable(&irq)) {
791 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
792 __func__, irq.vector);
793 return -1;
794 }
795
796 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
797 irq.vector);
798 *svm = to_svm(vcpu);
799 vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
800 vcpu_info->vector = irq.vector;
801
802 return 0;
803 }
804
805 /*
806 * svm_update_pi_irte - set IRTE for Posted-Interrupts
807 *
808 * @kvm: kvm
809 * @host_irq: host irq of the interrupt
810 * @guest_irq: gsi of the interrupt
811 * @set: set or unset PI
812 * returns 0 on success, < 0 on failure
813 */
svm_update_pi_irte(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)814 int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
815 uint32_t guest_irq, bool set)
816 {
817 struct kvm_kernel_irq_routing_entry *e;
818 struct kvm_irq_routing_table *irq_rt;
819 int idx, ret = -EINVAL;
820
821 if (!kvm_arch_has_assigned_device(kvm) ||
822 !irq_remapping_cap(IRQ_POSTING_CAP))
823 return 0;
824
825 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
826 __func__, host_irq, guest_irq, set);
827
828 idx = srcu_read_lock(&kvm->irq_srcu);
829 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
830 WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
831
832 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
833 struct vcpu_data vcpu_info;
834 struct vcpu_svm *svm = NULL;
835
836 if (e->type != KVM_IRQ_ROUTING_MSI)
837 continue;
838
839 /**
840 * Here, we setup with legacy mode in the following cases:
841 * 1. When cannot target interrupt to a specific vcpu.
842 * 2. Unsetting posted interrupt.
843 * 3. APIC virtualization is disabled for the vcpu.
844 * 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
845 */
846 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
847 kvm_vcpu_apicv_active(&svm->vcpu)) {
848 struct amd_iommu_pi_data pi;
849
850 /* Try to enable guest_mode in IRTE */
851 pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
852 AVIC_HPA_MASK);
853 pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
854 svm->vcpu.vcpu_id);
855 pi.is_guest_mode = true;
856 pi.vcpu_data = &vcpu_info;
857 ret = irq_set_vcpu_affinity(host_irq, &pi);
858
859 /**
860 * Here, we successfully setting up vcpu affinity in
861 * IOMMU guest mode. Now, we need to store the posted
862 * interrupt information in a per-vcpu ir_list so that
863 * we can reference to them directly when we update vcpu
864 * scheduling information in IOMMU irte.
865 */
866 if (!ret && pi.is_guest_mode)
867 svm_ir_list_add(svm, &pi);
868 } else {
869 /* Use legacy mode in IRTE */
870 struct amd_iommu_pi_data pi;
871
872 /**
873 * Here, pi is used to:
874 * - Tell IOMMU to use legacy mode for this interrupt.
875 * - Retrieve ga_tag of prior interrupt remapping data.
876 */
877 pi.prev_ga_tag = 0;
878 pi.is_guest_mode = false;
879 ret = irq_set_vcpu_affinity(host_irq, &pi);
880
881 /**
882 * Check if the posted interrupt was previously
883 * setup with the guest_mode by checking if the ga_tag
884 * was cached. If so, we need to clean up the per-vcpu
885 * ir_list.
886 */
887 if (!ret && pi.prev_ga_tag) {
888 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
889 struct kvm_vcpu *vcpu;
890
891 vcpu = kvm_get_vcpu_by_id(kvm, id);
892 if (vcpu)
893 svm_ir_list_del(to_svm(vcpu), &pi);
894 }
895 }
896
897 if (!ret && svm) {
898 trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
899 e->gsi, vcpu_info.vector,
900 vcpu_info.pi_desc_addr, set);
901 }
902
903 if (ret < 0) {
904 pr_err("%s: failed to update PI IRTE\n", __func__);
905 goto out;
906 }
907 }
908
909 ret = 0;
910 out:
911 srcu_read_unlock(&kvm->irq_srcu, idx);
912 return ret;
913 }
914
svm_check_apicv_inhibit_reasons(ulong bit)915 bool svm_check_apicv_inhibit_reasons(ulong bit)
916 {
917 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
918 BIT(APICV_INHIBIT_REASON_HYPERV) |
919 BIT(APICV_INHIBIT_REASON_NESTED) |
920 BIT(APICV_INHIBIT_REASON_IRQWIN) |
921 BIT(APICV_INHIBIT_REASON_PIT_REINJ) |
922 BIT(APICV_INHIBIT_REASON_X2APIC);
923
924 return supported & BIT(bit);
925 }
926
svm_pre_update_apicv_exec_ctrl(struct kvm * kvm,bool activate)927 void svm_pre_update_apicv_exec_ctrl(struct kvm *kvm, bool activate)
928 {
929 avic_update_access_page(kvm, activate);
930 }
931
932 static inline int
avic_update_iommu_vcpu_affinity(struct kvm_vcpu * vcpu,int cpu,bool r)933 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
934 {
935 int ret = 0;
936 unsigned long flags;
937 struct amd_svm_iommu_ir *ir;
938 struct vcpu_svm *svm = to_svm(vcpu);
939
940 if (!kvm_arch_has_assigned_device(vcpu->kvm))
941 return 0;
942
943 /*
944 * Here, we go through the per-vcpu ir_list to update all existing
945 * interrupt remapping table entry targeting this vcpu.
946 */
947 spin_lock_irqsave(&svm->ir_list_lock, flags);
948
949 if (list_empty(&svm->ir_list))
950 goto out;
951
952 list_for_each_entry(ir, &svm->ir_list, node) {
953 ret = amd_iommu_update_ga(cpu, r, ir->data);
954 if (ret)
955 break;
956 }
957 out:
958 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
959 return ret;
960 }
961
avic_vcpu_load(struct kvm_vcpu * vcpu,int cpu)962 void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
963 {
964 u64 entry;
965 /* ID = 0xff (broadcast), ID > 0xff (reserved) */
966 int h_physical_id = kvm_cpu_get_apicid(cpu);
967 struct vcpu_svm *svm = to_svm(vcpu);
968
969 if (!kvm_vcpu_apicv_active(vcpu))
970 return;
971
972 /*
973 * Since the host physical APIC id is 8 bits,
974 * we can support host APIC ID upto 255.
975 */
976 if (WARN_ON(h_physical_id > AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
977 return;
978
979 entry = READ_ONCE(*(svm->avic_physical_id_cache));
980 WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
981
982 entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
983 entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
984
985 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
986 if (svm->avic_is_running)
987 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
988
989 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
990 avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
991 svm->avic_is_running);
992 }
993
avic_vcpu_put(struct kvm_vcpu * vcpu)994 void avic_vcpu_put(struct kvm_vcpu *vcpu)
995 {
996 u64 entry;
997 struct vcpu_svm *svm = to_svm(vcpu);
998
999 if (!kvm_vcpu_apicv_active(vcpu))
1000 return;
1001
1002 entry = READ_ONCE(*(svm->avic_physical_id_cache));
1003 if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
1004 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
1005
1006 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1007 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1008 }
1009
1010 /**
1011 * This function is called during VCPU halt/unhalt.
1012 */
avic_set_running(struct kvm_vcpu * vcpu,bool is_run)1013 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
1014 {
1015 struct vcpu_svm *svm = to_svm(vcpu);
1016
1017 svm->avic_is_running = is_run;
1018 if (is_run)
1019 avic_vcpu_load(vcpu, vcpu->cpu);
1020 else
1021 avic_vcpu_put(vcpu);
1022 }
1023
svm_vcpu_blocking(struct kvm_vcpu * vcpu)1024 void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
1025 {
1026 avic_set_running(vcpu, false);
1027 }
1028
svm_vcpu_unblocking(struct kvm_vcpu * vcpu)1029 void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
1030 {
1031 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
1032 kvm_vcpu_update_apicv(vcpu);
1033 avic_set_running(vcpu, true);
1034 }
1035