1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Page Attribute Table (PAT) support: handle memory caching attributes in page tables.
4  *
5  * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
6  *          Suresh B Siddha <suresh.b.siddha@intel.com>
7  *
8  * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
9  *
10  * Basic principles:
11  *
12  * PAT is a CPU feature supported by all modern x86 CPUs, to allow the firmware and
13  * the kernel to set one of a handful of 'caching type' attributes for physical
14  * memory ranges: uncached, write-combining, write-through, write-protected,
15  * and the most commonly used and default attribute: write-back caching.
16  *
17  * PAT support supercedes and augments MTRR support in a compatible fashion: MTRR is
18  * a hardware interface to enumerate a limited number of physical memory ranges
19  * and set their caching attributes explicitly, programmed into the CPU via MSRs.
20  * Even modern CPUs have MTRRs enabled - but these are typically not touched
21  * by the kernel or by user-space (such as the X server), we rely on PAT for any
22  * additional cache attribute logic.
23  *
24  * PAT doesn't work via explicit memory ranges, but uses page table entries to add
25  * cache attribute information to the mapped memory range: there's 3 bits used,
26  * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT), with the 8 possible values mapped by the
27  * CPU to actual cache attributes via an MSR loaded into the CPU (MSR_IA32_CR_PAT).
28  *
29  * ( There's a metric ton of finer details, such as compatibility with CPU quirks
30  *   that only support 4 types of PAT entries, and interaction with MTRRs, see
31  *   below for details. )
32  */
33 
34 #include <linux/seq_file.h>
35 #include <linux/memblock.h>
36 #include <linux/debugfs.h>
37 #include <linux/ioport.h>
38 #include <linux/kernel.h>
39 #include <linux/pfn_t.h>
40 #include <linux/slab.h>
41 #include <linux/mm.h>
42 #include <linux/fs.h>
43 #include <linux/rbtree.h>
44 
45 #include <asm/cacheflush.h>
46 #include <asm/processor.h>
47 #include <asm/tlbflush.h>
48 #include <asm/x86_init.h>
49 #include <asm/fcntl.h>
50 #include <asm/e820/api.h>
51 #include <asm/mtrr.h>
52 #include <asm/page.h>
53 #include <asm/msr.h>
54 #include <asm/memtype.h>
55 #include <asm/io.h>
56 
57 #include "memtype.h"
58 #include "../mm_internal.h"
59 
60 #undef pr_fmt
61 #define pr_fmt(fmt) "" fmt
62 
63 static bool __read_mostly pat_bp_initialized;
64 static bool __read_mostly pat_disabled = !IS_ENABLED(CONFIG_X86_PAT);
65 static bool __read_mostly pat_bp_enabled;
66 static bool __read_mostly pat_cm_initialized;
67 
68 /*
69  * PAT support is enabled by default, but can be disabled for
70  * various user-requested or hardware-forced reasons:
71  */
pat_disable(const char * msg_reason)72 void pat_disable(const char *msg_reason)
73 {
74 	if (pat_disabled)
75 		return;
76 
77 	if (pat_bp_initialized) {
78 		WARN_ONCE(1, "x86/PAT: PAT cannot be disabled after initialization\n");
79 		return;
80 	}
81 
82 	pat_disabled = true;
83 	pr_info("x86/PAT: %s\n", msg_reason);
84 }
85 
nopat(char * str)86 static int __init nopat(char *str)
87 {
88 	pat_disable("PAT support disabled via boot option.");
89 	return 0;
90 }
91 early_param("nopat", nopat);
92 
pat_enabled(void)93 bool pat_enabled(void)
94 {
95 	return pat_bp_enabled;
96 }
97 EXPORT_SYMBOL_GPL(pat_enabled);
98 
99 int pat_debug_enable;
100 
pat_debug_setup(char * str)101 static int __init pat_debug_setup(char *str)
102 {
103 	pat_debug_enable = 1;
104 	return 0;
105 }
106 __setup("debugpat", pat_debug_setup);
107 
108 #ifdef CONFIG_X86_PAT
109 /*
110  * X86 PAT uses page flags arch_1 and uncached together to keep track of
111  * memory type of pages that have backing page struct.
112  *
113  * X86 PAT supports 4 different memory types:
114  *  - _PAGE_CACHE_MODE_WB
115  *  - _PAGE_CACHE_MODE_WC
116  *  - _PAGE_CACHE_MODE_UC_MINUS
117  *  - _PAGE_CACHE_MODE_WT
118  *
119  * _PAGE_CACHE_MODE_WB is the default type.
120  */
121 
122 #define _PGMT_WB		0
123 #define _PGMT_WC		(1UL << PG_arch_1)
124 #define _PGMT_UC_MINUS		(1UL << PG_uncached)
125 #define _PGMT_WT		(1UL << PG_uncached | 1UL << PG_arch_1)
126 #define _PGMT_MASK		(1UL << PG_uncached | 1UL << PG_arch_1)
127 #define _PGMT_CLEAR_MASK	(~_PGMT_MASK)
128 
get_page_memtype(struct page * pg)129 static inline enum page_cache_mode get_page_memtype(struct page *pg)
130 {
131 	unsigned long pg_flags = pg->flags & _PGMT_MASK;
132 
133 	if (pg_flags == _PGMT_WB)
134 		return _PAGE_CACHE_MODE_WB;
135 	else if (pg_flags == _PGMT_WC)
136 		return _PAGE_CACHE_MODE_WC;
137 	else if (pg_flags == _PGMT_UC_MINUS)
138 		return _PAGE_CACHE_MODE_UC_MINUS;
139 	else
140 		return _PAGE_CACHE_MODE_WT;
141 }
142 
set_page_memtype(struct page * pg,enum page_cache_mode memtype)143 static inline void set_page_memtype(struct page *pg,
144 				    enum page_cache_mode memtype)
145 {
146 	unsigned long memtype_flags;
147 	unsigned long old_flags;
148 	unsigned long new_flags;
149 
150 	switch (memtype) {
151 	case _PAGE_CACHE_MODE_WC:
152 		memtype_flags = _PGMT_WC;
153 		break;
154 	case _PAGE_CACHE_MODE_UC_MINUS:
155 		memtype_flags = _PGMT_UC_MINUS;
156 		break;
157 	case _PAGE_CACHE_MODE_WT:
158 		memtype_flags = _PGMT_WT;
159 		break;
160 	case _PAGE_CACHE_MODE_WB:
161 	default:
162 		memtype_flags = _PGMT_WB;
163 		break;
164 	}
165 
166 	do {
167 		old_flags = pg->flags;
168 		new_flags = (old_flags & _PGMT_CLEAR_MASK) | memtype_flags;
169 	} while (cmpxchg(&pg->flags, old_flags, new_flags) != old_flags);
170 }
171 #else
get_page_memtype(struct page * pg)172 static inline enum page_cache_mode get_page_memtype(struct page *pg)
173 {
174 	return -1;
175 }
set_page_memtype(struct page * pg,enum page_cache_mode memtype)176 static inline void set_page_memtype(struct page *pg,
177 				    enum page_cache_mode memtype)
178 {
179 }
180 #endif
181 
182 enum {
183 	PAT_UC = 0,		/* uncached */
184 	PAT_WC = 1,		/* Write combining */
185 	PAT_WT = 4,		/* Write Through */
186 	PAT_WP = 5,		/* Write Protected */
187 	PAT_WB = 6,		/* Write Back (default) */
188 	PAT_UC_MINUS = 7,	/* UC, but can be overridden by MTRR */
189 };
190 
191 #define CM(c) (_PAGE_CACHE_MODE_ ## c)
192 
pat_get_cache_mode(unsigned pat_val,char * msg)193 static enum page_cache_mode pat_get_cache_mode(unsigned pat_val, char *msg)
194 {
195 	enum page_cache_mode cache;
196 	char *cache_mode;
197 
198 	switch (pat_val) {
199 	case PAT_UC:       cache = CM(UC);       cache_mode = "UC  "; break;
200 	case PAT_WC:       cache = CM(WC);       cache_mode = "WC  "; break;
201 	case PAT_WT:       cache = CM(WT);       cache_mode = "WT  "; break;
202 	case PAT_WP:       cache = CM(WP);       cache_mode = "WP  "; break;
203 	case PAT_WB:       cache = CM(WB);       cache_mode = "WB  "; break;
204 	case PAT_UC_MINUS: cache = CM(UC_MINUS); cache_mode = "UC- "; break;
205 	default:           cache = CM(WB);       cache_mode = "WB  "; break;
206 	}
207 
208 	memcpy(msg, cache_mode, 4);
209 
210 	return cache;
211 }
212 
213 #undef CM
214 
215 /*
216  * Update the cache mode to pgprot translation tables according to PAT
217  * configuration.
218  * Using lower indices is preferred, so we start with highest index.
219  */
__init_cache_modes(u64 pat)220 static void __init_cache_modes(u64 pat)
221 {
222 	enum page_cache_mode cache;
223 	char pat_msg[33];
224 	int i;
225 
226 	WARN_ON_ONCE(pat_cm_initialized);
227 
228 	pat_msg[32] = 0;
229 	for (i = 7; i >= 0; i--) {
230 		cache = pat_get_cache_mode((pat >> (i * 8)) & 7,
231 					   pat_msg + 4 * i);
232 		update_cache_mode_entry(i, cache);
233 	}
234 	pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg);
235 
236 	pat_cm_initialized = true;
237 }
238 
239 #define PAT(x, y)	((u64)PAT_ ## y << ((x)*8))
240 
pat_bp_init(u64 pat)241 static void pat_bp_init(u64 pat)
242 {
243 	u64 tmp_pat;
244 
245 	if (!boot_cpu_has(X86_FEATURE_PAT)) {
246 		pat_disable("PAT not supported by the CPU.");
247 		return;
248 	}
249 
250 	rdmsrl(MSR_IA32_CR_PAT, tmp_pat);
251 	if (!tmp_pat) {
252 		pat_disable("PAT support disabled by the firmware.");
253 		return;
254 	}
255 
256 	wrmsrl(MSR_IA32_CR_PAT, pat);
257 	pat_bp_enabled = true;
258 
259 	__init_cache_modes(pat);
260 }
261 
pat_ap_init(u64 pat)262 static void pat_ap_init(u64 pat)
263 {
264 	if (!boot_cpu_has(X86_FEATURE_PAT)) {
265 		/*
266 		 * If this happens we are on a secondary CPU, but switched to
267 		 * PAT on the boot CPU. We have no way to undo PAT.
268 		 */
269 		panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n");
270 	}
271 
272 	wrmsrl(MSR_IA32_CR_PAT, pat);
273 }
274 
init_cache_modes(void)275 void init_cache_modes(void)
276 {
277 	u64 pat = 0;
278 
279 	if (pat_cm_initialized)
280 		return;
281 
282 	if (boot_cpu_has(X86_FEATURE_PAT)) {
283 		/*
284 		 * CPU supports PAT. Set PAT table to be consistent with
285 		 * PAT MSR. This case supports "nopat" boot option, and
286 		 * virtual machine environments which support PAT without
287 		 * MTRRs. In specific, Xen has unique setup to PAT MSR.
288 		 *
289 		 * If PAT MSR returns 0, it is considered invalid and emulates
290 		 * as No PAT.
291 		 */
292 		rdmsrl(MSR_IA32_CR_PAT, pat);
293 	}
294 
295 	if (!pat) {
296 		/*
297 		 * No PAT. Emulate the PAT table that corresponds to the two
298 		 * cache bits, PWT (Write Through) and PCD (Cache Disable).
299 		 * This setup is also the same as the BIOS default setup.
300 		 *
301 		 * PTE encoding:
302 		 *
303 		 *       PCD
304 		 *       |PWT  PAT
305 		 *       ||    slot
306 		 *       00    0    WB : _PAGE_CACHE_MODE_WB
307 		 *       01    1    WT : _PAGE_CACHE_MODE_WT
308 		 *       10    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
309 		 *       11    3    UC : _PAGE_CACHE_MODE_UC
310 		 *
311 		 * NOTE: When WC or WP is used, it is redirected to UC- per
312 		 * the default setup in __cachemode2pte_tbl[].
313 		 */
314 		pat = PAT(0, WB) | PAT(1, WT) | PAT(2, UC_MINUS) | PAT(3, UC) |
315 		      PAT(4, WB) | PAT(5, WT) | PAT(6, UC_MINUS) | PAT(7, UC);
316 	}
317 
318 	__init_cache_modes(pat);
319 }
320 
321 /**
322  * pat_init - Initialize the PAT MSR and PAT table on the current CPU
323  *
324  * This function initializes PAT MSR and PAT table with an OS-defined value
325  * to enable additional cache attributes, WC, WT and WP.
326  *
327  * This function must be called on all CPUs using the specific sequence of
328  * operations defined in Intel SDM. mtrr_rendezvous_handler() provides this
329  * procedure for PAT.
330  */
pat_init(void)331 void pat_init(void)
332 {
333 	u64 pat;
334 	struct cpuinfo_x86 *c = &boot_cpu_data;
335 
336 #ifndef CONFIG_X86_PAT
337 	pr_info_once("x86/PAT: PAT support disabled because CONFIG_X86_PAT is disabled in the kernel.\n");
338 #endif
339 
340 	if (pat_disabled)
341 		return;
342 
343 	if ((c->x86_vendor == X86_VENDOR_INTEL) &&
344 	    (((c->x86 == 0x6) && (c->x86_model <= 0xd)) ||
345 	     ((c->x86 == 0xf) && (c->x86_model <= 0x6)))) {
346 		/*
347 		 * PAT support with the lower four entries. Intel Pentium 2,
348 		 * 3, M, and 4 are affected by PAT errata, which makes the
349 		 * upper four entries unusable. To be on the safe side, we don't
350 		 * use those.
351 		 *
352 		 *  PTE encoding:
353 		 *      PAT
354 		 *      |PCD
355 		 *      ||PWT  PAT
356 		 *      |||    slot
357 		 *      000    0    WB : _PAGE_CACHE_MODE_WB
358 		 *      001    1    WC : _PAGE_CACHE_MODE_WC
359 		 *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
360 		 *      011    3    UC : _PAGE_CACHE_MODE_UC
361 		 * PAT bit unused
362 		 *
363 		 * NOTE: When WT or WP is used, it is redirected to UC- per
364 		 * the default setup in __cachemode2pte_tbl[].
365 		 */
366 		pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
367 		      PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
368 	} else {
369 		/*
370 		 * Full PAT support.  We put WT in slot 7 to improve
371 		 * robustness in the presence of errata that might cause
372 		 * the high PAT bit to be ignored.  This way, a buggy slot 7
373 		 * access will hit slot 3, and slot 3 is UC, so at worst
374 		 * we lose performance without causing a correctness issue.
375 		 * Pentium 4 erratum N46 is an example for such an erratum,
376 		 * although we try not to use PAT at all on affected CPUs.
377 		 *
378 		 *  PTE encoding:
379 		 *      PAT
380 		 *      |PCD
381 		 *      ||PWT  PAT
382 		 *      |||    slot
383 		 *      000    0    WB : _PAGE_CACHE_MODE_WB
384 		 *      001    1    WC : _PAGE_CACHE_MODE_WC
385 		 *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
386 		 *      011    3    UC : _PAGE_CACHE_MODE_UC
387 		 *      100    4    WB : Reserved
388 		 *      101    5    WP : _PAGE_CACHE_MODE_WP
389 		 *      110    6    UC-: Reserved
390 		 *      111    7    WT : _PAGE_CACHE_MODE_WT
391 		 *
392 		 * The reserved slots are unused, but mapped to their
393 		 * corresponding types in the presence of PAT errata.
394 		 */
395 		pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
396 		      PAT(4, WB) | PAT(5, WP) | PAT(6, UC_MINUS) | PAT(7, WT);
397 	}
398 
399 	if (!pat_bp_initialized) {
400 		pat_bp_init(pat);
401 		pat_bp_initialized = true;
402 	} else {
403 		pat_ap_init(pat);
404 	}
405 }
406 
407 #undef PAT
408 
409 static DEFINE_SPINLOCK(memtype_lock);	/* protects memtype accesses */
410 
411 /*
412  * Does intersection of PAT memory type and MTRR memory type and returns
413  * the resulting memory type as PAT understands it.
414  * (Type in pat and mtrr will not have same value)
415  * The intersection is based on "Effective Memory Type" tables in IA-32
416  * SDM vol 3a
417  */
pat_x_mtrr_type(u64 start,u64 end,enum page_cache_mode req_type)418 static unsigned long pat_x_mtrr_type(u64 start, u64 end,
419 				     enum page_cache_mode req_type)
420 {
421 	/*
422 	 * Look for MTRR hint to get the effective type in case where PAT
423 	 * request is for WB.
424 	 */
425 	if (req_type == _PAGE_CACHE_MODE_WB) {
426 		u8 mtrr_type, uniform;
427 
428 		mtrr_type = mtrr_type_lookup(start, end, &uniform);
429 		if (mtrr_type != MTRR_TYPE_WRBACK)
430 			return _PAGE_CACHE_MODE_UC_MINUS;
431 
432 		return _PAGE_CACHE_MODE_WB;
433 	}
434 
435 	return req_type;
436 }
437 
438 struct pagerange_state {
439 	unsigned long		cur_pfn;
440 	int			ram;
441 	int			not_ram;
442 };
443 
444 static int
pagerange_is_ram_callback(unsigned long initial_pfn,unsigned long total_nr_pages,void * arg)445 pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg)
446 {
447 	struct pagerange_state *state = arg;
448 
449 	state->not_ram	|= initial_pfn > state->cur_pfn;
450 	state->ram	|= total_nr_pages > 0;
451 	state->cur_pfn	 = initial_pfn + total_nr_pages;
452 
453 	return state->ram && state->not_ram;
454 }
455 
pat_pagerange_is_ram(resource_size_t start,resource_size_t end)456 static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
457 {
458 	int ret = 0;
459 	unsigned long start_pfn = start >> PAGE_SHIFT;
460 	unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
461 	struct pagerange_state state = {start_pfn, 0, 0};
462 
463 	/*
464 	 * For legacy reasons, physical address range in the legacy ISA
465 	 * region is tracked as non-RAM. This will allow users of
466 	 * /dev/mem to map portions of legacy ISA region, even when
467 	 * some of those portions are listed(or not even listed) with
468 	 * different e820 types(RAM/reserved/..)
469 	 */
470 	if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT)
471 		start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT;
472 
473 	if (start_pfn < end_pfn) {
474 		ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
475 				&state, pagerange_is_ram_callback);
476 	}
477 
478 	return (ret > 0) ? -1 : (state.ram ? 1 : 0);
479 }
480 
481 /*
482  * For RAM pages, we use page flags to mark the pages with appropriate type.
483  * The page flags are limited to four types, WB (default), WC, WT and UC-.
484  * WP request fails with -EINVAL, and UC gets redirected to UC-.  Setting
485  * a new memory type is only allowed for a page mapped with the default WB
486  * type.
487  *
488  * Here we do two passes:
489  * - Find the memtype of all the pages in the range, look for any conflicts.
490  * - In case of no conflicts, set the new memtype for pages in the range.
491  */
reserve_ram_pages_type(u64 start,u64 end,enum page_cache_mode req_type,enum page_cache_mode * new_type)492 static int reserve_ram_pages_type(u64 start, u64 end,
493 				  enum page_cache_mode req_type,
494 				  enum page_cache_mode *new_type)
495 {
496 	struct page *page;
497 	u64 pfn;
498 
499 	if (req_type == _PAGE_CACHE_MODE_WP) {
500 		if (new_type)
501 			*new_type = _PAGE_CACHE_MODE_UC_MINUS;
502 		return -EINVAL;
503 	}
504 
505 	if (req_type == _PAGE_CACHE_MODE_UC) {
506 		/* We do not support strong UC */
507 		WARN_ON_ONCE(1);
508 		req_type = _PAGE_CACHE_MODE_UC_MINUS;
509 	}
510 
511 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
512 		enum page_cache_mode type;
513 
514 		page = pfn_to_page(pfn);
515 		type = get_page_memtype(page);
516 		if (type != _PAGE_CACHE_MODE_WB) {
517 			pr_info("x86/PAT: reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n",
518 				start, end - 1, type, req_type);
519 			if (new_type)
520 				*new_type = type;
521 
522 			return -EBUSY;
523 		}
524 	}
525 
526 	if (new_type)
527 		*new_type = req_type;
528 
529 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
530 		page = pfn_to_page(pfn);
531 		set_page_memtype(page, req_type);
532 	}
533 	return 0;
534 }
535 
free_ram_pages_type(u64 start,u64 end)536 static int free_ram_pages_type(u64 start, u64 end)
537 {
538 	struct page *page;
539 	u64 pfn;
540 
541 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
542 		page = pfn_to_page(pfn);
543 		set_page_memtype(page, _PAGE_CACHE_MODE_WB);
544 	}
545 	return 0;
546 }
547 
sanitize_phys(u64 address)548 static u64 sanitize_phys(u64 address)
549 {
550 	/*
551 	 * When changing the memtype for pages containing poison allow
552 	 * for a "decoy" virtual address (bit 63 clear) passed to
553 	 * set_memory_X(). __pa() on a "decoy" address results in a
554 	 * physical address with bit 63 set.
555 	 *
556 	 * Decoy addresses are not present for 32-bit builds, see
557 	 * set_mce_nospec().
558 	 */
559 	if (IS_ENABLED(CONFIG_X86_64))
560 		return address & __PHYSICAL_MASK;
561 	return address;
562 }
563 
564 /*
565  * req_type typically has one of the:
566  * - _PAGE_CACHE_MODE_WB
567  * - _PAGE_CACHE_MODE_WC
568  * - _PAGE_CACHE_MODE_UC_MINUS
569  * - _PAGE_CACHE_MODE_UC
570  * - _PAGE_CACHE_MODE_WT
571  *
572  * If new_type is NULL, function will return an error if it cannot reserve the
573  * region with req_type. If new_type is non-NULL, function will return
574  * available type in new_type in case of no error. In case of any error
575  * it will return a negative return value.
576  */
memtype_reserve(u64 start,u64 end,enum page_cache_mode req_type,enum page_cache_mode * new_type)577 int memtype_reserve(u64 start, u64 end, enum page_cache_mode req_type,
578 		    enum page_cache_mode *new_type)
579 {
580 	struct memtype *entry_new;
581 	enum page_cache_mode actual_type;
582 	int is_range_ram;
583 	int err = 0;
584 
585 	start = sanitize_phys(start);
586 	end = sanitize_phys(end);
587 	if (start >= end) {
588 		WARN(1, "%s failed: [mem %#010Lx-%#010Lx], req %s\n", __func__,
589 				start, end - 1, cattr_name(req_type));
590 		return -EINVAL;
591 	}
592 
593 	if (!pat_enabled()) {
594 		/* This is identical to page table setting without PAT */
595 		if (new_type)
596 			*new_type = req_type;
597 		return 0;
598 	}
599 
600 	/* Low ISA region is always mapped WB in page table. No need to track */
601 	if (x86_platform.is_untracked_pat_range(start, end)) {
602 		if (new_type)
603 			*new_type = _PAGE_CACHE_MODE_WB;
604 		return 0;
605 	}
606 
607 	/*
608 	 * Call mtrr_lookup to get the type hint. This is an
609 	 * optimization for /dev/mem mmap'ers into WB memory (BIOS
610 	 * tools and ACPI tools). Use WB request for WB memory and use
611 	 * UC_MINUS otherwise.
612 	 */
613 	actual_type = pat_x_mtrr_type(start, end, req_type);
614 
615 	if (new_type)
616 		*new_type = actual_type;
617 
618 	is_range_ram = pat_pagerange_is_ram(start, end);
619 	if (is_range_ram == 1) {
620 
621 		err = reserve_ram_pages_type(start, end, req_type, new_type);
622 
623 		return err;
624 	} else if (is_range_ram < 0) {
625 		return -EINVAL;
626 	}
627 
628 	entry_new = kzalloc(sizeof(struct memtype), GFP_KERNEL);
629 	if (!entry_new)
630 		return -ENOMEM;
631 
632 	entry_new->start = start;
633 	entry_new->end	 = end;
634 	entry_new->type	 = actual_type;
635 
636 	spin_lock(&memtype_lock);
637 
638 	err = memtype_check_insert(entry_new, new_type);
639 	if (err) {
640 		pr_info("x86/PAT: memtype_reserve failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
641 			start, end - 1,
642 			cattr_name(entry_new->type), cattr_name(req_type));
643 		kfree(entry_new);
644 		spin_unlock(&memtype_lock);
645 
646 		return err;
647 	}
648 
649 	spin_unlock(&memtype_lock);
650 
651 	dprintk("memtype_reserve added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
652 		start, end - 1, cattr_name(entry_new->type), cattr_name(req_type),
653 		new_type ? cattr_name(*new_type) : "-");
654 
655 	return err;
656 }
657 
memtype_free(u64 start,u64 end)658 int memtype_free(u64 start, u64 end)
659 {
660 	int is_range_ram;
661 	struct memtype *entry_old;
662 
663 	if (!pat_enabled())
664 		return 0;
665 
666 	start = sanitize_phys(start);
667 	end = sanitize_phys(end);
668 
669 	/* Low ISA region is always mapped WB. No need to track */
670 	if (x86_platform.is_untracked_pat_range(start, end))
671 		return 0;
672 
673 	is_range_ram = pat_pagerange_is_ram(start, end);
674 	if (is_range_ram == 1)
675 		return free_ram_pages_type(start, end);
676 	if (is_range_ram < 0)
677 		return -EINVAL;
678 
679 	spin_lock(&memtype_lock);
680 	entry_old = memtype_erase(start, end);
681 	spin_unlock(&memtype_lock);
682 
683 	if (IS_ERR(entry_old)) {
684 		pr_info("x86/PAT: %s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
685 			current->comm, current->pid, start, end - 1);
686 		return -EINVAL;
687 	}
688 
689 	kfree(entry_old);
690 
691 	dprintk("memtype_free request [mem %#010Lx-%#010Lx]\n", start, end - 1);
692 
693 	return 0;
694 }
695 
696 
697 /**
698  * lookup_memtype - Looks up the memory type for a physical address
699  * @paddr: physical address of which memory type needs to be looked up
700  *
701  * Only to be called when PAT is enabled
702  *
703  * Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS
704  * or _PAGE_CACHE_MODE_WT.
705  */
lookup_memtype(u64 paddr)706 static enum page_cache_mode lookup_memtype(u64 paddr)
707 {
708 	enum page_cache_mode rettype = _PAGE_CACHE_MODE_WB;
709 	struct memtype *entry;
710 
711 	if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
712 		return rettype;
713 
714 	if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
715 		struct page *page;
716 
717 		page = pfn_to_page(paddr >> PAGE_SHIFT);
718 		return get_page_memtype(page);
719 	}
720 
721 	spin_lock(&memtype_lock);
722 
723 	entry = memtype_lookup(paddr);
724 	if (entry != NULL)
725 		rettype = entry->type;
726 	else
727 		rettype = _PAGE_CACHE_MODE_UC_MINUS;
728 
729 	spin_unlock(&memtype_lock);
730 
731 	return rettype;
732 }
733 
734 /**
735  * pat_pfn_immune_to_uc_mtrr - Check whether the PAT memory type
736  * of @pfn cannot be overridden by UC MTRR memory type.
737  *
738  * Only to be called when PAT is enabled.
739  *
740  * Returns true, if the PAT memory type of @pfn is UC, UC-, or WC.
741  * Returns false in other cases.
742  */
pat_pfn_immune_to_uc_mtrr(unsigned long pfn)743 bool pat_pfn_immune_to_uc_mtrr(unsigned long pfn)
744 {
745 	enum page_cache_mode cm = lookup_memtype(PFN_PHYS(pfn));
746 
747 	return cm == _PAGE_CACHE_MODE_UC ||
748 	       cm == _PAGE_CACHE_MODE_UC_MINUS ||
749 	       cm == _PAGE_CACHE_MODE_WC;
750 }
751 EXPORT_SYMBOL_GPL(pat_pfn_immune_to_uc_mtrr);
752 
753 /**
754  * memtype_reserve_io - Request a memory type mapping for a region of memory
755  * @start: start (physical address) of the region
756  * @end: end (physical address) of the region
757  * @type: A pointer to memtype, with requested type. On success, requested
758  * or any other compatible type that was available for the region is returned
759  *
760  * On success, returns 0
761  * On failure, returns non-zero
762  */
memtype_reserve_io(resource_size_t start,resource_size_t end,enum page_cache_mode * type)763 int memtype_reserve_io(resource_size_t start, resource_size_t end,
764 			enum page_cache_mode *type)
765 {
766 	resource_size_t size = end - start;
767 	enum page_cache_mode req_type = *type;
768 	enum page_cache_mode new_type;
769 	int ret;
770 
771 	WARN_ON_ONCE(iomem_map_sanity_check(start, size));
772 
773 	ret = memtype_reserve(start, end, req_type, &new_type);
774 	if (ret)
775 		goto out_err;
776 
777 	if (!is_new_memtype_allowed(start, size, req_type, new_type))
778 		goto out_free;
779 
780 	if (memtype_kernel_map_sync(start, size, new_type) < 0)
781 		goto out_free;
782 
783 	*type = new_type;
784 	return 0;
785 
786 out_free:
787 	memtype_free(start, end);
788 	ret = -EBUSY;
789 out_err:
790 	return ret;
791 }
792 
793 /**
794  * memtype_free_io - Release a memory type mapping for a region of memory
795  * @start: start (physical address) of the region
796  * @end: end (physical address) of the region
797  */
memtype_free_io(resource_size_t start,resource_size_t end)798 void memtype_free_io(resource_size_t start, resource_size_t end)
799 {
800 	memtype_free(start, end);
801 }
802 
803 #ifdef CONFIG_X86_PAT
arch_io_reserve_memtype_wc(resource_size_t start,resource_size_t size)804 int arch_io_reserve_memtype_wc(resource_size_t start, resource_size_t size)
805 {
806 	enum page_cache_mode type = _PAGE_CACHE_MODE_WC;
807 
808 	return memtype_reserve_io(start, start + size, &type);
809 }
810 EXPORT_SYMBOL(arch_io_reserve_memtype_wc);
811 
arch_io_free_memtype_wc(resource_size_t start,resource_size_t size)812 void arch_io_free_memtype_wc(resource_size_t start, resource_size_t size)
813 {
814 	memtype_free_io(start, start + size);
815 }
816 EXPORT_SYMBOL(arch_io_free_memtype_wc);
817 #endif
818 
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)819 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
820 				unsigned long size, pgprot_t vma_prot)
821 {
822 	if (!phys_mem_access_encrypted(pfn << PAGE_SHIFT, size))
823 		vma_prot = pgprot_decrypted(vma_prot);
824 
825 	return vma_prot;
826 }
827 
828 #ifdef CONFIG_STRICT_DEVMEM
829 /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM */
range_is_allowed(unsigned long pfn,unsigned long size)830 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
831 {
832 	return 1;
833 }
834 #else
835 /* This check is needed to avoid cache aliasing when PAT is enabled */
range_is_allowed(unsigned long pfn,unsigned long size)836 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
837 {
838 	u64 from = ((u64)pfn) << PAGE_SHIFT;
839 	u64 to = from + size;
840 	u64 cursor = from;
841 
842 	if (!pat_enabled())
843 		return 1;
844 
845 	while (cursor < to) {
846 		if (!devmem_is_allowed(pfn))
847 			return 0;
848 		cursor += PAGE_SIZE;
849 		pfn++;
850 	}
851 	return 1;
852 }
853 #endif /* CONFIG_STRICT_DEVMEM */
854 
phys_mem_access_prot_allowed(struct file * file,unsigned long pfn,unsigned long size,pgprot_t * vma_prot)855 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
856 				unsigned long size, pgprot_t *vma_prot)
857 {
858 	enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB;
859 
860 	if (!range_is_allowed(pfn, size))
861 		return 0;
862 
863 	if (file->f_flags & O_DSYNC)
864 		pcm = _PAGE_CACHE_MODE_UC_MINUS;
865 
866 	*vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
867 			     cachemode2protval(pcm));
868 	return 1;
869 }
870 
871 /*
872  * Change the memory type for the physical address range in kernel identity
873  * mapping space if that range is a part of identity map.
874  */
memtype_kernel_map_sync(u64 base,unsigned long size,enum page_cache_mode pcm)875 int memtype_kernel_map_sync(u64 base, unsigned long size,
876 			    enum page_cache_mode pcm)
877 {
878 	unsigned long id_sz;
879 
880 	if (base > __pa(high_memory-1))
881 		return 0;
882 
883 	/*
884 	 * Some areas in the middle of the kernel identity range
885 	 * are not mapped, for example the PCI space.
886 	 */
887 	if (!page_is_ram(base >> PAGE_SHIFT))
888 		return 0;
889 
890 	id_sz = (__pa(high_memory-1) <= base + size) ?
891 				__pa(high_memory) - base : size;
892 
893 	if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) {
894 		pr_info("x86/PAT: %s:%d ioremap_change_attr failed %s for [mem %#010Lx-%#010Lx]\n",
895 			current->comm, current->pid,
896 			cattr_name(pcm),
897 			base, (unsigned long long)(base + size-1));
898 		return -EINVAL;
899 	}
900 	return 0;
901 }
902 
903 /*
904  * Internal interface to reserve a range of physical memory with prot.
905  * Reserved non RAM regions only and after successful memtype_reserve,
906  * this func also keeps identity mapping (if any) in sync with this new prot.
907  */
reserve_pfn_range(u64 paddr,unsigned long size,pgprot_t * vma_prot,int strict_prot)908 static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
909 				int strict_prot)
910 {
911 	int is_ram = 0;
912 	int ret;
913 	enum page_cache_mode want_pcm = pgprot2cachemode(*vma_prot);
914 	enum page_cache_mode pcm = want_pcm;
915 
916 	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
917 
918 	/*
919 	 * reserve_pfn_range() for RAM pages. We do not refcount to keep
920 	 * track of number of mappings of RAM pages. We can assert that
921 	 * the type requested matches the type of first page in the range.
922 	 */
923 	if (is_ram) {
924 		if (!pat_enabled())
925 			return 0;
926 
927 		pcm = lookup_memtype(paddr);
928 		if (want_pcm != pcm) {
929 			pr_warn("x86/PAT: %s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
930 				current->comm, current->pid,
931 				cattr_name(want_pcm),
932 				(unsigned long long)paddr,
933 				(unsigned long long)(paddr + size - 1),
934 				cattr_name(pcm));
935 			*vma_prot = __pgprot((pgprot_val(*vma_prot) &
936 					     (~_PAGE_CACHE_MASK)) |
937 					     cachemode2protval(pcm));
938 		}
939 		return 0;
940 	}
941 
942 	ret = memtype_reserve(paddr, paddr + size, want_pcm, &pcm);
943 	if (ret)
944 		return ret;
945 
946 	if (pcm != want_pcm) {
947 		if (strict_prot ||
948 		    !is_new_memtype_allowed(paddr, size, want_pcm, pcm)) {
949 			memtype_free(paddr, paddr + size);
950 			pr_err("x86/PAT: %s:%d map pfn expected mapping type %s for [mem %#010Lx-%#010Lx], got %s\n",
951 			       current->comm, current->pid,
952 			       cattr_name(want_pcm),
953 			       (unsigned long long)paddr,
954 			       (unsigned long long)(paddr + size - 1),
955 			       cattr_name(pcm));
956 			return -EINVAL;
957 		}
958 		/*
959 		 * We allow returning different type than the one requested in
960 		 * non strict case.
961 		 */
962 		*vma_prot = __pgprot((pgprot_val(*vma_prot) &
963 				      (~_PAGE_CACHE_MASK)) |
964 				     cachemode2protval(pcm));
965 	}
966 
967 	if (memtype_kernel_map_sync(paddr, size, pcm) < 0) {
968 		memtype_free(paddr, paddr + size);
969 		return -EINVAL;
970 	}
971 	return 0;
972 }
973 
974 /*
975  * Internal interface to free a range of physical memory.
976  * Frees non RAM regions only.
977  */
free_pfn_range(u64 paddr,unsigned long size)978 static void free_pfn_range(u64 paddr, unsigned long size)
979 {
980 	int is_ram;
981 
982 	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
983 	if (is_ram == 0)
984 		memtype_free(paddr, paddr + size);
985 }
986 
987 /*
988  * track_pfn_copy is called when vma that is covering the pfnmap gets
989  * copied through copy_page_range().
990  *
991  * If the vma has a linear pfn mapping for the entire range, we get the prot
992  * from pte and reserve the entire vma range with single reserve_pfn_range call.
993  */
track_pfn_copy(struct vm_area_struct * vma)994 int track_pfn_copy(struct vm_area_struct *vma)
995 {
996 	resource_size_t paddr;
997 	unsigned long prot;
998 	unsigned long vma_size = vma->vm_end - vma->vm_start;
999 	pgprot_t pgprot;
1000 
1001 	if (vma->vm_flags & VM_PAT) {
1002 		/*
1003 		 * reserve the whole chunk covered by vma. We need the
1004 		 * starting address and protection from pte.
1005 		 */
1006 		if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
1007 			WARN_ON_ONCE(1);
1008 			return -EINVAL;
1009 		}
1010 		pgprot = __pgprot(prot);
1011 		return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
1012 	}
1013 
1014 	return 0;
1015 }
1016 
1017 /*
1018  * prot is passed in as a parameter for the new mapping. If the vma has
1019  * a linear pfn mapping for the entire range, or no vma is provided,
1020  * reserve the entire pfn + size range with single reserve_pfn_range
1021  * call.
1022  */
track_pfn_remap(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn,unsigned long addr,unsigned long size)1023 int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1024 		    unsigned long pfn, unsigned long addr, unsigned long size)
1025 {
1026 	resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
1027 	enum page_cache_mode pcm;
1028 
1029 	/* reserve the whole chunk starting from paddr */
1030 	if (!vma || (addr == vma->vm_start
1031 				&& size == (vma->vm_end - vma->vm_start))) {
1032 		int ret;
1033 
1034 		ret = reserve_pfn_range(paddr, size, prot, 0);
1035 		if (ret == 0 && vma)
1036 			vma->vm_flags |= VM_PAT;
1037 		return ret;
1038 	}
1039 
1040 	if (!pat_enabled())
1041 		return 0;
1042 
1043 	/*
1044 	 * For anything smaller than the vma size we set prot based on the
1045 	 * lookup.
1046 	 */
1047 	pcm = lookup_memtype(paddr);
1048 
1049 	/* Check memtype for the remaining pages */
1050 	while (size > PAGE_SIZE) {
1051 		size -= PAGE_SIZE;
1052 		paddr += PAGE_SIZE;
1053 		if (pcm != lookup_memtype(paddr))
1054 			return -EINVAL;
1055 	}
1056 
1057 	*prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
1058 			 cachemode2protval(pcm));
1059 
1060 	return 0;
1061 }
1062 
track_pfn_insert(struct vm_area_struct * vma,pgprot_t * prot,pfn_t pfn)1063 void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, pfn_t pfn)
1064 {
1065 	enum page_cache_mode pcm;
1066 
1067 	if (!pat_enabled())
1068 		return;
1069 
1070 	/* Set prot based on lookup */
1071 	pcm = lookup_memtype(pfn_t_to_phys(pfn));
1072 	*prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
1073 			 cachemode2protval(pcm));
1074 }
1075 
1076 /*
1077  * untrack_pfn is called while unmapping a pfnmap for a region.
1078  * untrack can be called for a specific region indicated by pfn and size or
1079  * can be for the entire vma (in which case pfn, size are zero).
1080  */
untrack_pfn(struct vm_area_struct * vma,unsigned long pfn,unsigned long size)1081 void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1082 		 unsigned long size)
1083 {
1084 	resource_size_t paddr;
1085 	unsigned long prot;
1086 
1087 	if (vma && !(vma->vm_flags & VM_PAT))
1088 		return;
1089 
1090 	/* free the chunk starting from pfn or the whole chunk */
1091 	paddr = (resource_size_t)pfn << PAGE_SHIFT;
1092 	if (!paddr && !size) {
1093 		if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
1094 			WARN_ON_ONCE(1);
1095 			return;
1096 		}
1097 
1098 		size = vma->vm_end - vma->vm_start;
1099 	}
1100 	free_pfn_range(paddr, size);
1101 	if (vma)
1102 		vma->vm_flags &= ~VM_PAT;
1103 }
1104 
1105 /*
1106  * untrack_pfn_moved is called, while mremapping a pfnmap for a new region,
1107  * with the old vma after its pfnmap page table has been removed.  The new
1108  * vma has a new pfnmap to the same pfn & cache type with VM_PAT set.
1109  */
untrack_pfn_moved(struct vm_area_struct * vma)1110 void untrack_pfn_moved(struct vm_area_struct *vma)
1111 {
1112 	vma->vm_flags &= ~VM_PAT;
1113 }
1114 
pgprot_writecombine(pgprot_t prot)1115 pgprot_t pgprot_writecombine(pgprot_t prot)
1116 {
1117 	return __pgprot(pgprot_val(prot) |
1118 				cachemode2protval(_PAGE_CACHE_MODE_WC));
1119 }
1120 EXPORT_SYMBOL_GPL(pgprot_writecombine);
1121 
pgprot_writethrough(pgprot_t prot)1122 pgprot_t pgprot_writethrough(pgprot_t prot)
1123 {
1124 	return __pgprot(pgprot_val(prot) |
1125 				cachemode2protval(_PAGE_CACHE_MODE_WT));
1126 }
1127 EXPORT_SYMBOL_GPL(pgprot_writethrough);
1128 
1129 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
1130 
1131 /*
1132  * We are allocating a temporary printout-entry to be passed
1133  * between seq_start()/next() and seq_show():
1134  */
memtype_get_idx(loff_t pos)1135 static struct memtype *memtype_get_idx(loff_t pos)
1136 {
1137 	struct memtype *entry_print;
1138 	int ret;
1139 
1140 	entry_print  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
1141 	if (!entry_print)
1142 		return NULL;
1143 
1144 	spin_lock(&memtype_lock);
1145 	ret = memtype_copy_nth_element(entry_print, pos);
1146 	spin_unlock(&memtype_lock);
1147 
1148 	/* Free it on error: */
1149 	if (ret) {
1150 		kfree(entry_print);
1151 		return NULL;
1152 	}
1153 
1154 	return entry_print;
1155 }
1156 
memtype_seq_start(struct seq_file * seq,loff_t * pos)1157 static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
1158 {
1159 	if (*pos == 0) {
1160 		++*pos;
1161 		seq_puts(seq, "PAT memtype list:\n");
1162 	}
1163 
1164 	return memtype_get_idx(*pos);
1165 }
1166 
memtype_seq_next(struct seq_file * seq,void * v,loff_t * pos)1167 static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1168 {
1169 	kfree(v);
1170 	++*pos;
1171 	return memtype_get_idx(*pos);
1172 }
1173 
memtype_seq_stop(struct seq_file * seq,void * v)1174 static void memtype_seq_stop(struct seq_file *seq, void *v)
1175 {
1176 	kfree(v);
1177 }
1178 
memtype_seq_show(struct seq_file * seq,void * v)1179 static int memtype_seq_show(struct seq_file *seq, void *v)
1180 {
1181 	struct memtype *entry_print = (struct memtype *)v;
1182 
1183 	seq_printf(seq, "PAT: [mem 0x%016Lx-0x%016Lx] %s\n",
1184 			entry_print->start,
1185 			entry_print->end,
1186 			cattr_name(entry_print->type));
1187 
1188 	return 0;
1189 }
1190 
1191 static const struct seq_operations memtype_seq_ops = {
1192 	.start = memtype_seq_start,
1193 	.next  = memtype_seq_next,
1194 	.stop  = memtype_seq_stop,
1195 	.show  = memtype_seq_show,
1196 };
1197 
memtype_seq_open(struct inode * inode,struct file * file)1198 static int memtype_seq_open(struct inode *inode, struct file *file)
1199 {
1200 	return seq_open(file, &memtype_seq_ops);
1201 }
1202 
1203 static const struct file_operations memtype_fops = {
1204 	.open    = memtype_seq_open,
1205 	.read    = seq_read,
1206 	.llseek  = seq_lseek,
1207 	.release = seq_release,
1208 };
1209 
pat_memtype_list_init(void)1210 static int __init pat_memtype_list_init(void)
1211 {
1212 	if (pat_enabled()) {
1213 		debugfs_create_file("pat_memtype_list", S_IRUSR,
1214 				    arch_debugfs_dir, NULL, &memtype_fops);
1215 	}
1216 	return 0;
1217 }
1218 late_initcall(pat_memtype_list_init);
1219 
1220 #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
1221