1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 drbd_receiver.c
4
5 This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
6
7 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
8 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
9 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
10
11 */
12
13
14 #include <linux/module.h>
15
16 #include <linux/uaccess.h>
17 #include <net/sock.h>
18
19 #include <linux/drbd.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/in.h>
23 #include <linux/mm.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/slab.h>
27 #include <uapi/linux/sched/types.h>
28 #include <linux/sched/signal.h>
29 #include <linux/pkt_sched.h>
30 #define __KERNEL_SYSCALLS__
31 #include <linux/unistd.h>
32 #include <linux/vmalloc.h>
33 #include <linux/random.h>
34 #include <linux/string.h>
35 #include <linux/scatterlist.h>
36 #include <linux/part_stat.h>
37 #include "drbd_int.h"
38 #include "drbd_protocol.h"
39 #include "drbd_req.h"
40 #include "drbd_vli.h"
41
42 #define PRO_FEATURES (DRBD_FF_TRIM|DRBD_FF_THIN_RESYNC|DRBD_FF_WSAME|DRBD_FF_WZEROES)
43
44 struct packet_info {
45 enum drbd_packet cmd;
46 unsigned int size;
47 unsigned int vnr;
48 void *data;
49 };
50
51 enum finish_epoch {
52 FE_STILL_LIVE,
53 FE_DESTROYED,
54 FE_RECYCLED,
55 };
56
57 static int drbd_do_features(struct drbd_connection *connection);
58 static int drbd_do_auth(struct drbd_connection *connection);
59 static int drbd_disconnected(struct drbd_peer_device *);
60 static void conn_wait_active_ee_empty(struct drbd_connection *connection);
61 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *, struct drbd_epoch *, enum epoch_event);
62 static int e_end_block(struct drbd_work *, int);
63
64
65 #define GFP_TRY (__GFP_HIGHMEM | __GFP_NOWARN)
66
67 /*
68 * some helper functions to deal with single linked page lists,
69 * page->private being our "next" pointer.
70 */
71
72 /* If at least n pages are linked at head, get n pages off.
73 * Otherwise, don't modify head, and return NULL.
74 * Locking is the responsibility of the caller.
75 */
page_chain_del(struct page ** head,int n)76 static struct page *page_chain_del(struct page **head, int n)
77 {
78 struct page *page;
79 struct page *tmp;
80
81 BUG_ON(!n);
82 BUG_ON(!head);
83
84 page = *head;
85
86 if (!page)
87 return NULL;
88
89 while (page) {
90 tmp = page_chain_next(page);
91 if (--n == 0)
92 break; /* found sufficient pages */
93 if (tmp == NULL)
94 /* insufficient pages, don't use any of them. */
95 return NULL;
96 page = tmp;
97 }
98
99 /* add end of list marker for the returned list */
100 set_page_private(page, 0);
101 /* actual return value, and adjustment of head */
102 page = *head;
103 *head = tmp;
104 return page;
105 }
106
107 /* may be used outside of locks to find the tail of a (usually short)
108 * "private" page chain, before adding it back to a global chain head
109 * with page_chain_add() under a spinlock. */
page_chain_tail(struct page * page,int * len)110 static struct page *page_chain_tail(struct page *page, int *len)
111 {
112 struct page *tmp;
113 int i = 1;
114 while ((tmp = page_chain_next(page))) {
115 ++i;
116 page = tmp;
117 }
118 if (len)
119 *len = i;
120 return page;
121 }
122
page_chain_free(struct page * page)123 static int page_chain_free(struct page *page)
124 {
125 struct page *tmp;
126 int i = 0;
127 page_chain_for_each_safe(page, tmp) {
128 put_page(page);
129 ++i;
130 }
131 return i;
132 }
133
page_chain_add(struct page ** head,struct page * chain_first,struct page * chain_last)134 static void page_chain_add(struct page **head,
135 struct page *chain_first, struct page *chain_last)
136 {
137 #if 1
138 struct page *tmp;
139 tmp = page_chain_tail(chain_first, NULL);
140 BUG_ON(tmp != chain_last);
141 #endif
142
143 /* add chain to head */
144 set_page_private(chain_last, (unsigned long)*head);
145 *head = chain_first;
146 }
147
__drbd_alloc_pages(struct drbd_device * device,unsigned int number)148 static struct page *__drbd_alloc_pages(struct drbd_device *device,
149 unsigned int number)
150 {
151 struct page *page = NULL;
152 struct page *tmp = NULL;
153 unsigned int i = 0;
154
155 /* Yes, testing drbd_pp_vacant outside the lock is racy.
156 * So what. It saves a spin_lock. */
157 if (drbd_pp_vacant >= number) {
158 spin_lock(&drbd_pp_lock);
159 page = page_chain_del(&drbd_pp_pool, number);
160 if (page)
161 drbd_pp_vacant -= number;
162 spin_unlock(&drbd_pp_lock);
163 if (page)
164 return page;
165 }
166
167 /* GFP_TRY, because we must not cause arbitrary write-out: in a DRBD
168 * "criss-cross" setup, that might cause write-out on some other DRBD,
169 * which in turn might block on the other node at this very place. */
170 for (i = 0; i < number; i++) {
171 tmp = alloc_page(GFP_TRY);
172 if (!tmp)
173 break;
174 set_page_private(tmp, (unsigned long)page);
175 page = tmp;
176 }
177
178 if (i == number)
179 return page;
180
181 /* Not enough pages immediately available this time.
182 * No need to jump around here, drbd_alloc_pages will retry this
183 * function "soon". */
184 if (page) {
185 tmp = page_chain_tail(page, NULL);
186 spin_lock(&drbd_pp_lock);
187 page_chain_add(&drbd_pp_pool, page, tmp);
188 drbd_pp_vacant += i;
189 spin_unlock(&drbd_pp_lock);
190 }
191 return NULL;
192 }
193
reclaim_finished_net_peer_reqs(struct drbd_device * device,struct list_head * to_be_freed)194 static void reclaim_finished_net_peer_reqs(struct drbd_device *device,
195 struct list_head *to_be_freed)
196 {
197 struct drbd_peer_request *peer_req, *tmp;
198
199 /* The EEs are always appended to the end of the list. Since
200 they are sent in order over the wire, they have to finish
201 in order. As soon as we see the first not finished we can
202 stop to examine the list... */
203
204 list_for_each_entry_safe(peer_req, tmp, &device->net_ee, w.list) {
205 if (drbd_peer_req_has_active_page(peer_req))
206 break;
207 list_move(&peer_req->w.list, to_be_freed);
208 }
209 }
210
drbd_reclaim_net_peer_reqs(struct drbd_device * device)211 static void drbd_reclaim_net_peer_reqs(struct drbd_device *device)
212 {
213 LIST_HEAD(reclaimed);
214 struct drbd_peer_request *peer_req, *t;
215
216 spin_lock_irq(&device->resource->req_lock);
217 reclaim_finished_net_peer_reqs(device, &reclaimed);
218 spin_unlock_irq(&device->resource->req_lock);
219 list_for_each_entry_safe(peer_req, t, &reclaimed, w.list)
220 drbd_free_net_peer_req(device, peer_req);
221 }
222
conn_reclaim_net_peer_reqs(struct drbd_connection * connection)223 static void conn_reclaim_net_peer_reqs(struct drbd_connection *connection)
224 {
225 struct drbd_peer_device *peer_device;
226 int vnr;
227
228 rcu_read_lock();
229 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
230 struct drbd_device *device = peer_device->device;
231 if (!atomic_read(&device->pp_in_use_by_net))
232 continue;
233
234 kref_get(&device->kref);
235 rcu_read_unlock();
236 drbd_reclaim_net_peer_reqs(device);
237 kref_put(&device->kref, drbd_destroy_device);
238 rcu_read_lock();
239 }
240 rcu_read_unlock();
241 }
242
243 /**
244 * drbd_alloc_pages() - Returns @number pages, retries forever (or until signalled)
245 * @peer_device: DRBD device.
246 * @number: number of pages requested
247 * @retry: whether to retry, if not enough pages are available right now
248 *
249 * Tries to allocate number pages, first from our own page pool, then from
250 * the kernel.
251 * Possibly retry until DRBD frees sufficient pages somewhere else.
252 *
253 * If this allocation would exceed the max_buffers setting, we throttle
254 * allocation (schedule_timeout) to give the system some room to breathe.
255 *
256 * We do not use max-buffers as hard limit, because it could lead to
257 * congestion and further to a distributed deadlock during online-verify or
258 * (checksum based) resync, if the max-buffers, socket buffer sizes and
259 * resync-rate settings are mis-configured.
260 *
261 * Returns a page chain linked via page->private.
262 */
drbd_alloc_pages(struct drbd_peer_device * peer_device,unsigned int number,bool retry)263 struct page *drbd_alloc_pages(struct drbd_peer_device *peer_device, unsigned int number,
264 bool retry)
265 {
266 struct drbd_device *device = peer_device->device;
267 struct page *page = NULL;
268 struct net_conf *nc;
269 DEFINE_WAIT(wait);
270 unsigned int mxb;
271
272 rcu_read_lock();
273 nc = rcu_dereference(peer_device->connection->net_conf);
274 mxb = nc ? nc->max_buffers : 1000000;
275 rcu_read_unlock();
276
277 if (atomic_read(&device->pp_in_use) < mxb)
278 page = __drbd_alloc_pages(device, number);
279
280 /* Try to keep the fast path fast, but occasionally we need
281 * to reclaim the pages we lended to the network stack. */
282 if (page && atomic_read(&device->pp_in_use_by_net) > 512)
283 drbd_reclaim_net_peer_reqs(device);
284
285 while (page == NULL) {
286 prepare_to_wait(&drbd_pp_wait, &wait, TASK_INTERRUPTIBLE);
287
288 drbd_reclaim_net_peer_reqs(device);
289
290 if (atomic_read(&device->pp_in_use) < mxb) {
291 page = __drbd_alloc_pages(device, number);
292 if (page)
293 break;
294 }
295
296 if (!retry)
297 break;
298
299 if (signal_pending(current)) {
300 drbd_warn(device, "drbd_alloc_pages interrupted!\n");
301 break;
302 }
303
304 if (schedule_timeout(HZ/10) == 0)
305 mxb = UINT_MAX;
306 }
307 finish_wait(&drbd_pp_wait, &wait);
308
309 if (page)
310 atomic_add(number, &device->pp_in_use);
311 return page;
312 }
313
314 /* Must not be used from irq, as that may deadlock: see drbd_alloc_pages.
315 * Is also used from inside an other spin_lock_irq(&resource->req_lock);
316 * Either links the page chain back to the global pool,
317 * or returns all pages to the system. */
drbd_free_pages(struct drbd_device * device,struct page * page,int is_net)318 static void drbd_free_pages(struct drbd_device *device, struct page *page, int is_net)
319 {
320 atomic_t *a = is_net ? &device->pp_in_use_by_net : &device->pp_in_use;
321 int i;
322
323 if (page == NULL)
324 return;
325
326 if (drbd_pp_vacant > (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count)
327 i = page_chain_free(page);
328 else {
329 struct page *tmp;
330 tmp = page_chain_tail(page, &i);
331 spin_lock(&drbd_pp_lock);
332 page_chain_add(&drbd_pp_pool, page, tmp);
333 drbd_pp_vacant += i;
334 spin_unlock(&drbd_pp_lock);
335 }
336 i = atomic_sub_return(i, a);
337 if (i < 0)
338 drbd_warn(device, "ASSERTION FAILED: %s: %d < 0\n",
339 is_net ? "pp_in_use_by_net" : "pp_in_use", i);
340 wake_up(&drbd_pp_wait);
341 }
342
343 /*
344 You need to hold the req_lock:
345 _drbd_wait_ee_list_empty()
346
347 You must not have the req_lock:
348 drbd_free_peer_req()
349 drbd_alloc_peer_req()
350 drbd_free_peer_reqs()
351 drbd_ee_fix_bhs()
352 drbd_finish_peer_reqs()
353 drbd_clear_done_ee()
354 drbd_wait_ee_list_empty()
355 */
356
357 /* normal: payload_size == request size (bi_size)
358 * w_same: payload_size == logical_block_size
359 * trim: payload_size == 0 */
360 struct drbd_peer_request *
drbd_alloc_peer_req(struct drbd_peer_device * peer_device,u64 id,sector_t sector,unsigned int request_size,unsigned int payload_size,gfp_t gfp_mask)361 drbd_alloc_peer_req(struct drbd_peer_device *peer_device, u64 id, sector_t sector,
362 unsigned int request_size, unsigned int payload_size, gfp_t gfp_mask) __must_hold(local)
363 {
364 struct drbd_device *device = peer_device->device;
365 struct drbd_peer_request *peer_req;
366 struct page *page = NULL;
367 unsigned nr_pages = (payload_size + PAGE_SIZE -1) >> PAGE_SHIFT;
368
369 if (drbd_insert_fault(device, DRBD_FAULT_AL_EE))
370 return NULL;
371
372 peer_req = mempool_alloc(&drbd_ee_mempool, gfp_mask & ~__GFP_HIGHMEM);
373 if (!peer_req) {
374 if (!(gfp_mask & __GFP_NOWARN))
375 drbd_err(device, "%s: allocation failed\n", __func__);
376 return NULL;
377 }
378
379 if (nr_pages) {
380 page = drbd_alloc_pages(peer_device, nr_pages,
381 gfpflags_allow_blocking(gfp_mask));
382 if (!page)
383 goto fail;
384 }
385
386 memset(peer_req, 0, sizeof(*peer_req));
387 INIT_LIST_HEAD(&peer_req->w.list);
388 drbd_clear_interval(&peer_req->i);
389 peer_req->i.size = request_size;
390 peer_req->i.sector = sector;
391 peer_req->submit_jif = jiffies;
392 peer_req->peer_device = peer_device;
393 peer_req->pages = page;
394 /*
395 * The block_id is opaque to the receiver. It is not endianness
396 * converted, and sent back to the sender unchanged.
397 */
398 peer_req->block_id = id;
399
400 return peer_req;
401
402 fail:
403 mempool_free(peer_req, &drbd_ee_mempool);
404 return NULL;
405 }
406
__drbd_free_peer_req(struct drbd_device * device,struct drbd_peer_request * peer_req,int is_net)407 void __drbd_free_peer_req(struct drbd_device *device, struct drbd_peer_request *peer_req,
408 int is_net)
409 {
410 might_sleep();
411 if (peer_req->flags & EE_HAS_DIGEST)
412 kfree(peer_req->digest);
413 drbd_free_pages(device, peer_req->pages, is_net);
414 D_ASSERT(device, atomic_read(&peer_req->pending_bios) == 0);
415 D_ASSERT(device, drbd_interval_empty(&peer_req->i));
416 if (!expect(!(peer_req->flags & EE_CALL_AL_COMPLETE_IO))) {
417 peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO;
418 drbd_al_complete_io(device, &peer_req->i);
419 }
420 mempool_free(peer_req, &drbd_ee_mempool);
421 }
422
drbd_free_peer_reqs(struct drbd_device * device,struct list_head * list)423 int drbd_free_peer_reqs(struct drbd_device *device, struct list_head *list)
424 {
425 LIST_HEAD(work_list);
426 struct drbd_peer_request *peer_req, *t;
427 int count = 0;
428 int is_net = list == &device->net_ee;
429
430 spin_lock_irq(&device->resource->req_lock);
431 list_splice_init(list, &work_list);
432 spin_unlock_irq(&device->resource->req_lock);
433
434 list_for_each_entry_safe(peer_req, t, &work_list, w.list) {
435 __drbd_free_peer_req(device, peer_req, is_net);
436 count++;
437 }
438 return count;
439 }
440
441 /*
442 * See also comments in _req_mod(,BARRIER_ACKED) and receive_Barrier.
443 */
drbd_finish_peer_reqs(struct drbd_device * device)444 static int drbd_finish_peer_reqs(struct drbd_device *device)
445 {
446 LIST_HEAD(work_list);
447 LIST_HEAD(reclaimed);
448 struct drbd_peer_request *peer_req, *t;
449 int err = 0;
450
451 spin_lock_irq(&device->resource->req_lock);
452 reclaim_finished_net_peer_reqs(device, &reclaimed);
453 list_splice_init(&device->done_ee, &work_list);
454 spin_unlock_irq(&device->resource->req_lock);
455
456 list_for_each_entry_safe(peer_req, t, &reclaimed, w.list)
457 drbd_free_net_peer_req(device, peer_req);
458
459 /* possible callbacks here:
460 * e_end_block, and e_end_resync_block, e_send_superseded.
461 * all ignore the last argument.
462 */
463 list_for_each_entry_safe(peer_req, t, &work_list, w.list) {
464 int err2;
465
466 /* list_del not necessary, next/prev members not touched */
467 err2 = peer_req->w.cb(&peer_req->w, !!err);
468 if (!err)
469 err = err2;
470 drbd_free_peer_req(device, peer_req);
471 }
472 wake_up(&device->ee_wait);
473
474 return err;
475 }
476
_drbd_wait_ee_list_empty(struct drbd_device * device,struct list_head * head)477 static void _drbd_wait_ee_list_empty(struct drbd_device *device,
478 struct list_head *head)
479 {
480 DEFINE_WAIT(wait);
481
482 /* avoids spin_lock/unlock
483 * and calling prepare_to_wait in the fast path */
484 while (!list_empty(head)) {
485 prepare_to_wait(&device->ee_wait, &wait, TASK_UNINTERRUPTIBLE);
486 spin_unlock_irq(&device->resource->req_lock);
487 io_schedule();
488 finish_wait(&device->ee_wait, &wait);
489 spin_lock_irq(&device->resource->req_lock);
490 }
491 }
492
drbd_wait_ee_list_empty(struct drbd_device * device,struct list_head * head)493 static void drbd_wait_ee_list_empty(struct drbd_device *device,
494 struct list_head *head)
495 {
496 spin_lock_irq(&device->resource->req_lock);
497 _drbd_wait_ee_list_empty(device, head);
498 spin_unlock_irq(&device->resource->req_lock);
499 }
500
drbd_recv_short(struct socket * sock,void * buf,size_t size,int flags)501 static int drbd_recv_short(struct socket *sock, void *buf, size_t size, int flags)
502 {
503 struct kvec iov = {
504 .iov_base = buf,
505 .iov_len = size,
506 };
507 struct msghdr msg = {
508 .msg_flags = (flags ? flags : MSG_WAITALL | MSG_NOSIGNAL)
509 };
510 iov_iter_kvec(&msg.msg_iter, READ, &iov, 1, size);
511 return sock_recvmsg(sock, &msg, msg.msg_flags);
512 }
513
drbd_recv(struct drbd_connection * connection,void * buf,size_t size)514 static int drbd_recv(struct drbd_connection *connection, void *buf, size_t size)
515 {
516 int rv;
517
518 rv = drbd_recv_short(connection->data.socket, buf, size, 0);
519
520 if (rv < 0) {
521 if (rv == -ECONNRESET)
522 drbd_info(connection, "sock was reset by peer\n");
523 else if (rv != -ERESTARTSYS)
524 drbd_err(connection, "sock_recvmsg returned %d\n", rv);
525 } else if (rv == 0) {
526 if (test_bit(DISCONNECT_SENT, &connection->flags)) {
527 long t;
528 rcu_read_lock();
529 t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10;
530 rcu_read_unlock();
531
532 t = wait_event_timeout(connection->ping_wait, connection->cstate < C_WF_REPORT_PARAMS, t);
533
534 if (t)
535 goto out;
536 }
537 drbd_info(connection, "sock was shut down by peer\n");
538 }
539
540 if (rv != size)
541 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
542
543 out:
544 return rv;
545 }
546
drbd_recv_all(struct drbd_connection * connection,void * buf,size_t size)547 static int drbd_recv_all(struct drbd_connection *connection, void *buf, size_t size)
548 {
549 int err;
550
551 err = drbd_recv(connection, buf, size);
552 if (err != size) {
553 if (err >= 0)
554 err = -EIO;
555 } else
556 err = 0;
557 return err;
558 }
559
drbd_recv_all_warn(struct drbd_connection * connection,void * buf,size_t size)560 static int drbd_recv_all_warn(struct drbd_connection *connection, void *buf, size_t size)
561 {
562 int err;
563
564 err = drbd_recv_all(connection, buf, size);
565 if (err && !signal_pending(current))
566 drbd_warn(connection, "short read (expected size %d)\n", (int)size);
567 return err;
568 }
569
570 /* quoting tcp(7):
571 * On individual connections, the socket buffer size must be set prior to the
572 * listen(2) or connect(2) calls in order to have it take effect.
573 * This is our wrapper to do so.
574 */
drbd_setbufsize(struct socket * sock,unsigned int snd,unsigned int rcv)575 static void drbd_setbufsize(struct socket *sock, unsigned int snd,
576 unsigned int rcv)
577 {
578 /* open coded SO_SNDBUF, SO_RCVBUF */
579 if (snd) {
580 sock->sk->sk_sndbuf = snd;
581 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
582 }
583 if (rcv) {
584 sock->sk->sk_rcvbuf = rcv;
585 sock->sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
586 }
587 }
588
drbd_try_connect(struct drbd_connection * connection)589 static struct socket *drbd_try_connect(struct drbd_connection *connection)
590 {
591 const char *what;
592 struct socket *sock;
593 struct sockaddr_in6 src_in6;
594 struct sockaddr_in6 peer_in6;
595 struct net_conf *nc;
596 int err, peer_addr_len, my_addr_len;
597 int sndbuf_size, rcvbuf_size, connect_int;
598 int disconnect_on_error = 1;
599
600 rcu_read_lock();
601 nc = rcu_dereference(connection->net_conf);
602 if (!nc) {
603 rcu_read_unlock();
604 return NULL;
605 }
606 sndbuf_size = nc->sndbuf_size;
607 rcvbuf_size = nc->rcvbuf_size;
608 connect_int = nc->connect_int;
609 rcu_read_unlock();
610
611 my_addr_len = min_t(int, connection->my_addr_len, sizeof(src_in6));
612 memcpy(&src_in6, &connection->my_addr, my_addr_len);
613
614 if (((struct sockaddr *)&connection->my_addr)->sa_family == AF_INET6)
615 src_in6.sin6_port = 0;
616 else
617 ((struct sockaddr_in *)&src_in6)->sin_port = 0; /* AF_INET & AF_SCI */
618
619 peer_addr_len = min_t(int, connection->peer_addr_len, sizeof(src_in6));
620 memcpy(&peer_in6, &connection->peer_addr, peer_addr_len);
621
622 what = "sock_create_kern";
623 err = sock_create_kern(&init_net, ((struct sockaddr *)&src_in6)->sa_family,
624 SOCK_STREAM, IPPROTO_TCP, &sock);
625 if (err < 0) {
626 sock = NULL;
627 goto out;
628 }
629
630 sock->sk->sk_rcvtimeo =
631 sock->sk->sk_sndtimeo = connect_int * HZ;
632 drbd_setbufsize(sock, sndbuf_size, rcvbuf_size);
633
634 /* explicitly bind to the configured IP as source IP
635 * for the outgoing connections.
636 * This is needed for multihomed hosts and to be
637 * able to use lo: interfaces for drbd.
638 * Make sure to use 0 as port number, so linux selects
639 * a free one dynamically.
640 */
641 what = "bind before connect";
642 err = sock->ops->bind(sock, (struct sockaddr *) &src_in6, my_addr_len);
643 if (err < 0)
644 goto out;
645
646 /* connect may fail, peer not yet available.
647 * stay C_WF_CONNECTION, don't go Disconnecting! */
648 disconnect_on_error = 0;
649 what = "connect";
650 err = sock->ops->connect(sock, (struct sockaddr *) &peer_in6, peer_addr_len, 0);
651
652 out:
653 if (err < 0) {
654 if (sock) {
655 sock_release(sock);
656 sock = NULL;
657 }
658 switch (-err) {
659 /* timeout, busy, signal pending */
660 case ETIMEDOUT: case EAGAIN: case EINPROGRESS:
661 case EINTR: case ERESTARTSYS:
662 /* peer not (yet) available, network problem */
663 case ECONNREFUSED: case ENETUNREACH:
664 case EHOSTDOWN: case EHOSTUNREACH:
665 disconnect_on_error = 0;
666 break;
667 default:
668 drbd_err(connection, "%s failed, err = %d\n", what, err);
669 }
670 if (disconnect_on_error)
671 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
672 }
673
674 return sock;
675 }
676
677 struct accept_wait_data {
678 struct drbd_connection *connection;
679 struct socket *s_listen;
680 struct completion door_bell;
681 void (*original_sk_state_change)(struct sock *sk);
682
683 };
684
drbd_incoming_connection(struct sock * sk)685 static void drbd_incoming_connection(struct sock *sk)
686 {
687 struct accept_wait_data *ad = sk->sk_user_data;
688 void (*state_change)(struct sock *sk);
689
690 state_change = ad->original_sk_state_change;
691 if (sk->sk_state == TCP_ESTABLISHED)
692 complete(&ad->door_bell);
693 state_change(sk);
694 }
695
prepare_listen_socket(struct drbd_connection * connection,struct accept_wait_data * ad)696 static int prepare_listen_socket(struct drbd_connection *connection, struct accept_wait_data *ad)
697 {
698 int err, sndbuf_size, rcvbuf_size, my_addr_len;
699 struct sockaddr_in6 my_addr;
700 struct socket *s_listen;
701 struct net_conf *nc;
702 const char *what;
703
704 rcu_read_lock();
705 nc = rcu_dereference(connection->net_conf);
706 if (!nc) {
707 rcu_read_unlock();
708 return -EIO;
709 }
710 sndbuf_size = nc->sndbuf_size;
711 rcvbuf_size = nc->rcvbuf_size;
712 rcu_read_unlock();
713
714 my_addr_len = min_t(int, connection->my_addr_len, sizeof(struct sockaddr_in6));
715 memcpy(&my_addr, &connection->my_addr, my_addr_len);
716
717 what = "sock_create_kern";
718 err = sock_create_kern(&init_net, ((struct sockaddr *)&my_addr)->sa_family,
719 SOCK_STREAM, IPPROTO_TCP, &s_listen);
720 if (err) {
721 s_listen = NULL;
722 goto out;
723 }
724
725 s_listen->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
726 drbd_setbufsize(s_listen, sndbuf_size, rcvbuf_size);
727
728 what = "bind before listen";
729 err = s_listen->ops->bind(s_listen, (struct sockaddr *)&my_addr, my_addr_len);
730 if (err < 0)
731 goto out;
732
733 ad->s_listen = s_listen;
734 write_lock_bh(&s_listen->sk->sk_callback_lock);
735 ad->original_sk_state_change = s_listen->sk->sk_state_change;
736 s_listen->sk->sk_state_change = drbd_incoming_connection;
737 s_listen->sk->sk_user_data = ad;
738 write_unlock_bh(&s_listen->sk->sk_callback_lock);
739
740 what = "listen";
741 err = s_listen->ops->listen(s_listen, 5);
742 if (err < 0)
743 goto out;
744
745 return 0;
746 out:
747 if (s_listen)
748 sock_release(s_listen);
749 if (err < 0) {
750 if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) {
751 drbd_err(connection, "%s failed, err = %d\n", what, err);
752 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
753 }
754 }
755
756 return -EIO;
757 }
758
unregister_state_change(struct sock * sk,struct accept_wait_data * ad)759 static void unregister_state_change(struct sock *sk, struct accept_wait_data *ad)
760 {
761 write_lock_bh(&sk->sk_callback_lock);
762 sk->sk_state_change = ad->original_sk_state_change;
763 sk->sk_user_data = NULL;
764 write_unlock_bh(&sk->sk_callback_lock);
765 }
766
drbd_wait_for_connect(struct drbd_connection * connection,struct accept_wait_data * ad)767 static struct socket *drbd_wait_for_connect(struct drbd_connection *connection, struct accept_wait_data *ad)
768 {
769 int timeo, connect_int, err = 0;
770 struct socket *s_estab = NULL;
771 struct net_conf *nc;
772
773 rcu_read_lock();
774 nc = rcu_dereference(connection->net_conf);
775 if (!nc) {
776 rcu_read_unlock();
777 return NULL;
778 }
779 connect_int = nc->connect_int;
780 rcu_read_unlock();
781
782 timeo = connect_int * HZ;
783 /* 28.5% random jitter */
784 timeo += (prandom_u32() & 1) ? timeo / 7 : -timeo / 7;
785
786 err = wait_for_completion_interruptible_timeout(&ad->door_bell, timeo);
787 if (err <= 0)
788 return NULL;
789
790 err = kernel_accept(ad->s_listen, &s_estab, 0);
791 if (err < 0) {
792 if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) {
793 drbd_err(connection, "accept failed, err = %d\n", err);
794 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
795 }
796 }
797
798 if (s_estab)
799 unregister_state_change(s_estab->sk, ad);
800
801 return s_estab;
802 }
803
804 static int decode_header(struct drbd_connection *, void *, struct packet_info *);
805
send_first_packet(struct drbd_connection * connection,struct drbd_socket * sock,enum drbd_packet cmd)806 static int send_first_packet(struct drbd_connection *connection, struct drbd_socket *sock,
807 enum drbd_packet cmd)
808 {
809 if (!conn_prepare_command(connection, sock))
810 return -EIO;
811 return conn_send_command(connection, sock, cmd, 0, NULL, 0);
812 }
813
receive_first_packet(struct drbd_connection * connection,struct socket * sock)814 static int receive_first_packet(struct drbd_connection *connection, struct socket *sock)
815 {
816 unsigned int header_size = drbd_header_size(connection);
817 struct packet_info pi;
818 struct net_conf *nc;
819 int err;
820
821 rcu_read_lock();
822 nc = rcu_dereference(connection->net_conf);
823 if (!nc) {
824 rcu_read_unlock();
825 return -EIO;
826 }
827 sock->sk->sk_rcvtimeo = nc->ping_timeo * 4 * HZ / 10;
828 rcu_read_unlock();
829
830 err = drbd_recv_short(sock, connection->data.rbuf, header_size, 0);
831 if (err != header_size) {
832 if (err >= 0)
833 err = -EIO;
834 return err;
835 }
836 err = decode_header(connection, connection->data.rbuf, &pi);
837 if (err)
838 return err;
839 return pi.cmd;
840 }
841
842 /**
843 * drbd_socket_okay() - Free the socket if its connection is not okay
844 * @sock: pointer to the pointer to the socket.
845 */
drbd_socket_okay(struct socket ** sock)846 static bool drbd_socket_okay(struct socket **sock)
847 {
848 int rr;
849 char tb[4];
850
851 if (!*sock)
852 return false;
853
854 rr = drbd_recv_short(*sock, tb, 4, MSG_DONTWAIT | MSG_PEEK);
855
856 if (rr > 0 || rr == -EAGAIN) {
857 return true;
858 } else {
859 sock_release(*sock);
860 *sock = NULL;
861 return false;
862 }
863 }
864
connection_established(struct drbd_connection * connection,struct socket ** sock1,struct socket ** sock2)865 static bool connection_established(struct drbd_connection *connection,
866 struct socket **sock1,
867 struct socket **sock2)
868 {
869 struct net_conf *nc;
870 int timeout;
871 bool ok;
872
873 if (!*sock1 || !*sock2)
874 return false;
875
876 rcu_read_lock();
877 nc = rcu_dereference(connection->net_conf);
878 timeout = (nc->sock_check_timeo ?: nc->ping_timeo) * HZ / 10;
879 rcu_read_unlock();
880 schedule_timeout_interruptible(timeout);
881
882 ok = drbd_socket_okay(sock1);
883 ok = drbd_socket_okay(sock2) && ok;
884
885 return ok;
886 }
887
888 /* Gets called if a connection is established, or if a new minor gets created
889 in a connection */
drbd_connected(struct drbd_peer_device * peer_device)890 int drbd_connected(struct drbd_peer_device *peer_device)
891 {
892 struct drbd_device *device = peer_device->device;
893 int err;
894
895 atomic_set(&device->packet_seq, 0);
896 device->peer_seq = 0;
897
898 device->state_mutex = peer_device->connection->agreed_pro_version < 100 ?
899 &peer_device->connection->cstate_mutex :
900 &device->own_state_mutex;
901
902 err = drbd_send_sync_param(peer_device);
903 if (!err)
904 err = drbd_send_sizes(peer_device, 0, 0);
905 if (!err)
906 err = drbd_send_uuids(peer_device);
907 if (!err)
908 err = drbd_send_current_state(peer_device);
909 clear_bit(USE_DEGR_WFC_T, &device->flags);
910 clear_bit(RESIZE_PENDING, &device->flags);
911 atomic_set(&device->ap_in_flight, 0);
912 mod_timer(&device->request_timer, jiffies + HZ); /* just start it here. */
913 return err;
914 }
915
916 /*
917 * return values:
918 * 1 yes, we have a valid connection
919 * 0 oops, did not work out, please try again
920 * -1 peer talks different language,
921 * no point in trying again, please go standalone.
922 * -2 We do not have a network config...
923 */
conn_connect(struct drbd_connection * connection)924 static int conn_connect(struct drbd_connection *connection)
925 {
926 struct drbd_socket sock, msock;
927 struct drbd_peer_device *peer_device;
928 struct net_conf *nc;
929 int vnr, timeout, h;
930 bool discard_my_data, ok;
931 enum drbd_state_rv rv;
932 struct accept_wait_data ad = {
933 .connection = connection,
934 .door_bell = COMPLETION_INITIALIZER_ONSTACK(ad.door_bell),
935 };
936
937 clear_bit(DISCONNECT_SENT, &connection->flags);
938 if (conn_request_state(connection, NS(conn, C_WF_CONNECTION), CS_VERBOSE) < SS_SUCCESS)
939 return -2;
940
941 mutex_init(&sock.mutex);
942 sock.sbuf = connection->data.sbuf;
943 sock.rbuf = connection->data.rbuf;
944 sock.socket = NULL;
945 mutex_init(&msock.mutex);
946 msock.sbuf = connection->meta.sbuf;
947 msock.rbuf = connection->meta.rbuf;
948 msock.socket = NULL;
949
950 /* Assume that the peer only understands protocol 80 until we know better. */
951 connection->agreed_pro_version = 80;
952
953 if (prepare_listen_socket(connection, &ad))
954 return 0;
955
956 do {
957 struct socket *s;
958
959 s = drbd_try_connect(connection);
960 if (s) {
961 if (!sock.socket) {
962 sock.socket = s;
963 send_first_packet(connection, &sock, P_INITIAL_DATA);
964 } else if (!msock.socket) {
965 clear_bit(RESOLVE_CONFLICTS, &connection->flags);
966 msock.socket = s;
967 send_first_packet(connection, &msock, P_INITIAL_META);
968 } else {
969 drbd_err(connection, "Logic error in conn_connect()\n");
970 goto out_release_sockets;
971 }
972 }
973
974 if (connection_established(connection, &sock.socket, &msock.socket))
975 break;
976
977 retry:
978 s = drbd_wait_for_connect(connection, &ad);
979 if (s) {
980 int fp = receive_first_packet(connection, s);
981 drbd_socket_okay(&sock.socket);
982 drbd_socket_okay(&msock.socket);
983 switch (fp) {
984 case P_INITIAL_DATA:
985 if (sock.socket) {
986 drbd_warn(connection, "initial packet S crossed\n");
987 sock_release(sock.socket);
988 sock.socket = s;
989 goto randomize;
990 }
991 sock.socket = s;
992 break;
993 case P_INITIAL_META:
994 set_bit(RESOLVE_CONFLICTS, &connection->flags);
995 if (msock.socket) {
996 drbd_warn(connection, "initial packet M crossed\n");
997 sock_release(msock.socket);
998 msock.socket = s;
999 goto randomize;
1000 }
1001 msock.socket = s;
1002 break;
1003 default:
1004 drbd_warn(connection, "Error receiving initial packet\n");
1005 sock_release(s);
1006 randomize:
1007 if (prandom_u32() & 1)
1008 goto retry;
1009 }
1010 }
1011
1012 if (connection->cstate <= C_DISCONNECTING)
1013 goto out_release_sockets;
1014 if (signal_pending(current)) {
1015 flush_signals(current);
1016 smp_rmb();
1017 if (get_t_state(&connection->receiver) == EXITING)
1018 goto out_release_sockets;
1019 }
1020
1021 ok = connection_established(connection, &sock.socket, &msock.socket);
1022 } while (!ok);
1023
1024 if (ad.s_listen)
1025 sock_release(ad.s_listen);
1026
1027 sock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
1028 msock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
1029
1030 sock.socket->sk->sk_allocation = GFP_NOIO;
1031 msock.socket->sk->sk_allocation = GFP_NOIO;
1032
1033 sock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE_BULK;
1034 msock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE;
1035
1036 /* NOT YET ...
1037 * sock.socket->sk->sk_sndtimeo = connection->net_conf->timeout*HZ/10;
1038 * sock.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1039 * first set it to the P_CONNECTION_FEATURES timeout,
1040 * which we set to 4x the configured ping_timeout. */
1041 rcu_read_lock();
1042 nc = rcu_dereference(connection->net_conf);
1043
1044 sock.socket->sk->sk_sndtimeo =
1045 sock.socket->sk->sk_rcvtimeo = nc->ping_timeo*4*HZ/10;
1046
1047 msock.socket->sk->sk_rcvtimeo = nc->ping_int*HZ;
1048 timeout = nc->timeout * HZ / 10;
1049 discard_my_data = nc->discard_my_data;
1050 rcu_read_unlock();
1051
1052 msock.socket->sk->sk_sndtimeo = timeout;
1053
1054 /* we don't want delays.
1055 * we use TCP_CORK where appropriate, though */
1056 tcp_sock_set_nodelay(sock.socket->sk);
1057 tcp_sock_set_nodelay(msock.socket->sk);
1058
1059 connection->data.socket = sock.socket;
1060 connection->meta.socket = msock.socket;
1061 connection->last_received = jiffies;
1062
1063 h = drbd_do_features(connection);
1064 if (h <= 0)
1065 return h;
1066
1067 if (connection->cram_hmac_tfm) {
1068 /* drbd_request_state(device, NS(conn, WFAuth)); */
1069 switch (drbd_do_auth(connection)) {
1070 case -1:
1071 drbd_err(connection, "Authentication of peer failed\n");
1072 return -1;
1073 case 0:
1074 drbd_err(connection, "Authentication of peer failed, trying again.\n");
1075 return 0;
1076 }
1077 }
1078
1079 connection->data.socket->sk->sk_sndtimeo = timeout;
1080 connection->data.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1081
1082 if (drbd_send_protocol(connection) == -EOPNOTSUPP)
1083 return -1;
1084
1085 /* Prevent a race between resync-handshake and
1086 * being promoted to Primary.
1087 *
1088 * Grab and release the state mutex, so we know that any current
1089 * drbd_set_role() is finished, and any incoming drbd_set_role
1090 * will see the STATE_SENT flag, and wait for it to be cleared.
1091 */
1092 idr_for_each_entry(&connection->peer_devices, peer_device, vnr)
1093 mutex_lock(peer_device->device->state_mutex);
1094
1095 /* avoid a race with conn_request_state( C_DISCONNECTING ) */
1096 spin_lock_irq(&connection->resource->req_lock);
1097 set_bit(STATE_SENT, &connection->flags);
1098 spin_unlock_irq(&connection->resource->req_lock);
1099
1100 idr_for_each_entry(&connection->peer_devices, peer_device, vnr)
1101 mutex_unlock(peer_device->device->state_mutex);
1102
1103 rcu_read_lock();
1104 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1105 struct drbd_device *device = peer_device->device;
1106 kref_get(&device->kref);
1107 rcu_read_unlock();
1108
1109 if (discard_my_data)
1110 set_bit(DISCARD_MY_DATA, &device->flags);
1111 else
1112 clear_bit(DISCARD_MY_DATA, &device->flags);
1113
1114 drbd_connected(peer_device);
1115 kref_put(&device->kref, drbd_destroy_device);
1116 rcu_read_lock();
1117 }
1118 rcu_read_unlock();
1119
1120 rv = conn_request_state(connection, NS(conn, C_WF_REPORT_PARAMS), CS_VERBOSE);
1121 if (rv < SS_SUCCESS || connection->cstate != C_WF_REPORT_PARAMS) {
1122 clear_bit(STATE_SENT, &connection->flags);
1123 return 0;
1124 }
1125
1126 drbd_thread_start(&connection->ack_receiver);
1127 /* opencoded create_singlethread_workqueue(),
1128 * to be able to use format string arguments */
1129 connection->ack_sender =
1130 alloc_ordered_workqueue("drbd_as_%s", WQ_MEM_RECLAIM, connection->resource->name);
1131 if (!connection->ack_sender) {
1132 drbd_err(connection, "Failed to create workqueue ack_sender\n");
1133 return 0;
1134 }
1135
1136 mutex_lock(&connection->resource->conf_update);
1137 /* The discard_my_data flag is a single-shot modifier to the next
1138 * connection attempt, the handshake of which is now well underway.
1139 * No need for rcu style copying of the whole struct
1140 * just to clear a single value. */
1141 connection->net_conf->discard_my_data = 0;
1142 mutex_unlock(&connection->resource->conf_update);
1143
1144 return h;
1145
1146 out_release_sockets:
1147 if (ad.s_listen)
1148 sock_release(ad.s_listen);
1149 if (sock.socket)
1150 sock_release(sock.socket);
1151 if (msock.socket)
1152 sock_release(msock.socket);
1153 return -1;
1154 }
1155
decode_header(struct drbd_connection * connection,void * header,struct packet_info * pi)1156 static int decode_header(struct drbd_connection *connection, void *header, struct packet_info *pi)
1157 {
1158 unsigned int header_size = drbd_header_size(connection);
1159
1160 if (header_size == sizeof(struct p_header100) &&
1161 *(__be32 *)header == cpu_to_be32(DRBD_MAGIC_100)) {
1162 struct p_header100 *h = header;
1163 if (h->pad != 0) {
1164 drbd_err(connection, "Header padding is not zero\n");
1165 return -EINVAL;
1166 }
1167 pi->vnr = be16_to_cpu(h->volume);
1168 pi->cmd = be16_to_cpu(h->command);
1169 pi->size = be32_to_cpu(h->length);
1170 } else if (header_size == sizeof(struct p_header95) &&
1171 *(__be16 *)header == cpu_to_be16(DRBD_MAGIC_BIG)) {
1172 struct p_header95 *h = header;
1173 pi->cmd = be16_to_cpu(h->command);
1174 pi->size = be32_to_cpu(h->length);
1175 pi->vnr = 0;
1176 } else if (header_size == sizeof(struct p_header80) &&
1177 *(__be32 *)header == cpu_to_be32(DRBD_MAGIC)) {
1178 struct p_header80 *h = header;
1179 pi->cmd = be16_to_cpu(h->command);
1180 pi->size = be16_to_cpu(h->length);
1181 pi->vnr = 0;
1182 } else {
1183 drbd_err(connection, "Wrong magic value 0x%08x in protocol version %d\n",
1184 be32_to_cpu(*(__be32 *)header),
1185 connection->agreed_pro_version);
1186 return -EINVAL;
1187 }
1188 pi->data = header + header_size;
1189 return 0;
1190 }
1191
drbd_unplug_all_devices(struct drbd_connection * connection)1192 static void drbd_unplug_all_devices(struct drbd_connection *connection)
1193 {
1194 if (current->plug == &connection->receiver_plug) {
1195 blk_finish_plug(&connection->receiver_plug);
1196 blk_start_plug(&connection->receiver_plug);
1197 } /* else: maybe just schedule() ?? */
1198 }
1199
drbd_recv_header(struct drbd_connection * connection,struct packet_info * pi)1200 static int drbd_recv_header(struct drbd_connection *connection, struct packet_info *pi)
1201 {
1202 void *buffer = connection->data.rbuf;
1203 int err;
1204
1205 err = drbd_recv_all_warn(connection, buffer, drbd_header_size(connection));
1206 if (err)
1207 return err;
1208
1209 err = decode_header(connection, buffer, pi);
1210 connection->last_received = jiffies;
1211
1212 return err;
1213 }
1214
drbd_recv_header_maybe_unplug(struct drbd_connection * connection,struct packet_info * pi)1215 static int drbd_recv_header_maybe_unplug(struct drbd_connection *connection, struct packet_info *pi)
1216 {
1217 void *buffer = connection->data.rbuf;
1218 unsigned int size = drbd_header_size(connection);
1219 int err;
1220
1221 err = drbd_recv_short(connection->data.socket, buffer, size, MSG_NOSIGNAL|MSG_DONTWAIT);
1222 if (err != size) {
1223 /* If we have nothing in the receive buffer now, to reduce
1224 * application latency, try to drain the backend queues as
1225 * quickly as possible, and let remote TCP know what we have
1226 * received so far. */
1227 if (err == -EAGAIN) {
1228 tcp_sock_set_quickack(connection->data.socket->sk, 2);
1229 drbd_unplug_all_devices(connection);
1230 }
1231 if (err > 0) {
1232 buffer += err;
1233 size -= err;
1234 }
1235 err = drbd_recv_all_warn(connection, buffer, size);
1236 if (err)
1237 return err;
1238 }
1239
1240 err = decode_header(connection, connection->data.rbuf, pi);
1241 connection->last_received = jiffies;
1242
1243 return err;
1244 }
1245 /* This is blkdev_issue_flush, but asynchronous.
1246 * We want to submit to all component volumes in parallel,
1247 * then wait for all completions.
1248 */
1249 struct issue_flush_context {
1250 atomic_t pending;
1251 int error;
1252 struct completion done;
1253 };
1254 struct one_flush_context {
1255 struct drbd_device *device;
1256 struct issue_flush_context *ctx;
1257 };
1258
one_flush_endio(struct bio * bio)1259 static void one_flush_endio(struct bio *bio)
1260 {
1261 struct one_flush_context *octx = bio->bi_private;
1262 struct drbd_device *device = octx->device;
1263 struct issue_flush_context *ctx = octx->ctx;
1264
1265 if (bio->bi_status) {
1266 ctx->error = blk_status_to_errno(bio->bi_status);
1267 drbd_info(device, "local disk FLUSH FAILED with status %d\n", bio->bi_status);
1268 }
1269 kfree(octx);
1270 bio_put(bio);
1271
1272 clear_bit(FLUSH_PENDING, &device->flags);
1273 put_ldev(device);
1274 kref_put(&device->kref, drbd_destroy_device);
1275
1276 if (atomic_dec_and_test(&ctx->pending))
1277 complete(&ctx->done);
1278 }
1279
submit_one_flush(struct drbd_device * device,struct issue_flush_context * ctx)1280 static void submit_one_flush(struct drbd_device *device, struct issue_flush_context *ctx)
1281 {
1282 struct bio *bio = bio_alloc(GFP_NOIO, 0);
1283 struct one_flush_context *octx = kmalloc(sizeof(*octx), GFP_NOIO);
1284 if (!bio || !octx) {
1285 drbd_warn(device, "Could not allocate a bio, CANNOT ISSUE FLUSH\n");
1286 /* FIXME: what else can I do now? disconnecting or detaching
1287 * really does not help to improve the state of the world, either.
1288 */
1289 kfree(octx);
1290 if (bio)
1291 bio_put(bio);
1292
1293 ctx->error = -ENOMEM;
1294 put_ldev(device);
1295 kref_put(&device->kref, drbd_destroy_device);
1296 return;
1297 }
1298
1299 octx->device = device;
1300 octx->ctx = ctx;
1301 bio_set_dev(bio, device->ldev->backing_bdev);
1302 bio->bi_private = octx;
1303 bio->bi_end_io = one_flush_endio;
1304 bio->bi_opf = REQ_OP_FLUSH | REQ_PREFLUSH;
1305
1306 device->flush_jif = jiffies;
1307 set_bit(FLUSH_PENDING, &device->flags);
1308 atomic_inc(&ctx->pending);
1309 submit_bio(bio);
1310 }
1311
drbd_flush(struct drbd_connection * connection)1312 static void drbd_flush(struct drbd_connection *connection)
1313 {
1314 if (connection->resource->write_ordering >= WO_BDEV_FLUSH) {
1315 struct drbd_peer_device *peer_device;
1316 struct issue_flush_context ctx;
1317 int vnr;
1318
1319 atomic_set(&ctx.pending, 1);
1320 ctx.error = 0;
1321 init_completion(&ctx.done);
1322
1323 rcu_read_lock();
1324 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1325 struct drbd_device *device = peer_device->device;
1326
1327 if (!get_ldev(device))
1328 continue;
1329 kref_get(&device->kref);
1330 rcu_read_unlock();
1331
1332 submit_one_flush(device, &ctx);
1333
1334 rcu_read_lock();
1335 }
1336 rcu_read_unlock();
1337
1338 /* Do we want to add a timeout,
1339 * if disk-timeout is set? */
1340 if (!atomic_dec_and_test(&ctx.pending))
1341 wait_for_completion(&ctx.done);
1342
1343 if (ctx.error) {
1344 /* would rather check on EOPNOTSUPP, but that is not reliable.
1345 * don't try again for ANY return value != 0
1346 * if (rv == -EOPNOTSUPP) */
1347 /* Any error is already reported by bio_endio callback. */
1348 drbd_bump_write_ordering(connection->resource, NULL, WO_DRAIN_IO);
1349 }
1350 }
1351 }
1352
1353 /**
1354 * drbd_may_finish_epoch() - Applies an epoch_event to the epoch's state, eventually finishes it.
1355 * @connection: DRBD connection.
1356 * @epoch: Epoch object.
1357 * @ev: Epoch event.
1358 */
drbd_may_finish_epoch(struct drbd_connection * connection,struct drbd_epoch * epoch,enum epoch_event ev)1359 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *connection,
1360 struct drbd_epoch *epoch,
1361 enum epoch_event ev)
1362 {
1363 int epoch_size;
1364 struct drbd_epoch *next_epoch;
1365 enum finish_epoch rv = FE_STILL_LIVE;
1366
1367 spin_lock(&connection->epoch_lock);
1368 do {
1369 next_epoch = NULL;
1370
1371 epoch_size = atomic_read(&epoch->epoch_size);
1372
1373 switch (ev & ~EV_CLEANUP) {
1374 case EV_PUT:
1375 atomic_dec(&epoch->active);
1376 break;
1377 case EV_GOT_BARRIER_NR:
1378 set_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags);
1379 break;
1380 case EV_BECAME_LAST:
1381 /* nothing to do*/
1382 break;
1383 }
1384
1385 if (epoch_size != 0 &&
1386 atomic_read(&epoch->active) == 0 &&
1387 (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags) || ev & EV_CLEANUP)) {
1388 if (!(ev & EV_CLEANUP)) {
1389 spin_unlock(&connection->epoch_lock);
1390 drbd_send_b_ack(epoch->connection, epoch->barrier_nr, epoch_size);
1391 spin_lock(&connection->epoch_lock);
1392 }
1393 #if 0
1394 /* FIXME: dec unacked on connection, once we have
1395 * something to count pending connection packets in. */
1396 if (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags))
1397 dec_unacked(epoch->connection);
1398 #endif
1399
1400 if (connection->current_epoch != epoch) {
1401 next_epoch = list_entry(epoch->list.next, struct drbd_epoch, list);
1402 list_del(&epoch->list);
1403 ev = EV_BECAME_LAST | (ev & EV_CLEANUP);
1404 connection->epochs--;
1405 kfree(epoch);
1406
1407 if (rv == FE_STILL_LIVE)
1408 rv = FE_DESTROYED;
1409 } else {
1410 epoch->flags = 0;
1411 atomic_set(&epoch->epoch_size, 0);
1412 /* atomic_set(&epoch->active, 0); is already zero */
1413 if (rv == FE_STILL_LIVE)
1414 rv = FE_RECYCLED;
1415 }
1416 }
1417
1418 if (!next_epoch)
1419 break;
1420
1421 epoch = next_epoch;
1422 } while (1);
1423
1424 spin_unlock(&connection->epoch_lock);
1425
1426 return rv;
1427 }
1428
1429 static enum write_ordering_e
max_allowed_wo(struct drbd_backing_dev * bdev,enum write_ordering_e wo)1430 max_allowed_wo(struct drbd_backing_dev *bdev, enum write_ordering_e wo)
1431 {
1432 struct disk_conf *dc;
1433
1434 dc = rcu_dereference(bdev->disk_conf);
1435
1436 if (wo == WO_BDEV_FLUSH && !dc->disk_flushes)
1437 wo = WO_DRAIN_IO;
1438 if (wo == WO_DRAIN_IO && !dc->disk_drain)
1439 wo = WO_NONE;
1440
1441 return wo;
1442 }
1443
1444 /*
1445 * drbd_bump_write_ordering() - Fall back to an other write ordering method
1446 * @wo: Write ordering method to try.
1447 */
drbd_bump_write_ordering(struct drbd_resource * resource,struct drbd_backing_dev * bdev,enum write_ordering_e wo)1448 void drbd_bump_write_ordering(struct drbd_resource *resource, struct drbd_backing_dev *bdev,
1449 enum write_ordering_e wo)
1450 {
1451 struct drbd_device *device;
1452 enum write_ordering_e pwo;
1453 int vnr;
1454 static char *write_ordering_str[] = {
1455 [WO_NONE] = "none",
1456 [WO_DRAIN_IO] = "drain",
1457 [WO_BDEV_FLUSH] = "flush",
1458 };
1459
1460 pwo = resource->write_ordering;
1461 if (wo != WO_BDEV_FLUSH)
1462 wo = min(pwo, wo);
1463 rcu_read_lock();
1464 idr_for_each_entry(&resource->devices, device, vnr) {
1465 if (get_ldev(device)) {
1466 wo = max_allowed_wo(device->ldev, wo);
1467 if (device->ldev == bdev)
1468 bdev = NULL;
1469 put_ldev(device);
1470 }
1471 }
1472
1473 if (bdev)
1474 wo = max_allowed_wo(bdev, wo);
1475
1476 rcu_read_unlock();
1477
1478 resource->write_ordering = wo;
1479 if (pwo != resource->write_ordering || wo == WO_BDEV_FLUSH)
1480 drbd_info(resource, "Method to ensure write ordering: %s\n", write_ordering_str[resource->write_ordering]);
1481 }
1482
1483 /*
1484 * Mapping "discard" to ZEROOUT with UNMAP does not work for us:
1485 * Drivers have to "announce" q->limits.max_write_zeroes_sectors, or it
1486 * will directly go to fallback mode, submitting normal writes, and
1487 * never even try to UNMAP.
1488 *
1489 * And dm-thin does not do this (yet), mostly because in general it has
1490 * to assume that "skip_block_zeroing" is set. See also:
1491 * https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html
1492 * https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html
1493 *
1494 * We *may* ignore the discard-zeroes-data setting, if so configured.
1495 *
1496 * Assumption is that this "discard_zeroes_data=0" is only because the backend
1497 * may ignore partial unaligned discards.
1498 *
1499 * LVM/DM thin as of at least
1500 * LVM version: 2.02.115(2)-RHEL7 (2015-01-28)
1501 * Library version: 1.02.93-RHEL7 (2015-01-28)
1502 * Driver version: 4.29.0
1503 * still behaves this way.
1504 *
1505 * For unaligned (wrt. alignment and granularity) or too small discards,
1506 * we zero-out the initial (and/or) trailing unaligned partial chunks,
1507 * but discard all the aligned full chunks.
1508 *
1509 * At least for LVM/DM thin, with skip_block_zeroing=false,
1510 * the result is effectively "discard_zeroes_data=1".
1511 */
1512 /* flags: EE_TRIM|EE_ZEROOUT */
drbd_issue_discard_or_zero_out(struct drbd_device * device,sector_t start,unsigned int nr_sectors,int flags)1513 int drbd_issue_discard_or_zero_out(struct drbd_device *device, sector_t start, unsigned int nr_sectors, int flags)
1514 {
1515 struct block_device *bdev = device->ldev->backing_bdev;
1516 struct request_queue *q = bdev_get_queue(bdev);
1517 sector_t tmp, nr;
1518 unsigned int max_discard_sectors, granularity;
1519 int alignment;
1520 int err = 0;
1521
1522 if ((flags & EE_ZEROOUT) || !(flags & EE_TRIM))
1523 goto zero_out;
1524
1525 /* Zero-sector (unknown) and one-sector granularities are the same. */
1526 granularity = max(q->limits.discard_granularity >> 9, 1U);
1527 alignment = (bdev_discard_alignment(bdev) >> 9) % granularity;
1528
1529 max_discard_sectors = min(q->limits.max_discard_sectors, (1U << 22));
1530 max_discard_sectors -= max_discard_sectors % granularity;
1531 if (unlikely(!max_discard_sectors))
1532 goto zero_out;
1533
1534 if (nr_sectors < granularity)
1535 goto zero_out;
1536
1537 tmp = start;
1538 if (sector_div(tmp, granularity) != alignment) {
1539 if (nr_sectors < 2*granularity)
1540 goto zero_out;
1541 /* start + gran - (start + gran - align) % gran */
1542 tmp = start + granularity - alignment;
1543 tmp = start + granularity - sector_div(tmp, granularity);
1544
1545 nr = tmp - start;
1546 /* don't flag BLKDEV_ZERO_NOUNMAP, we don't know how many
1547 * layers are below us, some may have smaller granularity */
1548 err |= blkdev_issue_zeroout(bdev, start, nr, GFP_NOIO, 0);
1549 nr_sectors -= nr;
1550 start = tmp;
1551 }
1552 while (nr_sectors >= max_discard_sectors) {
1553 err |= blkdev_issue_discard(bdev, start, max_discard_sectors, GFP_NOIO, 0);
1554 nr_sectors -= max_discard_sectors;
1555 start += max_discard_sectors;
1556 }
1557 if (nr_sectors) {
1558 /* max_discard_sectors is unsigned int (and a multiple of
1559 * granularity, we made sure of that above already);
1560 * nr is < max_discard_sectors;
1561 * I don't need sector_div here, even though nr is sector_t */
1562 nr = nr_sectors;
1563 nr -= (unsigned int)nr % granularity;
1564 if (nr) {
1565 err |= blkdev_issue_discard(bdev, start, nr, GFP_NOIO, 0);
1566 nr_sectors -= nr;
1567 start += nr;
1568 }
1569 }
1570 zero_out:
1571 if (nr_sectors) {
1572 err |= blkdev_issue_zeroout(bdev, start, nr_sectors, GFP_NOIO,
1573 (flags & EE_TRIM) ? 0 : BLKDEV_ZERO_NOUNMAP);
1574 }
1575 return err != 0;
1576 }
1577
can_do_reliable_discards(struct drbd_device * device)1578 static bool can_do_reliable_discards(struct drbd_device *device)
1579 {
1580 struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev);
1581 struct disk_conf *dc;
1582 bool can_do;
1583
1584 if (!blk_queue_discard(q))
1585 return false;
1586
1587 rcu_read_lock();
1588 dc = rcu_dereference(device->ldev->disk_conf);
1589 can_do = dc->discard_zeroes_if_aligned;
1590 rcu_read_unlock();
1591 return can_do;
1592 }
1593
drbd_issue_peer_discard_or_zero_out(struct drbd_device * device,struct drbd_peer_request * peer_req)1594 static void drbd_issue_peer_discard_or_zero_out(struct drbd_device *device, struct drbd_peer_request *peer_req)
1595 {
1596 /* If the backend cannot discard, or does not guarantee
1597 * read-back zeroes in discarded ranges, we fall back to
1598 * zero-out. Unless configuration specifically requested
1599 * otherwise. */
1600 if (!can_do_reliable_discards(device))
1601 peer_req->flags |= EE_ZEROOUT;
1602
1603 if (drbd_issue_discard_or_zero_out(device, peer_req->i.sector,
1604 peer_req->i.size >> 9, peer_req->flags & (EE_ZEROOUT|EE_TRIM)))
1605 peer_req->flags |= EE_WAS_ERROR;
1606 drbd_endio_write_sec_final(peer_req);
1607 }
1608
drbd_issue_peer_wsame(struct drbd_device * device,struct drbd_peer_request * peer_req)1609 static void drbd_issue_peer_wsame(struct drbd_device *device,
1610 struct drbd_peer_request *peer_req)
1611 {
1612 struct block_device *bdev = device->ldev->backing_bdev;
1613 sector_t s = peer_req->i.sector;
1614 sector_t nr = peer_req->i.size >> 9;
1615 if (blkdev_issue_write_same(bdev, s, nr, GFP_NOIO, peer_req->pages))
1616 peer_req->flags |= EE_WAS_ERROR;
1617 drbd_endio_write_sec_final(peer_req);
1618 }
1619
1620
1621 /*
1622 * drbd_submit_peer_request()
1623 * @device: DRBD device.
1624 * @peer_req: peer request
1625 *
1626 * May spread the pages to multiple bios,
1627 * depending on bio_add_page restrictions.
1628 *
1629 * Returns 0 if all bios have been submitted,
1630 * -ENOMEM if we could not allocate enough bios,
1631 * -ENOSPC (any better suggestion?) if we have not been able to bio_add_page a
1632 * single page to an empty bio (which should never happen and likely indicates
1633 * that the lower level IO stack is in some way broken). This has been observed
1634 * on certain Xen deployments.
1635 */
1636 /* TODO allocate from our own bio_set. */
drbd_submit_peer_request(struct drbd_device * device,struct drbd_peer_request * peer_req,const unsigned op,const unsigned op_flags,const int fault_type)1637 int drbd_submit_peer_request(struct drbd_device *device,
1638 struct drbd_peer_request *peer_req,
1639 const unsigned op, const unsigned op_flags,
1640 const int fault_type)
1641 {
1642 struct bio *bios = NULL;
1643 struct bio *bio;
1644 struct page *page = peer_req->pages;
1645 sector_t sector = peer_req->i.sector;
1646 unsigned data_size = peer_req->i.size;
1647 unsigned n_bios = 0;
1648 unsigned nr_pages = (data_size + PAGE_SIZE -1) >> PAGE_SHIFT;
1649 int err = -ENOMEM;
1650
1651 /* TRIM/DISCARD: for now, always use the helper function
1652 * blkdev_issue_zeroout(..., discard=true).
1653 * It's synchronous, but it does the right thing wrt. bio splitting.
1654 * Correctness first, performance later. Next step is to code an
1655 * asynchronous variant of the same.
1656 */
1657 if (peer_req->flags & (EE_TRIM|EE_WRITE_SAME|EE_ZEROOUT)) {
1658 /* wait for all pending IO completions, before we start
1659 * zeroing things out. */
1660 conn_wait_active_ee_empty(peer_req->peer_device->connection);
1661 /* add it to the active list now,
1662 * so we can find it to present it in debugfs */
1663 peer_req->submit_jif = jiffies;
1664 peer_req->flags |= EE_SUBMITTED;
1665
1666 /* If this was a resync request from receive_rs_deallocated(),
1667 * it is already on the sync_ee list */
1668 if (list_empty(&peer_req->w.list)) {
1669 spin_lock_irq(&device->resource->req_lock);
1670 list_add_tail(&peer_req->w.list, &device->active_ee);
1671 spin_unlock_irq(&device->resource->req_lock);
1672 }
1673
1674 if (peer_req->flags & (EE_TRIM|EE_ZEROOUT))
1675 drbd_issue_peer_discard_or_zero_out(device, peer_req);
1676 else /* EE_WRITE_SAME */
1677 drbd_issue_peer_wsame(device, peer_req);
1678 return 0;
1679 }
1680
1681 /* In most cases, we will only need one bio. But in case the lower
1682 * level restrictions happen to be different at this offset on this
1683 * side than those of the sending peer, we may need to submit the
1684 * request in more than one bio.
1685 *
1686 * Plain bio_alloc is good enough here, this is no DRBD internally
1687 * generated bio, but a bio allocated on behalf of the peer.
1688 */
1689 next_bio:
1690 bio = bio_alloc(GFP_NOIO, nr_pages);
1691 if (!bio) {
1692 drbd_err(device, "submit_ee: Allocation of a bio failed (nr_pages=%u)\n", nr_pages);
1693 goto fail;
1694 }
1695 /* > peer_req->i.sector, unless this is the first bio */
1696 bio->bi_iter.bi_sector = sector;
1697 bio_set_dev(bio, device->ldev->backing_bdev);
1698 bio_set_op_attrs(bio, op, op_flags);
1699 bio->bi_private = peer_req;
1700 bio->bi_end_io = drbd_peer_request_endio;
1701
1702 bio->bi_next = bios;
1703 bios = bio;
1704 ++n_bios;
1705
1706 page_chain_for_each(page) {
1707 unsigned len = min_t(unsigned, data_size, PAGE_SIZE);
1708 if (!bio_add_page(bio, page, len, 0))
1709 goto next_bio;
1710 data_size -= len;
1711 sector += len >> 9;
1712 --nr_pages;
1713 }
1714 D_ASSERT(device, data_size == 0);
1715 D_ASSERT(device, page == NULL);
1716
1717 atomic_set(&peer_req->pending_bios, n_bios);
1718 /* for debugfs: update timestamp, mark as submitted */
1719 peer_req->submit_jif = jiffies;
1720 peer_req->flags |= EE_SUBMITTED;
1721 do {
1722 bio = bios;
1723 bios = bios->bi_next;
1724 bio->bi_next = NULL;
1725
1726 drbd_submit_bio_noacct(device, fault_type, bio);
1727 } while (bios);
1728 return 0;
1729
1730 fail:
1731 while (bios) {
1732 bio = bios;
1733 bios = bios->bi_next;
1734 bio_put(bio);
1735 }
1736 return err;
1737 }
1738
drbd_remove_epoch_entry_interval(struct drbd_device * device,struct drbd_peer_request * peer_req)1739 static void drbd_remove_epoch_entry_interval(struct drbd_device *device,
1740 struct drbd_peer_request *peer_req)
1741 {
1742 struct drbd_interval *i = &peer_req->i;
1743
1744 drbd_remove_interval(&device->write_requests, i);
1745 drbd_clear_interval(i);
1746
1747 /* Wake up any processes waiting for this peer request to complete. */
1748 if (i->waiting)
1749 wake_up(&device->misc_wait);
1750 }
1751
conn_wait_active_ee_empty(struct drbd_connection * connection)1752 static void conn_wait_active_ee_empty(struct drbd_connection *connection)
1753 {
1754 struct drbd_peer_device *peer_device;
1755 int vnr;
1756
1757 rcu_read_lock();
1758 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1759 struct drbd_device *device = peer_device->device;
1760
1761 kref_get(&device->kref);
1762 rcu_read_unlock();
1763 drbd_wait_ee_list_empty(device, &device->active_ee);
1764 kref_put(&device->kref, drbd_destroy_device);
1765 rcu_read_lock();
1766 }
1767 rcu_read_unlock();
1768 }
1769
receive_Barrier(struct drbd_connection * connection,struct packet_info * pi)1770 static int receive_Barrier(struct drbd_connection *connection, struct packet_info *pi)
1771 {
1772 int rv;
1773 struct p_barrier *p = pi->data;
1774 struct drbd_epoch *epoch;
1775
1776 /* FIXME these are unacked on connection,
1777 * not a specific (peer)device.
1778 */
1779 connection->current_epoch->barrier_nr = p->barrier;
1780 connection->current_epoch->connection = connection;
1781 rv = drbd_may_finish_epoch(connection, connection->current_epoch, EV_GOT_BARRIER_NR);
1782
1783 /* P_BARRIER_ACK may imply that the corresponding extent is dropped from
1784 * the activity log, which means it would not be resynced in case the
1785 * R_PRIMARY crashes now.
1786 * Therefore we must send the barrier_ack after the barrier request was
1787 * completed. */
1788 switch (connection->resource->write_ordering) {
1789 case WO_NONE:
1790 if (rv == FE_RECYCLED)
1791 return 0;
1792
1793 /* receiver context, in the writeout path of the other node.
1794 * avoid potential distributed deadlock */
1795 epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO);
1796 if (epoch)
1797 break;
1798 else
1799 drbd_warn(connection, "Allocation of an epoch failed, slowing down\n");
1800 fallthrough;
1801
1802 case WO_BDEV_FLUSH:
1803 case WO_DRAIN_IO:
1804 conn_wait_active_ee_empty(connection);
1805 drbd_flush(connection);
1806
1807 if (atomic_read(&connection->current_epoch->epoch_size)) {
1808 epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO);
1809 if (epoch)
1810 break;
1811 }
1812
1813 return 0;
1814 default:
1815 drbd_err(connection, "Strangeness in connection->write_ordering %d\n",
1816 connection->resource->write_ordering);
1817 return -EIO;
1818 }
1819
1820 epoch->flags = 0;
1821 atomic_set(&epoch->epoch_size, 0);
1822 atomic_set(&epoch->active, 0);
1823
1824 spin_lock(&connection->epoch_lock);
1825 if (atomic_read(&connection->current_epoch->epoch_size)) {
1826 list_add(&epoch->list, &connection->current_epoch->list);
1827 connection->current_epoch = epoch;
1828 connection->epochs++;
1829 } else {
1830 /* The current_epoch got recycled while we allocated this one... */
1831 kfree(epoch);
1832 }
1833 spin_unlock(&connection->epoch_lock);
1834
1835 return 0;
1836 }
1837
1838 /* quick wrapper in case payload size != request_size (write same) */
drbd_csum_ee_size(struct crypto_shash * h,struct drbd_peer_request * r,void * d,unsigned int payload_size)1839 static void drbd_csum_ee_size(struct crypto_shash *h,
1840 struct drbd_peer_request *r, void *d,
1841 unsigned int payload_size)
1842 {
1843 unsigned int tmp = r->i.size;
1844 r->i.size = payload_size;
1845 drbd_csum_ee(h, r, d);
1846 r->i.size = tmp;
1847 }
1848
1849 /* used from receive_RSDataReply (recv_resync_read)
1850 * and from receive_Data.
1851 * data_size: actual payload ("data in")
1852 * for normal writes that is bi_size.
1853 * for discards, that is zero.
1854 * for write same, it is logical_block_size.
1855 * both trim and write same have the bi_size ("data len to be affected")
1856 * as extra argument in the packet header.
1857 */
1858 static struct drbd_peer_request *
read_in_block(struct drbd_peer_device * peer_device,u64 id,sector_t sector,struct packet_info * pi)1859 read_in_block(struct drbd_peer_device *peer_device, u64 id, sector_t sector,
1860 struct packet_info *pi) __must_hold(local)
1861 {
1862 struct drbd_device *device = peer_device->device;
1863 const sector_t capacity = get_capacity(device->vdisk);
1864 struct drbd_peer_request *peer_req;
1865 struct page *page;
1866 int digest_size, err;
1867 unsigned int data_size = pi->size, ds;
1868 void *dig_in = peer_device->connection->int_dig_in;
1869 void *dig_vv = peer_device->connection->int_dig_vv;
1870 unsigned long *data;
1871 struct p_trim *trim = (pi->cmd == P_TRIM) ? pi->data : NULL;
1872 struct p_trim *zeroes = (pi->cmd == P_ZEROES) ? pi->data : NULL;
1873 struct p_trim *wsame = (pi->cmd == P_WSAME) ? pi->data : NULL;
1874
1875 digest_size = 0;
1876 if (!trim && peer_device->connection->peer_integrity_tfm) {
1877 digest_size = crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1878 /*
1879 * FIXME: Receive the incoming digest into the receive buffer
1880 * here, together with its struct p_data?
1881 */
1882 err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size);
1883 if (err)
1884 return NULL;
1885 data_size -= digest_size;
1886 }
1887
1888 /* assume request_size == data_size, but special case trim and wsame. */
1889 ds = data_size;
1890 if (trim) {
1891 if (!expect(data_size == 0))
1892 return NULL;
1893 ds = be32_to_cpu(trim->size);
1894 } else if (zeroes) {
1895 if (!expect(data_size == 0))
1896 return NULL;
1897 ds = be32_to_cpu(zeroes->size);
1898 } else if (wsame) {
1899 if (data_size != queue_logical_block_size(device->rq_queue)) {
1900 drbd_err(peer_device, "data size (%u) != drbd logical block size (%u)\n",
1901 data_size, queue_logical_block_size(device->rq_queue));
1902 return NULL;
1903 }
1904 if (data_size != bdev_logical_block_size(device->ldev->backing_bdev)) {
1905 drbd_err(peer_device, "data size (%u) != backend logical block size (%u)\n",
1906 data_size, bdev_logical_block_size(device->ldev->backing_bdev));
1907 return NULL;
1908 }
1909 ds = be32_to_cpu(wsame->size);
1910 }
1911
1912 if (!expect(IS_ALIGNED(ds, 512)))
1913 return NULL;
1914 if (trim || wsame || zeroes) {
1915 if (!expect(ds <= (DRBD_MAX_BBIO_SECTORS << 9)))
1916 return NULL;
1917 } else if (!expect(ds <= DRBD_MAX_BIO_SIZE))
1918 return NULL;
1919
1920 /* even though we trust out peer,
1921 * we sometimes have to double check. */
1922 if (sector + (ds>>9) > capacity) {
1923 drbd_err(device, "request from peer beyond end of local disk: "
1924 "capacity: %llus < sector: %llus + size: %u\n",
1925 (unsigned long long)capacity,
1926 (unsigned long long)sector, ds);
1927 return NULL;
1928 }
1929
1930 /* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD
1931 * "criss-cross" setup, that might cause write-out on some other DRBD,
1932 * which in turn might block on the other node at this very place. */
1933 peer_req = drbd_alloc_peer_req(peer_device, id, sector, ds, data_size, GFP_NOIO);
1934 if (!peer_req)
1935 return NULL;
1936
1937 peer_req->flags |= EE_WRITE;
1938 if (trim) {
1939 peer_req->flags |= EE_TRIM;
1940 return peer_req;
1941 }
1942 if (zeroes) {
1943 peer_req->flags |= EE_ZEROOUT;
1944 return peer_req;
1945 }
1946 if (wsame)
1947 peer_req->flags |= EE_WRITE_SAME;
1948
1949 /* receive payload size bytes into page chain */
1950 ds = data_size;
1951 page = peer_req->pages;
1952 page_chain_for_each(page) {
1953 unsigned len = min_t(int, ds, PAGE_SIZE);
1954 data = kmap(page);
1955 err = drbd_recv_all_warn(peer_device->connection, data, len);
1956 if (drbd_insert_fault(device, DRBD_FAULT_RECEIVE)) {
1957 drbd_err(device, "Fault injection: Corrupting data on receive\n");
1958 data[0] = data[0] ^ (unsigned long)-1;
1959 }
1960 kunmap(page);
1961 if (err) {
1962 drbd_free_peer_req(device, peer_req);
1963 return NULL;
1964 }
1965 ds -= len;
1966 }
1967
1968 if (digest_size) {
1969 drbd_csum_ee_size(peer_device->connection->peer_integrity_tfm, peer_req, dig_vv, data_size);
1970 if (memcmp(dig_in, dig_vv, digest_size)) {
1971 drbd_err(device, "Digest integrity check FAILED: %llus +%u\n",
1972 (unsigned long long)sector, data_size);
1973 drbd_free_peer_req(device, peer_req);
1974 return NULL;
1975 }
1976 }
1977 device->recv_cnt += data_size >> 9;
1978 return peer_req;
1979 }
1980
1981 /* drbd_drain_block() just takes a data block
1982 * out of the socket input buffer, and discards it.
1983 */
drbd_drain_block(struct drbd_peer_device * peer_device,int data_size)1984 static int drbd_drain_block(struct drbd_peer_device *peer_device, int data_size)
1985 {
1986 struct page *page;
1987 int err = 0;
1988 void *data;
1989
1990 if (!data_size)
1991 return 0;
1992
1993 page = drbd_alloc_pages(peer_device, 1, 1);
1994
1995 data = kmap(page);
1996 while (data_size) {
1997 unsigned int len = min_t(int, data_size, PAGE_SIZE);
1998
1999 err = drbd_recv_all_warn(peer_device->connection, data, len);
2000 if (err)
2001 break;
2002 data_size -= len;
2003 }
2004 kunmap(page);
2005 drbd_free_pages(peer_device->device, page, 0);
2006 return err;
2007 }
2008
recv_dless_read(struct drbd_peer_device * peer_device,struct drbd_request * req,sector_t sector,int data_size)2009 static int recv_dless_read(struct drbd_peer_device *peer_device, struct drbd_request *req,
2010 sector_t sector, int data_size)
2011 {
2012 struct bio_vec bvec;
2013 struct bvec_iter iter;
2014 struct bio *bio;
2015 int digest_size, err, expect;
2016 void *dig_in = peer_device->connection->int_dig_in;
2017 void *dig_vv = peer_device->connection->int_dig_vv;
2018
2019 digest_size = 0;
2020 if (peer_device->connection->peer_integrity_tfm) {
2021 digest_size = crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
2022 err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size);
2023 if (err)
2024 return err;
2025 data_size -= digest_size;
2026 }
2027
2028 /* optimistically update recv_cnt. if receiving fails below,
2029 * we disconnect anyways, and counters will be reset. */
2030 peer_device->device->recv_cnt += data_size>>9;
2031
2032 bio = req->master_bio;
2033 D_ASSERT(peer_device->device, sector == bio->bi_iter.bi_sector);
2034
2035 bio_for_each_segment(bvec, bio, iter) {
2036 void *mapped = kmap(bvec.bv_page) + bvec.bv_offset;
2037 expect = min_t(int, data_size, bvec.bv_len);
2038 err = drbd_recv_all_warn(peer_device->connection, mapped, expect);
2039 kunmap(bvec.bv_page);
2040 if (err)
2041 return err;
2042 data_size -= expect;
2043 }
2044
2045 if (digest_size) {
2046 drbd_csum_bio(peer_device->connection->peer_integrity_tfm, bio, dig_vv);
2047 if (memcmp(dig_in, dig_vv, digest_size)) {
2048 drbd_err(peer_device, "Digest integrity check FAILED. Broken NICs?\n");
2049 return -EINVAL;
2050 }
2051 }
2052
2053 D_ASSERT(peer_device->device, data_size == 0);
2054 return 0;
2055 }
2056
2057 /*
2058 * e_end_resync_block() is called in ack_sender context via
2059 * drbd_finish_peer_reqs().
2060 */
e_end_resync_block(struct drbd_work * w,int unused)2061 static int e_end_resync_block(struct drbd_work *w, int unused)
2062 {
2063 struct drbd_peer_request *peer_req =
2064 container_of(w, struct drbd_peer_request, w);
2065 struct drbd_peer_device *peer_device = peer_req->peer_device;
2066 struct drbd_device *device = peer_device->device;
2067 sector_t sector = peer_req->i.sector;
2068 int err;
2069
2070 D_ASSERT(device, drbd_interval_empty(&peer_req->i));
2071
2072 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
2073 drbd_set_in_sync(device, sector, peer_req->i.size);
2074 err = drbd_send_ack(peer_device, P_RS_WRITE_ACK, peer_req);
2075 } else {
2076 /* Record failure to sync */
2077 drbd_rs_failed_io(device, sector, peer_req->i.size);
2078
2079 err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req);
2080 }
2081 dec_unacked(device);
2082
2083 return err;
2084 }
2085
recv_resync_read(struct drbd_peer_device * peer_device,sector_t sector,struct packet_info * pi)2086 static int recv_resync_read(struct drbd_peer_device *peer_device, sector_t sector,
2087 struct packet_info *pi) __releases(local)
2088 {
2089 struct drbd_device *device = peer_device->device;
2090 struct drbd_peer_request *peer_req;
2091
2092 peer_req = read_in_block(peer_device, ID_SYNCER, sector, pi);
2093 if (!peer_req)
2094 goto fail;
2095
2096 dec_rs_pending(device);
2097
2098 inc_unacked(device);
2099 /* corresponding dec_unacked() in e_end_resync_block()
2100 * respective _drbd_clear_done_ee */
2101
2102 peer_req->w.cb = e_end_resync_block;
2103 peer_req->submit_jif = jiffies;
2104
2105 spin_lock_irq(&device->resource->req_lock);
2106 list_add_tail(&peer_req->w.list, &device->sync_ee);
2107 spin_unlock_irq(&device->resource->req_lock);
2108
2109 atomic_add(pi->size >> 9, &device->rs_sect_ev);
2110 if (drbd_submit_peer_request(device, peer_req, REQ_OP_WRITE, 0,
2111 DRBD_FAULT_RS_WR) == 0)
2112 return 0;
2113
2114 /* don't care for the reason here */
2115 drbd_err(device, "submit failed, triggering re-connect\n");
2116 spin_lock_irq(&device->resource->req_lock);
2117 list_del(&peer_req->w.list);
2118 spin_unlock_irq(&device->resource->req_lock);
2119
2120 drbd_free_peer_req(device, peer_req);
2121 fail:
2122 put_ldev(device);
2123 return -EIO;
2124 }
2125
2126 static struct drbd_request *
find_request(struct drbd_device * device,struct rb_root * root,u64 id,sector_t sector,bool missing_ok,const char * func)2127 find_request(struct drbd_device *device, struct rb_root *root, u64 id,
2128 sector_t sector, bool missing_ok, const char *func)
2129 {
2130 struct drbd_request *req;
2131
2132 /* Request object according to our peer */
2133 req = (struct drbd_request *)(unsigned long)id;
2134 if (drbd_contains_interval(root, sector, &req->i) && req->i.local)
2135 return req;
2136 if (!missing_ok) {
2137 drbd_err(device, "%s: failed to find request 0x%lx, sector %llus\n", func,
2138 (unsigned long)id, (unsigned long long)sector);
2139 }
2140 return NULL;
2141 }
2142
receive_DataReply(struct drbd_connection * connection,struct packet_info * pi)2143 static int receive_DataReply(struct drbd_connection *connection, struct packet_info *pi)
2144 {
2145 struct drbd_peer_device *peer_device;
2146 struct drbd_device *device;
2147 struct drbd_request *req;
2148 sector_t sector;
2149 int err;
2150 struct p_data *p = pi->data;
2151
2152 peer_device = conn_peer_device(connection, pi->vnr);
2153 if (!peer_device)
2154 return -EIO;
2155 device = peer_device->device;
2156
2157 sector = be64_to_cpu(p->sector);
2158
2159 spin_lock_irq(&device->resource->req_lock);
2160 req = find_request(device, &device->read_requests, p->block_id, sector, false, __func__);
2161 spin_unlock_irq(&device->resource->req_lock);
2162 if (unlikely(!req))
2163 return -EIO;
2164
2165 /* hlist_del(&req->collision) is done in _req_may_be_done, to avoid
2166 * special casing it there for the various failure cases.
2167 * still no race with drbd_fail_pending_reads */
2168 err = recv_dless_read(peer_device, req, sector, pi->size);
2169 if (!err)
2170 req_mod(req, DATA_RECEIVED);
2171 /* else: nothing. handled from drbd_disconnect...
2172 * I don't think we may complete this just yet
2173 * in case we are "on-disconnect: freeze" */
2174
2175 return err;
2176 }
2177
receive_RSDataReply(struct drbd_connection * connection,struct packet_info * pi)2178 static int receive_RSDataReply(struct drbd_connection *connection, struct packet_info *pi)
2179 {
2180 struct drbd_peer_device *peer_device;
2181 struct drbd_device *device;
2182 sector_t sector;
2183 int err;
2184 struct p_data *p = pi->data;
2185
2186 peer_device = conn_peer_device(connection, pi->vnr);
2187 if (!peer_device)
2188 return -EIO;
2189 device = peer_device->device;
2190
2191 sector = be64_to_cpu(p->sector);
2192 D_ASSERT(device, p->block_id == ID_SYNCER);
2193
2194 if (get_ldev(device)) {
2195 /* data is submitted to disk within recv_resync_read.
2196 * corresponding put_ldev done below on error,
2197 * or in drbd_peer_request_endio. */
2198 err = recv_resync_read(peer_device, sector, pi);
2199 } else {
2200 if (__ratelimit(&drbd_ratelimit_state))
2201 drbd_err(device, "Can not write resync data to local disk.\n");
2202
2203 err = drbd_drain_block(peer_device, pi->size);
2204
2205 drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size);
2206 }
2207
2208 atomic_add(pi->size >> 9, &device->rs_sect_in);
2209
2210 return err;
2211 }
2212
restart_conflicting_writes(struct drbd_device * device,sector_t sector,int size)2213 static void restart_conflicting_writes(struct drbd_device *device,
2214 sector_t sector, int size)
2215 {
2216 struct drbd_interval *i;
2217 struct drbd_request *req;
2218
2219 drbd_for_each_overlap(i, &device->write_requests, sector, size) {
2220 if (!i->local)
2221 continue;
2222 req = container_of(i, struct drbd_request, i);
2223 if (req->rq_state & RQ_LOCAL_PENDING ||
2224 !(req->rq_state & RQ_POSTPONED))
2225 continue;
2226 /* as it is RQ_POSTPONED, this will cause it to
2227 * be queued on the retry workqueue. */
2228 __req_mod(req, CONFLICT_RESOLVED, NULL);
2229 }
2230 }
2231
2232 /*
2233 * e_end_block() is called in ack_sender context via drbd_finish_peer_reqs().
2234 */
e_end_block(struct drbd_work * w,int cancel)2235 static int e_end_block(struct drbd_work *w, int cancel)
2236 {
2237 struct drbd_peer_request *peer_req =
2238 container_of(w, struct drbd_peer_request, w);
2239 struct drbd_peer_device *peer_device = peer_req->peer_device;
2240 struct drbd_device *device = peer_device->device;
2241 sector_t sector = peer_req->i.sector;
2242 int err = 0, pcmd;
2243
2244 if (peer_req->flags & EE_SEND_WRITE_ACK) {
2245 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
2246 pcmd = (device->state.conn >= C_SYNC_SOURCE &&
2247 device->state.conn <= C_PAUSED_SYNC_T &&
2248 peer_req->flags & EE_MAY_SET_IN_SYNC) ?
2249 P_RS_WRITE_ACK : P_WRITE_ACK;
2250 err = drbd_send_ack(peer_device, pcmd, peer_req);
2251 if (pcmd == P_RS_WRITE_ACK)
2252 drbd_set_in_sync(device, sector, peer_req->i.size);
2253 } else {
2254 err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req);
2255 /* we expect it to be marked out of sync anyways...
2256 * maybe assert this? */
2257 }
2258 dec_unacked(device);
2259 }
2260
2261 /* we delete from the conflict detection hash _after_ we sent out the
2262 * P_WRITE_ACK / P_NEG_ACK, to get the sequence number right. */
2263 if (peer_req->flags & EE_IN_INTERVAL_TREE) {
2264 spin_lock_irq(&device->resource->req_lock);
2265 D_ASSERT(device, !drbd_interval_empty(&peer_req->i));
2266 drbd_remove_epoch_entry_interval(device, peer_req);
2267 if (peer_req->flags & EE_RESTART_REQUESTS)
2268 restart_conflicting_writes(device, sector, peer_req->i.size);
2269 spin_unlock_irq(&device->resource->req_lock);
2270 } else
2271 D_ASSERT(device, drbd_interval_empty(&peer_req->i));
2272
2273 drbd_may_finish_epoch(peer_device->connection, peer_req->epoch, EV_PUT + (cancel ? EV_CLEANUP : 0));
2274
2275 return err;
2276 }
2277
e_send_ack(struct drbd_work * w,enum drbd_packet ack)2278 static int e_send_ack(struct drbd_work *w, enum drbd_packet ack)
2279 {
2280 struct drbd_peer_request *peer_req =
2281 container_of(w, struct drbd_peer_request, w);
2282 struct drbd_peer_device *peer_device = peer_req->peer_device;
2283 int err;
2284
2285 err = drbd_send_ack(peer_device, ack, peer_req);
2286 dec_unacked(peer_device->device);
2287
2288 return err;
2289 }
2290
e_send_superseded(struct drbd_work * w,int unused)2291 static int e_send_superseded(struct drbd_work *w, int unused)
2292 {
2293 return e_send_ack(w, P_SUPERSEDED);
2294 }
2295
e_send_retry_write(struct drbd_work * w,int unused)2296 static int e_send_retry_write(struct drbd_work *w, int unused)
2297 {
2298 struct drbd_peer_request *peer_req =
2299 container_of(w, struct drbd_peer_request, w);
2300 struct drbd_connection *connection = peer_req->peer_device->connection;
2301
2302 return e_send_ack(w, connection->agreed_pro_version >= 100 ?
2303 P_RETRY_WRITE : P_SUPERSEDED);
2304 }
2305
seq_greater(u32 a,u32 b)2306 static bool seq_greater(u32 a, u32 b)
2307 {
2308 /*
2309 * We assume 32-bit wrap-around here.
2310 * For 24-bit wrap-around, we would have to shift:
2311 * a <<= 8; b <<= 8;
2312 */
2313 return (s32)a - (s32)b > 0;
2314 }
2315
seq_max(u32 a,u32 b)2316 static u32 seq_max(u32 a, u32 b)
2317 {
2318 return seq_greater(a, b) ? a : b;
2319 }
2320
update_peer_seq(struct drbd_peer_device * peer_device,unsigned int peer_seq)2321 static void update_peer_seq(struct drbd_peer_device *peer_device, unsigned int peer_seq)
2322 {
2323 struct drbd_device *device = peer_device->device;
2324 unsigned int newest_peer_seq;
2325
2326 if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)) {
2327 spin_lock(&device->peer_seq_lock);
2328 newest_peer_seq = seq_max(device->peer_seq, peer_seq);
2329 device->peer_seq = newest_peer_seq;
2330 spin_unlock(&device->peer_seq_lock);
2331 /* wake up only if we actually changed device->peer_seq */
2332 if (peer_seq == newest_peer_seq)
2333 wake_up(&device->seq_wait);
2334 }
2335 }
2336
overlaps(sector_t s1,int l1,sector_t s2,int l2)2337 static inline int overlaps(sector_t s1, int l1, sector_t s2, int l2)
2338 {
2339 return !((s1 + (l1>>9) <= s2) || (s1 >= s2 + (l2>>9)));
2340 }
2341
2342 /* maybe change sync_ee into interval trees as well? */
overlapping_resync_write(struct drbd_device * device,struct drbd_peer_request * peer_req)2343 static bool overlapping_resync_write(struct drbd_device *device, struct drbd_peer_request *peer_req)
2344 {
2345 struct drbd_peer_request *rs_req;
2346 bool rv = false;
2347
2348 spin_lock_irq(&device->resource->req_lock);
2349 list_for_each_entry(rs_req, &device->sync_ee, w.list) {
2350 if (overlaps(peer_req->i.sector, peer_req->i.size,
2351 rs_req->i.sector, rs_req->i.size)) {
2352 rv = true;
2353 break;
2354 }
2355 }
2356 spin_unlock_irq(&device->resource->req_lock);
2357
2358 return rv;
2359 }
2360
2361 /* Called from receive_Data.
2362 * Synchronize packets on sock with packets on msock.
2363 *
2364 * This is here so even when a P_DATA packet traveling via sock overtook an Ack
2365 * packet traveling on msock, they are still processed in the order they have
2366 * been sent.
2367 *
2368 * Note: we don't care for Ack packets overtaking P_DATA packets.
2369 *
2370 * In case packet_seq is larger than device->peer_seq number, there are
2371 * outstanding packets on the msock. We wait for them to arrive.
2372 * In case we are the logically next packet, we update device->peer_seq
2373 * ourselves. Correctly handles 32bit wrap around.
2374 *
2375 * Assume we have a 10 GBit connection, that is about 1<<30 byte per second,
2376 * about 1<<21 sectors per second. So "worst" case, we have 1<<3 == 8 seconds
2377 * for the 24bit wrap (historical atomic_t guarantee on some archs), and we have
2378 * 1<<9 == 512 seconds aka ages for the 32bit wrap around...
2379 *
2380 * returns 0 if we may process the packet,
2381 * -ERESTARTSYS if we were interrupted (by disconnect signal). */
wait_for_and_update_peer_seq(struct drbd_peer_device * peer_device,const u32 peer_seq)2382 static int wait_for_and_update_peer_seq(struct drbd_peer_device *peer_device, const u32 peer_seq)
2383 {
2384 struct drbd_device *device = peer_device->device;
2385 DEFINE_WAIT(wait);
2386 long timeout;
2387 int ret = 0, tp;
2388
2389 if (!test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags))
2390 return 0;
2391
2392 spin_lock(&device->peer_seq_lock);
2393 for (;;) {
2394 if (!seq_greater(peer_seq - 1, device->peer_seq)) {
2395 device->peer_seq = seq_max(device->peer_seq, peer_seq);
2396 break;
2397 }
2398
2399 if (signal_pending(current)) {
2400 ret = -ERESTARTSYS;
2401 break;
2402 }
2403
2404 rcu_read_lock();
2405 tp = rcu_dereference(peer_device->connection->net_conf)->two_primaries;
2406 rcu_read_unlock();
2407
2408 if (!tp)
2409 break;
2410
2411 /* Only need to wait if two_primaries is enabled */
2412 prepare_to_wait(&device->seq_wait, &wait, TASK_INTERRUPTIBLE);
2413 spin_unlock(&device->peer_seq_lock);
2414 rcu_read_lock();
2415 timeout = rcu_dereference(peer_device->connection->net_conf)->ping_timeo*HZ/10;
2416 rcu_read_unlock();
2417 timeout = schedule_timeout(timeout);
2418 spin_lock(&device->peer_seq_lock);
2419 if (!timeout) {
2420 ret = -ETIMEDOUT;
2421 drbd_err(device, "Timed out waiting for missing ack packets; disconnecting\n");
2422 break;
2423 }
2424 }
2425 spin_unlock(&device->peer_seq_lock);
2426 finish_wait(&device->seq_wait, &wait);
2427 return ret;
2428 }
2429
2430 /* see also bio_flags_to_wire()
2431 * DRBD_REQ_*, because we need to semantically map the flags to data packet
2432 * flags and back. We may replicate to other kernel versions. */
wire_flags_to_bio_flags(u32 dpf)2433 static unsigned long wire_flags_to_bio_flags(u32 dpf)
2434 {
2435 return (dpf & DP_RW_SYNC ? REQ_SYNC : 0) |
2436 (dpf & DP_FUA ? REQ_FUA : 0) |
2437 (dpf & DP_FLUSH ? REQ_PREFLUSH : 0);
2438 }
2439
wire_flags_to_bio_op(u32 dpf)2440 static unsigned long wire_flags_to_bio_op(u32 dpf)
2441 {
2442 if (dpf & DP_ZEROES)
2443 return REQ_OP_WRITE_ZEROES;
2444 if (dpf & DP_DISCARD)
2445 return REQ_OP_DISCARD;
2446 if (dpf & DP_WSAME)
2447 return REQ_OP_WRITE_SAME;
2448 else
2449 return REQ_OP_WRITE;
2450 }
2451
fail_postponed_requests(struct drbd_device * device,sector_t sector,unsigned int size)2452 static void fail_postponed_requests(struct drbd_device *device, sector_t sector,
2453 unsigned int size)
2454 {
2455 struct drbd_interval *i;
2456
2457 repeat:
2458 drbd_for_each_overlap(i, &device->write_requests, sector, size) {
2459 struct drbd_request *req;
2460 struct bio_and_error m;
2461
2462 if (!i->local)
2463 continue;
2464 req = container_of(i, struct drbd_request, i);
2465 if (!(req->rq_state & RQ_POSTPONED))
2466 continue;
2467 req->rq_state &= ~RQ_POSTPONED;
2468 __req_mod(req, NEG_ACKED, &m);
2469 spin_unlock_irq(&device->resource->req_lock);
2470 if (m.bio)
2471 complete_master_bio(device, &m);
2472 spin_lock_irq(&device->resource->req_lock);
2473 goto repeat;
2474 }
2475 }
2476
handle_write_conflicts(struct drbd_device * device,struct drbd_peer_request * peer_req)2477 static int handle_write_conflicts(struct drbd_device *device,
2478 struct drbd_peer_request *peer_req)
2479 {
2480 struct drbd_connection *connection = peer_req->peer_device->connection;
2481 bool resolve_conflicts = test_bit(RESOLVE_CONFLICTS, &connection->flags);
2482 sector_t sector = peer_req->i.sector;
2483 const unsigned int size = peer_req->i.size;
2484 struct drbd_interval *i;
2485 bool equal;
2486 int err;
2487
2488 /*
2489 * Inserting the peer request into the write_requests tree will prevent
2490 * new conflicting local requests from being added.
2491 */
2492 drbd_insert_interval(&device->write_requests, &peer_req->i);
2493
2494 repeat:
2495 drbd_for_each_overlap(i, &device->write_requests, sector, size) {
2496 if (i == &peer_req->i)
2497 continue;
2498 if (i->completed)
2499 continue;
2500
2501 if (!i->local) {
2502 /*
2503 * Our peer has sent a conflicting remote request; this
2504 * should not happen in a two-node setup. Wait for the
2505 * earlier peer request to complete.
2506 */
2507 err = drbd_wait_misc(device, i);
2508 if (err)
2509 goto out;
2510 goto repeat;
2511 }
2512
2513 equal = i->sector == sector && i->size == size;
2514 if (resolve_conflicts) {
2515 /*
2516 * If the peer request is fully contained within the
2517 * overlapping request, it can be considered overwritten
2518 * and thus superseded; otherwise, it will be retried
2519 * once all overlapping requests have completed.
2520 */
2521 bool superseded = i->sector <= sector && i->sector +
2522 (i->size >> 9) >= sector + (size >> 9);
2523
2524 if (!equal)
2525 drbd_alert(device, "Concurrent writes detected: "
2526 "local=%llus +%u, remote=%llus +%u, "
2527 "assuming %s came first\n",
2528 (unsigned long long)i->sector, i->size,
2529 (unsigned long long)sector, size,
2530 superseded ? "local" : "remote");
2531
2532 peer_req->w.cb = superseded ? e_send_superseded :
2533 e_send_retry_write;
2534 list_add_tail(&peer_req->w.list, &device->done_ee);
2535 queue_work(connection->ack_sender, &peer_req->peer_device->send_acks_work);
2536
2537 err = -ENOENT;
2538 goto out;
2539 } else {
2540 struct drbd_request *req =
2541 container_of(i, struct drbd_request, i);
2542
2543 if (!equal)
2544 drbd_alert(device, "Concurrent writes detected: "
2545 "local=%llus +%u, remote=%llus +%u\n",
2546 (unsigned long long)i->sector, i->size,
2547 (unsigned long long)sector, size);
2548
2549 if (req->rq_state & RQ_LOCAL_PENDING ||
2550 !(req->rq_state & RQ_POSTPONED)) {
2551 /*
2552 * Wait for the node with the discard flag to
2553 * decide if this request has been superseded
2554 * or needs to be retried.
2555 * Requests that have been superseded will
2556 * disappear from the write_requests tree.
2557 *
2558 * In addition, wait for the conflicting
2559 * request to finish locally before submitting
2560 * the conflicting peer request.
2561 */
2562 err = drbd_wait_misc(device, &req->i);
2563 if (err) {
2564 _conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
2565 fail_postponed_requests(device, sector, size);
2566 goto out;
2567 }
2568 goto repeat;
2569 }
2570 /*
2571 * Remember to restart the conflicting requests after
2572 * the new peer request has completed.
2573 */
2574 peer_req->flags |= EE_RESTART_REQUESTS;
2575 }
2576 }
2577 err = 0;
2578
2579 out:
2580 if (err)
2581 drbd_remove_epoch_entry_interval(device, peer_req);
2582 return err;
2583 }
2584
2585 /* mirrored write */
receive_Data(struct drbd_connection * connection,struct packet_info * pi)2586 static int receive_Data(struct drbd_connection *connection, struct packet_info *pi)
2587 {
2588 struct drbd_peer_device *peer_device;
2589 struct drbd_device *device;
2590 struct net_conf *nc;
2591 sector_t sector;
2592 struct drbd_peer_request *peer_req;
2593 struct p_data *p = pi->data;
2594 u32 peer_seq = be32_to_cpu(p->seq_num);
2595 int op, op_flags;
2596 u32 dp_flags;
2597 int err, tp;
2598
2599 peer_device = conn_peer_device(connection, pi->vnr);
2600 if (!peer_device)
2601 return -EIO;
2602 device = peer_device->device;
2603
2604 if (!get_ldev(device)) {
2605 int err2;
2606
2607 err = wait_for_and_update_peer_seq(peer_device, peer_seq);
2608 drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size);
2609 atomic_inc(&connection->current_epoch->epoch_size);
2610 err2 = drbd_drain_block(peer_device, pi->size);
2611 if (!err)
2612 err = err2;
2613 return err;
2614 }
2615
2616 /*
2617 * Corresponding put_ldev done either below (on various errors), or in
2618 * drbd_peer_request_endio, if we successfully submit the data at the
2619 * end of this function.
2620 */
2621
2622 sector = be64_to_cpu(p->sector);
2623 peer_req = read_in_block(peer_device, p->block_id, sector, pi);
2624 if (!peer_req) {
2625 put_ldev(device);
2626 return -EIO;
2627 }
2628
2629 peer_req->w.cb = e_end_block;
2630 peer_req->submit_jif = jiffies;
2631 peer_req->flags |= EE_APPLICATION;
2632
2633 dp_flags = be32_to_cpu(p->dp_flags);
2634 op = wire_flags_to_bio_op(dp_flags);
2635 op_flags = wire_flags_to_bio_flags(dp_flags);
2636 if (pi->cmd == P_TRIM) {
2637 D_ASSERT(peer_device, peer_req->i.size > 0);
2638 D_ASSERT(peer_device, op == REQ_OP_DISCARD);
2639 D_ASSERT(peer_device, peer_req->pages == NULL);
2640 /* need to play safe: an older DRBD sender
2641 * may mean zero-out while sending P_TRIM. */
2642 if (0 == (connection->agreed_features & DRBD_FF_WZEROES))
2643 peer_req->flags |= EE_ZEROOUT;
2644 } else if (pi->cmd == P_ZEROES) {
2645 D_ASSERT(peer_device, peer_req->i.size > 0);
2646 D_ASSERT(peer_device, op == REQ_OP_WRITE_ZEROES);
2647 D_ASSERT(peer_device, peer_req->pages == NULL);
2648 /* Do (not) pass down BLKDEV_ZERO_NOUNMAP? */
2649 if (dp_flags & DP_DISCARD)
2650 peer_req->flags |= EE_TRIM;
2651 } else if (peer_req->pages == NULL) {
2652 D_ASSERT(device, peer_req->i.size == 0);
2653 D_ASSERT(device, dp_flags & DP_FLUSH);
2654 }
2655
2656 if (dp_flags & DP_MAY_SET_IN_SYNC)
2657 peer_req->flags |= EE_MAY_SET_IN_SYNC;
2658
2659 spin_lock(&connection->epoch_lock);
2660 peer_req->epoch = connection->current_epoch;
2661 atomic_inc(&peer_req->epoch->epoch_size);
2662 atomic_inc(&peer_req->epoch->active);
2663 spin_unlock(&connection->epoch_lock);
2664
2665 rcu_read_lock();
2666 nc = rcu_dereference(peer_device->connection->net_conf);
2667 tp = nc->two_primaries;
2668 if (peer_device->connection->agreed_pro_version < 100) {
2669 switch (nc->wire_protocol) {
2670 case DRBD_PROT_C:
2671 dp_flags |= DP_SEND_WRITE_ACK;
2672 break;
2673 case DRBD_PROT_B:
2674 dp_flags |= DP_SEND_RECEIVE_ACK;
2675 break;
2676 }
2677 }
2678 rcu_read_unlock();
2679
2680 if (dp_flags & DP_SEND_WRITE_ACK) {
2681 peer_req->flags |= EE_SEND_WRITE_ACK;
2682 inc_unacked(device);
2683 /* corresponding dec_unacked() in e_end_block()
2684 * respective _drbd_clear_done_ee */
2685 }
2686
2687 if (dp_flags & DP_SEND_RECEIVE_ACK) {
2688 /* I really don't like it that the receiver thread
2689 * sends on the msock, but anyways */
2690 drbd_send_ack(peer_device, P_RECV_ACK, peer_req);
2691 }
2692
2693 if (tp) {
2694 /* two primaries implies protocol C */
2695 D_ASSERT(device, dp_flags & DP_SEND_WRITE_ACK);
2696 peer_req->flags |= EE_IN_INTERVAL_TREE;
2697 err = wait_for_and_update_peer_seq(peer_device, peer_seq);
2698 if (err)
2699 goto out_interrupted;
2700 spin_lock_irq(&device->resource->req_lock);
2701 err = handle_write_conflicts(device, peer_req);
2702 if (err) {
2703 spin_unlock_irq(&device->resource->req_lock);
2704 if (err == -ENOENT) {
2705 put_ldev(device);
2706 return 0;
2707 }
2708 goto out_interrupted;
2709 }
2710 } else {
2711 update_peer_seq(peer_device, peer_seq);
2712 spin_lock_irq(&device->resource->req_lock);
2713 }
2714 /* TRIM and WRITE_SAME are processed synchronously,
2715 * we wait for all pending requests, respectively wait for
2716 * active_ee to become empty in drbd_submit_peer_request();
2717 * better not add ourselves here. */
2718 if ((peer_req->flags & (EE_TRIM|EE_WRITE_SAME|EE_ZEROOUT)) == 0)
2719 list_add_tail(&peer_req->w.list, &device->active_ee);
2720 spin_unlock_irq(&device->resource->req_lock);
2721
2722 if (device->state.conn == C_SYNC_TARGET)
2723 wait_event(device->ee_wait, !overlapping_resync_write(device, peer_req));
2724
2725 if (device->state.pdsk < D_INCONSISTENT) {
2726 /* In case we have the only disk of the cluster, */
2727 drbd_set_out_of_sync(device, peer_req->i.sector, peer_req->i.size);
2728 peer_req->flags &= ~EE_MAY_SET_IN_SYNC;
2729 drbd_al_begin_io(device, &peer_req->i);
2730 peer_req->flags |= EE_CALL_AL_COMPLETE_IO;
2731 }
2732
2733 err = drbd_submit_peer_request(device, peer_req, op, op_flags,
2734 DRBD_FAULT_DT_WR);
2735 if (!err)
2736 return 0;
2737
2738 /* don't care for the reason here */
2739 drbd_err(device, "submit failed, triggering re-connect\n");
2740 spin_lock_irq(&device->resource->req_lock);
2741 list_del(&peer_req->w.list);
2742 drbd_remove_epoch_entry_interval(device, peer_req);
2743 spin_unlock_irq(&device->resource->req_lock);
2744 if (peer_req->flags & EE_CALL_AL_COMPLETE_IO) {
2745 peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO;
2746 drbd_al_complete_io(device, &peer_req->i);
2747 }
2748
2749 out_interrupted:
2750 drbd_may_finish_epoch(connection, peer_req->epoch, EV_PUT | EV_CLEANUP);
2751 put_ldev(device);
2752 drbd_free_peer_req(device, peer_req);
2753 return err;
2754 }
2755
2756 /* We may throttle resync, if the lower device seems to be busy,
2757 * and current sync rate is above c_min_rate.
2758 *
2759 * To decide whether or not the lower device is busy, we use a scheme similar
2760 * to MD RAID is_mddev_idle(): if the partition stats reveal "significant"
2761 * (more than 64 sectors) of activity we cannot account for with our own resync
2762 * activity, it obviously is "busy".
2763 *
2764 * The current sync rate used here uses only the most recent two step marks,
2765 * to have a short time average so we can react faster.
2766 */
drbd_rs_should_slow_down(struct drbd_device * device,sector_t sector,bool throttle_if_app_is_waiting)2767 bool drbd_rs_should_slow_down(struct drbd_device *device, sector_t sector,
2768 bool throttle_if_app_is_waiting)
2769 {
2770 struct lc_element *tmp;
2771 bool throttle = drbd_rs_c_min_rate_throttle(device);
2772
2773 if (!throttle || throttle_if_app_is_waiting)
2774 return throttle;
2775
2776 spin_lock_irq(&device->al_lock);
2777 tmp = lc_find(device->resync, BM_SECT_TO_EXT(sector));
2778 if (tmp) {
2779 struct bm_extent *bm_ext = lc_entry(tmp, struct bm_extent, lce);
2780 if (test_bit(BME_PRIORITY, &bm_ext->flags))
2781 throttle = false;
2782 /* Do not slow down if app IO is already waiting for this extent,
2783 * and our progress is necessary for application IO to complete. */
2784 }
2785 spin_unlock_irq(&device->al_lock);
2786
2787 return throttle;
2788 }
2789
drbd_rs_c_min_rate_throttle(struct drbd_device * device)2790 bool drbd_rs_c_min_rate_throttle(struct drbd_device *device)
2791 {
2792 struct gendisk *disk = device->ldev->backing_bdev->bd_disk;
2793 unsigned long db, dt, dbdt;
2794 unsigned int c_min_rate;
2795 int curr_events;
2796
2797 rcu_read_lock();
2798 c_min_rate = rcu_dereference(device->ldev->disk_conf)->c_min_rate;
2799 rcu_read_unlock();
2800
2801 /* feature disabled? */
2802 if (c_min_rate == 0)
2803 return false;
2804
2805 curr_events = (int)part_stat_read_accum(disk->part0, sectors) -
2806 atomic_read(&device->rs_sect_ev);
2807
2808 if (atomic_read(&device->ap_actlog_cnt)
2809 || curr_events - device->rs_last_events > 64) {
2810 unsigned long rs_left;
2811 int i;
2812
2813 device->rs_last_events = curr_events;
2814
2815 /* sync speed average over the last 2*DRBD_SYNC_MARK_STEP,
2816 * approx. */
2817 i = (device->rs_last_mark + DRBD_SYNC_MARKS-1) % DRBD_SYNC_MARKS;
2818
2819 if (device->state.conn == C_VERIFY_S || device->state.conn == C_VERIFY_T)
2820 rs_left = device->ov_left;
2821 else
2822 rs_left = drbd_bm_total_weight(device) - device->rs_failed;
2823
2824 dt = ((long)jiffies - (long)device->rs_mark_time[i]) / HZ;
2825 if (!dt)
2826 dt++;
2827 db = device->rs_mark_left[i] - rs_left;
2828 dbdt = Bit2KB(db/dt);
2829
2830 if (dbdt > c_min_rate)
2831 return true;
2832 }
2833 return false;
2834 }
2835
receive_DataRequest(struct drbd_connection * connection,struct packet_info * pi)2836 static int receive_DataRequest(struct drbd_connection *connection, struct packet_info *pi)
2837 {
2838 struct drbd_peer_device *peer_device;
2839 struct drbd_device *device;
2840 sector_t sector;
2841 sector_t capacity;
2842 struct drbd_peer_request *peer_req;
2843 struct digest_info *di = NULL;
2844 int size, verb;
2845 unsigned int fault_type;
2846 struct p_block_req *p = pi->data;
2847
2848 peer_device = conn_peer_device(connection, pi->vnr);
2849 if (!peer_device)
2850 return -EIO;
2851 device = peer_device->device;
2852 capacity = get_capacity(device->vdisk);
2853
2854 sector = be64_to_cpu(p->sector);
2855 size = be32_to_cpu(p->blksize);
2856
2857 if (size <= 0 || !IS_ALIGNED(size, 512) || size > DRBD_MAX_BIO_SIZE) {
2858 drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__,
2859 (unsigned long long)sector, size);
2860 return -EINVAL;
2861 }
2862 if (sector + (size>>9) > capacity) {
2863 drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__,
2864 (unsigned long long)sector, size);
2865 return -EINVAL;
2866 }
2867
2868 if (!get_ldev_if_state(device, D_UP_TO_DATE)) {
2869 verb = 1;
2870 switch (pi->cmd) {
2871 case P_DATA_REQUEST:
2872 drbd_send_ack_rp(peer_device, P_NEG_DREPLY, p);
2873 break;
2874 case P_RS_THIN_REQ:
2875 case P_RS_DATA_REQUEST:
2876 case P_CSUM_RS_REQUEST:
2877 case P_OV_REQUEST:
2878 drbd_send_ack_rp(peer_device, P_NEG_RS_DREPLY , p);
2879 break;
2880 case P_OV_REPLY:
2881 verb = 0;
2882 dec_rs_pending(device);
2883 drbd_send_ack_ex(peer_device, P_OV_RESULT, sector, size, ID_IN_SYNC);
2884 break;
2885 default:
2886 BUG();
2887 }
2888 if (verb && __ratelimit(&drbd_ratelimit_state))
2889 drbd_err(device, "Can not satisfy peer's read request, "
2890 "no local data.\n");
2891
2892 /* drain possibly payload */
2893 return drbd_drain_block(peer_device, pi->size);
2894 }
2895
2896 /* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD
2897 * "criss-cross" setup, that might cause write-out on some other DRBD,
2898 * which in turn might block on the other node at this very place. */
2899 peer_req = drbd_alloc_peer_req(peer_device, p->block_id, sector, size,
2900 size, GFP_NOIO);
2901 if (!peer_req) {
2902 put_ldev(device);
2903 return -ENOMEM;
2904 }
2905
2906 switch (pi->cmd) {
2907 case P_DATA_REQUEST:
2908 peer_req->w.cb = w_e_end_data_req;
2909 fault_type = DRBD_FAULT_DT_RD;
2910 /* application IO, don't drbd_rs_begin_io */
2911 peer_req->flags |= EE_APPLICATION;
2912 goto submit;
2913
2914 case P_RS_THIN_REQ:
2915 /* If at some point in the future we have a smart way to
2916 find out if this data block is completely deallocated,
2917 then we would do something smarter here than reading
2918 the block... */
2919 peer_req->flags |= EE_RS_THIN_REQ;
2920 fallthrough;
2921 case P_RS_DATA_REQUEST:
2922 peer_req->w.cb = w_e_end_rsdata_req;
2923 fault_type = DRBD_FAULT_RS_RD;
2924 /* used in the sector offset progress display */
2925 device->bm_resync_fo = BM_SECT_TO_BIT(sector);
2926 break;
2927
2928 case P_OV_REPLY:
2929 case P_CSUM_RS_REQUEST:
2930 fault_type = DRBD_FAULT_RS_RD;
2931 di = kmalloc(sizeof(*di) + pi->size, GFP_NOIO);
2932 if (!di)
2933 goto out_free_e;
2934
2935 di->digest_size = pi->size;
2936 di->digest = (((char *)di)+sizeof(struct digest_info));
2937
2938 peer_req->digest = di;
2939 peer_req->flags |= EE_HAS_DIGEST;
2940
2941 if (drbd_recv_all(peer_device->connection, di->digest, pi->size))
2942 goto out_free_e;
2943
2944 if (pi->cmd == P_CSUM_RS_REQUEST) {
2945 D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89);
2946 peer_req->w.cb = w_e_end_csum_rs_req;
2947 /* used in the sector offset progress display */
2948 device->bm_resync_fo = BM_SECT_TO_BIT(sector);
2949 /* remember to report stats in drbd_resync_finished */
2950 device->use_csums = true;
2951 } else if (pi->cmd == P_OV_REPLY) {
2952 /* track progress, we may need to throttle */
2953 atomic_add(size >> 9, &device->rs_sect_in);
2954 peer_req->w.cb = w_e_end_ov_reply;
2955 dec_rs_pending(device);
2956 /* drbd_rs_begin_io done when we sent this request,
2957 * but accounting still needs to be done. */
2958 goto submit_for_resync;
2959 }
2960 break;
2961
2962 case P_OV_REQUEST:
2963 if (device->ov_start_sector == ~(sector_t)0 &&
2964 peer_device->connection->agreed_pro_version >= 90) {
2965 unsigned long now = jiffies;
2966 int i;
2967 device->ov_start_sector = sector;
2968 device->ov_position = sector;
2969 device->ov_left = drbd_bm_bits(device) - BM_SECT_TO_BIT(sector);
2970 device->rs_total = device->ov_left;
2971 for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2972 device->rs_mark_left[i] = device->ov_left;
2973 device->rs_mark_time[i] = now;
2974 }
2975 drbd_info(device, "Online Verify start sector: %llu\n",
2976 (unsigned long long)sector);
2977 }
2978 peer_req->w.cb = w_e_end_ov_req;
2979 fault_type = DRBD_FAULT_RS_RD;
2980 break;
2981
2982 default:
2983 BUG();
2984 }
2985
2986 /* Throttle, drbd_rs_begin_io and submit should become asynchronous
2987 * wrt the receiver, but it is not as straightforward as it may seem.
2988 * Various places in the resync start and stop logic assume resync
2989 * requests are processed in order, requeuing this on the worker thread
2990 * introduces a bunch of new code for synchronization between threads.
2991 *
2992 * Unlimited throttling before drbd_rs_begin_io may stall the resync
2993 * "forever", throttling after drbd_rs_begin_io will lock that extent
2994 * for application writes for the same time. For now, just throttle
2995 * here, where the rest of the code expects the receiver to sleep for
2996 * a while, anyways.
2997 */
2998
2999 /* Throttle before drbd_rs_begin_io, as that locks out application IO;
3000 * this defers syncer requests for some time, before letting at least
3001 * on request through. The resync controller on the receiving side
3002 * will adapt to the incoming rate accordingly.
3003 *
3004 * We cannot throttle here if remote is Primary/SyncTarget:
3005 * we would also throttle its application reads.
3006 * In that case, throttling is done on the SyncTarget only.
3007 */
3008
3009 /* Even though this may be a resync request, we do add to "read_ee";
3010 * "sync_ee" is only used for resync WRITEs.
3011 * Add to list early, so debugfs can find this request
3012 * even if we have to sleep below. */
3013 spin_lock_irq(&device->resource->req_lock);
3014 list_add_tail(&peer_req->w.list, &device->read_ee);
3015 spin_unlock_irq(&device->resource->req_lock);
3016
3017 update_receiver_timing_details(connection, drbd_rs_should_slow_down);
3018 if (device->state.peer != R_PRIMARY
3019 && drbd_rs_should_slow_down(device, sector, false))
3020 schedule_timeout_uninterruptible(HZ/10);
3021 update_receiver_timing_details(connection, drbd_rs_begin_io);
3022 if (drbd_rs_begin_io(device, sector))
3023 goto out_free_e;
3024
3025 submit_for_resync:
3026 atomic_add(size >> 9, &device->rs_sect_ev);
3027
3028 submit:
3029 update_receiver_timing_details(connection, drbd_submit_peer_request);
3030 inc_unacked(device);
3031 if (drbd_submit_peer_request(device, peer_req, REQ_OP_READ, 0,
3032 fault_type) == 0)
3033 return 0;
3034
3035 /* don't care for the reason here */
3036 drbd_err(device, "submit failed, triggering re-connect\n");
3037
3038 out_free_e:
3039 spin_lock_irq(&device->resource->req_lock);
3040 list_del(&peer_req->w.list);
3041 spin_unlock_irq(&device->resource->req_lock);
3042 /* no drbd_rs_complete_io(), we are dropping the connection anyways */
3043
3044 put_ldev(device);
3045 drbd_free_peer_req(device, peer_req);
3046 return -EIO;
3047 }
3048
3049 /*
3050 * drbd_asb_recover_0p - Recover after split-brain with no remaining primaries
3051 */
drbd_asb_recover_0p(struct drbd_peer_device * peer_device)3052 static int drbd_asb_recover_0p(struct drbd_peer_device *peer_device) __must_hold(local)
3053 {
3054 struct drbd_device *device = peer_device->device;
3055 int self, peer, rv = -100;
3056 unsigned long ch_self, ch_peer;
3057 enum drbd_after_sb_p after_sb_0p;
3058
3059 self = device->ldev->md.uuid[UI_BITMAP] & 1;
3060 peer = device->p_uuid[UI_BITMAP] & 1;
3061
3062 ch_peer = device->p_uuid[UI_SIZE];
3063 ch_self = device->comm_bm_set;
3064
3065 rcu_read_lock();
3066 after_sb_0p = rcu_dereference(peer_device->connection->net_conf)->after_sb_0p;
3067 rcu_read_unlock();
3068 switch (after_sb_0p) {
3069 case ASB_CONSENSUS:
3070 case ASB_DISCARD_SECONDARY:
3071 case ASB_CALL_HELPER:
3072 case ASB_VIOLENTLY:
3073 drbd_err(device, "Configuration error.\n");
3074 break;
3075 case ASB_DISCONNECT:
3076 break;
3077 case ASB_DISCARD_YOUNGER_PRI:
3078 if (self == 0 && peer == 1) {
3079 rv = -1;
3080 break;
3081 }
3082 if (self == 1 && peer == 0) {
3083 rv = 1;
3084 break;
3085 }
3086 fallthrough; /* to one of the other strategies */
3087 case ASB_DISCARD_OLDER_PRI:
3088 if (self == 0 && peer == 1) {
3089 rv = 1;
3090 break;
3091 }
3092 if (self == 1 && peer == 0) {
3093 rv = -1;
3094 break;
3095 }
3096 /* Else fall through to one of the other strategies... */
3097 drbd_warn(device, "Discard younger/older primary did not find a decision\n"
3098 "Using discard-least-changes instead\n");
3099 fallthrough;
3100 case ASB_DISCARD_ZERO_CHG:
3101 if (ch_peer == 0 && ch_self == 0) {
3102 rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)
3103 ? -1 : 1;
3104 break;
3105 } else {
3106 if (ch_peer == 0) { rv = 1; break; }
3107 if (ch_self == 0) { rv = -1; break; }
3108 }
3109 if (after_sb_0p == ASB_DISCARD_ZERO_CHG)
3110 break;
3111 fallthrough;
3112 case ASB_DISCARD_LEAST_CHG:
3113 if (ch_self < ch_peer)
3114 rv = -1;
3115 else if (ch_self > ch_peer)
3116 rv = 1;
3117 else /* ( ch_self == ch_peer ) */
3118 /* Well, then use something else. */
3119 rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)
3120 ? -1 : 1;
3121 break;
3122 case ASB_DISCARD_LOCAL:
3123 rv = -1;
3124 break;
3125 case ASB_DISCARD_REMOTE:
3126 rv = 1;
3127 }
3128
3129 return rv;
3130 }
3131
3132 /*
3133 * drbd_asb_recover_1p - Recover after split-brain with one remaining primary
3134 */
drbd_asb_recover_1p(struct drbd_peer_device * peer_device)3135 static int drbd_asb_recover_1p(struct drbd_peer_device *peer_device) __must_hold(local)
3136 {
3137 struct drbd_device *device = peer_device->device;
3138 int hg, rv = -100;
3139 enum drbd_after_sb_p after_sb_1p;
3140
3141 rcu_read_lock();
3142 after_sb_1p = rcu_dereference(peer_device->connection->net_conf)->after_sb_1p;
3143 rcu_read_unlock();
3144 switch (after_sb_1p) {
3145 case ASB_DISCARD_YOUNGER_PRI:
3146 case ASB_DISCARD_OLDER_PRI:
3147 case ASB_DISCARD_LEAST_CHG:
3148 case ASB_DISCARD_LOCAL:
3149 case ASB_DISCARD_REMOTE:
3150 case ASB_DISCARD_ZERO_CHG:
3151 drbd_err(device, "Configuration error.\n");
3152 break;
3153 case ASB_DISCONNECT:
3154 break;
3155 case ASB_CONSENSUS:
3156 hg = drbd_asb_recover_0p(peer_device);
3157 if (hg == -1 && device->state.role == R_SECONDARY)
3158 rv = hg;
3159 if (hg == 1 && device->state.role == R_PRIMARY)
3160 rv = hg;
3161 break;
3162 case ASB_VIOLENTLY:
3163 rv = drbd_asb_recover_0p(peer_device);
3164 break;
3165 case ASB_DISCARD_SECONDARY:
3166 return device->state.role == R_PRIMARY ? 1 : -1;
3167 case ASB_CALL_HELPER:
3168 hg = drbd_asb_recover_0p(peer_device);
3169 if (hg == -1 && device->state.role == R_PRIMARY) {
3170 enum drbd_state_rv rv2;
3171
3172 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE,
3173 * we might be here in C_WF_REPORT_PARAMS which is transient.
3174 * we do not need to wait for the after state change work either. */
3175 rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY));
3176 if (rv2 != SS_SUCCESS) {
3177 drbd_khelper(device, "pri-lost-after-sb");
3178 } else {
3179 drbd_warn(device, "Successfully gave up primary role.\n");
3180 rv = hg;
3181 }
3182 } else
3183 rv = hg;
3184 }
3185
3186 return rv;
3187 }
3188
3189 /*
3190 * drbd_asb_recover_2p - Recover after split-brain with two remaining primaries
3191 */
drbd_asb_recover_2p(struct drbd_peer_device * peer_device)3192 static int drbd_asb_recover_2p(struct drbd_peer_device *peer_device) __must_hold(local)
3193 {
3194 struct drbd_device *device = peer_device->device;
3195 int hg, rv = -100;
3196 enum drbd_after_sb_p after_sb_2p;
3197
3198 rcu_read_lock();
3199 after_sb_2p = rcu_dereference(peer_device->connection->net_conf)->after_sb_2p;
3200 rcu_read_unlock();
3201 switch (after_sb_2p) {
3202 case ASB_DISCARD_YOUNGER_PRI:
3203 case ASB_DISCARD_OLDER_PRI:
3204 case ASB_DISCARD_LEAST_CHG:
3205 case ASB_DISCARD_LOCAL:
3206 case ASB_DISCARD_REMOTE:
3207 case ASB_CONSENSUS:
3208 case ASB_DISCARD_SECONDARY:
3209 case ASB_DISCARD_ZERO_CHG:
3210 drbd_err(device, "Configuration error.\n");
3211 break;
3212 case ASB_VIOLENTLY:
3213 rv = drbd_asb_recover_0p(peer_device);
3214 break;
3215 case ASB_DISCONNECT:
3216 break;
3217 case ASB_CALL_HELPER:
3218 hg = drbd_asb_recover_0p(peer_device);
3219 if (hg == -1) {
3220 enum drbd_state_rv rv2;
3221
3222 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE,
3223 * we might be here in C_WF_REPORT_PARAMS which is transient.
3224 * we do not need to wait for the after state change work either. */
3225 rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY));
3226 if (rv2 != SS_SUCCESS) {
3227 drbd_khelper(device, "pri-lost-after-sb");
3228 } else {
3229 drbd_warn(device, "Successfully gave up primary role.\n");
3230 rv = hg;
3231 }
3232 } else
3233 rv = hg;
3234 }
3235
3236 return rv;
3237 }
3238
drbd_uuid_dump(struct drbd_device * device,char * text,u64 * uuid,u64 bits,u64 flags)3239 static void drbd_uuid_dump(struct drbd_device *device, char *text, u64 *uuid,
3240 u64 bits, u64 flags)
3241 {
3242 if (!uuid) {
3243 drbd_info(device, "%s uuid info vanished while I was looking!\n", text);
3244 return;
3245 }
3246 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX bits:%llu flags:%llX\n",
3247 text,
3248 (unsigned long long)uuid[UI_CURRENT],
3249 (unsigned long long)uuid[UI_BITMAP],
3250 (unsigned long long)uuid[UI_HISTORY_START],
3251 (unsigned long long)uuid[UI_HISTORY_END],
3252 (unsigned long long)bits,
3253 (unsigned long long)flags);
3254 }
3255
3256 /*
3257 100 after split brain try auto recover
3258 2 C_SYNC_SOURCE set BitMap
3259 1 C_SYNC_SOURCE use BitMap
3260 0 no Sync
3261 -1 C_SYNC_TARGET use BitMap
3262 -2 C_SYNC_TARGET set BitMap
3263 -100 after split brain, disconnect
3264 -1000 unrelated data
3265 -1091 requires proto 91
3266 -1096 requires proto 96
3267 */
3268
drbd_uuid_compare(struct drbd_device * const device,enum drbd_role const peer_role,int * rule_nr)3269 static int drbd_uuid_compare(struct drbd_device *const device, enum drbd_role const peer_role, int *rule_nr) __must_hold(local)
3270 {
3271 struct drbd_peer_device *const peer_device = first_peer_device(device);
3272 struct drbd_connection *const connection = peer_device ? peer_device->connection : NULL;
3273 u64 self, peer;
3274 int i, j;
3275
3276 self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1);
3277 peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
3278
3279 *rule_nr = 10;
3280 if (self == UUID_JUST_CREATED && peer == UUID_JUST_CREATED)
3281 return 0;
3282
3283 *rule_nr = 20;
3284 if ((self == UUID_JUST_CREATED || self == (u64)0) &&
3285 peer != UUID_JUST_CREATED)
3286 return -2;
3287
3288 *rule_nr = 30;
3289 if (self != UUID_JUST_CREATED &&
3290 (peer == UUID_JUST_CREATED || peer == (u64)0))
3291 return 2;
3292
3293 if (self == peer) {
3294 int rct, dc; /* roles at crash time */
3295
3296 if (device->p_uuid[UI_BITMAP] == (u64)0 && device->ldev->md.uuid[UI_BITMAP] != (u64)0) {
3297
3298 if (connection->agreed_pro_version < 91)
3299 return -1091;
3300
3301 if ((device->ldev->md.uuid[UI_BITMAP] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) &&
3302 (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1))) {
3303 drbd_info(device, "was SyncSource, missed the resync finished event, corrected myself:\n");
3304 drbd_uuid_move_history(device);
3305 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3306 device->ldev->md.uuid[UI_BITMAP] = 0;
3307
3308 drbd_uuid_dump(device, "self", device->ldev->md.uuid,
3309 device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0);
3310 *rule_nr = 34;
3311 } else {
3312 drbd_info(device, "was SyncSource (peer failed to write sync_uuid)\n");
3313 *rule_nr = 36;
3314 }
3315
3316 return 1;
3317 }
3318
3319 if (device->ldev->md.uuid[UI_BITMAP] == (u64)0 && device->p_uuid[UI_BITMAP] != (u64)0) {
3320
3321 if (connection->agreed_pro_version < 91)
3322 return -1091;
3323
3324 if ((device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_BITMAP] & ~((u64)1)) &&
3325 (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1))) {
3326 drbd_info(device, "was SyncTarget, peer missed the resync finished event, corrected peer:\n");
3327
3328 device->p_uuid[UI_HISTORY_START + 1] = device->p_uuid[UI_HISTORY_START];
3329 device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_BITMAP];
3330 device->p_uuid[UI_BITMAP] = 0UL;
3331
3332 drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
3333 *rule_nr = 35;
3334 } else {
3335 drbd_info(device, "was SyncTarget (failed to write sync_uuid)\n");
3336 *rule_nr = 37;
3337 }
3338
3339 return -1;
3340 }
3341
3342 /* Common power [off|failure] */
3343 rct = (test_bit(CRASHED_PRIMARY, &device->flags) ? 1 : 0) +
3344 (device->p_uuid[UI_FLAGS] & 2);
3345 /* lowest bit is set when we were primary,
3346 * next bit (weight 2) is set when peer was primary */
3347 *rule_nr = 40;
3348
3349 /* Neither has the "crashed primary" flag set,
3350 * only a replication link hickup. */
3351 if (rct == 0)
3352 return 0;
3353
3354 /* Current UUID equal and no bitmap uuid; does not necessarily
3355 * mean this was a "simultaneous hard crash", maybe IO was
3356 * frozen, so no UUID-bump happened.
3357 * This is a protocol change, overload DRBD_FF_WSAME as flag
3358 * for "new-enough" peer DRBD version. */
3359 if (device->state.role == R_PRIMARY || peer_role == R_PRIMARY) {
3360 *rule_nr = 41;
3361 if (!(connection->agreed_features & DRBD_FF_WSAME)) {
3362 drbd_warn(peer_device, "Equivalent unrotated UUIDs, but current primary present.\n");
3363 return -(0x10000 | PRO_VERSION_MAX | (DRBD_FF_WSAME << 8));
3364 }
3365 if (device->state.role == R_PRIMARY && peer_role == R_PRIMARY) {
3366 /* At least one has the "crashed primary" bit set,
3367 * both are primary now, but neither has rotated its UUIDs?
3368 * "Can not happen." */
3369 drbd_err(peer_device, "Equivalent unrotated UUIDs, but both are primary. Can not resolve this.\n");
3370 return -100;
3371 }
3372 if (device->state.role == R_PRIMARY)
3373 return 1;
3374 return -1;
3375 }
3376
3377 /* Both are secondary.
3378 * Really looks like recovery from simultaneous hard crash.
3379 * Check which had been primary before, and arbitrate. */
3380 switch (rct) {
3381 case 0: /* !self_pri && !peer_pri */ return 0; /* already handled */
3382 case 1: /* self_pri && !peer_pri */ return 1;
3383 case 2: /* !self_pri && peer_pri */ return -1;
3384 case 3: /* self_pri && peer_pri */
3385 dc = test_bit(RESOLVE_CONFLICTS, &connection->flags);
3386 return dc ? -1 : 1;
3387 }
3388 }
3389
3390 *rule_nr = 50;
3391 peer = device->p_uuid[UI_BITMAP] & ~((u64)1);
3392 if (self == peer)
3393 return -1;
3394
3395 *rule_nr = 51;
3396 peer = device->p_uuid[UI_HISTORY_START] & ~((u64)1);
3397 if (self == peer) {
3398 if (connection->agreed_pro_version < 96 ?
3399 (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) ==
3400 (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1)) :
3401 peer + UUID_NEW_BM_OFFSET == (device->p_uuid[UI_BITMAP] & ~((u64)1))) {
3402 /* The last P_SYNC_UUID did not get though. Undo the last start of
3403 resync as sync source modifications of the peer's UUIDs. */
3404
3405 if (connection->agreed_pro_version < 91)
3406 return -1091;
3407
3408 device->p_uuid[UI_BITMAP] = device->p_uuid[UI_HISTORY_START];
3409 device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_HISTORY_START + 1];
3410
3411 drbd_info(device, "Lost last syncUUID packet, corrected:\n");
3412 drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
3413
3414 return -1;
3415 }
3416 }
3417
3418 *rule_nr = 60;
3419 self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1);
3420 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
3421 peer = device->p_uuid[i] & ~((u64)1);
3422 if (self == peer)
3423 return -2;
3424 }
3425
3426 *rule_nr = 70;
3427 self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1);
3428 peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
3429 if (self == peer)
3430 return 1;
3431
3432 *rule_nr = 71;
3433 self = device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1);
3434 if (self == peer) {
3435 if (connection->agreed_pro_version < 96 ?
3436 (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) ==
3437 (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) :
3438 self + UUID_NEW_BM_OFFSET == (device->ldev->md.uuid[UI_BITMAP] & ~((u64)1))) {
3439 /* The last P_SYNC_UUID did not get though. Undo the last start of
3440 resync as sync source modifications of our UUIDs. */
3441
3442 if (connection->agreed_pro_version < 91)
3443 return -1091;
3444
3445 __drbd_uuid_set(device, UI_BITMAP, device->ldev->md.uuid[UI_HISTORY_START]);
3446 __drbd_uuid_set(device, UI_HISTORY_START, device->ldev->md.uuid[UI_HISTORY_START + 1]);
3447
3448 drbd_info(device, "Last syncUUID did not get through, corrected:\n");
3449 drbd_uuid_dump(device, "self", device->ldev->md.uuid,
3450 device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0);
3451
3452 return 1;
3453 }
3454 }
3455
3456
3457 *rule_nr = 80;
3458 peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
3459 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
3460 self = device->ldev->md.uuid[i] & ~((u64)1);
3461 if (self == peer)
3462 return 2;
3463 }
3464
3465 *rule_nr = 90;
3466 self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1);
3467 peer = device->p_uuid[UI_BITMAP] & ~((u64)1);
3468 if (self == peer && self != ((u64)0))
3469 return 100;
3470
3471 *rule_nr = 100;
3472 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
3473 self = device->ldev->md.uuid[i] & ~((u64)1);
3474 for (j = UI_HISTORY_START; j <= UI_HISTORY_END; j++) {
3475 peer = device->p_uuid[j] & ~((u64)1);
3476 if (self == peer)
3477 return -100;
3478 }
3479 }
3480
3481 return -1000;
3482 }
3483
3484 /* drbd_sync_handshake() returns the new conn state on success, or
3485 CONN_MASK (-1) on failure.
3486 */
drbd_sync_handshake(struct drbd_peer_device * peer_device,enum drbd_role peer_role,enum drbd_disk_state peer_disk)3487 static enum drbd_conns drbd_sync_handshake(struct drbd_peer_device *peer_device,
3488 enum drbd_role peer_role,
3489 enum drbd_disk_state peer_disk) __must_hold(local)
3490 {
3491 struct drbd_device *device = peer_device->device;
3492 enum drbd_conns rv = C_MASK;
3493 enum drbd_disk_state mydisk;
3494 struct net_conf *nc;
3495 int hg, rule_nr, rr_conflict, tentative, always_asbp;
3496
3497 mydisk = device->state.disk;
3498 if (mydisk == D_NEGOTIATING)
3499 mydisk = device->new_state_tmp.disk;
3500
3501 drbd_info(device, "drbd_sync_handshake:\n");
3502
3503 spin_lock_irq(&device->ldev->md.uuid_lock);
3504 drbd_uuid_dump(device, "self", device->ldev->md.uuid, device->comm_bm_set, 0);
3505 drbd_uuid_dump(device, "peer", device->p_uuid,
3506 device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
3507
3508 hg = drbd_uuid_compare(device, peer_role, &rule_nr);
3509 spin_unlock_irq(&device->ldev->md.uuid_lock);
3510
3511 drbd_info(device, "uuid_compare()=%d by rule %d\n", hg, rule_nr);
3512
3513 if (hg == -1000) {
3514 drbd_alert(device, "Unrelated data, aborting!\n");
3515 return C_MASK;
3516 }
3517 if (hg < -0x10000) {
3518 int proto, fflags;
3519 hg = -hg;
3520 proto = hg & 0xff;
3521 fflags = (hg >> 8) & 0xff;
3522 drbd_alert(device, "To resolve this both sides have to support at least protocol %d and feature flags 0x%x\n",
3523 proto, fflags);
3524 return C_MASK;
3525 }
3526 if (hg < -1000) {
3527 drbd_alert(device, "To resolve this both sides have to support at least protocol %d\n", -hg - 1000);
3528 return C_MASK;
3529 }
3530
3531 if ((mydisk == D_INCONSISTENT && peer_disk > D_INCONSISTENT) ||
3532 (peer_disk == D_INCONSISTENT && mydisk > D_INCONSISTENT)) {
3533 int f = (hg == -100) || abs(hg) == 2;
3534 hg = mydisk > D_INCONSISTENT ? 1 : -1;
3535 if (f)
3536 hg = hg*2;
3537 drbd_info(device, "Becoming sync %s due to disk states.\n",
3538 hg > 0 ? "source" : "target");
3539 }
3540
3541 if (abs(hg) == 100)
3542 drbd_khelper(device, "initial-split-brain");
3543
3544 rcu_read_lock();
3545 nc = rcu_dereference(peer_device->connection->net_conf);
3546 always_asbp = nc->always_asbp;
3547 rr_conflict = nc->rr_conflict;
3548 tentative = nc->tentative;
3549 rcu_read_unlock();
3550
3551 if (hg == 100 || (hg == -100 && always_asbp)) {
3552 int pcount = (device->state.role == R_PRIMARY)
3553 + (peer_role == R_PRIMARY);
3554 int forced = (hg == -100);
3555
3556 switch (pcount) {
3557 case 0:
3558 hg = drbd_asb_recover_0p(peer_device);
3559 break;
3560 case 1:
3561 hg = drbd_asb_recover_1p(peer_device);
3562 break;
3563 case 2:
3564 hg = drbd_asb_recover_2p(peer_device);
3565 break;
3566 }
3567 if (abs(hg) < 100) {
3568 drbd_warn(device, "Split-Brain detected, %d primaries, "
3569 "automatically solved. Sync from %s node\n",
3570 pcount, (hg < 0) ? "peer" : "this");
3571 if (forced) {
3572 drbd_warn(device, "Doing a full sync, since"
3573 " UUIDs where ambiguous.\n");
3574 hg = hg*2;
3575 }
3576 }
3577 }
3578
3579 if (hg == -100) {
3580 if (test_bit(DISCARD_MY_DATA, &device->flags) && !(device->p_uuid[UI_FLAGS]&1))
3581 hg = -1;
3582 if (!test_bit(DISCARD_MY_DATA, &device->flags) && (device->p_uuid[UI_FLAGS]&1))
3583 hg = 1;
3584
3585 if (abs(hg) < 100)
3586 drbd_warn(device, "Split-Brain detected, manually solved. "
3587 "Sync from %s node\n",
3588 (hg < 0) ? "peer" : "this");
3589 }
3590
3591 if (hg == -100) {
3592 /* FIXME this log message is not correct if we end up here
3593 * after an attempted attach on a diskless node.
3594 * We just refuse to attach -- well, we drop the "connection"
3595 * to that disk, in a way... */
3596 drbd_alert(device, "Split-Brain detected but unresolved, dropping connection!\n");
3597 drbd_khelper(device, "split-brain");
3598 return C_MASK;
3599 }
3600
3601 if (hg > 0 && mydisk <= D_INCONSISTENT) {
3602 drbd_err(device, "I shall become SyncSource, but I am inconsistent!\n");
3603 return C_MASK;
3604 }
3605
3606 if (hg < 0 && /* by intention we do not use mydisk here. */
3607 device->state.role == R_PRIMARY && device->state.disk >= D_CONSISTENT) {
3608 switch (rr_conflict) {
3609 case ASB_CALL_HELPER:
3610 drbd_khelper(device, "pri-lost");
3611 fallthrough;
3612 case ASB_DISCONNECT:
3613 drbd_err(device, "I shall become SyncTarget, but I am primary!\n");
3614 return C_MASK;
3615 case ASB_VIOLENTLY:
3616 drbd_warn(device, "Becoming SyncTarget, violating the stable-data"
3617 "assumption\n");
3618 }
3619 }
3620
3621 if (tentative || test_bit(CONN_DRY_RUN, &peer_device->connection->flags)) {
3622 if (hg == 0)
3623 drbd_info(device, "dry-run connect: No resync, would become Connected immediately.\n");
3624 else
3625 drbd_info(device, "dry-run connect: Would become %s, doing a %s resync.",
3626 drbd_conn_str(hg > 0 ? C_SYNC_SOURCE : C_SYNC_TARGET),
3627 abs(hg) >= 2 ? "full" : "bit-map based");
3628 return C_MASK;
3629 }
3630
3631 if (abs(hg) >= 2) {
3632 drbd_info(device, "Writing the whole bitmap, full sync required after drbd_sync_handshake.\n");
3633 if (drbd_bitmap_io(device, &drbd_bmio_set_n_write, "set_n_write from sync_handshake",
3634 BM_LOCKED_SET_ALLOWED))
3635 return C_MASK;
3636 }
3637
3638 if (hg > 0) { /* become sync source. */
3639 rv = C_WF_BITMAP_S;
3640 } else if (hg < 0) { /* become sync target */
3641 rv = C_WF_BITMAP_T;
3642 } else {
3643 rv = C_CONNECTED;
3644 if (drbd_bm_total_weight(device)) {
3645 drbd_info(device, "No resync, but %lu bits in bitmap!\n",
3646 drbd_bm_total_weight(device));
3647 }
3648 }
3649
3650 return rv;
3651 }
3652
convert_after_sb(enum drbd_after_sb_p peer)3653 static enum drbd_after_sb_p convert_after_sb(enum drbd_after_sb_p peer)
3654 {
3655 /* ASB_DISCARD_REMOTE - ASB_DISCARD_LOCAL is valid */
3656 if (peer == ASB_DISCARD_REMOTE)
3657 return ASB_DISCARD_LOCAL;
3658
3659 /* any other things with ASB_DISCARD_REMOTE or ASB_DISCARD_LOCAL are invalid */
3660 if (peer == ASB_DISCARD_LOCAL)
3661 return ASB_DISCARD_REMOTE;
3662
3663 /* everything else is valid if they are equal on both sides. */
3664 return peer;
3665 }
3666
receive_protocol(struct drbd_connection * connection,struct packet_info * pi)3667 static int receive_protocol(struct drbd_connection *connection, struct packet_info *pi)
3668 {
3669 struct p_protocol *p = pi->data;
3670 enum drbd_after_sb_p p_after_sb_0p, p_after_sb_1p, p_after_sb_2p;
3671 int p_proto, p_discard_my_data, p_two_primaries, cf;
3672 struct net_conf *nc, *old_net_conf, *new_net_conf = NULL;
3673 char integrity_alg[SHARED_SECRET_MAX] = "";
3674 struct crypto_shash *peer_integrity_tfm = NULL;
3675 void *int_dig_in = NULL, *int_dig_vv = NULL;
3676
3677 p_proto = be32_to_cpu(p->protocol);
3678 p_after_sb_0p = be32_to_cpu(p->after_sb_0p);
3679 p_after_sb_1p = be32_to_cpu(p->after_sb_1p);
3680 p_after_sb_2p = be32_to_cpu(p->after_sb_2p);
3681 p_two_primaries = be32_to_cpu(p->two_primaries);
3682 cf = be32_to_cpu(p->conn_flags);
3683 p_discard_my_data = cf & CF_DISCARD_MY_DATA;
3684
3685 if (connection->agreed_pro_version >= 87) {
3686 int err;
3687
3688 if (pi->size > sizeof(integrity_alg))
3689 return -EIO;
3690 err = drbd_recv_all(connection, integrity_alg, pi->size);
3691 if (err)
3692 return err;
3693 integrity_alg[SHARED_SECRET_MAX - 1] = 0;
3694 }
3695
3696 if (pi->cmd != P_PROTOCOL_UPDATE) {
3697 clear_bit(CONN_DRY_RUN, &connection->flags);
3698
3699 if (cf & CF_DRY_RUN)
3700 set_bit(CONN_DRY_RUN, &connection->flags);
3701
3702 rcu_read_lock();
3703 nc = rcu_dereference(connection->net_conf);
3704
3705 if (p_proto != nc->wire_protocol) {
3706 drbd_err(connection, "incompatible %s settings\n", "protocol");
3707 goto disconnect_rcu_unlock;
3708 }
3709
3710 if (convert_after_sb(p_after_sb_0p) != nc->after_sb_0p) {
3711 drbd_err(connection, "incompatible %s settings\n", "after-sb-0pri");
3712 goto disconnect_rcu_unlock;
3713 }
3714
3715 if (convert_after_sb(p_after_sb_1p) != nc->after_sb_1p) {
3716 drbd_err(connection, "incompatible %s settings\n", "after-sb-1pri");
3717 goto disconnect_rcu_unlock;
3718 }
3719
3720 if (convert_after_sb(p_after_sb_2p) != nc->after_sb_2p) {
3721 drbd_err(connection, "incompatible %s settings\n", "after-sb-2pri");
3722 goto disconnect_rcu_unlock;
3723 }
3724
3725 if (p_discard_my_data && nc->discard_my_data) {
3726 drbd_err(connection, "incompatible %s settings\n", "discard-my-data");
3727 goto disconnect_rcu_unlock;
3728 }
3729
3730 if (p_two_primaries != nc->two_primaries) {
3731 drbd_err(connection, "incompatible %s settings\n", "allow-two-primaries");
3732 goto disconnect_rcu_unlock;
3733 }
3734
3735 if (strcmp(integrity_alg, nc->integrity_alg)) {
3736 drbd_err(connection, "incompatible %s settings\n", "data-integrity-alg");
3737 goto disconnect_rcu_unlock;
3738 }
3739
3740 rcu_read_unlock();
3741 }
3742
3743 if (integrity_alg[0]) {
3744 int hash_size;
3745
3746 /*
3747 * We can only change the peer data integrity algorithm
3748 * here. Changing our own data integrity algorithm
3749 * requires that we send a P_PROTOCOL_UPDATE packet at
3750 * the same time; otherwise, the peer has no way to
3751 * tell between which packets the algorithm should
3752 * change.
3753 */
3754
3755 peer_integrity_tfm = crypto_alloc_shash(integrity_alg, 0, 0);
3756 if (IS_ERR(peer_integrity_tfm)) {
3757 peer_integrity_tfm = NULL;
3758 drbd_err(connection, "peer data-integrity-alg %s not supported\n",
3759 integrity_alg);
3760 goto disconnect;
3761 }
3762
3763 hash_size = crypto_shash_digestsize(peer_integrity_tfm);
3764 int_dig_in = kmalloc(hash_size, GFP_KERNEL);
3765 int_dig_vv = kmalloc(hash_size, GFP_KERNEL);
3766 if (!(int_dig_in && int_dig_vv)) {
3767 drbd_err(connection, "Allocation of buffers for data integrity checking failed\n");
3768 goto disconnect;
3769 }
3770 }
3771
3772 new_net_conf = kmalloc(sizeof(struct net_conf), GFP_KERNEL);
3773 if (!new_net_conf) {
3774 drbd_err(connection, "Allocation of new net_conf failed\n");
3775 goto disconnect;
3776 }
3777
3778 mutex_lock(&connection->data.mutex);
3779 mutex_lock(&connection->resource->conf_update);
3780 old_net_conf = connection->net_conf;
3781 *new_net_conf = *old_net_conf;
3782
3783 new_net_conf->wire_protocol = p_proto;
3784 new_net_conf->after_sb_0p = convert_after_sb(p_after_sb_0p);
3785 new_net_conf->after_sb_1p = convert_after_sb(p_after_sb_1p);
3786 new_net_conf->after_sb_2p = convert_after_sb(p_after_sb_2p);
3787 new_net_conf->two_primaries = p_two_primaries;
3788
3789 rcu_assign_pointer(connection->net_conf, new_net_conf);
3790 mutex_unlock(&connection->resource->conf_update);
3791 mutex_unlock(&connection->data.mutex);
3792
3793 crypto_free_shash(connection->peer_integrity_tfm);
3794 kfree(connection->int_dig_in);
3795 kfree(connection->int_dig_vv);
3796 connection->peer_integrity_tfm = peer_integrity_tfm;
3797 connection->int_dig_in = int_dig_in;
3798 connection->int_dig_vv = int_dig_vv;
3799
3800 if (strcmp(old_net_conf->integrity_alg, integrity_alg))
3801 drbd_info(connection, "peer data-integrity-alg: %s\n",
3802 integrity_alg[0] ? integrity_alg : "(none)");
3803
3804 synchronize_rcu();
3805 kfree(old_net_conf);
3806 return 0;
3807
3808 disconnect_rcu_unlock:
3809 rcu_read_unlock();
3810 disconnect:
3811 crypto_free_shash(peer_integrity_tfm);
3812 kfree(int_dig_in);
3813 kfree(int_dig_vv);
3814 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
3815 return -EIO;
3816 }
3817
3818 /* helper function
3819 * input: alg name, feature name
3820 * return: NULL (alg name was "")
3821 * ERR_PTR(error) if something goes wrong
3822 * or the crypto hash ptr, if it worked out ok. */
drbd_crypto_alloc_digest_safe(const struct drbd_device * device,const char * alg,const char * name)3823 static struct crypto_shash *drbd_crypto_alloc_digest_safe(
3824 const struct drbd_device *device,
3825 const char *alg, const char *name)
3826 {
3827 struct crypto_shash *tfm;
3828
3829 if (!alg[0])
3830 return NULL;
3831
3832 tfm = crypto_alloc_shash(alg, 0, 0);
3833 if (IS_ERR(tfm)) {
3834 drbd_err(device, "Can not allocate \"%s\" as %s (reason: %ld)\n",
3835 alg, name, PTR_ERR(tfm));
3836 return tfm;
3837 }
3838 return tfm;
3839 }
3840
ignore_remaining_packet(struct drbd_connection * connection,struct packet_info * pi)3841 static int ignore_remaining_packet(struct drbd_connection *connection, struct packet_info *pi)
3842 {
3843 void *buffer = connection->data.rbuf;
3844 int size = pi->size;
3845
3846 while (size) {
3847 int s = min_t(int, size, DRBD_SOCKET_BUFFER_SIZE);
3848 s = drbd_recv(connection, buffer, s);
3849 if (s <= 0) {
3850 if (s < 0)
3851 return s;
3852 break;
3853 }
3854 size -= s;
3855 }
3856 if (size)
3857 return -EIO;
3858 return 0;
3859 }
3860
3861 /*
3862 * config_unknown_volume - device configuration command for unknown volume
3863 *
3864 * When a device is added to an existing connection, the node on which the
3865 * device is added first will send configuration commands to its peer but the
3866 * peer will not know about the device yet. It will warn and ignore these
3867 * commands. Once the device is added on the second node, the second node will
3868 * send the same device configuration commands, but in the other direction.
3869 *
3870 * (We can also end up here if drbd is misconfigured.)
3871 */
config_unknown_volume(struct drbd_connection * connection,struct packet_info * pi)3872 static int config_unknown_volume(struct drbd_connection *connection, struct packet_info *pi)
3873 {
3874 drbd_warn(connection, "%s packet received for volume %u, which is not configured locally\n",
3875 cmdname(pi->cmd), pi->vnr);
3876 return ignore_remaining_packet(connection, pi);
3877 }
3878
receive_SyncParam(struct drbd_connection * connection,struct packet_info * pi)3879 static int receive_SyncParam(struct drbd_connection *connection, struct packet_info *pi)
3880 {
3881 struct drbd_peer_device *peer_device;
3882 struct drbd_device *device;
3883 struct p_rs_param_95 *p;
3884 unsigned int header_size, data_size, exp_max_sz;
3885 struct crypto_shash *verify_tfm = NULL;
3886 struct crypto_shash *csums_tfm = NULL;
3887 struct net_conf *old_net_conf, *new_net_conf = NULL;
3888 struct disk_conf *old_disk_conf = NULL, *new_disk_conf = NULL;
3889 const int apv = connection->agreed_pro_version;
3890 struct fifo_buffer *old_plan = NULL, *new_plan = NULL;
3891 unsigned int fifo_size = 0;
3892 int err;
3893
3894 peer_device = conn_peer_device(connection, pi->vnr);
3895 if (!peer_device)
3896 return config_unknown_volume(connection, pi);
3897 device = peer_device->device;
3898
3899 exp_max_sz = apv <= 87 ? sizeof(struct p_rs_param)
3900 : apv == 88 ? sizeof(struct p_rs_param)
3901 + SHARED_SECRET_MAX
3902 : apv <= 94 ? sizeof(struct p_rs_param_89)
3903 : /* apv >= 95 */ sizeof(struct p_rs_param_95);
3904
3905 if (pi->size > exp_max_sz) {
3906 drbd_err(device, "SyncParam packet too long: received %u, expected <= %u bytes\n",
3907 pi->size, exp_max_sz);
3908 return -EIO;
3909 }
3910
3911 if (apv <= 88) {
3912 header_size = sizeof(struct p_rs_param);
3913 data_size = pi->size - header_size;
3914 } else if (apv <= 94) {
3915 header_size = sizeof(struct p_rs_param_89);
3916 data_size = pi->size - header_size;
3917 D_ASSERT(device, data_size == 0);
3918 } else {
3919 header_size = sizeof(struct p_rs_param_95);
3920 data_size = pi->size - header_size;
3921 D_ASSERT(device, data_size == 0);
3922 }
3923
3924 /* initialize verify_alg and csums_alg */
3925 p = pi->data;
3926 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
3927
3928 err = drbd_recv_all(peer_device->connection, p, header_size);
3929 if (err)
3930 return err;
3931
3932 mutex_lock(&connection->resource->conf_update);
3933 old_net_conf = peer_device->connection->net_conf;
3934 if (get_ldev(device)) {
3935 new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL);
3936 if (!new_disk_conf) {
3937 put_ldev(device);
3938 mutex_unlock(&connection->resource->conf_update);
3939 drbd_err(device, "Allocation of new disk_conf failed\n");
3940 return -ENOMEM;
3941 }
3942
3943 old_disk_conf = device->ldev->disk_conf;
3944 *new_disk_conf = *old_disk_conf;
3945
3946 new_disk_conf->resync_rate = be32_to_cpu(p->resync_rate);
3947 }
3948
3949 if (apv >= 88) {
3950 if (apv == 88) {
3951 if (data_size > SHARED_SECRET_MAX || data_size == 0) {
3952 drbd_err(device, "verify-alg of wrong size, "
3953 "peer wants %u, accepting only up to %u byte\n",
3954 data_size, SHARED_SECRET_MAX);
3955 err = -EIO;
3956 goto reconnect;
3957 }
3958
3959 err = drbd_recv_all(peer_device->connection, p->verify_alg, data_size);
3960 if (err)
3961 goto reconnect;
3962 /* we expect NUL terminated string */
3963 /* but just in case someone tries to be evil */
3964 D_ASSERT(device, p->verify_alg[data_size-1] == 0);
3965 p->verify_alg[data_size-1] = 0;
3966
3967 } else /* apv >= 89 */ {
3968 /* we still expect NUL terminated strings */
3969 /* but just in case someone tries to be evil */
3970 D_ASSERT(device, p->verify_alg[SHARED_SECRET_MAX-1] == 0);
3971 D_ASSERT(device, p->csums_alg[SHARED_SECRET_MAX-1] == 0);
3972 p->verify_alg[SHARED_SECRET_MAX-1] = 0;
3973 p->csums_alg[SHARED_SECRET_MAX-1] = 0;
3974 }
3975
3976 if (strcmp(old_net_conf->verify_alg, p->verify_alg)) {
3977 if (device->state.conn == C_WF_REPORT_PARAMS) {
3978 drbd_err(device, "Different verify-alg settings. me=\"%s\" peer=\"%s\"\n",
3979 old_net_conf->verify_alg, p->verify_alg);
3980 goto disconnect;
3981 }
3982 verify_tfm = drbd_crypto_alloc_digest_safe(device,
3983 p->verify_alg, "verify-alg");
3984 if (IS_ERR(verify_tfm)) {
3985 verify_tfm = NULL;
3986 goto disconnect;
3987 }
3988 }
3989
3990 if (apv >= 89 && strcmp(old_net_conf->csums_alg, p->csums_alg)) {
3991 if (device->state.conn == C_WF_REPORT_PARAMS) {
3992 drbd_err(device, "Different csums-alg settings. me=\"%s\" peer=\"%s\"\n",
3993 old_net_conf->csums_alg, p->csums_alg);
3994 goto disconnect;
3995 }
3996 csums_tfm = drbd_crypto_alloc_digest_safe(device,
3997 p->csums_alg, "csums-alg");
3998 if (IS_ERR(csums_tfm)) {
3999 csums_tfm = NULL;
4000 goto disconnect;
4001 }
4002 }
4003
4004 if (apv > 94 && new_disk_conf) {
4005 new_disk_conf->c_plan_ahead = be32_to_cpu(p->c_plan_ahead);
4006 new_disk_conf->c_delay_target = be32_to_cpu(p->c_delay_target);
4007 new_disk_conf->c_fill_target = be32_to_cpu(p->c_fill_target);
4008 new_disk_conf->c_max_rate = be32_to_cpu(p->c_max_rate);
4009
4010 fifo_size = (new_disk_conf->c_plan_ahead * 10 * SLEEP_TIME) / HZ;
4011 if (fifo_size != device->rs_plan_s->size) {
4012 new_plan = fifo_alloc(fifo_size);
4013 if (!new_plan) {
4014 drbd_err(device, "kmalloc of fifo_buffer failed");
4015 put_ldev(device);
4016 goto disconnect;
4017 }
4018 }
4019 }
4020
4021 if (verify_tfm || csums_tfm) {
4022 new_net_conf = kzalloc(sizeof(struct net_conf), GFP_KERNEL);
4023 if (!new_net_conf) {
4024 drbd_err(device, "Allocation of new net_conf failed\n");
4025 goto disconnect;
4026 }
4027
4028 *new_net_conf = *old_net_conf;
4029
4030 if (verify_tfm) {
4031 strcpy(new_net_conf->verify_alg, p->verify_alg);
4032 new_net_conf->verify_alg_len = strlen(p->verify_alg) + 1;
4033 crypto_free_shash(peer_device->connection->verify_tfm);
4034 peer_device->connection->verify_tfm = verify_tfm;
4035 drbd_info(device, "using verify-alg: \"%s\"\n", p->verify_alg);
4036 }
4037 if (csums_tfm) {
4038 strcpy(new_net_conf->csums_alg, p->csums_alg);
4039 new_net_conf->csums_alg_len = strlen(p->csums_alg) + 1;
4040 crypto_free_shash(peer_device->connection->csums_tfm);
4041 peer_device->connection->csums_tfm = csums_tfm;
4042 drbd_info(device, "using csums-alg: \"%s\"\n", p->csums_alg);
4043 }
4044 rcu_assign_pointer(connection->net_conf, new_net_conf);
4045 }
4046 }
4047
4048 if (new_disk_conf) {
4049 rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf);
4050 put_ldev(device);
4051 }
4052
4053 if (new_plan) {
4054 old_plan = device->rs_plan_s;
4055 rcu_assign_pointer(device->rs_plan_s, new_plan);
4056 }
4057
4058 mutex_unlock(&connection->resource->conf_update);
4059 synchronize_rcu();
4060 if (new_net_conf)
4061 kfree(old_net_conf);
4062 kfree(old_disk_conf);
4063 kfree(old_plan);
4064
4065 return 0;
4066
4067 reconnect:
4068 if (new_disk_conf) {
4069 put_ldev(device);
4070 kfree(new_disk_conf);
4071 }
4072 mutex_unlock(&connection->resource->conf_update);
4073 return -EIO;
4074
4075 disconnect:
4076 kfree(new_plan);
4077 if (new_disk_conf) {
4078 put_ldev(device);
4079 kfree(new_disk_conf);
4080 }
4081 mutex_unlock(&connection->resource->conf_update);
4082 /* just for completeness: actually not needed,
4083 * as this is not reached if csums_tfm was ok. */
4084 crypto_free_shash(csums_tfm);
4085 /* but free the verify_tfm again, if csums_tfm did not work out */
4086 crypto_free_shash(verify_tfm);
4087 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4088 return -EIO;
4089 }
4090
4091 /* warn if the arguments differ by more than 12.5% */
warn_if_differ_considerably(struct drbd_device * device,const char * s,sector_t a,sector_t b)4092 static void warn_if_differ_considerably(struct drbd_device *device,
4093 const char *s, sector_t a, sector_t b)
4094 {
4095 sector_t d;
4096 if (a == 0 || b == 0)
4097 return;
4098 d = (a > b) ? (a - b) : (b - a);
4099 if (d > (a>>3) || d > (b>>3))
4100 drbd_warn(device, "Considerable difference in %s: %llus vs. %llus\n", s,
4101 (unsigned long long)a, (unsigned long long)b);
4102 }
4103
receive_sizes(struct drbd_connection * connection,struct packet_info * pi)4104 static int receive_sizes(struct drbd_connection *connection, struct packet_info *pi)
4105 {
4106 struct drbd_peer_device *peer_device;
4107 struct drbd_device *device;
4108 struct p_sizes *p = pi->data;
4109 struct o_qlim *o = (connection->agreed_features & DRBD_FF_WSAME) ? p->qlim : NULL;
4110 enum determine_dev_size dd = DS_UNCHANGED;
4111 sector_t p_size, p_usize, p_csize, my_usize;
4112 sector_t new_size, cur_size;
4113 int ldsc = 0; /* local disk size changed */
4114 enum dds_flags ddsf;
4115
4116 peer_device = conn_peer_device(connection, pi->vnr);
4117 if (!peer_device)
4118 return config_unknown_volume(connection, pi);
4119 device = peer_device->device;
4120 cur_size = get_capacity(device->vdisk);
4121
4122 p_size = be64_to_cpu(p->d_size);
4123 p_usize = be64_to_cpu(p->u_size);
4124 p_csize = be64_to_cpu(p->c_size);
4125
4126 /* just store the peer's disk size for now.
4127 * we still need to figure out whether we accept that. */
4128 device->p_size = p_size;
4129
4130 if (get_ldev(device)) {
4131 rcu_read_lock();
4132 my_usize = rcu_dereference(device->ldev->disk_conf)->disk_size;
4133 rcu_read_unlock();
4134
4135 warn_if_differ_considerably(device, "lower level device sizes",
4136 p_size, drbd_get_max_capacity(device->ldev));
4137 warn_if_differ_considerably(device, "user requested size",
4138 p_usize, my_usize);
4139
4140 /* if this is the first connect, or an otherwise expected
4141 * param exchange, choose the minimum */
4142 if (device->state.conn == C_WF_REPORT_PARAMS)
4143 p_usize = min_not_zero(my_usize, p_usize);
4144
4145 /* Never shrink a device with usable data during connect,
4146 * or "attach" on the peer.
4147 * But allow online shrinking if we are connected. */
4148 new_size = drbd_new_dev_size(device, device->ldev, p_usize, 0);
4149 if (new_size < cur_size &&
4150 device->state.disk >= D_OUTDATED &&
4151 (device->state.conn < C_CONNECTED || device->state.pdsk == D_DISKLESS)) {
4152 drbd_err(device, "The peer's disk size is too small! (%llu < %llu sectors)\n",
4153 (unsigned long long)new_size, (unsigned long long)cur_size);
4154 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4155 put_ldev(device);
4156 return -EIO;
4157 }
4158
4159 if (my_usize != p_usize) {
4160 struct disk_conf *old_disk_conf, *new_disk_conf = NULL;
4161
4162 new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL);
4163 if (!new_disk_conf) {
4164 drbd_err(device, "Allocation of new disk_conf failed\n");
4165 put_ldev(device);
4166 return -ENOMEM;
4167 }
4168
4169 mutex_lock(&connection->resource->conf_update);
4170 old_disk_conf = device->ldev->disk_conf;
4171 *new_disk_conf = *old_disk_conf;
4172 new_disk_conf->disk_size = p_usize;
4173
4174 rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf);
4175 mutex_unlock(&connection->resource->conf_update);
4176 synchronize_rcu();
4177 kfree(old_disk_conf);
4178
4179 drbd_info(device, "Peer sets u_size to %lu sectors (old: %lu)\n",
4180 (unsigned long)p_usize, (unsigned long)my_usize);
4181 }
4182
4183 put_ldev(device);
4184 }
4185
4186 device->peer_max_bio_size = be32_to_cpu(p->max_bio_size);
4187 /* Leave drbd_reconsider_queue_parameters() before drbd_determine_dev_size().
4188 In case we cleared the QUEUE_FLAG_DISCARD from our queue in
4189 drbd_reconsider_queue_parameters(), we can be sure that after
4190 drbd_determine_dev_size() no REQ_DISCARDs are in the queue. */
4191
4192 ddsf = be16_to_cpu(p->dds_flags);
4193 if (get_ldev(device)) {
4194 drbd_reconsider_queue_parameters(device, device->ldev, o);
4195 dd = drbd_determine_dev_size(device, ddsf, NULL);
4196 put_ldev(device);
4197 if (dd == DS_ERROR)
4198 return -EIO;
4199 drbd_md_sync(device);
4200 } else {
4201 /*
4202 * I am diskless, need to accept the peer's *current* size.
4203 * I must NOT accept the peers backing disk size,
4204 * it may have been larger than mine all along...
4205 *
4206 * At this point, the peer knows more about my disk, or at
4207 * least about what we last agreed upon, than myself.
4208 * So if his c_size is less than his d_size, the most likely
4209 * reason is that *my* d_size was smaller last time we checked.
4210 *
4211 * However, if he sends a zero current size,
4212 * take his (user-capped or) backing disk size anyways.
4213 *
4214 * Unless of course he does not have a disk himself.
4215 * In which case we ignore this completely.
4216 */
4217 sector_t new_size = p_csize ?: p_usize ?: p_size;
4218 drbd_reconsider_queue_parameters(device, NULL, o);
4219 if (new_size == 0) {
4220 /* Ignore, peer does not know nothing. */
4221 } else if (new_size == cur_size) {
4222 /* nothing to do */
4223 } else if (cur_size != 0 && p_size == 0) {
4224 drbd_warn(device, "Ignored diskless peer device size (peer:%llu != me:%llu sectors)!\n",
4225 (unsigned long long)new_size, (unsigned long long)cur_size);
4226 } else if (new_size < cur_size && device->state.role == R_PRIMARY) {
4227 drbd_err(device, "The peer's device size is too small! (%llu < %llu sectors); demote me first!\n",
4228 (unsigned long long)new_size, (unsigned long long)cur_size);
4229 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4230 return -EIO;
4231 } else {
4232 /* I believe the peer, if
4233 * - I don't have a current size myself
4234 * - we agree on the size anyways
4235 * - I do have a current size, am Secondary,
4236 * and he has the only disk
4237 * - I do have a current size, am Primary,
4238 * and he has the only disk,
4239 * which is larger than my current size
4240 */
4241 drbd_set_my_capacity(device, new_size);
4242 }
4243 }
4244
4245 if (get_ldev(device)) {
4246 if (device->ldev->known_size != drbd_get_capacity(device->ldev->backing_bdev)) {
4247 device->ldev->known_size = drbd_get_capacity(device->ldev->backing_bdev);
4248 ldsc = 1;
4249 }
4250
4251 put_ldev(device);
4252 }
4253
4254 if (device->state.conn > C_WF_REPORT_PARAMS) {
4255 if (be64_to_cpu(p->c_size) != get_capacity(device->vdisk) ||
4256 ldsc) {
4257 /* we have different sizes, probably peer
4258 * needs to know my new size... */
4259 drbd_send_sizes(peer_device, 0, ddsf);
4260 }
4261 if (test_and_clear_bit(RESIZE_PENDING, &device->flags) ||
4262 (dd == DS_GREW && device->state.conn == C_CONNECTED)) {
4263 if (device->state.pdsk >= D_INCONSISTENT &&
4264 device->state.disk >= D_INCONSISTENT) {
4265 if (ddsf & DDSF_NO_RESYNC)
4266 drbd_info(device, "Resync of new storage suppressed with --assume-clean\n");
4267 else
4268 resync_after_online_grow(device);
4269 } else
4270 set_bit(RESYNC_AFTER_NEG, &device->flags);
4271 }
4272 }
4273
4274 return 0;
4275 }
4276
receive_uuids(struct drbd_connection * connection,struct packet_info * pi)4277 static int receive_uuids(struct drbd_connection *connection, struct packet_info *pi)
4278 {
4279 struct drbd_peer_device *peer_device;
4280 struct drbd_device *device;
4281 struct p_uuids *p = pi->data;
4282 u64 *p_uuid;
4283 int i, updated_uuids = 0;
4284
4285 peer_device = conn_peer_device(connection, pi->vnr);
4286 if (!peer_device)
4287 return config_unknown_volume(connection, pi);
4288 device = peer_device->device;
4289
4290 p_uuid = kmalloc_array(UI_EXTENDED_SIZE, sizeof(*p_uuid), GFP_NOIO);
4291 if (!p_uuid) {
4292 drbd_err(device, "kmalloc of p_uuid failed\n");
4293 return false;
4294 }
4295
4296 for (i = UI_CURRENT; i < UI_EXTENDED_SIZE; i++)
4297 p_uuid[i] = be64_to_cpu(p->uuid[i]);
4298
4299 kfree(device->p_uuid);
4300 device->p_uuid = p_uuid;
4301
4302 if ((device->state.conn < C_CONNECTED || device->state.pdsk == D_DISKLESS) &&
4303 device->state.disk < D_INCONSISTENT &&
4304 device->state.role == R_PRIMARY &&
4305 (device->ed_uuid & ~((u64)1)) != (p_uuid[UI_CURRENT] & ~((u64)1))) {
4306 drbd_err(device, "Can only connect to data with current UUID=%016llX\n",
4307 (unsigned long long)device->ed_uuid);
4308 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4309 return -EIO;
4310 }
4311
4312 if (get_ldev(device)) {
4313 int skip_initial_sync =
4314 device->state.conn == C_CONNECTED &&
4315 peer_device->connection->agreed_pro_version >= 90 &&
4316 device->ldev->md.uuid[UI_CURRENT] == UUID_JUST_CREATED &&
4317 (p_uuid[UI_FLAGS] & 8);
4318 if (skip_initial_sync) {
4319 drbd_info(device, "Accepted new current UUID, preparing to skip initial sync\n");
4320 drbd_bitmap_io(device, &drbd_bmio_clear_n_write,
4321 "clear_n_write from receive_uuids",
4322 BM_LOCKED_TEST_ALLOWED);
4323 _drbd_uuid_set(device, UI_CURRENT, p_uuid[UI_CURRENT]);
4324 _drbd_uuid_set(device, UI_BITMAP, 0);
4325 _drbd_set_state(_NS2(device, disk, D_UP_TO_DATE, pdsk, D_UP_TO_DATE),
4326 CS_VERBOSE, NULL);
4327 drbd_md_sync(device);
4328 updated_uuids = 1;
4329 }
4330 put_ldev(device);
4331 } else if (device->state.disk < D_INCONSISTENT &&
4332 device->state.role == R_PRIMARY) {
4333 /* I am a diskless primary, the peer just created a new current UUID
4334 for me. */
4335 updated_uuids = drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]);
4336 }
4337
4338 /* Before we test for the disk state, we should wait until an eventually
4339 ongoing cluster wide state change is finished. That is important if
4340 we are primary and are detaching from our disk. We need to see the
4341 new disk state... */
4342 mutex_lock(device->state_mutex);
4343 mutex_unlock(device->state_mutex);
4344 if (device->state.conn >= C_CONNECTED && device->state.disk < D_INCONSISTENT)
4345 updated_uuids |= drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]);
4346
4347 if (updated_uuids)
4348 drbd_print_uuids(device, "receiver updated UUIDs to");
4349
4350 return 0;
4351 }
4352
4353 /**
4354 * convert_state() - Converts the peer's view of the cluster state to our point of view
4355 * @ps: The state as seen by the peer.
4356 */
convert_state(union drbd_state ps)4357 static union drbd_state convert_state(union drbd_state ps)
4358 {
4359 union drbd_state ms;
4360
4361 static enum drbd_conns c_tab[] = {
4362 [C_WF_REPORT_PARAMS] = C_WF_REPORT_PARAMS,
4363 [C_CONNECTED] = C_CONNECTED,
4364
4365 [C_STARTING_SYNC_S] = C_STARTING_SYNC_T,
4366 [C_STARTING_SYNC_T] = C_STARTING_SYNC_S,
4367 [C_DISCONNECTING] = C_TEAR_DOWN, /* C_NETWORK_FAILURE, */
4368 [C_VERIFY_S] = C_VERIFY_T,
4369 [C_MASK] = C_MASK,
4370 };
4371
4372 ms.i = ps.i;
4373
4374 ms.conn = c_tab[ps.conn];
4375 ms.peer = ps.role;
4376 ms.role = ps.peer;
4377 ms.pdsk = ps.disk;
4378 ms.disk = ps.pdsk;
4379 ms.peer_isp = (ps.aftr_isp | ps.user_isp);
4380
4381 return ms;
4382 }
4383
receive_req_state(struct drbd_connection * connection,struct packet_info * pi)4384 static int receive_req_state(struct drbd_connection *connection, struct packet_info *pi)
4385 {
4386 struct drbd_peer_device *peer_device;
4387 struct drbd_device *device;
4388 struct p_req_state *p = pi->data;
4389 union drbd_state mask, val;
4390 enum drbd_state_rv rv;
4391
4392 peer_device = conn_peer_device(connection, pi->vnr);
4393 if (!peer_device)
4394 return -EIO;
4395 device = peer_device->device;
4396
4397 mask.i = be32_to_cpu(p->mask);
4398 val.i = be32_to_cpu(p->val);
4399
4400 if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) &&
4401 mutex_is_locked(device->state_mutex)) {
4402 drbd_send_sr_reply(peer_device, SS_CONCURRENT_ST_CHG);
4403 return 0;
4404 }
4405
4406 mask = convert_state(mask);
4407 val = convert_state(val);
4408
4409 rv = drbd_change_state(device, CS_VERBOSE, mask, val);
4410 drbd_send_sr_reply(peer_device, rv);
4411
4412 drbd_md_sync(device);
4413
4414 return 0;
4415 }
4416
receive_req_conn_state(struct drbd_connection * connection,struct packet_info * pi)4417 static int receive_req_conn_state(struct drbd_connection *connection, struct packet_info *pi)
4418 {
4419 struct p_req_state *p = pi->data;
4420 union drbd_state mask, val;
4421 enum drbd_state_rv rv;
4422
4423 mask.i = be32_to_cpu(p->mask);
4424 val.i = be32_to_cpu(p->val);
4425
4426 if (test_bit(RESOLVE_CONFLICTS, &connection->flags) &&
4427 mutex_is_locked(&connection->cstate_mutex)) {
4428 conn_send_sr_reply(connection, SS_CONCURRENT_ST_CHG);
4429 return 0;
4430 }
4431
4432 mask = convert_state(mask);
4433 val = convert_state(val);
4434
4435 rv = conn_request_state(connection, mask, val, CS_VERBOSE | CS_LOCAL_ONLY | CS_IGN_OUTD_FAIL);
4436 conn_send_sr_reply(connection, rv);
4437
4438 return 0;
4439 }
4440
receive_state(struct drbd_connection * connection,struct packet_info * pi)4441 static int receive_state(struct drbd_connection *connection, struct packet_info *pi)
4442 {
4443 struct drbd_peer_device *peer_device;
4444 struct drbd_device *device;
4445 struct p_state *p = pi->data;
4446 union drbd_state os, ns, peer_state;
4447 enum drbd_disk_state real_peer_disk;
4448 enum chg_state_flags cs_flags;
4449 int rv;
4450
4451 peer_device = conn_peer_device(connection, pi->vnr);
4452 if (!peer_device)
4453 return config_unknown_volume(connection, pi);
4454 device = peer_device->device;
4455
4456 peer_state.i = be32_to_cpu(p->state);
4457
4458 real_peer_disk = peer_state.disk;
4459 if (peer_state.disk == D_NEGOTIATING) {
4460 real_peer_disk = device->p_uuid[UI_FLAGS] & 4 ? D_INCONSISTENT : D_CONSISTENT;
4461 drbd_info(device, "real peer disk state = %s\n", drbd_disk_str(real_peer_disk));
4462 }
4463
4464 spin_lock_irq(&device->resource->req_lock);
4465 retry:
4466 os = ns = drbd_read_state(device);
4467 spin_unlock_irq(&device->resource->req_lock);
4468
4469 /* If some other part of the code (ack_receiver thread, timeout)
4470 * already decided to close the connection again,
4471 * we must not "re-establish" it here. */
4472 if (os.conn <= C_TEAR_DOWN)
4473 return -ECONNRESET;
4474
4475 /* If this is the "end of sync" confirmation, usually the peer disk
4476 * transitions from D_INCONSISTENT to D_UP_TO_DATE. For empty (0 bits
4477 * set) resync started in PausedSyncT, or if the timing of pause-/
4478 * unpause-sync events has been "just right", the peer disk may
4479 * transition from D_CONSISTENT to D_UP_TO_DATE as well.
4480 */
4481 if ((os.pdsk == D_INCONSISTENT || os.pdsk == D_CONSISTENT) &&
4482 real_peer_disk == D_UP_TO_DATE &&
4483 os.conn > C_CONNECTED && os.disk == D_UP_TO_DATE) {
4484 /* If we are (becoming) SyncSource, but peer is still in sync
4485 * preparation, ignore its uptodate-ness to avoid flapping, it
4486 * will change to inconsistent once the peer reaches active
4487 * syncing states.
4488 * It may have changed syncer-paused flags, however, so we
4489 * cannot ignore this completely. */
4490 if (peer_state.conn > C_CONNECTED &&
4491 peer_state.conn < C_SYNC_SOURCE)
4492 real_peer_disk = D_INCONSISTENT;
4493
4494 /* if peer_state changes to connected at the same time,
4495 * it explicitly notifies us that it finished resync.
4496 * Maybe we should finish it up, too? */
4497 else if (os.conn >= C_SYNC_SOURCE &&
4498 peer_state.conn == C_CONNECTED) {
4499 if (drbd_bm_total_weight(device) <= device->rs_failed)
4500 drbd_resync_finished(device);
4501 return 0;
4502 }
4503 }
4504
4505 /* explicit verify finished notification, stop sector reached. */
4506 if (os.conn == C_VERIFY_T && os.disk == D_UP_TO_DATE &&
4507 peer_state.conn == C_CONNECTED && real_peer_disk == D_UP_TO_DATE) {
4508 ov_out_of_sync_print(device);
4509 drbd_resync_finished(device);
4510 return 0;
4511 }
4512
4513 /* peer says his disk is inconsistent, while we think it is uptodate,
4514 * and this happens while the peer still thinks we have a sync going on,
4515 * but we think we are already done with the sync.
4516 * We ignore this to avoid flapping pdsk.
4517 * This should not happen, if the peer is a recent version of drbd. */
4518 if (os.pdsk == D_UP_TO_DATE && real_peer_disk == D_INCONSISTENT &&
4519 os.conn == C_CONNECTED && peer_state.conn > C_SYNC_SOURCE)
4520 real_peer_disk = D_UP_TO_DATE;
4521
4522 if (ns.conn == C_WF_REPORT_PARAMS)
4523 ns.conn = C_CONNECTED;
4524
4525 if (peer_state.conn == C_AHEAD)
4526 ns.conn = C_BEHIND;
4527
4528 /* TODO:
4529 * if (primary and diskless and peer uuid != effective uuid)
4530 * abort attach on peer;
4531 *
4532 * If this node does not have good data, was already connected, but
4533 * the peer did a late attach only now, trying to "negotiate" with me,
4534 * AND I am currently Primary, possibly frozen, with some specific
4535 * "effective" uuid, this should never be reached, really, because
4536 * we first send the uuids, then the current state.
4537 *
4538 * In this scenario, we already dropped the connection hard
4539 * when we received the unsuitable uuids (receive_uuids().
4540 *
4541 * Should we want to change this, that is: not drop the connection in
4542 * receive_uuids() already, then we would need to add a branch here
4543 * that aborts the attach of "unsuitable uuids" on the peer in case
4544 * this node is currently Diskless Primary.
4545 */
4546
4547 if (device->p_uuid && peer_state.disk >= D_NEGOTIATING &&
4548 get_ldev_if_state(device, D_NEGOTIATING)) {
4549 int cr; /* consider resync */
4550
4551 /* if we established a new connection */
4552 cr = (os.conn < C_CONNECTED);
4553 /* if we had an established connection
4554 * and one of the nodes newly attaches a disk */
4555 cr |= (os.conn == C_CONNECTED &&
4556 (peer_state.disk == D_NEGOTIATING ||
4557 os.disk == D_NEGOTIATING));
4558 /* if we have both been inconsistent, and the peer has been
4559 * forced to be UpToDate with --force */
4560 cr |= test_bit(CONSIDER_RESYNC, &device->flags);
4561 /* if we had been plain connected, and the admin requested to
4562 * start a sync by "invalidate" or "invalidate-remote" */
4563 cr |= (os.conn == C_CONNECTED &&
4564 (peer_state.conn >= C_STARTING_SYNC_S &&
4565 peer_state.conn <= C_WF_BITMAP_T));
4566
4567 if (cr)
4568 ns.conn = drbd_sync_handshake(peer_device, peer_state.role, real_peer_disk);
4569
4570 put_ldev(device);
4571 if (ns.conn == C_MASK) {
4572 ns.conn = C_CONNECTED;
4573 if (device->state.disk == D_NEGOTIATING) {
4574 drbd_force_state(device, NS(disk, D_FAILED));
4575 } else if (peer_state.disk == D_NEGOTIATING) {
4576 drbd_err(device, "Disk attach process on the peer node was aborted.\n");
4577 peer_state.disk = D_DISKLESS;
4578 real_peer_disk = D_DISKLESS;
4579 } else {
4580 if (test_and_clear_bit(CONN_DRY_RUN, &peer_device->connection->flags))
4581 return -EIO;
4582 D_ASSERT(device, os.conn == C_WF_REPORT_PARAMS);
4583 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4584 return -EIO;
4585 }
4586 }
4587 }
4588
4589 spin_lock_irq(&device->resource->req_lock);
4590 if (os.i != drbd_read_state(device).i)
4591 goto retry;
4592 clear_bit(CONSIDER_RESYNC, &device->flags);
4593 ns.peer = peer_state.role;
4594 ns.pdsk = real_peer_disk;
4595 ns.peer_isp = (peer_state.aftr_isp | peer_state.user_isp);
4596 if ((ns.conn == C_CONNECTED || ns.conn == C_WF_BITMAP_S) && ns.disk == D_NEGOTIATING)
4597 ns.disk = device->new_state_tmp.disk;
4598 cs_flags = CS_VERBOSE + (os.conn < C_CONNECTED && ns.conn >= C_CONNECTED ? 0 : CS_HARD);
4599 if (ns.pdsk == D_CONSISTENT && drbd_suspended(device) && ns.conn == C_CONNECTED && os.conn < C_CONNECTED &&
4600 test_bit(NEW_CUR_UUID, &device->flags)) {
4601 /* Do not allow tl_restart(RESEND) for a rebooted peer. We can only allow this
4602 for temporal network outages! */
4603 spin_unlock_irq(&device->resource->req_lock);
4604 drbd_err(device, "Aborting Connect, can not thaw IO with an only Consistent peer\n");
4605 tl_clear(peer_device->connection);
4606 drbd_uuid_new_current(device);
4607 clear_bit(NEW_CUR_UUID, &device->flags);
4608 conn_request_state(peer_device->connection, NS2(conn, C_PROTOCOL_ERROR, susp, 0), CS_HARD);
4609 return -EIO;
4610 }
4611 rv = _drbd_set_state(device, ns, cs_flags, NULL);
4612 ns = drbd_read_state(device);
4613 spin_unlock_irq(&device->resource->req_lock);
4614
4615 if (rv < SS_SUCCESS) {
4616 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4617 return -EIO;
4618 }
4619
4620 if (os.conn > C_WF_REPORT_PARAMS) {
4621 if (ns.conn > C_CONNECTED && peer_state.conn <= C_CONNECTED &&
4622 peer_state.disk != D_NEGOTIATING ) {
4623 /* we want resync, peer has not yet decided to sync... */
4624 /* Nowadays only used when forcing a node into primary role and
4625 setting its disk to UpToDate with that */
4626 drbd_send_uuids(peer_device);
4627 drbd_send_current_state(peer_device);
4628 }
4629 }
4630
4631 clear_bit(DISCARD_MY_DATA, &device->flags);
4632
4633 drbd_md_sync(device); /* update connected indicator, la_size_sect, ... */
4634
4635 return 0;
4636 }
4637
receive_sync_uuid(struct drbd_connection * connection,struct packet_info * pi)4638 static int receive_sync_uuid(struct drbd_connection *connection, struct packet_info *pi)
4639 {
4640 struct drbd_peer_device *peer_device;
4641 struct drbd_device *device;
4642 struct p_rs_uuid *p = pi->data;
4643
4644 peer_device = conn_peer_device(connection, pi->vnr);
4645 if (!peer_device)
4646 return -EIO;
4647 device = peer_device->device;
4648
4649 wait_event(device->misc_wait,
4650 device->state.conn == C_WF_SYNC_UUID ||
4651 device->state.conn == C_BEHIND ||
4652 device->state.conn < C_CONNECTED ||
4653 device->state.disk < D_NEGOTIATING);
4654
4655 /* D_ASSERT(device, device->state.conn == C_WF_SYNC_UUID ); */
4656
4657 /* Here the _drbd_uuid_ functions are right, current should
4658 _not_ be rotated into the history */
4659 if (get_ldev_if_state(device, D_NEGOTIATING)) {
4660 _drbd_uuid_set(device, UI_CURRENT, be64_to_cpu(p->uuid));
4661 _drbd_uuid_set(device, UI_BITMAP, 0UL);
4662
4663 drbd_print_uuids(device, "updated sync uuid");
4664 drbd_start_resync(device, C_SYNC_TARGET);
4665
4666 put_ldev(device);
4667 } else
4668 drbd_err(device, "Ignoring SyncUUID packet!\n");
4669
4670 return 0;
4671 }
4672
4673 /*
4674 * receive_bitmap_plain
4675 *
4676 * Return 0 when done, 1 when another iteration is needed, and a negative error
4677 * code upon failure.
4678 */
4679 static int
receive_bitmap_plain(struct drbd_peer_device * peer_device,unsigned int size,unsigned long * p,struct bm_xfer_ctx * c)4680 receive_bitmap_plain(struct drbd_peer_device *peer_device, unsigned int size,
4681 unsigned long *p, struct bm_xfer_ctx *c)
4682 {
4683 unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE -
4684 drbd_header_size(peer_device->connection);
4685 unsigned int num_words = min_t(size_t, data_size / sizeof(*p),
4686 c->bm_words - c->word_offset);
4687 unsigned int want = num_words * sizeof(*p);
4688 int err;
4689
4690 if (want != size) {
4691 drbd_err(peer_device, "%s:want (%u) != size (%u)\n", __func__, want, size);
4692 return -EIO;
4693 }
4694 if (want == 0)
4695 return 0;
4696 err = drbd_recv_all(peer_device->connection, p, want);
4697 if (err)
4698 return err;
4699
4700 drbd_bm_merge_lel(peer_device->device, c->word_offset, num_words, p);
4701
4702 c->word_offset += num_words;
4703 c->bit_offset = c->word_offset * BITS_PER_LONG;
4704 if (c->bit_offset > c->bm_bits)
4705 c->bit_offset = c->bm_bits;
4706
4707 return 1;
4708 }
4709
dcbp_get_code(struct p_compressed_bm * p)4710 static enum drbd_bitmap_code dcbp_get_code(struct p_compressed_bm *p)
4711 {
4712 return (enum drbd_bitmap_code)(p->encoding & 0x0f);
4713 }
4714
dcbp_get_start(struct p_compressed_bm * p)4715 static int dcbp_get_start(struct p_compressed_bm *p)
4716 {
4717 return (p->encoding & 0x80) != 0;
4718 }
4719
dcbp_get_pad_bits(struct p_compressed_bm * p)4720 static int dcbp_get_pad_bits(struct p_compressed_bm *p)
4721 {
4722 return (p->encoding >> 4) & 0x7;
4723 }
4724
4725 /*
4726 * recv_bm_rle_bits
4727 *
4728 * Return 0 when done, 1 when another iteration is needed, and a negative error
4729 * code upon failure.
4730 */
4731 static int
recv_bm_rle_bits(struct drbd_peer_device * peer_device,struct p_compressed_bm * p,struct bm_xfer_ctx * c,unsigned int len)4732 recv_bm_rle_bits(struct drbd_peer_device *peer_device,
4733 struct p_compressed_bm *p,
4734 struct bm_xfer_ctx *c,
4735 unsigned int len)
4736 {
4737 struct bitstream bs;
4738 u64 look_ahead;
4739 u64 rl;
4740 u64 tmp;
4741 unsigned long s = c->bit_offset;
4742 unsigned long e;
4743 int toggle = dcbp_get_start(p);
4744 int have;
4745 int bits;
4746
4747 bitstream_init(&bs, p->code, len, dcbp_get_pad_bits(p));
4748
4749 bits = bitstream_get_bits(&bs, &look_ahead, 64);
4750 if (bits < 0)
4751 return -EIO;
4752
4753 for (have = bits; have > 0; s += rl, toggle = !toggle) {
4754 bits = vli_decode_bits(&rl, look_ahead);
4755 if (bits <= 0)
4756 return -EIO;
4757
4758 if (toggle) {
4759 e = s + rl -1;
4760 if (e >= c->bm_bits) {
4761 drbd_err(peer_device, "bitmap overflow (e:%lu) while decoding bm RLE packet\n", e);
4762 return -EIO;
4763 }
4764 _drbd_bm_set_bits(peer_device->device, s, e);
4765 }
4766
4767 if (have < bits) {
4768 drbd_err(peer_device, "bitmap decoding error: h:%d b:%d la:0x%08llx l:%u/%u\n",
4769 have, bits, look_ahead,
4770 (unsigned int)(bs.cur.b - p->code),
4771 (unsigned int)bs.buf_len);
4772 return -EIO;
4773 }
4774 /* if we consumed all 64 bits, assign 0; >> 64 is "undefined"; */
4775 if (likely(bits < 64))
4776 look_ahead >>= bits;
4777 else
4778 look_ahead = 0;
4779 have -= bits;
4780
4781 bits = bitstream_get_bits(&bs, &tmp, 64 - have);
4782 if (bits < 0)
4783 return -EIO;
4784 look_ahead |= tmp << have;
4785 have += bits;
4786 }
4787
4788 c->bit_offset = s;
4789 bm_xfer_ctx_bit_to_word_offset(c);
4790
4791 return (s != c->bm_bits);
4792 }
4793
4794 /*
4795 * decode_bitmap_c
4796 *
4797 * Return 0 when done, 1 when another iteration is needed, and a negative error
4798 * code upon failure.
4799 */
4800 static int
decode_bitmap_c(struct drbd_peer_device * peer_device,struct p_compressed_bm * p,struct bm_xfer_ctx * c,unsigned int len)4801 decode_bitmap_c(struct drbd_peer_device *peer_device,
4802 struct p_compressed_bm *p,
4803 struct bm_xfer_ctx *c,
4804 unsigned int len)
4805 {
4806 if (dcbp_get_code(p) == RLE_VLI_Bits)
4807 return recv_bm_rle_bits(peer_device, p, c, len - sizeof(*p));
4808
4809 /* other variants had been implemented for evaluation,
4810 * but have been dropped as this one turned out to be "best"
4811 * during all our tests. */
4812
4813 drbd_err(peer_device, "receive_bitmap_c: unknown encoding %u\n", p->encoding);
4814 conn_request_state(peer_device->connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
4815 return -EIO;
4816 }
4817
INFO_bm_xfer_stats(struct drbd_device * device,const char * direction,struct bm_xfer_ctx * c)4818 void INFO_bm_xfer_stats(struct drbd_device *device,
4819 const char *direction, struct bm_xfer_ctx *c)
4820 {
4821 /* what would it take to transfer it "plaintext" */
4822 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
4823 unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
4824 unsigned int plain =
4825 header_size * (DIV_ROUND_UP(c->bm_words, data_size) + 1) +
4826 c->bm_words * sizeof(unsigned long);
4827 unsigned int total = c->bytes[0] + c->bytes[1];
4828 unsigned int r;
4829
4830 /* total can not be zero. but just in case: */
4831 if (total == 0)
4832 return;
4833
4834 /* don't report if not compressed */
4835 if (total >= plain)
4836 return;
4837
4838 /* total < plain. check for overflow, still */
4839 r = (total > UINT_MAX/1000) ? (total / (plain/1000))
4840 : (1000 * total / plain);
4841
4842 if (r > 1000)
4843 r = 1000;
4844
4845 r = 1000 - r;
4846 drbd_info(device, "%s bitmap stats [Bytes(packets)]: plain %u(%u), RLE %u(%u), "
4847 "total %u; compression: %u.%u%%\n",
4848 direction,
4849 c->bytes[1], c->packets[1],
4850 c->bytes[0], c->packets[0],
4851 total, r/10, r % 10);
4852 }
4853
4854 /* Since we are processing the bitfield from lower addresses to higher,
4855 it does not matter if the process it in 32 bit chunks or 64 bit
4856 chunks as long as it is little endian. (Understand it as byte stream,
4857 beginning with the lowest byte...) If we would use big endian
4858 we would need to process it from the highest address to the lowest,
4859 in order to be agnostic to the 32 vs 64 bits issue.
4860
4861 returns 0 on failure, 1 if we successfully received it. */
receive_bitmap(struct drbd_connection * connection,struct packet_info * pi)4862 static int receive_bitmap(struct drbd_connection *connection, struct packet_info *pi)
4863 {
4864 struct drbd_peer_device *peer_device;
4865 struct drbd_device *device;
4866 struct bm_xfer_ctx c;
4867 int err;
4868
4869 peer_device = conn_peer_device(connection, pi->vnr);
4870 if (!peer_device)
4871 return -EIO;
4872 device = peer_device->device;
4873
4874 drbd_bm_lock(device, "receive bitmap", BM_LOCKED_SET_ALLOWED);
4875 /* you are supposed to send additional out-of-sync information
4876 * if you actually set bits during this phase */
4877
4878 c = (struct bm_xfer_ctx) {
4879 .bm_bits = drbd_bm_bits(device),
4880 .bm_words = drbd_bm_words(device),
4881 };
4882
4883 for(;;) {
4884 if (pi->cmd == P_BITMAP)
4885 err = receive_bitmap_plain(peer_device, pi->size, pi->data, &c);
4886 else if (pi->cmd == P_COMPRESSED_BITMAP) {
4887 /* MAYBE: sanity check that we speak proto >= 90,
4888 * and the feature is enabled! */
4889 struct p_compressed_bm *p = pi->data;
4890
4891 if (pi->size > DRBD_SOCKET_BUFFER_SIZE - drbd_header_size(connection)) {
4892 drbd_err(device, "ReportCBitmap packet too large\n");
4893 err = -EIO;
4894 goto out;
4895 }
4896 if (pi->size <= sizeof(*p)) {
4897 drbd_err(device, "ReportCBitmap packet too small (l:%u)\n", pi->size);
4898 err = -EIO;
4899 goto out;
4900 }
4901 err = drbd_recv_all(peer_device->connection, p, pi->size);
4902 if (err)
4903 goto out;
4904 err = decode_bitmap_c(peer_device, p, &c, pi->size);
4905 } else {
4906 drbd_warn(device, "receive_bitmap: cmd neither ReportBitMap nor ReportCBitMap (is 0x%x)", pi->cmd);
4907 err = -EIO;
4908 goto out;
4909 }
4910
4911 c.packets[pi->cmd == P_BITMAP]++;
4912 c.bytes[pi->cmd == P_BITMAP] += drbd_header_size(connection) + pi->size;
4913
4914 if (err <= 0) {
4915 if (err < 0)
4916 goto out;
4917 break;
4918 }
4919 err = drbd_recv_header(peer_device->connection, pi);
4920 if (err)
4921 goto out;
4922 }
4923
4924 INFO_bm_xfer_stats(device, "receive", &c);
4925
4926 if (device->state.conn == C_WF_BITMAP_T) {
4927 enum drbd_state_rv rv;
4928
4929 err = drbd_send_bitmap(device);
4930 if (err)
4931 goto out;
4932 /* Omit CS_ORDERED with this state transition to avoid deadlocks. */
4933 rv = _drbd_request_state(device, NS(conn, C_WF_SYNC_UUID), CS_VERBOSE);
4934 D_ASSERT(device, rv == SS_SUCCESS);
4935 } else if (device->state.conn != C_WF_BITMAP_S) {
4936 /* admin may have requested C_DISCONNECTING,
4937 * other threads may have noticed network errors */
4938 drbd_info(device, "unexpected cstate (%s) in receive_bitmap\n",
4939 drbd_conn_str(device->state.conn));
4940 }
4941 err = 0;
4942
4943 out:
4944 drbd_bm_unlock(device);
4945 if (!err && device->state.conn == C_WF_BITMAP_S)
4946 drbd_start_resync(device, C_SYNC_SOURCE);
4947 return err;
4948 }
4949
receive_skip(struct drbd_connection * connection,struct packet_info * pi)4950 static int receive_skip(struct drbd_connection *connection, struct packet_info *pi)
4951 {
4952 drbd_warn(connection, "skipping unknown optional packet type %d, l: %d!\n",
4953 pi->cmd, pi->size);
4954
4955 return ignore_remaining_packet(connection, pi);
4956 }
4957
receive_UnplugRemote(struct drbd_connection * connection,struct packet_info * pi)4958 static int receive_UnplugRemote(struct drbd_connection *connection, struct packet_info *pi)
4959 {
4960 /* Make sure we've acked all the TCP data associated
4961 * with the data requests being unplugged */
4962 tcp_sock_set_quickack(connection->data.socket->sk, 2);
4963 return 0;
4964 }
4965
receive_out_of_sync(struct drbd_connection * connection,struct packet_info * pi)4966 static int receive_out_of_sync(struct drbd_connection *connection, struct packet_info *pi)
4967 {
4968 struct drbd_peer_device *peer_device;
4969 struct drbd_device *device;
4970 struct p_block_desc *p = pi->data;
4971
4972 peer_device = conn_peer_device(connection, pi->vnr);
4973 if (!peer_device)
4974 return -EIO;
4975 device = peer_device->device;
4976
4977 switch (device->state.conn) {
4978 case C_WF_SYNC_UUID:
4979 case C_WF_BITMAP_T:
4980 case C_BEHIND:
4981 break;
4982 default:
4983 drbd_err(device, "ASSERT FAILED cstate = %s, expected: WFSyncUUID|WFBitMapT|Behind\n",
4984 drbd_conn_str(device->state.conn));
4985 }
4986
4987 drbd_set_out_of_sync(device, be64_to_cpu(p->sector), be32_to_cpu(p->blksize));
4988
4989 return 0;
4990 }
4991
receive_rs_deallocated(struct drbd_connection * connection,struct packet_info * pi)4992 static int receive_rs_deallocated(struct drbd_connection *connection, struct packet_info *pi)
4993 {
4994 struct drbd_peer_device *peer_device;
4995 struct p_block_desc *p = pi->data;
4996 struct drbd_device *device;
4997 sector_t sector;
4998 int size, err = 0;
4999
5000 peer_device = conn_peer_device(connection, pi->vnr);
5001 if (!peer_device)
5002 return -EIO;
5003 device = peer_device->device;
5004
5005 sector = be64_to_cpu(p->sector);
5006 size = be32_to_cpu(p->blksize);
5007
5008 dec_rs_pending(device);
5009
5010 if (get_ldev(device)) {
5011 struct drbd_peer_request *peer_req;
5012 const int op = REQ_OP_WRITE_ZEROES;
5013
5014 peer_req = drbd_alloc_peer_req(peer_device, ID_SYNCER, sector,
5015 size, 0, GFP_NOIO);
5016 if (!peer_req) {
5017 put_ldev(device);
5018 return -ENOMEM;
5019 }
5020
5021 peer_req->w.cb = e_end_resync_block;
5022 peer_req->submit_jif = jiffies;
5023 peer_req->flags |= EE_TRIM;
5024
5025 spin_lock_irq(&device->resource->req_lock);
5026 list_add_tail(&peer_req->w.list, &device->sync_ee);
5027 spin_unlock_irq(&device->resource->req_lock);
5028
5029 atomic_add(pi->size >> 9, &device->rs_sect_ev);
5030 err = drbd_submit_peer_request(device, peer_req, op, 0, DRBD_FAULT_RS_WR);
5031
5032 if (err) {
5033 spin_lock_irq(&device->resource->req_lock);
5034 list_del(&peer_req->w.list);
5035 spin_unlock_irq(&device->resource->req_lock);
5036
5037 drbd_free_peer_req(device, peer_req);
5038 put_ldev(device);
5039 err = 0;
5040 goto fail;
5041 }
5042
5043 inc_unacked(device);
5044
5045 /* No put_ldev() here. Gets called in drbd_endio_write_sec_final(),
5046 as well as drbd_rs_complete_io() */
5047 } else {
5048 fail:
5049 drbd_rs_complete_io(device, sector);
5050 drbd_send_ack_ex(peer_device, P_NEG_ACK, sector, size, ID_SYNCER);
5051 }
5052
5053 atomic_add(size >> 9, &device->rs_sect_in);
5054
5055 return err;
5056 }
5057
5058 struct data_cmd {
5059 int expect_payload;
5060 unsigned int pkt_size;
5061 int (*fn)(struct drbd_connection *, struct packet_info *);
5062 };
5063
5064 static struct data_cmd drbd_cmd_handler[] = {
5065 [P_DATA] = { 1, sizeof(struct p_data), receive_Data },
5066 [P_DATA_REPLY] = { 1, sizeof(struct p_data), receive_DataReply },
5067 [P_RS_DATA_REPLY] = { 1, sizeof(struct p_data), receive_RSDataReply } ,
5068 [P_BARRIER] = { 0, sizeof(struct p_barrier), receive_Barrier } ,
5069 [P_BITMAP] = { 1, 0, receive_bitmap } ,
5070 [P_COMPRESSED_BITMAP] = { 1, 0, receive_bitmap } ,
5071 [P_UNPLUG_REMOTE] = { 0, 0, receive_UnplugRemote },
5072 [P_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest },
5073 [P_RS_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest },
5074 [P_SYNC_PARAM] = { 1, 0, receive_SyncParam },
5075 [P_SYNC_PARAM89] = { 1, 0, receive_SyncParam },
5076 [P_PROTOCOL] = { 1, sizeof(struct p_protocol), receive_protocol },
5077 [P_UUIDS] = { 0, sizeof(struct p_uuids), receive_uuids },
5078 [P_SIZES] = { 0, sizeof(struct p_sizes), receive_sizes },
5079 [P_STATE] = { 0, sizeof(struct p_state), receive_state },
5080 [P_STATE_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_state },
5081 [P_SYNC_UUID] = { 0, sizeof(struct p_rs_uuid), receive_sync_uuid },
5082 [P_OV_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest },
5083 [P_OV_REPLY] = { 1, sizeof(struct p_block_req), receive_DataRequest },
5084 [P_CSUM_RS_REQUEST] = { 1, sizeof(struct p_block_req), receive_DataRequest },
5085 [P_RS_THIN_REQ] = { 0, sizeof(struct p_block_req), receive_DataRequest },
5086 [P_DELAY_PROBE] = { 0, sizeof(struct p_delay_probe93), receive_skip },
5087 [P_OUT_OF_SYNC] = { 0, sizeof(struct p_block_desc), receive_out_of_sync },
5088 [P_CONN_ST_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_conn_state },
5089 [P_PROTOCOL_UPDATE] = { 1, sizeof(struct p_protocol), receive_protocol },
5090 [P_TRIM] = { 0, sizeof(struct p_trim), receive_Data },
5091 [P_ZEROES] = { 0, sizeof(struct p_trim), receive_Data },
5092 [P_RS_DEALLOCATED] = { 0, sizeof(struct p_block_desc), receive_rs_deallocated },
5093 [P_WSAME] = { 1, sizeof(struct p_wsame), receive_Data },
5094 };
5095
drbdd(struct drbd_connection * connection)5096 static void drbdd(struct drbd_connection *connection)
5097 {
5098 struct packet_info pi;
5099 size_t shs; /* sub header size */
5100 int err;
5101
5102 while (get_t_state(&connection->receiver) == RUNNING) {
5103 struct data_cmd const *cmd;
5104
5105 drbd_thread_current_set_cpu(&connection->receiver);
5106 update_receiver_timing_details(connection, drbd_recv_header_maybe_unplug);
5107 if (drbd_recv_header_maybe_unplug(connection, &pi))
5108 goto err_out;
5109
5110 cmd = &drbd_cmd_handler[pi.cmd];
5111 if (unlikely(pi.cmd >= ARRAY_SIZE(drbd_cmd_handler) || !cmd->fn)) {
5112 drbd_err(connection, "Unexpected data packet %s (0x%04x)",
5113 cmdname(pi.cmd), pi.cmd);
5114 goto err_out;
5115 }
5116
5117 shs = cmd->pkt_size;
5118 if (pi.cmd == P_SIZES && connection->agreed_features & DRBD_FF_WSAME)
5119 shs += sizeof(struct o_qlim);
5120 if (pi.size > shs && !cmd->expect_payload) {
5121 drbd_err(connection, "No payload expected %s l:%d\n",
5122 cmdname(pi.cmd), pi.size);
5123 goto err_out;
5124 }
5125 if (pi.size < shs) {
5126 drbd_err(connection, "%s: unexpected packet size, expected:%d received:%d\n",
5127 cmdname(pi.cmd), (int)shs, pi.size);
5128 goto err_out;
5129 }
5130
5131 if (shs) {
5132 update_receiver_timing_details(connection, drbd_recv_all_warn);
5133 err = drbd_recv_all_warn(connection, pi.data, shs);
5134 if (err)
5135 goto err_out;
5136 pi.size -= shs;
5137 }
5138
5139 update_receiver_timing_details(connection, cmd->fn);
5140 err = cmd->fn(connection, &pi);
5141 if (err) {
5142 drbd_err(connection, "error receiving %s, e: %d l: %d!\n",
5143 cmdname(pi.cmd), err, pi.size);
5144 goto err_out;
5145 }
5146 }
5147 return;
5148
5149 err_out:
5150 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
5151 }
5152
conn_disconnect(struct drbd_connection * connection)5153 static void conn_disconnect(struct drbd_connection *connection)
5154 {
5155 struct drbd_peer_device *peer_device;
5156 enum drbd_conns oc;
5157 int vnr;
5158
5159 if (connection->cstate == C_STANDALONE)
5160 return;
5161
5162 /* We are about to start the cleanup after connection loss.
5163 * Make sure drbd_make_request knows about that.
5164 * Usually we should be in some network failure state already,
5165 * but just in case we are not, we fix it up here.
5166 */
5167 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
5168
5169 /* ack_receiver does not clean up anything. it must not interfere, either */
5170 drbd_thread_stop(&connection->ack_receiver);
5171 if (connection->ack_sender) {
5172 destroy_workqueue(connection->ack_sender);
5173 connection->ack_sender = NULL;
5174 }
5175 drbd_free_sock(connection);
5176
5177 rcu_read_lock();
5178 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
5179 struct drbd_device *device = peer_device->device;
5180 kref_get(&device->kref);
5181 rcu_read_unlock();
5182 drbd_disconnected(peer_device);
5183 kref_put(&device->kref, drbd_destroy_device);
5184 rcu_read_lock();
5185 }
5186 rcu_read_unlock();
5187
5188 if (!list_empty(&connection->current_epoch->list))
5189 drbd_err(connection, "ASSERTION FAILED: connection->current_epoch->list not empty\n");
5190 /* ok, no more ee's on the fly, it is safe to reset the epoch_size */
5191 atomic_set(&connection->current_epoch->epoch_size, 0);
5192 connection->send.seen_any_write_yet = false;
5193
5194 drbd_info(connection, "Connection closed\n");
5195
5196 if (conn_highest_role(connection) == R_PRIMARY && conn_highest_pdsk(connection) >= D_UNKNOWN)
5197 conn_try_outdate_peer_async(connection);
5198
5199 spin_lock_irq(&connection->resource->req_lock);
5200 oc = connection->cstate;
5201 if (oc >= C_UNCONNECTED)
5202 _conn_request_state(connection, NS(conn, C_UNCONNECTED), CS_VERBOSE);
5203
5204 spin_unlock_irq(&connection->resource->req_lock);
5205
5206 if (oc == C_DISCONNECTING)
5207 conn_request_state(connection, NS(conn, C_STANDALONE), CS_VERBOSE | CS_HARD);
5208 }
5209
drbd_disconnected(struct drbd_peer_device * peer_device)5210 static int drbd_disconnected(struct drbd_peer_device *peer_device)
5211 {
5212 struct drbd_device *device = peer_device->device;
5213 unsigned int i;
5214
5215 /* wait for current activity to cease. */
5216 spin_lock_irq(&device->resource->req_lock);
5217 _drbd_wait_ee_list_empty(device, &device->active_ee);
5218 _drbd_wait_ee_list_empty(device, &device->sync_ee);
5219 _drbd_wait_ee_list_empty(device, &device->read_ee);
5220 spin_unlock_irq(&device->resource->req_lock);
5221
5222 /* We do not have data structures that would allow us to
5223 * get the rs_pending_cnt down to 0 again.
5224 * * On C_SYNC_TARGET we do not have any data structures describing
5225 * the pending RSDataRequest's we have sent.
5226 * * On C_SYNC_SOURCE there is no data structure that tracks
5227 * the P_RS_DATA_REPLY blocks that we sent to the SyncTarget.
5228 * And no, it is not the sum of the reference counts in the
5229 * resync_LRU. The resync_LRU tracks the whole operation including
5230 * the disk-IO, while the rs_pending_cnt only tracks the blocks
5231 * on the fly. */
5232 drbd_rs_cancel_all(device);
5233 device->rs_total = 0;
5234 device->rs_failed = 0;
5235 atomic_set(&device->rs_pending_cnt, 0);
5236 wake_up(&device->misc_wait);
5237
5238 del_timer_sync(&device->resync_timer);
5239 resync_timer_fn(&device->resync_timer);
5240
5241 /* wait for all w_e_end_data_req, w_e_end_rsdata_req, w_send_barrier,
5242 * w_make_resync_request etc. which may still be on the worker queue
5243 * to be "canceled" */
5244 drbd_flush_workqueue(&peer_device->connection->sender_work);
5245
5246 drbd_finish_peer_reqs(device);
5247
5248 /* This second workqueue flush is necessary, since drbd_finish_peer_reqs()
5249 might have issued a work again. The one before drbd_finish_peer_reqs() is
5250 necessary to reclain net_ee in drbd_finish_peer_reqs(). */
5251 drbd_flush_workqueue(&peer_device->connection->sender_work);
5252
5253 /* need to do it again, drbd_finish_peer_reqs() may have populated it
5254 * again via drbd_try_clear_on_disk_bm(). */
5255 drbd_rs_cancel_all(device);
5256
5257 kfree(device->p_uuid);
5258 device->p_uuid = NULL;
5259
5260 if (!drbd_suspended(device))
5261 tl_clear(peer_device->connection);
5262
5263 drbd_md_sync(device);
5264
5265 if (get_ldev(device)) {
5266 drbd_bitmap_io(device, &drbd_bm_write_copy_pages,
5267 "write from disconnected", BM_LOCKED_CHANGE_ALLOWED);
5268 put_ldev(device);
5269 }
5270
5271 /* tcp_close and release of sendpage pages can be deferred. I don't
5272 * want to use SO_LINGER, because apparently it can be deferred for
5273 * more than 20 seconds (longest time I checked).
5274 *
5275 * Actually we don't care for exactly when the network stack does its
5276 * put_page(), but release our reference on these pages right here.
5277 */
5278 i = drbd_free_peer_reqs(device, &device->net_ee);
5279 if (i)
5280 drbd_info(device, "net_ee not empty, killed %u entries\n", i);
5281 i = atomic_read(&device->pp_in_use_by_net);
5282 if (i)
5283 drbd_info(device, "pp_in_use_by_net = %d, expected 0\n", i);
5284 i = atomic_read(&device->pp_in_use);
5285 if (i)
5286 drbd_info(device, "pp_in_use = %d, expected 0\n", i);
5287
5288 D_ASSERT(device, list_empty(&device->read_ee));
5289 D_ASSERT(device, list_empty(&device->active_ee));
5290 D_ASSERT(device, list_empty(&device->sync_ee));
5291 D_ASSERT(device, list_empty(&device->done_ee));
5292
5293 return 0;
5294 }
5295
5296 /*
5297 * We support PRO_VERSION_MIN to PRO_VERSION_MAX. The protocol version
5298 * we can agree on is stored in agreed_pro_version.
5299 *
5300 * feature flags and the reserved array should be enough room for future
5301 * enhancements of the handshake protocol, and possible plugins...
5302 *
5303 * for now, they are expected to be zero, but ignored.
5304 */
drbd_send_features(struct drbd_connection * connection)5305 static int drbd_send_features(struct drbd_connection *connection)
5306 {
5307 struct drbd_socket *sock;
5308 struct p_connection_features *p;
5309
5310 sock = &connection->data;
5311 p = conn_prepare_command(connection, sock);
5312 if (!p)
5313 return -EIO;
5314 memset(p, 0, sizeof(*p));
5315 p->protocol_min = cpu_to_be32(PRO_VERSION_MIN);
5316 p->protocol_max = cpu_to_be32(PRO_VERSION_MAX);
5317 p->feature_flags = cpu_to_be32(PRO_FEATURES);
5318 return conn_send_command(connection, sock, P_CONNECTION_FEATURES, sizeof(*p), NULL, 0);
5319 }
5320
5321 /*
5322 * return values:
5323 * 1 yes, we have a valid connection
5324 * 0 oops, did not work out, please try again
5325 * -1 peer talks different language,
5326 * no point in trying again, please go standalone.
5327 */
drbd_do_features(struct drbd_connection * connection)5328 static int drbd_do_features(struct drbd_connection *connection)
5329 {
5330 /* ASSERT current == connection->receiver ... */
5331 struct p_connection_features *p;
5332 const int expect = sizeof(struct p_connection_features);
5333 struct packet_info pi;
5334 int err;
5335
5336 err = drbd_send_features(connection);
5337 if (err)
5338 return 0;
5339
5340 err = drbd_recv_header(connection, &pi);
5341 if (err)
5342 return 0;
5343
5344 if (pi.cmd != P_CONNECTION_FEATURES) {
5345 drbd_err(connection, "expected ConnectionFeatures packet, received: %s (0x%04x)\n",
5346 cmdname(pi.cmd), pi.cmd);
5347 return -1;
5348 }
5349
5350 if (pi.size != expect) {
5351 drbd_err(connection, "expected ConnectionFeatures length: %u, received: %u\n",
5352 expect, pi.size);
5353 return -1;
5354 }
5355
5356 p = pi.data;
5357 err = drbd_recv_all_warn(connection, p, expect);
5358 if (err)
5359 return 0;
5360
5361 p->protocol_min = be32_to_cpu(p->protocol_min);
5362 p->protocol_max = be32_to_cpu(p->protocol_max);
5363 if (p->protocol_max == 0)
5364 p->protocol_max = p->protocol_min;
5365
5366 if (PRO_VERSION_MAX < p->protocol_min ||
5367 PRO_VERSION_MIN > p->protocol_max)
5368 goto incompat;
5369
5370 connection->agreed_pro_version = min_t(int, PRO_VERSION_MAX, p->protocol_max);
5371 connection->agreed_features = PRO_FEATURES & be32_to_cpu(p->feature_flags);
5372
5373 drbd_info(connection, "Handshake successful: "
5374 "Agreed network protocol version %d\n", connection->agreed_pro_version);
5375
5376 drbd_info(connection, "Feature flags enabled on protocol level: 0x%x%s%s%s%s.\n",
5377 connection->agreed_features,
5378 connection->agreed_features & DRBD_FF_TRIM ? " TRIM" : "",
5379 connection->agreed_features & DRBD_FF_THIN_RESYNC ? " THIN_RESYNC" : "",
5380 connection->agreed_features & DRBD_FF_WSAME ? " WRITE_SAME" : "",
5381 connection->agreed_features & DRBD_FF_WZEROES ? " WRITE_ZEROES" :
5382 connection->agreed_features ? "" : " none");
5383
5384 return 1;
5385
5386 incompat:
5387 drbd_err(connection, "incompatible DRBD dialects: "
5388 "I support %d-%d, peer supports %d-%d\n",
5389 PRO_VERSION_MIN, PRO_VERSION_MAX,
5390 p->protocol_min, p->protocol_max);
5391 return -1;
5392 }
5393
5394 #if !defined(CONFIG_CRYPTO_HMAC) && !defined(CONFIG_CRYPTO_HMAC_MODULE)
drbd_do_auth(struct drbd_connection * connection)5395 static int drbd_do_auth(struct drbd_connection *connection)
5396 {
5397 drbd_err(connection, "This kernel was build without CONFIG_CRYPTO_HMAC.\n");
5398 drbd_err(connection, "You need to disable 'cram-hmac-alg' in drbd.conf.\n");
5399 return -1;
5400 }
5401 #else
5402 #define CHALLENGE_LEN 64
5403
5404 /* Return value:
5405 1 - auth succeeded,
5406 0 - failed, try again (network error),
5407 -1 - auth failed, don't try again.
5408 */
5409
drbd_do_auth(struct drbd_connection * connection)5410 static int drbd_do_auth(struct drbd_connection *connection)
5411 {
5412 struct drbd_socket *sock;
5413 char my_challenge[CHALLENGE_LEN]; /* 64 Bytes... */
5414 char *response = NULL;
5415 char *right_response = NULL;
5416 char *peers_ch = NULL;
5417 unsigned int key_len;
5418 char secret[SHARED_SECRET_MAX]; /* 64 byte */
5419 unsigned int resp_size;
5420 struct shash_desc *desc;
5421 struct packet_info pi;
5422 struct net_conf *nc;
5423 int err, rv;
5424
5425 /* FIXME: Put the challenge/response into the preallocated socket buffer. */
5426
5427 rcu_read_lock();
5428 nc = rcu_dereference(connection->net_conf);
5429 key_len = strlen(nc->shared_secret);
5430 memcpy(secret, nc->shared_secret, key_len);
5431 rcu_read_unlock();
5432
5433 desc = kmalloc(sizeof(struct shash_desc) +
5434 crypto_shash_descsize(connection->cram_hmac_tfm),
5435 GFP_KERNEL);
5436 if (!desc) {
5437 rv = -1;
5438 goto fail;
5439 }
5440 desc->tfm = connection->cram_hmac_tfm;
5441
5442 rv = crypto_shash_setkey(connection->cram_hmac_tfm, (u8 *)secret, key_len);
5443 if (rv) {
5444 drbd_err(connection, "crypto_shash_setkey() failed with %d\n", rv);
5445 rv = -1;
5446 goto fail;
5447 }
5448
5449 get_random_bytes(my_challenge, CHALLENGE_LEN);
5450
5451 sock = &connection->data;
5452 if (!conn_prepare_command(connection, sock)) {
5453 rv = 0;
5454 goto fail;
5455 }
5456 rv = !conn_send_command(connection, sock, P_AUTH_CHALLENGE, 0,
5457 my_challenge, CHALLENGE_LEN);
5458 if (!rv)
5459 goto fail;
5460
5461 err = drbd_recv_header(connection, &pi);
5462 if (err) {
5463 rv = 0;
5464 goto fail;
5465 }
5466
5467 if (pi.cmd != P_AUTH_CHALLENGE) {
5468 drbd_err(connection, "expected AuthChallenge packet, received: %s (0x%04x)\n",
5469 cmdname(pi.cmd), pi.cmd);
5470 rv = -1;
5471 goto fail;
5472 }
5473
5474 if (pi.size > CHALLENGE_LEN * 2) {
5475 drbd_err(connection, "expected AuthChallenge payload too big.\n");
5476 rv = -1;
5477 goto fail;
5478 }
5479
5480 if (pi.size < CHALLENGE_LEN) {
5481 drbd_err(connection, "AuthChallenge payload too small.\n");
5482 rv = -1;
5483 goto fail;
5484 }
5485
5486 peers_ch = kmalloc(pi.size, GFP_NOIO);
5487 if (peers_ch == NULL) {
5488 drbd_err(connection, "kmalloc of peers_ch failed\n");
5489 rv = -1;
5490 goto fail;
5491 }
5492
5493 err = drbd_recv_all_warn(connection, peers_ch, pi.size);
5494 if (err) {
5495 rv = 0;
5496 goto fail;
5497 }
5498
5499 if (!memcmp(my_challenge, peers_ch, CHALLENGE_LEN)) {
5500 drbd_err(connection, "Peer presented the same challenge!\n");
5501 rv = -1;
5502 goto fail;
5503 }
5504
5505 resp_size = crypto_shash_digestsize(connection->cram_hmac_tfm);
5506 response = kmalloc(resp_size, GFP_NOIO);
5507 if (response == NULL) {
5508 drbd_err(connection, "kmalloc of response failed\n");
5509 rv = -1;
5510 goto fail;
5511 }
5512
5513 rv = crypto_shash_digest(desc, peers_ch, pi.size, response);
5514 if (rv) {
5515 drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv);
5516 rv = -1;
5517 goto fail;
5518 }
5519
5520 if (!conn_prepare_command(connection, sock)) {
5521 rv = 0;
5522 goto fail;
5523 }
5524 rv = !conn_send_command(connection, sock, P_AUTH_RESPONSE, 0,
5525 response, resp_size);
5526 if (!rv)
5527 goto fail;
5528
5529 err = drbd_recv_header(connection, &pi);
5530 if (err) {
5531 rv = 0;
5532 goto fail;
5533 }
5534
5535 if (pi.cmd != P_AUTH_RESPONSE) {
5536 drbd_err(connection, "expected AuthResponse packet, received: %s (0x%04x)\n",
5537 cmdname(pi.cmd), pi.cmd);
5538 rv = 0;
5539 goto fail;
5540 }
5541
5542 if (pi.size != resp_size) {
5543 drbd_err(connection, "expected AuthResponse payload of wrong size\n");
5544 rv = 0;
5545 goto fail;
5546 }
5547
5548 err = drbd_recv_all_warn(connection, response , resp_size);
5549 if (err) {
5550 rv = 0;
5551 goto fail;
5552 }
5553
5554 right_response = kmalloc(resp_size, GFP_NOIO);
5555 if (right_response == NULL) {
5556 drbd_err(connection, "kmalloc of right_response failed\n");
5557 rv = -1;
5558 goto fail;
5559 }
5560
5561 rv = crypto_shash_digest(desc, my_challenge, CHALLENGE_LEN,
5562 right_response);
5563 if (rv) {
5564 drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv);
5565 rv = -1;
5566 goto fail;
5567 }
5568
5569 rv = !memcmp(response, right_response, resp_size);
5570
5571 if (rv)
5572 drbd_info(connection, "Peer authenticated using %d bytes HMAC\n",
5573 resp_size);
5574 else
5575 rv = -1;
5576
5577 fail:
5578 kfree(peers_ch);
5579 kfree(response);
5580 kfree(right_response);
5581 if (desc) {
5582 shash_desc_zero(desc);
5583 kfree(desc);
5584 }
5585
5586 return rv;
5587 }
5588 #endif
5589
drbd_receiver(struct drbd_thread * thi)5590 int drbd_receiver(struct drbd_thread *thi)
5591 {
5592 struct drbd_connection *connection = thi->connection;
5593 int h;
5594
5595 drbd_info(connection, "receiver (re)started\n");
5596
5597 do {
5598 h = conn_connect(connection);
5599 if (h == 0) {
5600 conn_disconnect(connection);
5601 schedule_timeout_interruptible(HZ);
5602 }
5603 if (h == -1) {
5604 drbd_warn(connection, "Discarding network configuration.\n");
5605 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
5606 }
5607 } while (h == 0);
5608
5609 if (h > 0) {
5610 blk_start_plug(&connection->receiver_plug);
5611 drbdd(connection);
5612 blk_finish_plug(&connection->receiver_plug);
5613 }
5614
5615 conn_disconnect(connection);
5616
5617 drbd_info(connection, "receiver terminated\n");
5618 return 0;
5619 }
5620
5621 /* ********* acknowledge sender ******** */
5622
got_conn_RqSReply(struct drbd_connection * connection,struct packet_info * pi)5623 static int got_conn_RqSReply(struct drbd_connection *connection, struct packet_info *pi)
5624 {
5625 struct p_req_state_reply *p = pi->data;
5626 int retcode = be32_to_cpu(p->retcode);
5627
5628 if (retcode >= SS_SUCCESS) {
5629 set_bit(CONN_WD_ST_CHG_OKAY, &connection->flags);
5630 } else {
5631 set_bit(CONN_WD_ST_CHG_FAIL, &connection->flags);
5632 drbd_err(connection, "Requested state change failed by peer: %s (%d)\n",
5633 drbd_set_st_err_str(retcode), retcode);
5634 }
5635 wake_up(&connection->ping_wait);
5636
5637 return 0;
5638 }
5639
got_RqSReply(struct drbd_connection * connection,struct packet_info * pi)5640 static int got_RqSReply(struct drbd_connection *connection, struct packet_info *pi)
5641 {
5642 struct drbd_peer_device *peer_device;
5643 struct drbd_device *device;
5644 struct p_req_state_reply *p = pi->data;
5645 int retcode = be32_to_cpu(p->retcode);
5646
5647 peer_device = conn_peer_device(connection, pi->vnr);
5648 if (!peer_device)
5649 return -EIO;
5650 device = peer_device->device;
5651
5652 if (test_bit(CONN_WD_ST_CHG_REQ, &connection->flags)) {
5653 D_ASSERT(device, connection->agreed_pro_version < 100);
5654 return got_conn_RqSReply(connection, pi);
5655 }
5656
5657 if (retcode >= SS_SUCCESS) {
5658 set_bit(CL_ST_CHG_SUCCESS, &device->flags);
5659 } else {
5660 set_bit(CL_ST_CHG_FAIL, &device->flags);
5661 drbd_err(device, "Requested state change failed by peer: %s (%d)\n",
5662 drbd_set_st_err_str(retcode), retcode);
5663 }
5664 wake_up(&device->state_wait);
5665
5666 return 0;
5667 }
5668
got_Ping(struct drbd_connection * connection,struct packet_info * pi)5669 static int got_Ping(struct drbd_connection *connection, struct packet_info *pi)
5670 {
5671 return drbd_send_ping_ack(connection);
5672
5673 }
5674
got_PingAck(struct drbd_connection * connection,struct packet_info * pi)5675 static int got_PingAck(struct drbd_connection *connection, struct packet_info *pi)
5676 {
5677 /* restore idle timeout */
5678 connection->meta.socket->sk->sk_rcvtimeo = connection->net_conf->ping_int*HZ;
5679 if (!test_and_set_bit(GOT_PING_ACK, &connection->flags))
5680 wake_up(&connection->ping_wait);
5681
5682 return 0;
5683 }
5684
got_IsInSync(struct drbd_connection * connection,struct packet_info * pi)5685 static int got_IsInSync(struct drbd_connection *connection, struct packet_info *pi)
5686 {
5687 struct drbd_peer_device *peer_device;
5688 struct drbd_device *device;
5689 struct p_block_ack *p = pi->data;
5690 sector_t sector = be64_to_cpu(p->sector);
5691 int blksize = be32_to_cpu(p->blksize);
5692
5693 peer_device = conn_peer_device(connection, pi->vnr);
5694 if (!peer_device)
5695 return -EIO;
5696 device = peer_device->device;
5697
5698 D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89);
5699
5700 update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5701
5702 if (get_ldev(device)) {
5703 drbd_rs_complete_io(device, sector);
5704 drbd_set_in_sync(device, sector, blksize);
5705 /* rs_same_csums is supposed to count in units of BM_BLOCK_SIZE */
5706 device->rs_same_csum += (blksize >> BM_BLOCK_SHIFT);
5707 put_ldev(device);
5708 }
5709 dec_rs_pending(device);
5710 atomic_add(blksize >> 9, &device->rs_sect_in);
5711
5712 return 0;
5713 }
5714
5715 static int
validate_req_change_req_state(struct drbd_device * device,u64 id,sector_t sector,struct rb_root * root,const char * func,enum drbd_req_event what,bool missing_ok)5716 validate_req_change_req_state(struct drbd_device *device, u64 id, sector_t sector,
5717 struct rb_root *root, const char *func,
5718 enum drbd_req_event what, bool missing_ok)
5719 {
5720 struct drbd_request *req;
5721 struct bio_and_error m;
5722
5723 spin_lock_irq(&device->resource->req_lock);
5724 req = find_request(device, root, id, sector, missing_ok, func);
5725 if (unlikely(!req)) {
5726 spin_unlock_irq(&device->resource->req_lock);
5727 return -EIO;
5728 }
5729 __req_mod(req, what, &m);
5730 spin_unlock_irq(&device->resource->req_lock);
5731
5732 if (m.bio)
5733 complete_master_bio(device, &m);
5734 return 0;
5735 }
5736
got_BlockAck(struct drbd_connection * connection,struct packet_info * pi)5737 static int got_BlockAck(struct drbd_connection *connection, struct packet_info *pi)
5738 {
5739 struct drbd_peer_device *peer_device;
5740 struct drbd_device *device;
5741 struct p_block_ack *p = pi->data;
5742 sector_t sector = be64_to_cpu(p->sector);
5743 int blksize = be32_to_cpu(p->blksize);
5744 enum drbd_req_event what;
5745
5746 peer_device = conn_peer_device(connection, pi->vnr);
5747 if (!peer_device)
5748 return -EIO;
5749 device = peer_device->device;
5750
5751 update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5752
5753 if (p->block_id == ID_SYNCER) {
5754 drbd_set_in_sync(device, sector, blksize);
5755 dec_rs_pending(device);
5756 return 0;
5757 }
5758 switch (pi->cmd) {
5759 case P_RS_WRITE_ACK:
5760 what = WRITE_ACKED_BY_PEER_AND_SIS;
5761 break;
5762 case P_WRITE_ACK:
5763 what = WRITE_ACKED_BY_PEER;
5764 break;
5765 case P_RECV_ACK:
5766 what = RECV_ACKED_BY_PEER;
5767 break;
5768 case P_SUPERSEDED:
5769 what = CONFLICT_RESOLVED;
5770 break;
5771 case P_RETRY_WRITE:
5772 what = POSTPONE_WRITE;
5773 break;
5774 default:
5775 BUG();
5776 }
5777
5778 return validate_req_change_req_state(device, p->block_id, sector,
5779 &device->write_requests, __func__,
5780 what, false);
5781 }
5782
got_NegAck(struct drbd_connection * connection,struct packet_info * pi)5783 static int got_NegAck(struct drbd_connection *connection, struct packet_info *pi)
5784 {
5785 struct drbd_peer_device *peer_device;
5786 struct drbd_device *device;
5787 struct p_block_ack *p = pi->data;
5788 sector_t sector = be64_to_cpu(p->sector);
5789 int size = be32_to_cpu(p->blksize);
5790 int err;
5791
5792 peer_device = conn_peer_device(connection, pi->vnr);
5793 if (!peer_device)
5794 return -EIO;
5795 device = peer_device->device;
5796
5797 update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5798
5799 if (p->block_id == ID_SYNCER) {
5800 dec_rs_pending(device);
5801 drbd_rs_failed_io(device, sector, size);
5802 return 0;
5803 }
5804
5805 err = validate_req_change_req_state(device, p->block_id, sector,
5806 &device->write_requests, __func__,
5807 NEG_ACKED, true);
5808 if (err) {
5809 /* Protocol A has no P_WRITE_ACKs, but has P_NEG_ACKs.
5810 The master bio might already be completed, therefore the
5811 request is no longer in the collision hash. */
5812 /* In Protocol B we might already have got a P_RECV_ACK
5813 but then get a P_NEG_ACK afterwards. */
5814 drbd_set_out_of_sync(device, sector, size);
5815 }
5816 return 0;
5817 }
5818
got_NegDReply(struct drbd_connection * connection,struct packet_info * pi)5819 static int got_NegDReply(struct drbd_connection *connection, struct packet_info *pi)
5820 {
5821 struct drbd_peer_device *peer_device;
5822 struct drbd_device *device;
5823 struct p_block_ack *p = pi->data;
5824 sector_t sector = be64_to_cpu(p->sector);
5825
5826 peer_device = conn_peer_device(connection, pi->vnr);
5827 if (!peer_device)
5828 return -EIO;
5829 device = peer_device->device;
5830
5831 update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5832
5833 drbd_err(device, "Got NegDReply; Sector %llus, len %u.\n",
5834 (unsigned long long)sector, be32_to_cpu(p->blksize));
5835
5836 return validate_req_change_req_state(device, p->block_id, sector,
5837 &device->read_requests, __func__,
5838 NEG_ACKED, false);
5839 }
5840
got_NegRSDReply(struct drbd_connection * connection,struct packet_info * pi)5841 static int got_NegRSDReply(struct drbd_connection *connection, struct packet_info *pi)
5842 {
5843 struct drbd_peer_device *peer_device;
5844 struct drbd_device *device;
5845 sector_t sector;
5846 int size;
5847 struct p_block_ack *p = pi->data;
5848
5849 peer_device = conn_peer_device(connection, pi->vnr);
5850 if (!peer_device)
5851 return -EIO;
5852 device = peer_device->device;
5853
5854 sector = be64_to_cpu(p->sector);
5855 size = be32_to_cpu(p->blksize);
5856
5857 update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5858
5859 dec_rs_pending(device);
5860
5861 if (get_ldev_if_state(device, D_FAILED)) {
5862 drbd_rs_complete_io(device, sector);
5863 switch (pi->cmd) {
5864 case P_NEG_RS_DREPLY:
5865 drbd_rs_failed_io(device, sector, size);
5866 break;
5867 case P_RS_CANCEL:
5868 break;
5869 default:
5870 BUG();
5871 }
5872 put_ldev(device);
5873 }
5874
5875 return 0;
5876 }
5877
got_BarrierAck(struct drbd_connection * connection,struct packet_info * pi)5878 static int got_BarrierAck(struct drbd_connection *connection, struct packet_info *pi)
5879 {
5880 struct p_barrier_ack *p = pi->data;
5881 struct drbd_peer_device *peer_device;
5882 int vnr;
5883
5884 tl_release(connection, p->barrier, be32_to_cpu(p->set_size));
5885
5886 rcu_read_lock();
5887 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
5888 struct drbd_device *device = peer_device->device;
5889
5890 if (device->state.conn == C_AHEAD &&
5891 atomic_read(&device->ap_in_flight) == 0 &&
5892 !test_and_set_bit(AHEAD_TO_SYNC_SOURCE, &device->flags)) {
5893 device->start_resync_timer.expires = jiffies + HZ;
5894 add_timer(&device->start_resync_timer);
5895 }
5896 }
5897 rcu_read_unlock();
5898
5899 return 0;
5900 }
5901
got_OVResult(struct drbd_connection * connection,struct packet_info * pi)5902 static int got_OVResult(struct drbd_connection *connection, struct packet_info *pi)
5903 {
5904 struct drbd_peer_device *peer_device;
5905 struct drbd_device *device;
5906 struct p_block_ack *p = pi->data;
5907 struct drbd_device_work *dw;
5908 sector_t sector;
5909 int size;
5910
5911 peer_device = conn_peer_device(connection, pi->vnr);
5912 if (!peer_device)
5913 return -EIO;
5914 device = peer_device->device;
5915
5916 sector = be64_to_cpu(p->sector);
5917 size = be32_to_cpu(p->blksize);
5918
5919 update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5920
5921 if (be64_to_cpu(p->block_id) == ID_OUT_OF_SYNC)
5922 drbd_ov_out_of_sync_found(device, sector, size);
5923 else
5924 ov_out_of_sync_print(device);
5925
5926 if (!get_ldev(device))
5927 return 0;
5928
5929 drbd_rs_complete_io(device, sector);
5930 dec_rs_pending(device);
5931
5932 --device->ov_left;
5933
5934 /* let's advance progress step marks only for every other megabyte */
5935 if ((device->ov_left & 0x200) == 0x200)
5936 drbd_advance_rs_marks(device, device->ov_left);
5937
5938 if (device->ov_left == 0) {
5939 dw = kmalloc(sizeof(*dw), GFP_NOIO);
5940 if (dw) {
5941 dw->w.cb = w_ov_finished;
5942 dw->device = device;
5943 drbd_queue_work(&peer_device->connection->sender_work, &dw->w);
5944 } else {
5945 drbd_err(device, "kmalloc(dw) failed.");
5946 ov_out_of_sync_print(device);
5947 drbd_resync_finished(device);
5948 }
5949 }
5950 put_ldev(device);
5951 return 0;
5952 }
5953
got_skip(struct drbd_connection * connection,struct packet_info * pi)5954 static int got_skip(struct drbd_connection *connection, struct packet_info *pi)
5955 {
5956 return 0;
5957 }
5958
5959 struct meta_sock_cmd {
5960 size_t pkt_size;
5961 int (*fn)(struct drbd_connection *connection, struct packet_info *);
5962 };
5963
set_rcvtimeo(struct drbd_connection * connection,bool ping_timeout)5964 static void set_rcvtimeo(struct drbd_connection *connection, bool ping_timeout)
5965 {
5966 long t;
5967 struct net_conf *nc;
5968
5969 rcu_read_lock();
5970 nc = rcu_dereference(connection->net_conf);
5971 t = ping_timeout ? nc->ping_timeo : nc->ping_int;
5972 rcu_read_unlock();
5973
5974 t *= HZ;
5975 if (ping_timeout)
5976 t /= 10;
5977
5978 connection->meta.socket->sk->sk_rcvtimeo = t;
5979 }
5980
set_ping_timeout(struct drbd_connection * connection)5981 static void set_ping_timeout(struct drbd_connection *connection)
5982 {
5983 set_rcvtimeo(connection, 1);
5984 }
5985
set_idle_timeout(struct drbd_connection * connection)5986 static void set_idle_timeout(struct drbd_connection *connection)
5987 {
5988 set_rcvtimeo(connection, 0);
5989 }
5990
5991 static struct meta_sock_cmd ack_receiver_tbl[] = {
5992 [P_PING] = { 0, got_Ping },
5993 [P_PING_ACK] = { 0, got_PingAck },
5994 [P_RECV_ACK] = { sizeof(struct p_block_ack), got_BlockAck },
5995 [P_WRITE_ACK] = { sizeof(struct p_block_ack), got_BlockAck },
5996 [P_RS_WRITE_ACK] = { sizeof(struct p_block_ack), got_BlockAck },
5997 [P_SUPERSEDED] = { sizeof(struct p_block_ack), got_BlockAck },
5998 [P_NEG_ACK] = { sizeof(struct p_block_ack), got_NegAck },
5999 [P_NEG_DREPLY] = { sizeof(struct p_block_ack), got_NegDReply },
6000 [P_NEG_RS_DREPLY] = { sizeof(struct p_block_ack), got_NegRSDReply },
6001 [P_OV_RESULT] = { sizeof(struct p_block_ack), got_OVResult },
6002 [P_BARRIER_ACK] = { sizeof(struct p_barrier_ack), got_BarrierAck },
6003 [P_STATE_CHG_REPLY] = { sizeof(struct p_req_state_reply), got_RqSReply },
6004 [P_RS_IS_IN_SYNC] = { sizeof(struct p_block_ack), got_IsInSync },
6005 [P_DELAY_PROBE] = { sizeof(struct p_delay_probe93), got_skip },
6006 [P_RS_CANCEL] = { sizeof(struct p_block_ack), got_NegRSDReply },
6007 [P_CONN_ST_CHG_REPLY]={ sizeof(struct p_req_state_reply), got_conn_RqSReply },
6008 [P_RETRY_WRITE] = { sizeof(struct p_block_ack), got_BlockAck },
6009 };
6010
drbd_ack_receiver(struct drbd_thread * thi)6011 int drbd_ack_receiver(struct drbd_thread *thi)
6012 {
6013 struct drbd_connection *connection = thi->connection;
6014 struct meta_sock_cmd *cmd = NULL;
6015 struct packet_info pi;
6016 unsigned long pre_recv_jif;
6017 int rv;
6018 void *buf = connection->meta.rbuf;
6019 int received = 0;
6020 unsigned int header_size = drbd_header_size(connection);
6021 int expect = header_size;
6022 bool ping_timeout_active = false;
6023
6024 sched_set_fifo_low(current);
6025
6026 while (get_t_state(thi) == RUNNING) {
6027 drbd_thread_current_set_cpu(thi);
6028
6029 conn_reclaim_net_peer_reqs(connection);
6030
6031 if (test_and_clear_bit(SEND_PING, &connection->flags)) {
6032 if (drbd_send_ping(connection)) {
6033 drbd_err(connection, "drbd_send_ping has failed\n");
6034 goto reconnect;
6035 }
6036 set_ping_timeout(connection);
6037 ping_timeout_active = true;
6038 }
6039
6040 pre_recv_jif = jiffies;
6041 rv = drbd_recv_short(connection->meta.socket, buf, expect-received, 0);
6042
6043 /* Note:
6044 * -EINTR (on meta) we got a signal
6045 * -EAGAIN (on meta) rcvtimeo expired
6046 * -ECONNRESET other side closed the connection
6047 * -ERESTARTSYS (on data) we got a signal
6048 * rv < 0 other than above: unexpected error!
6049 * rv == expected: full header or command
6050 * rv < expected: "woken" by signal during receive
6051 * rv == 0 : "connection shut down by peer"
6052 */
6053 if (likely(rv > 0)) {
6054 received += rv;
6055 buf += rv;
6056 } else if (rv == 0) {
6057 if (test_bit(DISCONNECT_SENT, &connection->flags)) {
6058 long t;
6059 rcu_read_lock();
6060 t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10;
6061 rcu_read_unlock();
6062
6063 t = wait_event_timeout(connection->ping_wait,
6064 connection->cstate < C_WF_REPORT_PARAMS,
6065 t);
6066 if (t)
6067 break;
6068 }
6069 drbd_err(connection, "meta connection shut down by peer.\n");
6070 goto reconnect;
6071 } else if (rv == -EAGAIN) {
6072 /* If the data socket received something meanwhile,
6073 * that is good enough: peer is still alive. */
6074 if (time_after(connection->last_received, pre_recv_jif))
6075 continue;
6076 if (ping_timeout_active) {
6077 drbd_err(connection, "PingAck did not arrive in time.\n");
6078 goto reconnect;
6079 }
6080 set_bit(SEND_PING, &connection->flags);
6081 continue;
6082 } else if (rv == -EINTR) {
6083 /* maybe drbd_thread_stop(): the while condition will notice.
6084 * maybe woken for send_ping: we'll send a ping above,
6085 * and change the rcvtimeo */
6086 flush_signals(current);
6087 continue;
6088 } else {
6089 drbd_err(connection, "sock_recvmsg returned %d\n", rv);
6090 goto reconnect;
6091 }
6092
6093 if (received == expect && cmd == NULL) {
6094 if (decode_header(connection, connection->meta.rbuf, &pi))
6095 goto reconnect;
6096 cmd = &ack_receiver_tbl[pi.cmd];
6097 if (pi.cmd >= ARRAY_SIZE(ack_receiver_tbl) || !cmd->fn) {
6098 drbd_err(connection, "Unexpected meta packet %s (0x%04x)\n",
6099 cmdname(pi.cmd), pi.cmd);
6100 goto disconnect;
6101 }
6102 expect = header_size + cmd->pkt_size;
6103 if (pi.size != expect - header_size) {
6104 drbd_err(connection, "Wrong packet size on meta (c: %d, l: %d)\n",
6105 pi.cmd, pi.size);
6106 goto reconnect;
6107 }
6108 }
6109 if (received == expect) {
6110 bool err;
6111
6112 err = cmd->fn(connection, &pi);
6113 if (err) {
6114 drbd_err(connection, "%ps failed\n", cmd->fn);
6115 goto reconnect;
6116 }
6117
6118 connection->last_received = jiffies;
6119
6120 if (cmd == &ack_receiver_tbl[P_PING_ACK]) {
6121 set_idle_timeout(connection);
6122 ping_timeout_active = false;
6123 }
6124
6125 buf = connection->meta.rbuf;
6126 received = 0;
6127 expect = header_size;
6128 cmd = NULL;
6129 }
6130 }
6131
6132 if (0) {
6133 reconnect:
6134 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
6135 conn_md_sync(connection);
6136 }
6137 if (0) {
6138 disconnect:
6139 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
6140 }
6141
6142 drbd_info(connection, "ack_receiver terminated\n");
6143
6144 return 0;
6145 }
6146
drbd_send_acks_wf(struct work_struct * ws)6147 void drbd_send_acks_wf(struct work_struct *ws)
6148 {
6149 struct drbd_peer_device *peer_device =
6150 container_of(ws, struct drbd_peer_device, send_acks_work);
6151 struct drbd_connection *connection = peer_device->connection;
6152 struct drbd_device *device = peer_device->device;
6153 struct net_conf *nc;
6154 int tcp_cork, err;
6155
6156 rcu_read_lock();
6157 nc = rcu_dereference(connection->net_conf);
6158 tcp_cork = nc->tcp_cork;
6159 rcu_read_unlock();
6160
6161 if (tcp_cork)
6162 tcp_sock_set_cork(connection->meta.socket->sk, true);
6163
6164 err = drbd_finish_peer_reqs(device);
6165 kref_put(&device->kref, drbd_destroy_device);
6166 /* get is in drbd_endio_write_sec_final(). That is necessary to keep the
6167 struct work_struct send_acks_work alive, which is in the peer_device object */
6168
6169 if (err) {
6170 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
6171 return;
6172 }
6173
6174 if (tcp_cork)
6175 tcp_sock_set_cork(connection->meta.socket->sk, false);
6176
6177 return;
6178 }
6179