1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * GHES/EDAC Linux driver
4  *
5  * Copyright (c) 2013 by Mauro Carvalho Chehab
6  *
7  * Red Hat Inc. https://www.redhat.com
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <acpi/ghes.h>
13 #include <linux/edac.h>
14 #include <linux/dmi.h>
15 #include "edac_module.h"
16 #include <ras/ras_event.h>
17 
18 struct ghes_pvt {
19 	struct mem_ctl_info *mci;
20 
21 	/* Buffers for the error handling routine */
22 	char other_detail[400];
23 	char msg[80];
24 };
25 
26 static refcount_t ghes_refcount = REFCOUNT_INIT(0);
27 
28 /*
29  * Access to ghes_pvt must be protected by ghes_lock. The spinlock
30  * also provides the necessary (implicit) memory barrier for the SMP
31  * case to make the pointer visible on another CPU.
32  */
33 static struct ghes_pvt *ghes_pvt;
34 
35 /*
36  * This driver's representation of the system hardware, as collected
37  * from DMI.
38  */
39 struct ghes_hw_desc {
40 	int num_dimms;
41 	struct dimm_info *dimms;
42 } ghes_hw;
43 
44 /* GHES registration mutex */
45 static DEFINE_MUTEX(ghes_reg_mutex);
46 
47 /*
48  * Sync with other, potentially concurrent callers of
49  * ghes_edac_report_mem_error(). We don't know what the
50  * "inventive" firmware would do.
51  */
52 static DEFINE_SPINLOCK(ghes_lock);
53 
54 /* "ghes_edac.force_load=1" skips the platform check */
55 static bool __read_mostly force_load;
56 module_param(force_load, bool, 0);
57 
58 static bool system_scanned;
59 
60 /* Memory Device - Type 17 of SMBIOS spec */
61 struct memdev_dmi_entry {
62 	u8 type;
63 	u8 length;
64 	u16 handle;
65 	u16 phys_mem_array_handle;
66 	u16 mem_err_info_handle;
67 	u16 total_width;
68 	u16 data_width;
69 	u16 size;
70 	u8 form_factor;
71 	u8 device_set;
72 	u8 device_locator;
73 	u8 bank_locator;
74 	u8 memory_type;
75 	u16 type_detail;
76 	u16 speed;
77 	u8 manufacturer;
78 	u8 serial_number;
79 	u8 asset_tag;
80 	u8 part_number;
81 	u8 attributes;
82 	u32 extended_size;
83 	u16 conf_mem_clk_speed;
84 } __attribute__((__packed__));
85 
find_dimm_by_handle(struct mem_ctl_info * mci,u16 handle)86 static struct dimm_info *find_dimm_by_handle(struct mem_ctl_info *mci, u16 handle)
87 {
88 	struct dimm_info *dimm;
89 
90 	mci_for_each_dimm(mci, dimm) {
91 		if (dimm->smbios_handle == handle)
92 			return dimm;
93 	}
94 
95 	return NULL;
96 }
97 
dimm_setup_label(struct dimm_info * dimm,u16 handle)98 static void dimm_setup_label(struct dimm_info *dimm, u16 handle)
99 {
100 	const char *bank = NULL, *device = NULL;
101 
102 	dmi_memdev_name(handle, &bank, &device);
103 
104 	/* both strings must be non-zero */
105 	if (bank && *bank && device && *device)
106 		snprintf(dimm->label, sizeof(dimm->label), "%s %s", bank, device);
107 }
108 
assign_dmi_dimm_info(struct dimm_info * dimm,struct memdev_dmi_entry * entry)109 static void assign_dmi_dimm_info(struct dimm_info *dimm, struct memdev_dmi_entry *entry)
110 {
111 	u16 rdr_mask = BIT(7) | BIT(13);
112 
113 	if (entry->size == 0xffff) {
114 		pr_info("Can't get DIMM%i size\n", dimm->idx);
115 		dimm->nr_pages = MiB_TO_PAGES(32);/* Unknown */
116 	} else if (entry->size == 0x7fff) {
117 		dimm->nr_pages = MiB_TO_PAGES(entry->extended_size);
118 	} else {
119 		if (entry->size & BIT(15))
120 			dimm->nr_pages = MiB_TO_PAGES((entry->size & 0x7fff) << 10);
121 		else
122 			dimm->nr_pages = MiB_TO_PAGES(entry->size);
123 	}
124 
125 	switch (entry->memory_type) {
126 	case 0x12:
127 		if (entry->type_detail & BIT(13))
128 			dimm->mtype = MEM_RDDR;
129 		else
130 			dimm->mtype = MEM_DDR;
131 		break;
132 	case 0x13:
133 		if (entry->type_detail & BIT(13))
134 			dimm->mtype = MEM_RDDR2;
135 		else
136 			dimm->mtype = MEM_DDR2;
137 		break;
138 	case 0x14:
139 		dimm->mtype = MEM_FB_DDR2;
140 		break;
141 	case 0x18:
142 		if (entry->type_detail & BIT(12))
143 			dimm->mtype = MEM_NVDIMM;
144 		else if (entry->type_detail & BIT(13))
145 			dimm->mtype = MEM_RDDR3;
146 		else
147 			dimm->mtype = MEM_DDR3;
148 		break;
149 	case 0x1a:
150 		if (entry->type_detail & BIT(12))
151 			dimm->mtype = MEM_NVDIMM;
152 		else if (entry->type_detail & BIT(13))
153 			dimm->mtype = MEM_RDDR4;
154 		else
155 			dimm->mtype = MEM_DDR4;
156 		break;
157 	default:
158 		if (entry->type_detail & BIT(6))
159 			dimm->mtype = MEM_RMBS;
160 		else if ((entry->type_detail & rdr_mask) == rdr_mask)
161 			dimm->mtype = MEM_RDR;
162 		else if (entry->type_detail & BIT(7))
163 			dimm->mtype = MEM_SDR;
164 		else if (entry->type_detail & BIT(9))
165 			dimm->mtype = MEM_EDO;
166 		else
167 			dimm->mtype = MEM_UNKNOWN;
168 	}
169 
170 	/*
171 	 * Actually, we can only detect if the memory has bits for
172 	 * checksum or not
173 	 */
174 	if (entry->total_width == entry->data_width)
175 		dimm->edac_mode = EDAC_NONE;
176 	else
177 		dimm->edac_mode = EDAC_SECDED;
178 
179 	dimm->dtype = DEV_UNKNOWN;
180 	dimm->grain = 128;		/* Likely, worse case */
181 
182 	dimm_setup_label(dimm, entry->handle);
183 
184 	if (dimm->nr_pages) {
185 		edac_dbg(1, "DIMM%i: %s size = %d MB%s\n",
186 			dimm->idx, edac_mem_types[dimm->mtype],
187 			PAGES_TO_MiB(dimm->nr_pages),
188 			(dimm->edac_mode != EDAC_NONE) ? "(ECC)" : "");
189 		edac_dbg(2, "\ttype %d, detail 0x%02x, width %d(total %d)\n",
190 			entry->memory_type, entry->type_detail,
191 			entry->total_width, entry->data_width);
192 	}
193 
194 	dimm->smbios_handle = entry->handle;
195 }
196 
enumerate_dimms(const struct dmi_header * dh,void * arg)197 static void enumerate_dimms(const struct dmi_header *dh, void *arg)
198 {
199 	struct memdev_dmi_entry *entry = (struct memdev_dmi_entry *)dh;
200 	struct ghes_hw_desc *hw = (struct ghes_hw_desc *)arg;
201 	struct dimm_info *d;
202 
203 	if (dh->type != DMI_ENTRY_MEM_DEVICE)
204 		return;
205 
206 	/* Enlarge the array with additional 16 */
207 	if (!hw->num_dimms || !(hw->num_dimms % 16)) {
208 		struct dimm_info *new;
209 
210 		new = krealloc_array(hw->dimms, hw->num_dimms + 16,
211 				     sizeof(struct dimm_info), GFP_KERNEL);
212 		if (!new) {
213 			WARN_ON_ONCE(1);
214 			return;
215 		}
216 
217 		hw->dimms = new;
218 	}
219 
220 	d = &hw->dimms[hw->num_dimms];
221 	d->idx = hw->num_dimms;
222 
223 	assign_dmi_dimm_info(d, entry);
224 
225 	hw->num_dimms++;
226 }
227 
ghes_scan_system(void)228 static void ghes_scan_system(void)
229 {
230 	if (system_scanned)
231 		return;
232 
233 	dmi_walk(enumerate_dimms, &ghes_hw);
234 
235 	system_scanned = true;
236 }
237 
ghes_edac_report_mem_error(int sev,struct cper_sec_mem_err * mem_err)238 void ghes_edac_report_mem_error(int sev, struct cper_sec_mem_err *mem_err)
239 {
240 	struct edac_raw_error_desc *e;
241 	struct mem_ctl_info *mci;
242 	struct ghes_pvt *pvt;
243 	unsigned long flags;
244 	char *p;
245 
246 	/*
247 	 * We can do the locking below because GHES defers error processing
248 	 * from NMI to IRQ context. Whenever that changes, we'd at least
249 	 * know.
250 	 */
251 	if (WARN_ON_ONCE(in_nmi()))
252 		return;
253 
254 	spin_lock_irqsave(&ghes_lock, flags);
255 
256 	pvt = ghes_pvt;
257 	if (!pvt)
258 		goto unlock;
259 
260 	mci = pvt->mci;
261 	e = &mci->error_desc;
262 
263 	/* Cleans the error report buffer */
264 	memset(e, 0, sizeof (*e));
265 	e->error_count = 1;
266 	e->grain = 1;
267 	e->msg = pvt->msg;
268 	e->other_detail = pvt->other_detail;
269 	e->top_layer = -1;
270 	e->mid_layer = -1;
271 	e->low_layer = -1;
272 	*pvt->other_detail = '\0';
273 	*pvt->msg = '\0';
274 
275 	switch (sev) {
276 	case GHES_SEV_CORRECTED:
277 		e->type = HW_EVENT_ERR_CORRECTED;
278 		break;
279 	case GHES_SEV_RECOVERABLE:
280 		e->type = HW_EVENT_ERR_UNCORRECTED;
281 		break;
282 	case GHES_SEV_PANIC:
283 		e->type = HW_EVENT_ERR_FATAL;
284 		break;
285 	default:
286 	case GHES_SEV_NO:
287 		e->type = HW_EVENT_ERR_INFO;
288 	}
289 
290 	edac_dbg(1, "error validation_bits: 0x%08llx\n",
291 		 (long long)mem_err->validation_bits);
292 
293 	/* Error type, mapped on e->msg */
294 	if (mem_err->validation_bits & CPER_MEM_VALID_ERROR_TYPE) {
295 		p = pvt->msg;
296 		switch (mem_err->error_type) {
297 		case 0:
298 			p += sprintf(p, "Unknown");
299 			break;
300 		case 1:
301 			p += sprintf(p, "No error");
302 			break;
303 		case 2:
304 			p += sprintf(p, "Single-bit ECC");
305 			break;
306 		case 3:
307 			p += sprintf(p, "Multi-bit ECC");
308 			break;
309 		case 4:
310 			p += sprintf(p, "Single-symbol ChipKill ECC");
311 			break;
312 		case 5:
313 			p += sprintf(p, "Multi-symbol ChipKill ECC");
314 			break;
315 		case 6:
316 			p += sprintf(p, "Master abort");
317 			break;
318 		case 7:
319 			p += sprintf(p, "Target abort");
320 			break;
321 		case 8:
322 			p += sprintf(p, "Parity Error");
323 			break;
324 		case 9:
325 			p += sprintf(p, "Watchdog timeout");
326 			break;
327 		case 10:
328 			p += sprintf(p, "Invalid address");
329 			break;
330 		case 11:
331 			p += sprintf(p, "Mirror Broken");
332 			break;
333 		case 12:
334 			p += sprintf(p, "Memory Sparing");
335 			break;
336 		case 13:
337 			p += sprintf(p, "Scrub corrected error");
338 			break;
339 		case 14:
340 			p += sprintf(p, "Scrub uncorrected error");
341 			break;
342 		case 15:
343 			p += sprintf(p, "Physical Memory Map-out event");
344 			break;
345 		default:
346 			p += sprintf(p, "reserved error (%d)",
347 				     mem_err->error_type);
348 		}
349 	} else {
350 		strcpy(pvt->msg, "unknown error");
351 	}
352 
353 	/* Error address */
354 	if (mem_err->validation_bits & CPER_MEM_VALID_PA) {
355 		e->page_frame_number = PHYS_PFN(mem_err->physical_addr);
356 		e->offset_in_page = offset_in_page(mem_err->physical_addr);
357 	}
358 
359 	/* Error grain */
360 	if (mem_err->validation_bits & CPER_MEM_VALID_PA_MASK)
361 		e->grain = ~mem_err->physical_addr_mask + 1;
362 
363 	/* Memory error location, mapped on e->location */
364 	p = e->location;
365 	if (mem_err->validation_bits & CPER_MEM_VALID_NODE)
366 		p += sprintf(p, "node:%d ", mem_err->node);
367 	if (mem_err->validation_bits & CPER_MEM_VALID_CARD)
368 		p += sprintf(p, "card:%d ", mem_err->card);
369 	if (mem_err->validation_bits & CPER_MEM_VALID_MODULE)
370 		p += sprintf(p, "module:%d ", mem_err->module);
371 	if (mem_err->validation_bits & CPER_MEM_VALID_RANK_NUMBER)
372 		p += sprintf(p, "rank:%d ", mem_err->rank);
373 	if (mem_err->validation_bits & CPER_MEM_VALID_BANK)
374 		p += sprintf(p, "bank:%d ", mem_err->bank);
375 	if (mem_err->validation_bits & CPER_MEM_VALID_BANK_GROUP)
376 		p += sprintf(p, "bank_group:%d ",
377 			     mem_err->bank >> CPER_MEM_BANK_GROUP_SHIFT);
378 	if (mem_err->validation_bits & CPER_MEM_VALID_BANK_ADDRESS)
379 		p += sprintf(p, "bank_address:%d ",
380 			     mem_err->bank & CPER_MEM_BANK_ADDRESS_MASK);
381 	if (mem_err->validation_bits & (CPER_MEM_VALID_ROW | CPER_MEM_VALID_ROW_EXT)) {
382 		u32 row = mem_err->row;
383 
384 		row |= cper_get_mem_extension(mem_err->validation_bits, mem_err->extended);
385 		p += sprintf(p, "row:%d ", row);
386 	}
387 	if (mem_err->validation_bits & CPER_MEM_VALID_COLUMN)
388 		p += sprintf(p, "col:%d ", mem_err->column);
389 	if (mem_err->validation_bits & CPER_MEM_VALID_BIT_POSITION)
390 		p += sprintf(p, "bit_pos:%d ", mem_err->bit_pos);
391 	if (mem_err->validation_bits & CPER_MEM_VALID_MODULE_HANDLE) {
392 		const char *bank = NULL, *device = NULL;
393 		struct dimm_info *dimm;
394 
395 		dmi_memdev_name(mem_err->mem_dev_handle, &bank, &device);
396 		if (bank != NULL && device != NULL)
397 			p += sprintf(p, "DIMM location:%s %s ", bank, device);
398 		else
399 			p += sprintf(p, "DIMM DMI handle: 0x%.4x ",
400 				     mem_err->mem_dev_handle);
401 
402 		dimm = find_dimm_by_handle(mci, mem_err->mem_dev_handle);
403 		if (dimm) {
404 			e->top_layer = dimm->idx;
405 			strcpy(e->label, dimm->label);
406 		}
407 	}
408 	if (mem_err->validation_bits & CPER_MEM_VALID_CHIP_ID)
409 		p += sprintf(p, "chipID: %d ",
410 			     mem_err->extended >> CPER_MEM_CHIP_ID_SHIFT);
411 	if (p > e->location)
412 		*(p - 1) = '\0';
413 
414 	if (!*e->label)
415 		strcpy(e->label, "unknown memory");
416 
417 	/* All other fields are mapped on e->other_detail */
418 	p = pvt->other_detail;
419 	p += snprintf(p, sizeof(pvt->other_detail),
420 		"APEI location: %s ", e->location);
421 	if (mem_err->validation_bits & CPER_MEM_VALID_ERROR_STATUS) {
422 		u64 status = mem_err->error_status;
423 
424 		p += sprintf(p, "status(0x%016llx): ", (long long)status);
425 		switch ((status >> 8) & 0xff) {
426 		case 1:
427 			p += sprintf(p, "Error detected internal to the component ");
428 			break;
429 		case 16:
430 			p += sprintf(p, "Error detected in the bus ");
431 			break;
432 		case 4:
433 			p += sprintf(p, "Storage error in DRAM memory ");
434 			break;
435 		case 5:
436 			p += sprintf(p, "Storage error in TLB ");
437 			break;
438 		case 6:
439 			p += sprintf(p, "Storage error in cache ");
440 			break;
441 		case 7:
442 			p += sprintf(p, "Error in one or more functional units ");
443 			break;
444 		case 8:
445 			p += sprintf(p, "component failed self test ");
446 			break;
447 		case 9:
448 			p += sprintf(p, "Overflow or undervalue of internal queue ");
449 			break;
450 		case 17:
451 			p += sprintf(p, "Virtual address not found on IO-TLB or IO-PDIR ");
452 			break;
453 		case 18:
454 			p += sprintf(p, "Improper access error ");
455 			break;
456 		case 19:
457 			p += sprintf(p, "Access to a memory address which is not mapped to any component ");
458 			break;
459 		case 20:
460 			p += sprintf(p, "Loss of Lockstep ");
461 			break;
462 		case 21:
463 			p += sprintf(p, "Response not associated with a request ");
464 			break;
465 		case 22:
466 			p += sprintf(p, "Bus parity error - must also set the A, C, or D Bits ");
467 			break;
468 		case 23:
469 			p += sprintf(p, "Detection of a PATH_ERROR ");
470 			break;
471 		case 25:
472 			p += sprintf(p, "Bus operation timeout ");
473 			break;
474 		case 26:
475 			p += sprintf(p, "A read was issued to data that has been poisoned ");
476 			break;
477 		default:
478 			p += sprintf(p, "reserved ");
479 			break;
480 		}
481 	}
482 	if (mem_err->validation_bits & CPER_MEM_VALID_REQUESTOR_ID)
483 		p += sprintf(p, "requestorID: 0x%016llx ",
484 			     (long long)mem_err->requestor_id);
485 	if (mem_err->validation_bits & CPER_MEM_VALID_RESPONDER_ID)
486 		p += sprintf(p, "responderID: 0x%016llx ",
487 			     (long long)mem_err->responder_id);
488 	if (mem_err->validation_bits & CPER_MEM_VALID_TARGET_ID)
489 		p += sprintf(p, "targetID: 0x%016llx ",
490 			     (long long)mem_err->responder_id);
491 	if (p > pvt->other_detail)
492 		*(p - 1) = '\0';
493 
494 	edac_raw_mc_handle_error(e);
495 
496 unlock:
497 	spin_unlock_irqrestore(&ghes_lock, flags);
498 }
499 
500 /*
501  * Known systems that are safe to enable this module.
502  */
503 static struct acpi_platform_list plat_list[] = {
504 	{"HPE   ", "Server  ", 0, ACPI_SIG_FADT, all_versions},
505 	{ } /* End */
506 };
507 
ghes_edac_register(struct ghes * ghes,struct device * dev)508 int ghes_edac_register(struct ghes *ghes, struct device *dev)
509 {
510 	bool fake = false;
511 	struct mem_ctl_info *mci;
512 	struct ghes_pvt *pvt;
513 	struct edac_mc_layer layers[1];
514 	unsigned long flags;
515 	int idx = -1;
516 	int rc = 0;
517 
518 	if (IS_ENABLED(CONFIG_X86)) {
519 		/* Check if safe to enable on this system */
520 		idx = acpi_match_platform_list(plat_list);
521 		if (!force_load && idx < 0)
522 			return -ENODEV;
523 	} else {
524 		force_load = true;
525 		idx = 0;
526 	}
527 
528 	/* finish another registration/unregistration instance first */
529 	mutex_lock(&ghes_reg_mutex);
530 
531 	/*
532 	 * We have only one logical memory controller to which all DIMMs belong.
533 	 */
534 	if (refcount_inc_not_zero(&ghes_refcount))
535 		goto unlock;
536 
537 	ghes_scan_system();
538 
539 	/* Check if we've got a bogus BIOS */
540 	if (!ghes_hw.num_dimms) {
541 		fake = true;
542 		ghes_hw.num_dimms = 1;
543 	}
544 
545 	layers[0].type = EDAC_MC_LAYER_ALL_MEM;
546 	layers[0].size = ghes_hw.num_dimms;
547 	layers[0].is_virt_csrow = true;
548 
549 	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(struct ghes_pvt));
550 	if (!mci) {
551 		pr_info("Can't allocate memory for EDAC data\n");
552 		rc = -ENOMEM;
553 		goto unlock;
554 	}
555 
556 	pvt		= mci->pvt_info;
557 	pvt->mci	= mci;
558 
559 	mci->pdev = dev;
560 	mci->mtype_cap = MEM_FLAG_EMPTY;
561 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
562 	mci->edac_cap = EDAC_FLAG_NONE;
563 	mci->mod_name = "ghes_edac.c";
564 	mci->ctl_name = "ghes_edac";
565 	mci->dev_name = "ghes";
566 
567 	if (fake) {
568 		pr_info("This system has a very crappy BIOS: It doesn't even list the DIMMS.\n");
569 		pr_info("Its SMBIOS info is wrong. It is doubtful that the error report would\n");
570 		pr_info("work on such system. Use this driver with caution\n");
571 	} else if (idx < 0) {
572 		pr_info("This EDAC driver relies on BIOS to enumerate memory and get error reports.\n");
573 		pr_info("Unfortunately, not all BIOSes reflect the memory layout correctly.\n");
574 		pr_info("So, the end result of using this driver varies from vendor to vendor.\n");
575 		pr_info("If you find incorrect reports, please contact your hardware vendor\n");
576 		pr_info("to correct its BIOS.\n");
577 		pr_info("This system has %d DIMM sockets.\n", ghes_hw.num_dimms);
578 	}
579 
580 	if (!fake) {
581 		struct dimm_info *src, *dst;
582 		int i = 0;
583 
584 		mci_for_each_dimm(mci, dst) {
585 			src = &ghes_hw.dimms[i];
586 
587 			dst->idx	   = src->idx;
588 			dst->smbios_handle = src->smbios_handle;
589 			dst->nr_pages	   = src->nr_pages;
590 			dst->mtype	   = src->mtype;
591 			dst->edac_mode	   = src->edac_mode;
592 			dst->dtype	   = src->dtype;
593 			dst->grain	   = src->grain;
594 
595 			/*
596 			 * If no src->label, preserve default label assigned
597 			 * from EDAC core.
598 			 */
599 			if (strlen(src->label))
600 				memcpy(dst->label, src->label, sizeof(src->label));
601 
602 			i++;
603 		}
604 
605 	} else {
606 		struct dimm_info *dimm = edac_get_dimm(mci, 0, 0, 0);
607 
608 		dimm->nr_pages = 1;
609 		dimm->grain = 128;
610 		dimm->mtype = MEM_UNKNOWN;
611 		dimm->dtype = DEV_UNKNOWN;
612 		dimm->edac_mode = EDAC_SECDED;
613 	}
614 
615 	rc = edac_mc_add_mc(mci);
616 	if (rc < 0) {
617 		pr_info("Can't register with the EDAC core\n");
618 		edac_mc_free(mci);
619 		rc = -ENODEV;
620 		goto unlock;
621 	}
622 
623 	spin_lock_irqsave(&ghes_lock, flags);
624 	ghes_pvt = pvt;
625 	spin_unlock_irqrestore(&ghes_lock, flags);
626 
627 	/* only set on success */
628 	refcount_set(&ghes_refcount, 1);
629 
630 unlock:
631 
632 	/* Not needed anymore */
633 	kfree(ghes_hw.dimms);
634 	ghes_hw.dimms = NULL;
635 
636 	mutex_unlock(&ghes_reg_mutex);
637 
638 	return rc;
639 }
640 
ghes_edac_unregister(struct ghes * ghes)641 void ghes_edac_unregister(struct ghes *ghes)
642 {
643 	struct mem_ctl_info *mci;
644 	unsigned long flags;
645 
646 	if (!force_load)
647 		return;
648 
649 	mutex_lock(&ghes_reg_mutex);
650 
651 	system_scanned = false;
652 	memset(&ghes_hw, 0, sizeof(struct ghes_hw_desc));
653 
654 	if (!refcount_dec_and_test(&ghes_refcount))
655 		goto unlock;
656 
657 	/*
658 	 * Wait for the irq handler being finished.
659 	 */
660 	spin_lock_irqsave(&ghes_lock, flags);
661 	mci = ghes_pvt ? ghes_pvt->mci : NULL;
662 	ghes_pvt = NULL;
663 	spin_unlock_irqrestore(&ghes_lock, flags);
664 
665 	if (!mci)
666 		goto unlock;
667 
668 	mci = edac_mc_del_mc(mci->pdev);
669 	if (mci)
670 		edac_mc_free(mci);
671 
672 unlock:
673 	mutex_unlock(&ghes_reg_mutex);
674 }
675