1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2019 Intel Corporation
4 */
5
6 #include "debugfs_gt.h"
7
8 #include "gem/i915_gem_lmem.h"
9 #include "i915_drv.h"
10 #include "intel_context.h"
11 #include "intel_gt.h"
12 #include "intel_gt_buffer_pool.h"
13 #include "intel_gt_clock_utils.h"
14 #include "intel_gt_pm.h"
15 #include "intel_gt_requests.h"
16 #include "intel_mocs.h"
17 #include "intel_rc6.h"
18 #include "intel_renderstate.h"
19 #include "intel_rps.h"
20 #include "intel_uncore.h"
21 #include "intel_pm.h"
22 #include "shmem_utils.h"
23
intel_gt_init_early(struct intel_gt * gt,struct drm_i915_private * i915)24 void intel_gt_init_early(struct intel_gt *gt, struct drm_i915_private *i915)
25 {
26 gt->i915 = i915;
27 gt->uncore = &i915->uncore;
28
29 spin_lock_init(>->irq_lock);
30
31 INIT_LIST_HEAD(>->closed_vma);
32 spin_lock_init(>->closed_lock);
33
34 init_llist_head(>->watchdog.list);
35 INIT_WORK(>->watchdog.work, intel_gt_watchdog_work);
36
37 intel_gt_init_buffer_pool(gt);
38 intel_gt_init_reset(gt);
39 intel_gt_init_requests(gt);
40 intel_gt_init_timelines(gt);
41 intel_gt_pm_init_early(gt);
42
43 intel_rps_init_early(>->rps);
44 intel_uc_init_early(>->uc);
45 }
46
intel_gt_probe_lmem(struct intel_gt * gt)47 int intel_gt_probe_lmem(struct intel_gt *gt)
48 {
49 struct drm_i915_private *i915 = gt->i915;
50 struct intel_memory_region *mem;
51 int id;
52 int err;
53
54 mem = intel_gt_setup_lmem(gt);
55 if (mem == ERR_PTR(-ENODEV))
56 mem = intel_gt_setup_fake_lmem(gt);
57 if (IS_ERR(mem)) {
58 err = PTR_ERR(mem);
59 if (err == -ENODEV)
60 return 0;
61
62 drm_err(&i915->drm,
63 "Failed to setup region(%d) type=%d\n",
64 err, INTEL_MEMORY_LOCAL);
65 return err;
66 }
67
68 id = INTEL_REGION_LMEM;
69
70 mem->id = id;
71 mem->type = INTEL_MEMORY_LOCAL;
72 mem->instance = 0;
73
74 intel_memory_region_set_name(mem, "local%u", mem->instance);
75
76 GEM_BUG_ON(!HAS_REGION(i915, id));
77 GEM_BUG_ON(i915->mm.regions[id]);
78 i915->mm.regions[id] = mem;
79
80 return 0;
81 }
82
intel_gt_init_hw_early(struct intel_gt * gt,struct i915_ggtt * ggtt)83 void intel_gt_init_hw_early(struct intel_gt *gt, struct i915_ggtt *ggtt)
84 {
85 gt->ggtt = ggtt;
86 }
87
intel_gt_init_mmio(struct intel_gt * gt)88 int intel_gt_init_mmio(struct intel_gt *gt)
89 {
90 intel_gt_init_clock_frequency(gt);
91
92 intel_uc_init_mmio(>->uc);
93 intel_sseu_info_init(gt);
94
95 return intel_engines_init_mmio(gt);
96 }
97
init_unused_ring(struct intel_gt * gt,u32 base)98 static void init_unused_ring(struct intel_gt *gt, u32 base)
99 {
100 struct intel_uncore *uncore = gt->uncore;
101
102 intel_uncore_write(uncore, RING_CTL(base), 0);
103 intel_uncore_write(uncore, RING_HEAD(base), 0);
104 intel_uncore_write(uncore, RING_TAIL(base), 0);
105 intel_uncore_write(uncore, RING_START(base), 0);
106 }
107
init_unused_rings(struct intel_gt * gt)108 static void init_unused_rings(struct intel_gt *gt)
109 {
110 struct drm_i915_private *i915 = gt->i915;
111
112 if (IS_I830(i915)) {
113 init_unused_ring(gt, PRB1_BASE);
114 init_unused_ring(gt, SRB0_BASE);
115 init_unused_ring(gt, SRB1_BASE);
116 init_unused_ring(gt, SRB2_BASE);
117 init_unused_ring(gt, SRB3_BASE);
118 } else if (IS_GEN(i915, 2)) {
119 init_unused_ring(gt, SRB0_BASE);
120 init_unused_ring(gt, SRB1_BASE);
121 } else if (IS_GEN(i915, 3)) {
122 init_unused_ring(gt, PRB1_BASE);
123 init_unused_ring(gt, PRB2_BASE);
124 }
125 }
126
intel_gt_init_hw(struct intel_gt * gt)127 int intel_gt_init_hw(struct intel_gt *gt)
128 {
129 struct drm_i915_private *i915 = gt->i915;
130 struct intel_uncore *uncore = gt->uncore;
131 int ret;
132
133 gt->last_init_time = ktime_get();
134
135 /* Double layer security blanket, see i915_gem_init() */
136 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
137
138 if (HAS_EDRAM(i915) && INTEL_GEN(i915) < 9)
139 intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));
140
141 if (IS_HASWELL(i915))
142 intel_uncore_write(uncore,
143 MI_PREDICATE_RESULT_2,
144 IS_HSW_GT3(i915) ?
145 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
146
147 /* Apply the GT workarounds... */
148 intel_gt_apply_workarounds(gt);
149 /* ...and determine whether they are sticking. */
150 intel_gt_verify_workarounds(gt, "init");
151
152 intel_gt_init_swizzling(gt);
153
154 /*
155 * At least 830 can leave some of the unused rings
156 * "active" (ie. head != tail) after resume which
157 * will prevent c3 entry. Makes sure all unused rings
158 * are totally idle.
159 */
160 init_unused_rings(gt);
161
162 ret = i915_ppgtt_init_hw(gt);
163 if (ret) {
164 DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
165 goto out;
166 }
167
168 /* We can't enable contexts until all firmware is loaded */
169 ret = intel_uc_init_hw(>->uc);
170 if (ret) {
171 i915_probe_error(i915, "Enabling uc failed (%d)\n", ret);
172 goto out;
173 }
174
175 intel_mocs_init(gt);
176
177 out:
178 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
179 return ret;
180 }
181
rmw_set(struct intel_uncore * uncore,i915_reg_t reg,u32 set)182 static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set)
183 {
184 intel_uncore_rmw(uncore, reg, 0, set);
185 }
186
rmw_clear(struct intel_uncore * uncore,i915_reg_t reg,u32 clr)187 static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr)
188 {
189 intel_uncore_rmw(uncore, reg, clr, 0);
190 }
191
clear_register(struct intel_uncore * uncore,i915_reg_t reg)192 static void clear_register(struct intel_uncore *uncore, i915_reg_t reg)
193 {
194 intel_uncore_rmw(uncore, reg, 0, 0);
195 }
196
gen8_clear_engine_error_register(struct intel_engine_cs * engine)197 static void gen8_clear_engine_error_register(struct intel_engine_cs *engine)
198 {
199 GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0);
200 GEN6_RING_FAULT_REG_POSTING_READ(engine);
201 }
202
203 void
intel_gt_clear_error_registers(struct intel_gt * gt,intel_engine_mask_t engine_mask)204 intel_gt_clear_error_registers(struct intel_gt *gt,
205 intel_engine_mask_t engine_mask)
206 {
207 struct drm_i915_private *i915 = gt->i915;
208 struct intel_uncore *uncore = gt->uncore;
209 u32 eir;
210
211 if (!IS_GEN(i915, 2))
212 clear_register(uncore, PGTBL_ER);
213
214 if (INTEL_GEN(i915) < 4)
215 clear_register(uncore, IPEIR(RENDER_RING_BASE));
216 else
217 clear_register(uncore, IPEIR_I965);
218
219 clear_register(uncore, EIR);
220 eir = intel_uncore_read(uncore, EIR);
221 if (eir) {
222 /*
223 * some errors might have become stuck,
224 * mask them.
225 */
226 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
227 rmw_set(uncore, EMR, eir);
228 intel_uncore_write(uncore, GEN2_IIR,
229 I915_MASTER_ERROR_INTERRUPT);
230 }
231
232 if (INTEL_GEN(i915) >= 12) {
233 rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID);
234 intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG);
235 } else if (INTEL_GEN(i915) >= 8) {
236 rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID);
237 intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG);
238 } else if (INTEL_GEN(i915) >= 6) {
239 struct intel_engine_cs *engine;
240 enum intel_engine_id id;
241
242 for_each_engine_masked(engine, gt, engine_mask, id)
243 gen8_clear_engine_error_register(engine);
244 }
245 }
246
gen6_check_faults(struct intel_gt * gt)247 static void gen6_check_faults(struct intel_gt *gt)
248 {
249 struct intel_engine_cs *engine;
250 enum intel_engine_id id;
251 u32 fault;
252
253 for_each_engine(engine, gt, id) {
254 fault = GEN6_RING_FAULT_REG_READ(engine);
255 if (fault & RING_FAULT_VALID) {
256 drm_dbg(&engine->i915->drm, "Unexpected fault\n"
257 "\tAddr: 0x%08lx\n"
258 "\tAddress space: %s\n"
259 "\tSource ID: %d\n"
260 "\tType: %d\n",
261 fault & PAGE_MASK,
262 fault & RING_FAULT_GTTSEL_MASK ?
263 "GGTT" : "PPGTT",
264 RING_FAULT_SRCID(fault),
265 RING_FAULT_FAULT_TYPE(fault));
266 }
267 }
268 }
269
gen8_check_faults(struct intel_gt * gt)270 static void gen8_check_faults(struct intel_gt *gt)
271 {
272 struct intel_uncore *uncore = gt->uncore;
273 i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg;
274 u32 fault;
275
276 if (INTEL_GEN(gt->i915) >= 12) {
277 fault_reg = GEN12_RING_FAULT_REG;
278 fault_data0_reg = GEN12_FAULT_TLB_DATA0;
279 fault_data1_reg = GEN12_FAULT_TLB_DATA1;
280 } else {
281 fault_reg = GEN8_RING_FAULT_REG;
282 fault_data0_reg = GEN8_FAULT_TLB_DATA0;
283 fault_data1_reg = GEN8_FAULT_TLB_DATA1;
284 }
285
286 fault = intel_uncore_read(uncore, fault_reg);
287 if (fault & RING_FAULT_VALID) {
288 u32 fault_data0, fault_data1;
289 u64 fault_addr;
290
291 fault_data0 = intel_uncore_read(uncore, fault_data0_reg);
292 fault_data1 = intel_uncore_read(uncore, fault_data1_reg);
293
294 fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
295 ((u64)fault_data0 << 12);
296
297 drm_dbg(&uncore->i915->drm, "Unexpected fault\n"
298 "\tAddr: 0x%08x_%08x\n"
299 "\tAddress space: %s\n"
300 "\tEngine ID: %d\n"
301 "\tSource ID: %d\n"
302 "\tType: %d\n",
303 upper_32_bits(fault_addr), lower_32_bits(fault_addr),
304 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
305 GEN8_RING_FAULT_ENGINE_ID(fault),
306 RING_FAULT_SRCID(fault),
307 RING_FAULT_FAULT_TYPE(fault));
308 }
309 }
310
intel_gt_check_and_clear_faults(struct intel_gt * gt)311 void intel_gt_check_and_clear_faults(struct intel_gt *gt)
312 {
313 struct drm_i915_private *i915 = gt->i915;
314
315 /* From GEN8 onwards we only have one 'All Engine Fault Register' */
316 if (INTEL_GEN(i915) >= 8)
317 gen8_check_faults(gt);
318 else if (INTEL_GEN(i915) >= 6)
319 gen6_check_faults(gt);
320 else
321 return;
322
323 intel_gt_clear_error_registers(gt, ALL_ENGINES);
324 }
325
intel_gt_flush_ggtt_writes(struct intel_gt * gt)326 void intel_gt_flush_ggtt_writes(struct intel_gt *gt)
327 {
328 struct intel_uncore *uncore = gt->uncore;
329 intel_wakeref_t wakeref;
330
331 /*
332 * No actual flushing is required for the GTT write domain for reads
333 * from the GTT domain. Writes to it "immediately" go to main memory
334 * as far as we know, so there's no chipset flush. It also doesn't
335 * land in the GPU render cache.
336 *
337 * However, we do have to enforce the order so that all writes through
338 * the GTT land before any writes to the device, such as updates to
339 * the GATT itself.
340 *
341 * We also have to wait a bit for the writes to land from the GTT.
342 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
343 * timing. This issue has only been observed when switching quickly
344 * between GTT writes and CPU reads from inside the kernel on recent hw,
345 * and it appears to only affect discrete GTT blocks (i.e. on LLC
346 * system agents we cannot reproduce this behaviour, until Cannonlake
347 * that was!).
348 */
349
350 wmb();
351
352 if (INTEL_INFO(gt->i915)->has_coherent_ggtt)
353 return;
354
355 intel_gt_chipset_flush(gt);
356
357 with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) {
358 unsigned long flags;
359
360 spin_lock_irqsave(&uncore->lock, flags);
361 intel_uncore_posting_read_fw(uncore,
362 RING_HEAD(RENDER_RING_BASE));
363 spin_unlock_irqrestore(&uncore->lock, flags);
364 }
365 }
366
intel_gt_chipset_flush(struct intel_gt * gt)367 void intel_gt_chipset_flush(struct intel_gt *gt)
368 {
369 wmb();
370 if (INTEL_GEN(gt->i915) < 6)
371 intel_gtt_chipset_flush();
372 }
373
intel_gt_driver_register(struct intel_gt * gt)374 void intel_gt_driver_register(struct intel_gt *gt)
375 {
376 intel_rps_driver_register(>->rps);
377
378 debugfs_gt_register(gt);
379 }
380
intel_gt_init_scratch(struct intel_gt * gt,unsigned int size)381 static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size)
382 {
383 struct drm_i915_private *i915 = gt->i915;
384 struct drm_i915_gem_object *obj;
385 struct i915_vma *vma;
386 int ret;
387
388 obj = i915_gem_object_create_lmem(i915, size, I915_BO_ALLOC_VOLATILE);
389 if (IS_ERR(obj))
390 obj = i915_gem_object_create_stolen(i915, size);
391 if (IS_ERR(obj))
392 obj = i915_gem_object_create_internal(i915, size);
393 if (IS_ERR(obj)) {
394 drm_err(&i915->drm, "Failed to allocate scratch page\n");
395 return PTR_ERR(obj);
396 }
397
398 vma = i915_vma_instance(obj, >->ggtt->vm, NULL);
399 if (IS_ERR(vma)) {
400 ret = PTR_ERR(vma);
401 goto err_unref;
402 }
403
404 ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH);
405 if (ret)
406 goto err_unref;
407
408 gt->scratch = i915_vma_make_unshrinkable(vma);
409
410 return 0;
411
412 err_unref:
413 i915_gem_object_put(obj);
414 return ret;
415 }
416
intel_gt_fini_scratch(struct intel_gt * gt)417 static void intel_gt_fini_scratch(struct intel_gt *gt)
418 {
419 i915_vma_unpin_and_release(>->scratch, 0);
420 }
421
kernel_vm(struct intel_gt * gt)422 static struct i915_address_space *kernel_vm(struct intel_gt *gt)
423 {
424 if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING)
425 return &i915_ppgtt_create(gt)->vm;
426 else
427 return i915_vm_get(>->ggtt->vm);
428 }
429
__engines_record_defaults(struct intel_gt * gt)430 static int __engines_record_defaults(struct intel_gt *gt)
431 {
432 struct i915_request *requests[I915_NUM_ENGINES] = {};
433 struct intel_engine_cs *engine;
434 enum intel_engine_id id;
435 int err = 0;
436
437 /*
438 * As we reset the gpu during very early sanitisation, the current
439 * register state on the GPU should reflect its defaults values.
440 * We load a context onto the hw (with restore-inhibit), then switch
441 * over to a second context to save that default register state. We
442 * can then prime every new context with that state so they all start
443 * from the same default HW values.
444 */
445
446 for_each_engine(engine, gt, id) {
447 struct intel_renderstate so;
448 struct intel_context *ce;
449 struct i915_request *rq;
450
451 /* We must be able to switch to something! */
452 GEM_BUG_ON(!engine->kernel_context);
453
454 ce = intel_context_create(engine);
455 if (IS_ERR(ce)) {
456 err = PTR_ERR(ce);
457 goto out;
458 }
459
460 err = intel_renderstate_init(&so, ce);
461 if (err)
462 goto err;
463
464 rq = i915_request_create(ce);
465 if (IS_ERR(rq)) {
466 err = PTR_ERR(rq);
467 goto err_fini;
468 }
469
470 err = intel_engine_emit_ctx_wa(rq);
471 if (err)
472 goto err_rq;
473
474 err = intel_renderstate_emit(&so, rq);
475 if (err)
476 goto err_rq;
477
478 err_rq:
479 requests[id] = i915_request_get(rq);
480 i915_request_add(rq);
481 err_fini:
482 intel_renderstate_fini(&so, ce);
483 err:
484 if (err) {
485 intel_context_put(ce);
486 goto out;
487 }
488 }
489
490 /* Flush the default context image to memory, and enable powersaving. */
491 if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) {
492 err = -EIO;
493 goto out;
494 }
495
496 for (id = 0; id < ARRAY_SIZE(requests); id++) {
497 struct i915_request *rq;
498 struct file *state;
499
500 rq = requests[id];
501 if (!rq)
502 continue;
503
504 if (rq->fence.error) {
505 err = -EIO;
506 goto out;
507 }
508
509 GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags));
510 if (!rq->context->state)
511 continue;
512
513 /* Keep a copy of the state's backing pages; free the obj */
514 state = shmem_create_from_object(rq->context->state->obj);
515 if (IS_ERR(state)) {
516 err = PTR_ERR(state);
517 goto out;
518 }
519 rq->engine->default_state = state;
520 }
521
522 out:
523 /*
524 * If we have to abandon now, we expect the engines to be idle
525 * and ready to be torn-down. The quickest way we can accomplish
526 * this is by declaring ourselves wedged.
527 */
528 if (err)
529 intel_gt_set_wedged(gt);
530
531 for (id = 0; id < ARRAY_SIZE(requests); id++) {
532 struct intel_context *ce;
533 struct i915_request *rq;
534
535 rq = requests[id];
536 if (!rq)
537 continue;
538
539 ce = rq->context;
540 i915_request_put(rq);
541 intel_context_put(ce);
542 }
543 return err;
544 }
545
__engines_verify_workarounds(struct intel_gt * gt)546 static int __engines_verify_workarounds(struct intel_gt *gt)
547 {
548 struct intel_engine_cs *engine;
549 enum intel_engine_id id;
550 int err = 0;
551
552 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
553 return 0;
554
555 for_each_engine(engine, gt, id) {
556 if (intel_engine_verify_workarounds(engine, "load"))
557 err = -EIO;
558 }
559
560 /* Flush and restore the kernel context for safety */
561 if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME)
562 err = -EIO;
563
564 return err;
565 }
566
__intel_gt_disable(struct intel_gt * gt)567 static void __intel_gt_disable(struct intel_gt *gt)
568 {
569 intel_gt_set_wedged_on_fini(gt);
570
571 intel_gt_suspend_prepare(gt);
572 intel_gt_suspend_late(gt);
573
574 GEM_BUG_ON(intel_gt_pm_is_awake(gt));
575 }
576
intel_gt_init(struct intel_gt * gt)577 int intel_gt_init(struct intel_gt *gt)
578 {
579 int err;
580
581 err = i915_inject_probe_error(gt->i915, -ENODEV);
582 if (err)
583 return err;
584
585 /*
586 * This is just a security blanket to placate dragons.
587 * On some systems, we very sporadically observe that the first TLBs
588 * used by the CS may be stale, despite us poking the TLB reset. If
589 * we hold the forcewake during initialisation these problems
590 * just magically go away.
591 */
592 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
593
594 err = intel_gt_init_scratch(gt, IS_GEN(gt->i915, 2) ? SZ_256K : SZ_4K);
595 if (err)
596 goto out_fw;
597
598 intel_gt_pm_init(gt);
599
600 gt->vm = kernel_vm(gt);
601 if (!gt->vm) {
602 err = -ENOMEM;
603 goto err_pm;
604 }
605
606 err = intel_engines_init(gt);
607 if (err)
608 goto err_engines;
609
610 err = intel_uc_init(>->uc);
611 if (err)
612 goto err_engines;
613
614 err = intel_gt_resume(gt);
615 if (err)
616 goto err_uc_init;
617
618 err = __engines_record_defaults(gt);
619 if (err)
620 goto err_gt;
621
622 err = __engines_verify_workarounds(gt);
623 if (err)
624 goto err_gt;
625
626 err = i915_inject_probe_error(gt->i915, -EIO);
627 if (err)
628 goto err_gt;
629
630 goto out_fw;
631 err_gt:
632 __intel_gt_disable(gt);
633 intel_uc_fini_hw(>->uc);
634 err_uc_init:
635 intel_uc_fini(>->uc);
636 err_engines:
637 intel_engines_release(gt);
638 i915_vm_put(fetch_and_zero(>->vm));
639 err_pm:
640 intel_gt_pm_fini(gt);
641 intel_gt_fini_scratch(gt);
642 out_fw:
643 if (err)
644 intel_gt_set_wedged_on_init(gt);
645 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
646 return err;
647 }
648
intel_gt_driver_remove(struct intel_gt * gt)649 void intel_gt_driver_remove(struct intel_gt *gt)
650 {
651 __intel_gt_disable(gt);
652
653 intel_uc_driver_remove(>->uc);
654
655 intel_engines_release(gt);
656 }
657
intel_gt_driver_unregister(struct intel_gt * gt)658 void intel_gt_driver_unregister(struct intel_gt *gt)
659 {
660 intel_wakeref_t wakeref;
661
662 intel_rps_driver_unregister(>->rps);
663
664 /*
665 * Upon unregistering the device to prevent any new users, cancel
666 * all in-flight requests so that we can quickly unbind the active
667 * resources.
668 */
669 intel_gt_set_wedged(gt);
670
671 /* Scrub all HW state upon release */
672 with_intel_runtime_pm(gt->uncore->rpm, wakeref)
673 __intel_gt_reset(gt, ALL_ENGINES);
674 }
675
intel_gt_driver_release(struct intel_gt * gt)676 void intel_gt_driver_release(struct intel_gt *gt)
677 {
678 struct i915_address_space *vm;
679
680 vm = fetch_and_zero(>->vm);
681 if (vm) /* FIXME being called twice on error paths :( */
682 i915_vm_put(vm);
683
684 intel_gt_pm_fini(gt);
685 intel_gt_fini_scratch(gt);
686 intel_gt_fini_buffer_pool(gt);
687 }
688
intel_gt_driver_late_release(struct intel_gt * gt)689 void intel_gt_driver_late_release(struct intel_gt *gt)
690 {
691 /* We need to wait for inflight RCU frees to release their grip */
692 rcu_barrier();
693
694 intel_uc_driver_late_release(>->uc);
695 intel_gt_fini_requests(gt);
696 intel_gt_fini_reset(gt);
697 intel_gt_fini_timelines(gt);
698 intel_engines_free(gt);
699 }
700
intel_gt_info_print(const struct intel_gt_info * info,struct drm_printer * p)701 void intel_gt_info_print(const struct intel_gt_info *info,
702 struct drm_printer *p)
703 {
704 drm_printf(p, "available engines: %x\n", info->engine_mask);
705
706 intel_sseu_dump(&info->sseu, p);
707 }
708