1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <drm/i915_drm.h>
7 
8 #include "i915_drv.h"
9 #include "intel_breadcrumbs.h"
10 #include "intel_gt.h"
11 #include "intel_gt_clock_utils.h"
12 #include "intel_gt_irq.h"
13 #include "intel_gt_pm_irq.h"
14 #include "intel_rps.h"
15 #include "intel_sideband.h"
16 #include "../../../platform/x86/intel_ips.h"
17 
18 #define BUSY_MAX_EI	20u /* ms */
19 
20 /*
21  * Lock protecting IPS related data structures
22  */
23 static DEFINE_SPINLOCK(mchdev_lock);
24 
rps_to_gt(struct intel_rps * rps)25 static struct intel_gt *rps_to_gt(struct intel_rps *rps)
26 {
27 	return container_of(rps, struct intel_gt, rps);
28 }
29 
rps_to_i915(struct intel_rps * rps)30 static struct drm_i915_private *rps_to_i915(struct intel_rps *rps)
31 {
32 	return rps_to_gt(rps)->i915;
33 }
34 
rps_to_uncore(struct intel_rps * rps)35 static struct intel_uncore *rps_to_uncore(struct intel_rps *rps)
36 {
37 	return rps_to_gt(rps)->uncore;
38 }
39 
rps_pm_sanitize_mask(struct intel_rps * rps,u32 mask)40 static u32 rps_pm_sanitize_mask(struct intel_rps *rps, u32 mask)
41 {
42 	return mask & ~rps->pm_intrmsk_mbz;
43 }
44 
set(struct intel_uncore * uncore,i915_reg_t reg,u32 val)45 static void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val)
46 {
47 	intel_uncore_write_fw(uncore, reg, val);
48 }
49 
rps_timer(struct timer_list * t)50 static void rps_timer(struct timer_list *t)
51 {
52 	struct intel_rps *rps = from_timer(rps, t, timer);
53 	struct intel_engine_cs *engine;
54 	ktime_t dt, last, timestamp;
55 	enum intel_engine_id id;
56 	s64 max_busy[3] = {};
57 
58 	timestamp = 0;
59 	for_each_engine(engine, rps_to_gt(rps), id) {
60 		s64 busy;
61 		int i;
62 
63 		dt = intel_engine_get_busy_time(engine, &timestamp);
64 		last = engine->stats.rps;
65 		engine->stats.rps = dt;
66 
67 		busy = ktime_to_ns(ktime_sub(dt, last));
68 		for (i = 0; i < ARRAY_SIZE(max_busy); i++) {
69 			if (busy > max_busy[i])
70 				swap(busy, max_busy[i]);
71 		}
72 	}
73 	last = rps->pm_timestamp;
74 	rps->pm_timestamp = timestamp;
75 
76 	if (intel_rps_is_active(rps)) {
77 		s64 busy;
78 		int i;
79 
80 		dt = ktime_sub(timestamp, last);
81 
82 		/*
83 		 * Our goal is to evaluate each engine independently, so we run
84 		 * at the lowest clocks required to sustain the heaviest
85 		 * workload. However, a task may be split into sequential
86 		 * dependent operations across a set of engines, such that
87 		 * the independent contributions do not account for high load,
88 		 * but overall the task is GPU bound. For example, consider
89 		 * video decode on vcs followed by colour post-processing
90 		 * on vecs, followed by general post-processing on rcs.
91 		 * Since multi-engines being active does imply a single
92 		 * continuous workload across all engines, we hedge our
93 		 * bets by only contributing a factor of the distributed
94 		 * load into our busyness calculation.
95 		 */
96 		busy = max_busy[0];
97 		for (i = 1; i < ARRAY_SIZE(max_busy); i++) {
98 			if (!max_busy[i])
99 				break;
100 
101 			busy += div_u64(max_busy[i], 1 << i);
102 		}
103 		GT_TRACE(rps_to_gt(rps),
104 			 "busy:%lld [%d%%], max:[%lld, %lld, %lld], interval:%d\n",
105 			 busy, (int)div64_u64(100 * busy, dt),
106 			 max_busy[0], max_busy[1], max_busy[2],
107 			 rps->pm_interval);
108 
109 		if (100 * busy > rps->power.up_threshold * dt &&
110 		    rps->cur_freq < rps->max_freq_softlimit) {
111 			rps->pm_iir |= GEN6_PM_RP_UP_THRESHOLD;
112 			rps->pm_interval = 1;
113 			schedule_work(&rps->work);
114 		} else if (100 * busy < rps->power.down_threshold * dt &&
115 			   rps->cur_freq > rps->min_freq_softlimit) {
116 			rps->pm_iir |= GEN6_PM_RP_DOWN_THRESHOLD;
117 			rps->pm_interval = 1;
118 			schedule_work(&rps->work);
119 		} else {
120 			rps->last_adj = 0;
121 		}
122 
123 		mod_timer(&rps->timer,
124 			  jiffies + msecs_to_jiffies(rps->pm_interval));
125 		rps->pm_interval = min(rps->pm_interval * 2, BUSY_MAX_EI);
126 	}
127 }
128 
rps_start_timer(struct intel_rps * rps)129 static void rps_start_timer(struct intel_rps *rps)
130 {
131 	rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
132 	rps->pm_interval = 1;
133 	mod_timer(&rps->timer, jiffies + 1);
134 }
135 
rps_stop_timer(struct intel_rps * rps)136 static void rps_stop_timer(struct intel_rps *rps)
137 {
138 	del_timer_sync(&rps->timer);
139 	rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
140 	cancel_work_sync(&rps->work);
141 }
142 
rps_pm_mask(struct intel_rps * rps,u8 val)143 static u32 rps_pm_mask(struct intel_rps *rps, u8 val)
144 {
145 	u32 mask = 0;
146 
147 	/* We use UP_EI_EXPIRED interrupts for both up/down in manual mode */
148 	if (val > rps->min_freq_softlimit)
149 		mask |= (GEN6_PM_RP_UP_EI_EXPIRED |
150 			 GEN6_PM_RP_DOWN_THRESHOLD |
151 			 GEN6_PM_RP_DOWN_TIMEOUT);
152 
153 	if (val < rps->max_freq_softlimit)
154 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
155 
156 	mask &= rps->pm_events;
157 
158 	return rps_pm_sanitize_mask(rps, ~mask);
159 }
160 
rps_reset_ei(struct intel_rps * rps)161 static void rps_reset_ei(struct intel_rps *rps)
162 {
163 	memset(&rps->ei, 0, sizeof(rps->ei));
164 }
165 
rps_enable_interrupts(struct intel_rps * rps)166 static void rps_enable_interrupts(struct intel_rps *rps)
167 {
168 	struct intel_gt *gt = rps_to_gt(rps);
169 
170 	GT_TRACE(gt, "interrupts:on rps->pm_events: %x, rps_pm_mask:%x\n",
171 		 rps->pm_events, rps_pm_mask(rps, rps->last_freq));
172 
173 	rps_reset_ei(rps);
174 
175 	spin_lock_irq(&gt->irq_lock);
176 	gen6_gt_pm_enable_irq(gt, rps->pm_events);
177 	spin_unlock_irq(&gt->irq_lock);
178 
179 	intel_uncore_write(gt->uncore,
180 			   GEN6_PMINTRMSK, rps_pm_mask(rps, rps->last_freq));
181 }
182 
gen6_rps_reset_interrupts(struct intel_rps * rps)183 static void gen6_rps_reset_interrupts(struct intel_rps *rps)
184 {
185 	gen6_gt_pm_reset_iir(rps_to_gt(rps), GEN6_PM_RPS_EVENTS);
186 }
187 
gen11_rps_reset_interrupts(struct intel_rps * rps)188 static void gen11_rps_reset_interrupts(struct intel_rps *rps)
189 {
190 	while (gen11_gt_reset_one_iir(rps_to_gt(rps), 0, GEN11_GTPM))
191 		;
192 }
193 
rps_reset_interrupts(struct intel_rps * rps)194 static void rps_reset_interrupts(struct intel_rps *rps)
195 {
196 	struct intel_gt *gt = rps_to_gt(rps);
197 
198 	spin_lock_irq(&gt->irq_lock);
199 	if (INTEL_GEN(gt->i915) >= 11)
200 		gen11_rps_reset_interrupts(rps);
201 	else
202 		gen6_rps_reset_interrupts(rps);
203 
204 	rps->pm_iir = 0;
205 	spin_unlock_irq(&gt->irq_lock);
206 }
207 
rps_disable_interrupts(struct intel_rps * rps)208 static void rps_disable_interrupts(struct intel_rps *rps)
209 {
210 	struct intel_gt *gt = rps_to_gt(rps);
211 
212 	intel_uncore_write(gt->uncore,
213 			   GEN6_PMINTRMSK, rps_pm_sanitize_mask(rps, ~0u));
214 
215 	spin_lock_irq(&gt->irq_lock);
216 	gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
217 	spin_unlock_irq(&gt->irq_lock);
218 
219 	intel_synchronize_irq(gt->i915);
220 
221 	/*
222 	 * Now that we will not be generating any more work, flush any
223 	 * outstanding tasks. As we are called on the RPS idle path,
224 	 * we will reset the GPU to minimum frequencies, so the current
225 	 * state of the worker can be discarded.
226 	 */
227 	cancel_work_sync(&rps->work);
228 
229 	rps_reset_interrupts(rps);
230 	GT_TRACE(gt, "interrupts:off\n");
231 }
232 
233 static const struct cparams {
234 	u16 i;
235 	u16 t;
236 	u16 m;
237 	u16 c;
238 } cparams[] = {
239 	{ 1, 1333, 301, 28664 },
240 	{ 1, 1066, 294, 24460 },
241 	{ 1, 800, 294, 25192 },
242 	{ 0, 1333, 276, 27605 },
243 	{ 0, 1066, 276, 27605 },
244 	{ 0, 800, 231, 23784 },
245 };
246 
gen5_rps_init(struct intel_rps * rps)247 static void gen5_rps_init(struct intel_rps *rps)
248 {
249 	struct drm_i915_private *i915 = rps_to_i915(rps);
250 	struct intel_uncore *uncore = rps_to_uncore(rps);
251 	u8 fmax, fmin, fstart;
252 	u32 rgvmodectl;
253 	int c_m, i;
254 
255 	if (i915->fsb_freq <= 3200)
256 		c_m = 0;
257 	else if (i915->fsb_freq <= 4800)
258 		c_m = 1;
259 	else
260 		c_m = 2;
261 
262 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
263 		if (cparams[i].i == c_m && cparams[i].t == i915->mem_freq) {
264 			rps->ips.m = cparams[i].m;
265 			rps->ips.c = cparams[i].c;
266 			break;
267 		}
268 	}
269 
270 	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
271 
272 	/* Set up min, max, and cur for interrupt handling */
273 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
274 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
275 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
276 		MEMMODE_FSTART_SHIFT;
277 	drm_dbg(&i915->drm, "fmax: %d, fmin: %d, fstart: %d\n",
278 		fmax, fmin, fstart);
279 
280 	rps->min_freq = fmax;
281 	rps->efficient_freq = fstart;
282 	rps->max_freq = fmin;
283 }
284 
285 static unsigned long
__ips_chipset_val(struct intel_ips * ips)286 __ips_chipset_val(struct intel_ips *ips)
287 {
288 	struct intel_uncore *uncore =
289 		rps_to_uncore(container_of(ips, struct intel_rps, ips));
290 	unsigned long now = jiffies_to_msecs(jiffies), dt;
291 	unsigned long result;
292 	u64 total, delta;
293 
294 	lockdep_assert_held(&mchdev_lock);
295 
296 	/*
297 	 * Prevent division-by-zero if we are asking too fast.
298 	 * Also, we don't get interesting results if we are polling
299 	 * faster than once in 10ms, so just return the saved value
300 	 * in such cases.
301 	 */
302 	dt = now - ips->last_time1;
303 	if (dt <= 10)
304 		return ips->chipset_power;
305 
306 	/* FIXME: handle per-counter overflow */
307 	total = intel_uncore_read(uncore, DMIEC);
308 	total += intel_uncore_read(uncore, DDREC);
309 	total += intel_uncore_read(uncore, CSIEC);
310 
311 	delta = total - ips->last_count1;
312 
313 	result = div_u64(div_u64(ips->m * delta, dt) + ips->c, 10);
314 
315 	ips->last_count1 = total;
316 	ips->last_time1 = now;
317 
318 	ips->chipset_power = result;
319 
320 	return result;
321 }
322 
ips_mch_val(struct intel_uncore * uncore)323 static unsigned long ips_mch_val(struct intel_uncore *uncore)
324 {
325 	unsigned int m, x, b;
326 	u32 tsfs;
327 
328 	tsfs = intel_uncore_read(uncore, TSFS);
329 	x = intel_uncore_read8(uncore, TR1);
330 
331 	b = tsfs & TSFS_INTR_MASK;
332 	m = (tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT;
333 
334 	return m * x / 127 - b;
335 }
336 
_pxvid_to_vd(u8 pxvid)337 static int _pxvid_to_vd(u8 pxvid)
338 {
339 	if (pxvid == 0)
340 		return 0;
341 
342 	if (pxvid >= 8 && pxvid < 31)
343 		pxvid = 31;
344 
345 	return (pxvid + 2) * 125;
346 }
347 
pvid_to_extvid(struct drm_i915_private * i915,u8 pxvid)348 static u32 pvid_to_extvid(struct drm_i915_private *i915, u8 pxvid)
349 {
350 	const int vd = _pxvid_to_vd(pxvid);
351 
352 	if (INTEL_INFO(i915)->is_mobile)
353 		return max(vd - 1125, 0);
354 
355 	return vd;
356 }
357 
__gen5_ips_update(struct intel_ips * ips)358 static void __gen5_ips_update(struct intel_ips *ips)
359 {
360 	struct intel_uncore *uncore =
361 		rps_to_uncore(container_of(ips, struct intel_rps, ips));
362 	u64 now, delta, dt;
363 	u32 count;
364 
365 	lockdep_assert_held(&mchdev_lock);
366 
367 	now = ktime_get_raw_ns();
368 	dt = now - ips->last_time2;
369 	do_div(dt, NSEC_PER_MSEC);
370 
371 	/* Don't divide by 0 */
372 	if (dt <= 10)
373 		return;
374 
375 	count = intel_uncore_read(uncore, GFXEC);
376 	delta = count - ips->last_count2;
377 
378 	ips->last_count2 = count;
379 	ips->last_time2 = now;
380 
381 	/* More magic constants... */
382 	ips->gfx_power = div_u64(delta * 1181, dt * 10);
383 }
384 
gen5_rps_update(struct intel_rps * rps)385 static void gen5_rps_update(struct intel_rps *rps)
386 {
387 	spin_lock_irq(&mchdev_lock);
388 	__gen5_ips_update(&rps->ips);
389 	spin_unlock_irq(&mchdev_lock);
390 }
391 
gen5_invert_freq(struct intel_rps * rps,unsigned int val)392 static unsigned int gen5_invert_freq(struct intel_rps *rps,
393 				     unsigned int val)
394 {
395 	/* Invert the frequency bin into an ips delay */
396 	val = rps->max_freq - val;
397 	val = rps->min_freq + val;
398 
399 	return val;
400 }
401 
__gen5_rps_set(struct intel_rps * rps,u8 val)402 static int __gen5_rps_set(struct intel_rps *rps, u8 val)
403 {
404 	struct intel_uncore *uncore = rps_to_uncore(rps);
405 	u16 rgvswctl;
406 
407 	lockdep_assert_held(&mchdev_lock);
408 
409 	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
410 	if (rgvswctl & MEMCTL_CMD_STS) {
411 		DRM_DEBUG("gpu busy, RCS change rejected\n");
412 		return -EBUSY; /* still busy with another command */
413 	}
414 
415 	/* Invert the frequency bin into an ips delay */
416 	val = gen5_invert_freq(rps, val);
417 
418 	rgvswctl =
419 		(MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
420 		(val << MEMCTL_FREQ_SHIFT) |
421 		MEMCTL_SFCAVM;
422 	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
423 	intel_uncore_posting_read16(uncore, MEMSWCTL);
424 
425 	rgvswctl |= MEMCTL_CMD_STS;
426 	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
427 
428 	return 0;
429 }
430 
gen5_rps_set(struct intel_rps * rps,u8 val)431 static int gen5_rps_set(struct intel_rps *rps, u8 val)
432 {
433 	int err;
434 
435 	spin_lock_irq(&mchdev_lock);
436 	err = __gen5_rps_set(rps, val);
437 	spin_unlock_irq(&mchdev_lock);
438 
439 	return err;
440 }
441 
intel_pxfreq(u32 vidfreq)442 static unsigned long intel_pxfreq(u32 vidfreq)
443 {
444 	int div = (vidfreq & 0x3f0000) >> 16;
445 	int post = (vidfreq & 0x3000) >> 12;
446 	int pre = (vidfreq & 0x7);
447 
448 	if (!pre)
449 		return 0;
450 
451 	return div * 133333 / (pre << post);
452 }
453 
init_emon(struct intel_uncore * uncore)454 static unsigned int init_emon(struct intel_uncore *uncore)
455 {
456 	u8 pxw[16];
457 	int i;
458 
459 	/* Disable to program */
460 	intel_uncore_write(uncore, ECR, 0);
461 	intel_uncore_posting_read(uncore, ECR);
462 
463 	/* Program energy weights for various events */
464 	intel_uncore_write(uncore, SDEW, 0x15040d00);
465 	intel_uncore_write(uncore, CSIEW0, 0x007f0000);
466 	intel_uncore_write(uncore, CSIEW1, 0x1e220004);
467 	intel_uncore_write(uncore, CSIEW2, 0x04000004);
468 
469 	for (i = 0; i < 5; i++)
470 		intel_uncore_write(uncore, PEW(i), 0);
471 	for (i = 0; i < 3; i++)
472 		intel_uncore_write(uncore, DEW(i), 0);
473 
474 	/* Program P-state weights to account for frequency power adjustment */
475 	for (i = 0; i < 16; i++) {
476 		u32 pxvidfreq = intel_uncore_read(uncore, PXVFREQ(i));
477 		unsigned int freq = intel_pxfreq(pxvidfreq);
478 		unsigned int vid =
479 			(pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
480 		unsigned int val;
481 
482 		val = vid * vid * freq / 1000 * 255;
483 		val /= 127 * 127 * 900;
484 
485 		pxw[i] = val;
486 	}
487 	/* Render standby states get 0 weight */
488 	pxw[14] = 0;
489 	pxw[15] = 0;
490 
491 	for (i = 0; i < 4; i++) {
492 		intel_uncore_write(uncore, PXW(i),
493 				   pxw[i * 4 + 0] << 24 |
494 				   pxw[i * 4 + 1] << 16 |
495 				   pxw[i * 4 + 2] <<  8 |
496 				   pxw[i * 4 + 3] <<  0);
497 	}
498 
499 	/* Adjust magic regs to magic values (more experimental results) */
500 	intel_uncore_write(uncore, OGW0, 0);
501 	intel_uncore_write(uncore, OGW1, 0);
502 	intel_uncore_write(uncore, EG0, 0x00007f00);
503 	intel_uncore_write(uncore, EG1, 0x0000000e);
504 	intel_uncore_write(uncore, EG2, 0x000e0000);
505 	intel_uncore_write(uncore, EG3, 0x68000300);
506 	intel_uncore_write(uncore, EG4, 0x42000000);
507 	intel_uncore_write(uncore, EG5, 0x00140031);
508 	intel_uncore_write(uncore, EG6, 0);
509 	intel_uncore_write(uncore, EG7, 0);
510 
511 	for (i = 0; i < 8; i++)
512 		intel_uncore_write(uncore, PXWL(i), 0);
513 
514 	/* Enable PMON + select events */
515 	intel_uncore_write(uncore, ECR, 0x80000019);
516 
517 	return intel_uncore_read(uncore, LCFUSE02) & LCFUSE_HIV_MASK;
518 }
519 
gen5_rps_enable(struct intel_rps * rps)520 static bool gen5_rps_enable(struct intel_rps *rps)
521 {
522 	struct drm_i915_private *i915 = rps_to_i915(rps);
523 	struct intel_uncore *uncore = rps_to_uncore(rps);
524 	u8 fstart, vstart;
525 	u32 rgvmodectl;
526 
527 	spin_lock_irq(&mchdev_lock);
528 
529 	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
530 
531 	/* Enable temp reporting */
532 	intel_uncore_write16(uncore, PMMISC,
533 			     intel_uncore_read16(uncore, PMMISC) | MCPPCE_EN);
534 	intel_uncore_write16(uncore, TSC1,
535 			     intel_uncore_read16(uncore, TSC1) | TSE);
536 
537 	/* 100ms RC evaluation intervals */
538 	intel_uncore_write(uncore, RCUPEI, 100000);
539 	intel_uncore_write(uncore, RCDNEI, 100000);
540 
541 	/* Set max/min thresholds to 90ms and 80ms respectively */
542 	intel_uncore_write(uncore, RCBMAXAVG, 90000);
543 	intel_uncore_write(uncore, RCBMINAVG, 80000);
544 
545 	intel_uncore_write(uncore, MEMIHYST, 1);
546 
547 	/* Set up min, max, and cur for interrupt handling */
548 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
549 		MEMMODE_FSTART_SHIFT;
550 
551 	vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
552 		  PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
553 
554 	intel_uncore_write(uncore,
555 			   MEMINTREN,
556 			   MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
557 
558 	intel_uncore_write(uncore, VIDSTART, vstart);
559 	intel_uncore_posting_read(uncore, VIDSTART);
560 
561 	rgvmodectl |= MEMMODE_SWMODE_EN;
562 	intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
563 
564 	if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
565 			     MEMCTL_CMD_STS) == 0, 10))
566 		drm_err(&uncore->i915->drm,
567 			"stuck trying to change perf mode\n");
568 	mdelay(1);
569 
570 	__gen5_rps_set(rps, rps->cur_freq);
571 
572 	rps->ips.last_count1 = intel_uncore_read(uncore, DMIEC);
573 	rps->ips.last_count1 += intel_uncore_read(uncore, DDREC);
574 	rps->ips.last_count1 += intel_uncore_read(uncore, CSIEC);
575 	rps->ips.last_time1 = jiffies_to_msecs(jiffies);
576 
577 	rps->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
578 	rps->ips.last_time2 = ktime_get_raw_ns();
579 
580 	spin_lock(&i915->irq_lock);
581 	ilk_enable_display_irq(i915, DE_PCU_EVENT);
582 	spin_unlock(&i915->irq_lock);
583 
584 	spin_unlock_irq(&mchdev_lock);
585 
586 	rps->ips.corr = init_emon(uncore);
587 
588 	return true;
589 }
590 
gen5_rps_disable(struct intel_rps * rps)591 static void gen5_rps_disable(struct intel_rps *rps)
592 {
593 	struct drm_i915_private *i915 = rps_to_i915(rps);
594 	struct intel_uncore *uncore = rps_to_uncore(rps);
595 	u16 rgvswctl;
596 
597 	spin_lock_irq(&mchdev_lock);
598 
599 	spin_lock(&i915->irq_lock);
600 	ilk_disable_display_irq(i915, DE_PCU_EVENT);
601 	spin_unlock(&i915->irq_lock);
602 
603 	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
604 
605 	/* Ack interrupts, disable EFC interrupt */
606 	intel_uncore_write(uncore, MEMINTREN,
607 			   intel_uncore_read(uncore, MEMINTREN) &
608 			   ~MEMINT_EVAL_CHG_EN);
609 	intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
610 
611 	/* Go back to the starting frequency */
612 	__gen5_rps_set(rps, rps->idle_freq);
613 	mdelay(1);
614 	rgvswctl |= MEMCTL_CMD_STS;
615 	intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
616 	mdelay(1);
617 
618 	spin_unlock_irq(&mchdev_lock);
619 }
620 
rps_limits(struct intel_rps * rps,u8 val)621 static u32 rps_limits(struct intel_rps *rps, u8 val)
622 {
623 	u32 limits;
624 
625 	/*
626 	 * Only set the down limit when we've reached the lowest level to avoid
627 	 * getting more interrupts, otherwise leave this clear. This prevents a
628 	 * race in the hw when coming out of rc6: There's a tiny window where
629 	 * the hw runs at the minimal clock before selecting the desired
630 	 * frequency, if the down threshold expires in that window we will not
631 	 * receive a down interrupt.
632 	 */
633 	if (INTEL_GEN(rps_to_i915(rps)) >= 9) {
634 		limits = rps->max_freq_softlimit << 23;
635 		if (val <= rps->min_freq_softlimit)
636 			limits |= rps->min_freq_softlimit << 14;
637 	} else {
638 		limits = rps->max_freq_softlimit << 24;
639 		if (val <= rps->min_freq_softlimit)
640 			limits |= rps->min_freq_softlimit << 16;
641 	}
642 
643 	return limits;
644 }
645 
rps_set_power(struct intel_rps * rps,int new_power)646 static void rps_set_power(struct intel_rps *rps, int new_power)
647 {
648 	struct intel_gt *gt = rps_to_gt(rps);
649 	struct intel_uncore *uncore = gt->uncore;
650 	u32 threshold_up = 0, threshold_down = 0; /* in % */
651 	u32 ei_up = 0, ei_down = 0;
652 
653 	lockdep_assert_held(&rps->power.mutex);
654 
655 	if (new_power == rps->power.mode)
656 		return;
657 
658 	threshold_up = 95;
659 	threshold_down = 85;
660 
661 	/* Note the units here are not exactly 1us, but 1280ns. */
662 	switch (new_power) {
663 	case LOW_POWER:
664 		ei_up = 16000;
665 		ei_down = 32000;
666 		break;
667 
668 	case BETWEEN:
669 		ei_up = 13000;
670 		ei_down = 32000;
671 		break;
672 
673 	case HIGH_POWER:
674 		ei_up = 10000;
675 		ei_down = 32000;
676 		break;
677 	}
678 
679 	/* When byt can survive without system hang with dynamic
680 	 * sw freq adjustments, this restriction can be lifted.
681 	 */
682 	if (IS_VALLEYVIEW(gt->i915))
683 		goto skip_hw_write;
684 
685 	GT_TRACE(gt,
686 		 "changing power mode [%d], up %d%% @ %dus, down %d%% @ %dus\n",
687 		 new_power, threshold_up, ei_up, threshold_down, ei_down);
688 
689 	set(uncore, GEN6_RP_UP_EI,
690 	    intel_gt_ns_to_pm_interval(gt, ei_up * 1000));
691 	set(uncore, GEN6_RP_UP_THRESHOLD,
692 	    intel_gt_ns_to_pm_interval(gt, ei_up * threshold_up * 10));
693 
694 	set(uncore, GEN6_RP_DOWN_EI,
695 	    intel_gt_ns_to_pm_interval(gt, ei_down * 1000));
696 	set(uncore, GEN6_RP_DOWN_THRESHOLD,
697 	    intel_gt_ns_to_pm_interval(gt, ei_down * threshold_down * 10));
698 
699 	set(uncore, GEN6_RP_CONTROL,
700 	    (INTEL_GEN(gt->i915) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
701 	    GEN6_RP_MEDIA_HW_NORMAL_MODE |
702 	    GEN6_RP_MEDIA_IS_GFX |
703 	    GEN6_RP_ENABLE |
704 	    GEN6_RP_UP_BUSY_AVG |
705 	    GEN6_RP_DOWN_IDLE_AVG);
706 
707 skip_hw_write:
708 	rps->power.mode = new_power;
709 	rps->power.up_threshold = threshold_up;
710 	rps->power.down_threshold = threshold_down;
711 }
712 
gen6_rps_set_thresholds(struct intel_rps * rps,u8 val)713 static void gen6_rps_set_thresholds(struct intel_rps *rps, u8 val)
714 {
715 	int new_power;
716 
717 	new_power = rps->power.mode;
718 	switch (rps->power.mode) {
719 	case LOW_POWER:
720 		if (val > rps->efficient_freq + 1 &&
721 		    val > rps->cur_freq)
722 			new_power = BETWEEN;
723 		break;
724 
725 	case BETWEEN:
726 		if (val <= rps->efficient_freq &&
727 		    val < rps->cur_freq)
728 			new_power = LOW_POWER;
729 		else if (val >= rps->rp0_freq &&
730 			 val > rps->cur_freq)
731 			new_power = HIGH_POWER;
732 		break;
733 
734 	case HIGH_POWER:
735 		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
736 		    val < rps->cur_freq)
737 			new_power = BETWEEN;
738 		break;
739 	}
740 	/* Max/min bins are special */
741 	if (val <= rps->min_freq_softlimit)
742 		new_power = LOW_POWER;
743 	if (val >= rps->max_freq_softlimit)
744 		new_power = HIGH_POWER;
745 
746 	mutex_lock(&rps->power.mutex);
747 	if (rps->power.interactive)
748 		new_power = HIGH_POWER;
749 	rps_set_power(rps, new_power);
750 	mutex_unlock(&rps->power.mutex);
751 }
752 
intel_rps_mark_interactive(struct intel_rps * rps,bool interactive)753 void intel_rps_mark_interactive(struct intel_rps *rps, bool interactive)
754 {
755 	GT_TRACE(rps_to_gt(rps), "mark interactive: %s\n", yesno(interactive));
756 
757 	mutex_lock(&rps->power.mutex);
758 	if (interactive) {
759 		if (!rps->power.interactive++ && intel_rps_is_active(rps))
760 			rps_set_power(rps, HIGH_POWER);
761 	} else {
762 		GEM_BUG_ON(!rps->power.interactive);
763 		rps->power.interactive--;
764 	}
765 	mutex_unlock(&rps->power.mutex);
766 }
767 
gen6_rps_set(struct intel_rps * rps,u8 val)768 static int gen6_rps_set(struct intel_rps *rps, u8 val)
769 {
770 	struct intel_uncore *uncore = rps_to_uncore(rps);
771 	struct drm_i915_private *i915 = rps_to_i915(rps);
772 	u32 swreq;
773 
774 	if (INTEL_GEN(i915) >= 9)
775 		swreq = GEN9_FREQUENCY(val);
776 	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
777 		swreq = HSW_FREQUENCY(val);
778 	else
779 		swreq = (GEN6_FREQUENCY(val) |
780 			 GEN6_OFFSET(0) |
781 			 GEN6_AGGRESSIVE_TURBO);
782 	set(uncore, GEN6_RPNSWREQ, swreq);
783 
784 	GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d, swreq:%x\n",
785 		 val, intel_gpu_freq(rps, val), swreq);
786 
787 	return 0;
788 }
789 
vlv_rps_set(struct intel_rps * rps,u8 val)790 static int vlv_rps_set(struct intel_rps *rps, u8 val)
791 {
792 	struct drm_i915_private *i915 = rps_to_i915(rps);
793 	int err;
794 
795 	vlv_punit_get(i915);
796 	err = vlv_punit_write(i915, PUNIT_REG_GPU_FREQ_REQ, val);
797 	vlv_punit_put(i915);
798 
799 	GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d\n",
800 		 val, intel_gpu_freq(rps, val));
801 
802 	return err;
803 }
804 
rps_set(struct intel_rps * rps,u8 val,bool update)805 static int rps_set(struct intel_rps *rps, u8 val, bool update)
806 {
807 	struct drm_i915_private *i915 = rps_to_i915(rps);
808 	int err;
809 
810 	if (val == rps->last_freq)
811 		return 0;
812 
813 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
814 		err = vlv_rps_set(rps, val);
815 	else if (INTEL_GEN(i915) >= 6)
816 		err = gen6_rps_set(rps, val);
817 	else
818 		err = gen5_rps_set(rps, val);
819 	if (err)
820 		return err;
821 
822 	if (update && INTEL_GEN(i915) >= 6)
823 		gen6_rps_set_thresholds(rps, val);
824 	rps->last_freq = val;
825 
826 	return 0;
827 }
828 
intel_rps_unpark(struct intel_rps * rps)829 void intel_rps_unpark(struct intel_rps *rps)
830 {
831 	if (!intel_rps_is_enabled(rps))
832 		return;
833 
834 	GT_TRACE(rps_to_gt(rps), "unpark:%x\n", rps->cur_freq);
835 
836 	/*
837 	 * Use the user's desired frequency as a guide, but for better
838 	 * performance, jump directly to RPe as our starting frequency.
839 	 */
840 	mutex_lock(&rps->lock);
841 
842 	intel_rps_set_active(rps);
843 	intel_rps_set(rps,
844 		      clamp(rps->cur_freq,
845 			    rps->min_freq_softlimit,
846 			    rps->max_freq_softlimit));
847 
848 	mutex_unlock(&rps->lock);
849 
850 	rps->pm_iir = 0;
851 	if (intel_rps_has_interrupts(rps))
852 		rps_enable_interrupts(rps);
853 	if (intel_rps_uses_timer(rps))
854 		rps_start_timer(rps);
855 
856 	if (IS_GEN(rps_to_i915(rps), 5))
857 		gen5_rps_update(rps);
858 }
859 
intel_rps_park(struct intel_rps * rps)860 void intel_rps_park(struct intel_rps *rps)
861 {
862 	int adj;
863 
864 	GEM_BUG_ON(atomic_read(&rps->num_waiters));
865 
866 	if (!intel_rps_clear_active(rps))
867 		return;
868 
869 	if (intel_rps_uses_timer(rps))
870 		rps_stop_timer(rps);
871 	if (intel_rps_has_interrupts(rps))
872 		rps_disable_interrupts(rps);
873 
874 	if (rps->last_freq <= rps->idle_freq)
875 		return;
876 
877 	/*
878 	 * The punit delays the write of the frequency and voltage until it
879 	 * determines the GPU is awake. During normal usage we don't want to
880 	 * waste power changing the frequency if the GPU is sleeping (rc6).
881 	 * However, the GPU and driver is now idle and we do not want to delay
882 	 * switching to minimum voltage (reducing power whilst idle) as we do
883 	 * not expect to be woken in the near future and so must flush the
884 	 * change by waking the device.
885 	 *
886 	 * We choose to take the media powerwell (either would do to trick the
887 	 * punit into committing the voltage change) as that takes a lot less
888 	 * power than the render powerwell.
889 	 */
890 	intel_uncore_forcewake_get(rps_to_uncore(rps), FORCEWAKE_MEDIA);
891 	rps_set(rps, rps->idle_freq, false);
892 	intel_uncore_forcewake_put(rps_to_uncore(rps), FORCEWAKE_MEDIA);
893 
894 	/*
895 	 * Since we will try and restart from the previously requested
896 	 * frequency on unparking, treat this idle point as a downclock
897 	 * interrupt and reduce the frequency for resume. If we park/unpark
898 	 * more frequently than the rps worker can run, we will not respond
899 	 * to any EI and never see a change in frequency.
900 	 *
901 	 * (Note we accommodate Cherryview's limitation of only using an
902 	 * even bin by applying it to all.)
903 	 */
904 	adj = rps->last_adj;
905 	if (adj < 0)
906 		adj *= 2;
907 	else /* CHV needs even encode values */
908 		adj = -2;
909 	rps->last_adj = adj;
910 	rps->cur_freq = max_t(int, rps->cur_freq + adj, rps->min_freq);
911 	if (rps->cur_freq < rps->efficient_freq) {
912 		rps->cur_freq = rps->efficient_freq;
913 		rps->last_adj = 0;
914 	}
915 
916 	GT_TRACE(rps_to_gt(rps), "park:%x\n", rps->cur_freq);
917 }
918 
intel_rps_boost(struct i915_request * rq)919 void intel_rps_boost(struct i915_request *rq)
920 {
921 	if (i915_request_signaled(rq) || i915_request_has_waitboost(rq))
922 		return;
923 
924 	/* Serializes with i915_request_retire() */
925 	if (!test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) {
926 		struct intel_rps *rps = &READ_ONCE(rq->engine)->gt->rps;
927 
928 		if (atomic_fetch_inc(&rps->num_waiters))
929 			return;
930 
931 		if (!intel_rps_is_active(rps))
932 			return;
933 
934 		GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
935 			 rq->fence.context, rq->fence.seqno);
936 
937 		if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
938 			schedule_work(&rps->work);
939 
940 		WRITE_ONCE(rps->boosts, rps->boosts + 1); /* debug only */
941 	}
942 }
943 
intel_rps_set(struct intel_rps * rps,u8 val)944 int intel_rps_set(struct intel_rps *rps, u8 val)
945 {
946 	int err;
947 
948 	lockdep_assert_held(&rps->lock);
949 	GEM_BUG_ON(val > rps->max_freq);
950 	GEM_BUG_ON(val < rps->min_freq);
951 
952 	if (intel_rps_is_active(rps)) {
953 		err = rps_set(rps, val, true);
954 		if (err)
955 			return err;
956 
957 		/*
958 		 * Make sure we continue to get interrupts
959 		 * until we hit the minimum or maximum frequencies.
960 		 */
961 		if (intel_rps_has_interrupts(rps)) {
962 			struct intel_uncore *uncore = rps_to_uncore(rps);
963 
964 			set(uncore,
965 			    GEN6_RP_INTERRUPT_LIMITS, rps_limits(rps, val));
966 
967 			set(uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, val));
968 		}
969 	}
970 
971 	rps->cur_freq = val;
972 	return 0;
973 }
974 
gen6_rps_init(struct intel_rps * rps)975 static void gen6_rps_init(struct intel_rps *rps)
976 {
977 	struct drm_i915_private *i915 = rps_to_i915(rps);
978 	struct intel_uncore *uncore = rps_to_uncore(rps);
979 
980 	/* All of these values are in units of 50MHz */
981 
982 	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
983 	if (IS_GEN9_LP(i915)) {
984 		u32 rp_state_cap = intel_uncore_read(uncore, BXT_RP_STATE_CAP);
985 
986 		rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
987 		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
988 		rps->min_freq = (rp_state_cap >>  0) & 0xff;
989 	} else {
990 		u32 rp_state_cap = intel_uncore_read(uncore, GEN6_RP_STATE_CAP);
991 
992 		rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
993 		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
994 		rps->min_freq = (rp_state_cap >> 16) & 0xff;
995 	}
996 
997 	/* hw_max = RP0 until we check for overclocking */
998 	rps->max_freq = rps->rp0_freq;
999 
1000 	rps->efficient_freq = rps->rp1_freq;
1001 	if (IS_HASWELL(i915) || IS_BROADWELL(i915) ||
1002 	    IS_GEN9_BC(i915) || INTEL_GEN(i915) >= 10) {
1003 		u32 ddcc_status = 0;
1004 
1005 		if (sandybridge_pcode_read(i915,
1006 					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
1007 					   &ddcc_status, NULL) == 0)
1008 			rps->efficient_freq =
1009 				clamp_t(u8,
1010 					(ddcc_status >> 8) & 0xff,
1011 					rps->min_freq,
1012 					rps->max_freq);
1013 	}
1014 
1015 	if (IS_GEN9_BC(i915) || INTEL_GEN(i915) >= 10) {
1016 		/* Store the frequency values in 16.66 MHZ units, which is
1017 		 * the natural hardware unit for SKL
1018 		 */
1019 		rps->rp0_freq *= GEN9_FREQ_SCALER;
1020 		rps->rp1_freq *= GEN9_FREQ_SCALER;
1021 		rps->min_freq *= GEN9_FREQ_SCALER;
1022 		rps->max_freq *= GEN9_FREQ_SCALER;
1023 		rps->efficient_freq *= GEN9_FREQ_SCALER;
1024 	}
1025 }
1026 
rps_reset(struct intel_rps * rps)1027 static bool rps_reset(struct intel_rps *rps)
1028 {
1029 	struct drm_i915_private *i915 = rps_to_i915(rps);
1030 
1031 	/* force a reset */
1032 	rps->power.mode = -1;
1033 	rps->last_freq = -1;
1034 
1035 	if (rps_set(rps, rps->min_freq, true)) {
1036 		drm_err(&i915->drm, "Failed to reset RPS to initial values\n");
1037 		return false;
1038 	}
1039 
1040 	rps->cur_freq = rps->min_freq;
1041 	return true;
1042 }
1043 
1044 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
gen9_rps_enable(struct intel_rps * rps)1045 static bool gen9_rps_enable(struct intel_rps *rps)
1046 {
1047 	struct intel_gt *gt = rps_to_gt(rps);
1048 	struct intel_uncore *uncore = gt->uncore;
1049 
1050 	/* Program defaults and thresholds for RPS */
1051 	if (IS_GEN(gt->i915, 9))
1052 		intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1053 				      GEN9_FREQUENCY(rps->rp1_freq));
1054 
1055 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 0xa);
1056 
1057 	rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1058 
1059 	return rps_reset(rps);
1060 }
1061 
gen8_rps_enable(struct intel_rps * rps)1062 static bool gen8_rps_enable(struct intel_rps *rps)
1063 {
1064 	struct intel_uncore *uncore = rps_to_uncore(rps);
1065 
1066 	intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1067 			      HSW_FREQUENCY(rps->rp1_freq));
1068 
1069 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1070 
1071 	rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1072 
1073 	return rps_reset(rps);
1074 }
1075 
gen6_rps_enable(struct intel_rps * rps)1076 static bool gen6_rps_enable(struct intel_rps *rps)
1077 {
1078 	struct intel_uncore *uncore = rps_to_uncore(rps);
1079 
1080 	/* Power down if completely idle for over 50ms */
1081 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 50000);
1082 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1083 
1084 	rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1085 			  GEN6_PM_RP_DOWN_THRESHOLD |
1086 			  GEN6_PM_RP_DOWN_TIMEOUT);
1087 
1088 	return rps_reset(rps);
1089 }
1090 
chv_rps_max_freq(struct intel_rps * rps)1091 static int chv_rps_max_freq(struct intel_rps *rps)
1092 {
1093 	struct drm_i915_private *i915 = rps_to_i915(rps);
1094 	struct intel_gt *gt = rps_to_gt(rps);
1095 	u32 val;
1096 
1097 	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1098 
1099 	switch (gt->info.sseu.eu_total) {
1100 	case 8:
1101 		/* (2 * 4) config */
1102 		val >>= FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT;
1103 		break;
1104 	case 12:
1105 		/* (2 * 6) config */
1106 		val >>= FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT;
1107 		break;
1108 	case 16:
1109 		/* (2 * 8) config */
1110 	default:
1111 		/* Setting (2 * 8) Min RP0 for any other combination */
1112 		val >>= FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT;
1113 		break;
1114 	}
1115 
1116 	return val & FB_GFX_FREQ_FUSE_MASK;
1117 }
1118 
chv_rps_rpe_freq(struct intel_rps * rps)1119 static int chv_rps_rpe_freq(struct intel_rps *rps)
1120 {
1121 	struct drm_i915_private *i915 = rps_to_i915(rps);
1122 	u32 val;
1123 
1124 	val = vlv_punit_read(i915, PUNIT_GPU_DUTYCYCLE_REG);
1125 	val >>= PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT;
1126 
1127 	return val & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
1128 }
1129 
chv_rps_guar_freq(struct intel_rps * rps)1130 static int chv_rps_guar_freq(struct intel_rps *rps)
1131 {
1132 	struct drm_i915_private *i915 = rps_to_i915(rps);
1133 	u32 val;
1134 
1135 	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1136 
1137 	return val & FB_GFX_FREQ_FUSE_MASK;
1138 }
1139 
chv_rps_min_freq(struct intel_rps * rps)1140 static u32 chv_rps_min_freq(struct intel_rps *rps)
1141 {
1142 	struct drm_i915_private *i915 = rps_to_i915(rps);
1143 	u32 val;
1144 
1145 	val = vlv_punit_read(i915, FB_GFX_FMIN_AT_VMIN_FUSE);
1146 	val >>= FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT;
1147 
1148 	return val & FB_GFX_FREQ_FUSE_MASK;
1149 }
1150 
chv_rps_enable(struct intel_rps * rps)1151 static bool chv_rps_enable(struct intel_rps *rps)
1152 {
1153 	struct intel_uncore *uncore = rps_to_uncore(rps);
1154 	struct drm_i915_private *i915 = rps_to_i915(rps);
1155 	u32 val;
1156 
1157 	/* 1: Program defaults and thresholds for RPS*/
1158 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1159 	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1160 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1161 	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1162 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1163 
1164 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1165 
1166 	/* 2: Enable RPS */
1167 	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1168 			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1169 			      GEN6_RP_MEDIA_IS_GFX |
1170 			      GEN6_RP_ENABLE |
1171 			      GEN6_RP_UP_BUSY_AVG |
1172 			      GEN6_RP_DOWN_IDLE_AVG);
1173 
1174 	rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1175 			  GEN6_PM_RP_DOWN_THRESHOLD |
1176 			  GEN6_PM_RP_DOWN_TIMEOUT);
1177 
1178 	/* Setting Fixed Bias */
1179 	vlv_punit_get(i915);
1180 
1181 	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
1182 	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1183 
1184 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1185 
1186 	vlv_punit_put(i915);
1187 
1188 	/* RPS code assumes GPLL is used */
1189 	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1190 		      "GPLL not enabled\n");
1191 
1192 	drm_dbg(&i915->drm, "GPLL enabled? %s\n", yesno(val & GPLLENABLE));
1193 	drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1194 
1195 	return rps_reset(rps);
1196 }
1197 
vlv_rps_guar_freq(struct intel_rps * rps)1198 static int vlv_rps_guar_freq(struct intel_rps *rps)
1199 {
1200 	struct drm_i915_private *i915 = rps_to_i915(rps);
1201 	u32 val, rp1;
1202 
1203 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1204 
1205 	rp1 = val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK;
1206 	rp1 >>= FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
1207 
1208 	return rp1;
1209 }
1210 
vlv_rps_max_freq(struct intel_rps * rps)1211 static int vlv_rps_max_freq(struct intel_rps *rps)
1212 {
1213 	struct drm_i915_private *i915 = rps_to_i915(rps);
1214 	u32 val, rp0;
1215 
1216 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1217 
1218 	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
1219 	/* Clamp to max */
1220 	rp0 = min_t(u32, rp0, 0xea);
1221 
1222 	return rp0;
1223 }
1224 
vlv_rps_rpe_freq(struct intel_rps * rps)1225 static int vlv_rps_rpe_freq(struct intel_rps *rps)
1226 {
1227 	struct drm_i915_private *i915 = rps_to_i915(rps);
1228 	u32 val, rpe;
1229 
1230 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
1231 	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
1232 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
1233 	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
1234 
1235 	return rpe;
1236 }
1237 
vlv_rps_min_freq(struct intel_rps * rps)1238 static int vlv_rps_min_freq(struct intel_rps *rps)
1239 {
1240 	struct drm_i915_private *i915 = rps_to_i915(rps);
1241 	u32 val;
1242 
1243 	val = vlv_punit_read(i915, PUNIT_REG_GPU_LFM) & 0xff;
1244 	/*
1245 	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
1246 	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
1247 	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
1248 	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
1249 	 * to make sure it matches what Punit accepts.
1250 	 */
1251 	return max_t(u32, val, 0xc0);
1252 }
1253 
vlv_rps_enable(struct intel_rps * rps)1254 static bool vlv_rps_enable(struct intel_rps *rps)
1255 {
1256 	struct intel_uncore *uncore = rps_to_uncore(rps);
1257 	struct drm_i915_private *i915 = rps_to_i915(rps);
1258 	u32 val;
1259 
1260 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1261 	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1262 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1263 	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1264 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1265 
1266 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1267 
1268 	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1269 			      GEN6_RP_MEDIA_TURBO |
1270 			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1271 			      GEN6_RP_MEDIA_IS_GFX |
1272 			      GEN6_RP_ENABLE |
1273 			      GEN6_RP_UP_BUSY_AVG |
1274 			      GEN6_RP_DOWN_IDLE_CONT);
1275 
1276 	/* WaGsvRC0ResidencyMethod:vlv */
1277 	rps->pm_events = GEN6_PM_RP_UP_EI_EXPIRED;
1278 
1279 	vlv_punit_get(i915);
1280 
1281 	/* Setting Fixed Bias */
1282 	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
1283 	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1284 
1285 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1286 
1287 	vlv_punit_put(i915);
1288 
1289 	/* RPS code assumes GPLL is used */
1290 	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1291 		      "GPLL not enabled\n");
1292 
1293 	drm_dbg(&i915->drm, "GPLL enabled? %s\n", yesno(val & GPLLENABLE));
1294 	drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1295 
1296 	return rps_reset(rps);
1297 }
1298 
__ips_gfx_val(struct intel_ips * ips)1299 static unsigned long __ips_gfx_val(struct intel_ips *ips)
1300 {
1301 	struct intel_rps *rps = container_of(ips, typeof(*rps), ips);
1302 	struct intel_uncore *uncore = rps_to_uncore(rps);
1303 	unsigned int t, state1, state2;
1304 	u32 pxvid, ext_v;
1305 	u64 corr, corr2;
1306 
1307 	lockdep_assert_held(&mchdev_lock);
1308 
1309 	pxvid = intel_uncore_read(uncore, PXVFREQ(rps->cur_freq));
1310 	pxvid = (pxvid >> 24) & 0x7f;
1311 	ext_v = pvid_to_extvid(rps_to_i915(rps), pxvid);
1312 
1313 	state1 = ext_v;
1314 
1315 	/* Revel in the empirically derived constants */
1316 
1317 	/* Correction factor in 1/100000 units */
1318 	t = ips_mch_val(uncore);
1319 	if (t > 80)
1320 		corr = t * 2349 + 135940;
1321 	else if (t >= 50)
1322 		corr = t * 964 + 29317;
1323 	else /* < 50 */
1324 		corr = t * 301 + 1004;
1325 
1326 	corr = div_u64(corr * 150142 * state1, 10000) - 78642;
1327 	corr2 = div_u64(corr, 100000) * ips->corr;
1328 
1329 	state2 = div_u64(corr2 * state1, 10000);
1330 	state2 /= 100; /* convert to mW */
1331 
1332 	__gen5_ips_update(ips);
1333 
1334 	return ips->gfx_power + state2;
1335 }
1336 
has_busy_stats(struct intel_rps * rps)1337 static bool has_busy_stats(struct intel_rps *rps)
1338 {
1339 	struct intel_engine_cs *engine;
1340 	enum intel_engine_id id;
1341 
1342 	for_each_engine(engine, rps_to_gt(rps), id) {
1343 		if (!intel_engine_supports_stats(engine))
1344 			return false;
1345 	}
1346 
1347 	return true;
1348 }
1349 
intel_rps_enable(struct intel_rps * rps)1350 void intel_rps_enable(struct intel_rps *rps)
1351 {
1352 	struct drm_i915_private *i915 = rps_to_i915(rps);
1353 	struct intel_uncore *uncore = rps_to_uncore(rps);
1354 	bool enabled = false;
1355 
1356 	if (!HAS_RPS(i915))
1357 		return;
1358 
1359 	intel_gt_check_clock_frequency(rps_to_gt(rps));
1360 
1361 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1362 	if (rps->max_freq <= rps->min_freq)
1363 		/* leave disabled, no room for dynamic reclocking */;
1364 	else if (IS_CHERRYVIEW(i915))
1365 		enabled = chv_rps_enable(rps);
1366 	else if (IS_VALLEYVIEW(i915))
1367 		enabled = vlv_rps_enable(rps);
1368 	else if (INTEL_GEN(i915) >= 9)
1369 		enabled = gen9_rps_enable(rps);
1370 	else if (INTEL_GEN(i915) >= 8)
1371 		enabled = gen8_rps_enable(rps);
1372 	else if (INTEL_GEN(i915) >= 6)
1373 		enabled = gen6_rps_enable(rps);
1374 	else if (IS_IRONLAKE_M(i915))
1375 		enabled = gen5_rps_enable(rps);
1376 	else
1377 		MISSING_CASE(INTEL_GEN(i915));
1378 	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1379 	if (!enabled)
1380 		return;
1381 
1382 	GT_TRACE(rps_to_gt(rps),
1383 		 "min:%x, max:%x, freq:[%d, %d]\n",
1384 		 rps->min_freq, rps->max_freq,
1385 		 intel_gpu_freq(rps, rps->min_freq),
1386 		 intel_gpu_freq(rps, rps->max_freq));
1387 
1388 	GEM_BUG_ON(rps->max_freq < rps->min_freq);
1389 	GEM_BUG_ON(rps->idle_freq > rps->max_freq);
1390 
1391 	GEM_BUG_ON(rps->efficient_freq < rps->min_freq);
1392 	GEM_BUG_ON(rps->efficient_freq > rps->max_freq);
1393 
1394 	if (has_busy_stats(rps))
1395 		intel_rps_set_timer(rps);
1396 	else if (INTEL_GEN(i915) >= 6)
1397 		intel_rps_set_interrupts(rps);
1398 	else
1399 		/* Ironlake currently uses intel_ips.ko */ {}
1400 
1401 	intel_rps_set_enabled(rps);
1402 }
1403 
gen6_rps_disable(struct intel_rps * rps)1404 static void gen6_rps_disable(struct intel_rps *rps)
1405 {
1406 	set(rps_to_uncore(rps), GEN6_RP_CONTROL, 0);
1407 }
1408 
intel_rps_disable(struct intel_rps * rps)1409 void intel_rps_disable(struct intel_rps *rps)
1410 {
1411 	struct drm_i915_private *i915 = rps_to_i915(rps);
1412 
1413 	intel_rps_clear_enabled(rps);
1414 	intel_rps_clear_interrupts(rps);
1415 	intel_rps_clear_timer(rps);
1416 
1417 	if (INTEL_GEN(i915) >= 6)
1418 		gen6_rps_disable(rps);
1419 	else if (IS_IRONLAKE_M(i915))
1420 		gen5_rps_disable(rps);
1421 }
1422 
byt_gpu_freq(struct intel_rps * rps,int val)1423 static int byt_gpu_freq(struct intel_rps *rps, int val)
1424 {
1425 	/*
1426 	 * N = val - 0xb7
1427 	 * Slow = Fast = GPLL ref * N
1428 	 */
1429 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
1430 }
1431 
byt_freq_opcode(struct intel_rps * rps,int val)1432 static int byt_freq_opcode(struct intel_rps *rps, int val)
1433 {
1434 	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
1435 }
1436 
chv_gpu_freq(struct intel_rps * rps,int val)1437 static int chv_gpu_freq(struct intel_rps *rps, int val)
1438 {
1439 	/*
1440 	 * N = val / 2
1441 	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
1442 	 */
1443 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
1444 }
1445 
chv_freq_opcode(struct intel_rps * rps,int val)1446 static int chv_freq_opcode(struct intel_rps *rps, int val)
1447 {
1448 	/* CHV needs even values */
1449 	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
1450 }
1451 
intel_gpu_freq(struct intel_rps * rps,int val)1452 int intel_gpu_freq(struct intel_rps *rps, int val)
1453 {
1454 	struct drm_i915_private *i915 = rps_to_i915(rps);
1455 
1456 	if (INTEL_GEN(i915) >= 9)
1457 		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
1458 					 GEN9_FREQ_SCALER);
1459 	else if (IS_CHERRYVIEW(i915))
1460 		return chv_gpu_freq(rps, val);
1461 	else if (IS_VALLEYVIEW(i915))
1462 		return byt_gpu_freq(rps, val);
1463 	else if (INTEL_GEN(i915) >= 6)
1464 		return val * GT_FREQUENCY_MULTIPLIER;
1465 	else
1466 		return val;
1467 }
1468 
intel_freq_opcode(struct intel_rps * rps,int val)1469 int intel_freq_opcode(struct intel_rps *rps, int val)
1470 {
1471 	struct drm_i915_private *i915 = rps_to_i915(rps);
1472 
1473 	if (INTEL_GEN(i915) >= 9)
1474 		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
1475 					 GT_FREQUENCY_MULTIPLIER);
1476 	else if (IS_CHERRYVIEW(i915))
1477 		return chv_freq_opcode(rps, val);
1478 	else if (IS_VALLEYVIEW(i915))
1479 		return byt_freq_opcode(rps, val);
1480 	else if (INTEL_GEN(i915) >= 6)
1481 		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
1482 	else
1483 		return val;
1484 }
1485 
vlv_init_gpll_ref_freq(struct intel_rps * rps)1486 static void vlv_init_gpll_ref_freq(struct intel_rps *rps)
1487 {
1488 	struct drm_i915_private *i915 = rps_to_i915(rps);
1489 
1490 	rps->gpll_ref_freq =
1491 		vlv_get_cck_clock(i915, "GPLL ref",
1492 				  CCK_GPLL_CLOCK_CONTROL,
1493 				  i915->czclk_freq);
1494 
1495 	drm_dbg(&i915->drm, "GPLL reference freq: %d kHz\n",
1496 		rps->gpll_ref_freq);
1497 }
1498 
vlv_rps_init(struct intel_rps * rps)1499 static void vlv_rps_init(struct intel_rps *rps)
1500 {
1501 	struct drm_i915_private *i915 = rps_to_i915(rps);
1502 	u32 val;
1503 
1504 	vlv_iosf_sb_get(i915,
1505 			BIT(VLV_IOSF_SB_PUNIT) |
1506 			BIT(VLV_IOSF_SB_NC) |
1507 			BIT(VLV_IOSF_SB_CCK));
1508 
1509 	vlv_init_gpll_ref_freq(rps);
1510 
1511 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1512 	switch ((val >> 6) & 3) {
1513 	case 0:
1514 	case 1:
1515 		i915->mem_freq = 800;
1516 		break;
1517 	case 2:
1518 		i915->mem_freq = 1066;
1519 		break;
1520 	case 3:
1521 		i915->mem_freq = 1333;
1522 		break;
1523 	}
1524 	drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
1525 
1526 	rps->max_freq = vlv_rps_max_freq(rps);
1527 	rps->rp0_freq = rps->max_freq;
1528 	drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1529 		intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1530 
1531 	rps->efficient_freq = vlv_rps_rpe_freq(rps);
1532 	drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1533 		intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1534 
1535 	rps->rp1_freq = vlv_rps_guar_freq(rps);
1536 	drm_dbg(&i915->drm, "RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
1537 		intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1538 
1539 	rps->min_freq = vlv_rps_min_freq(rps);
1540 	drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1541 		intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1542 
1543 	vlv_iosf_sb_put(i915,
1544 			BIT(VLV_IOSF_SB_PUNIT) |
1545 			BIT(VLV_IOSF_SB_NC) |
1546 			BIT(VLV_IOSF_SB_CCK));
1547 }
1548 
chv_rps_init(struct intel_rps * rps)1549 static void chv_rps_init(struct intel_rps *rps)
1550 {
1551 	struct drm_i915_private *i915 = rps_to_i915(rps);
1552 	u32 val;
1553 
1554 	vlv_iosf_sb_get(i915,
1555 			BIT(VLV_IOSF_SB_PUNIT) |
1556 			BIT(VLV_IOSF_SB_NC) |
1557 			BIT(VLV_IOSF_SB_CCK));
1558 
1559 	vlv_init_gpll_ref_freq(rps);
1560 
1561 	val = vlv_cck_read(i915, CCK_FUSE_REG);
1562 
1563 	switch ((val >> 2) & 0x7) {
1564 	case 3:
1565 		i915->mem_freq = 2000;
1566 		break;
1567 	default:
1568 		i915->mem_freq = 1600;
1569 		break;
1570 	}
1571 	drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
1572 
1573 	rps->max_freq = chv_rps_max_freq(rps);
1574 	rps->rp0_freq = rps->max_freq;
1575 	drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1576 		intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1577 
1578 	rps->efficient_freq = chv_rps_rpe_freq(rps);
1579 	drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1580 		intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1581 
1582 	rps->rp1_freq = chv_rps_guar_freq(rps);
1583 	drm_dbg(&i915->drm, "RP1(Guar) GPU freq: %d MHz (%u)\n",
1584 		intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1585 
1586 	rps->min_freq = chv_rps_min_freq(rps);
1587 	drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1588 		intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1589 
1590 	vlv_iosf_sb_put(i915,
1591 			BIT(VLV_IOSF_SB_PUNIT) |
1592 			BIT(VLV_IOSF_SB_NC) |
1593 			BIT(VLV_IOSF_SB_CCK));
1594 
1595 	drm_WARN_ONCE(&i915->drm, (rps->max_freq | rps->efficient_freq |
1596 				   rps->rp1_freq | rps->min_freq) & 1,
1597 		      "Odd GPU freq values\n");
1598 }
1599 
vlv_c0_read(struct intel_uncore * uncore,struct intel_rps_ei * ei)1600 static void vlv_c0_read(struct intel_uncore *uncore, struct intel_rps_ei *ei)
1601 {
1602 	ei->ktime = ktime_get_raw();
1603 	ei->render_c0 = intel_uncore_read(uncore, VLV_RENDER_C0_COUNT);
1604 	ei->media_c0 = intel_uncore_read(uncore, VLV_MEDIA_C0_COUNT);
1605 }
1606 
vlv_wa_c0_ei(struct intel_rps * rps,u32 pm_iir)1607 static u32 vlv_wa_c0_ei(struct intel_rps *rps, u32 pm_iir)
1608 {
1609 	struct intel_uncore *uncore = rps_to_uncore(rps);
1610 	const struct intel_rps_ei *prev = &rps->ei;
1611 	struct intel_rps_ei now;
1612 	u32 events = 0;
1613 
1614 	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1615 		return 0;
1616 
1617 	vlv_c0_read(uncore, &now);
1618 
1619 	if (prev->ktime) {
1620 		u64 time, c0;
1621 		u32 render, media;
1622 
1623 		time = ktime_us_delta(now.ktime, prev->ktime);
1624 
1625 		time *= rps_to_i915(rps)->czclk_freq;
1626 
1627 		/* Workload can be split between render + media,
1628 		 * e.g. SwapBuffers being blitted in X after being rendered in
1629 		 * mesa. To account for this we need to combine both engines
1630 		 * into our activity counter.
1631 		 */
1632 		render = now.render_c0 - prev->render_c0;
1633 		media = now.media_c0 - prev->media_c0;
1634 		c0 = max(render, media);
1635 		c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1636 
1637 		if (c0 > time * rps->power.up_threshold)
1638 			events = GEN6_PM_RP_UP_THRESHOLD;
1639 		else if (c0 < time * rps->power.down_threshold)
1640 			events = GEN6_PM_RP_DOWN_THRESHOLD;
1641 	}
1642 
1643 	rps->ei = now;
1644 	return events;
1645 }
1646 
rps_work(struct work_struct * work)1647 static void rps_work(struct work_struct *work)
1648 {
1649 	struct intel_rps *rps = container_of(work, typeof(*rps), work);
1650 	struct intel_gt *gt = rps_to_gt(rps);
1651 	struct drm_i915_private *i915 = rps_to_i915(rps);
1652 	bool client_boost = false;
1653 	int new_freq, adj, min, max;
1654 	u32 pm_iir = 0;
1655 
1656 	spin_lock_irq(&gt->irq_lock);
1657 	pm_iir = fetch_and_zero(&rps->pm_iir) & rps->pm_events;
1658 	client_boost = atomic_read(&rps->num_waiters);
1659 	spin_unlock_irq(&gt->irq_lock);
1660 
1661 	/* Make sure we didn't queue anything we're not going to process. */
1662 	if (!pm_iir && !client_boost)
1663 		goto out;
1664 
1665 	mutex_lock(&rps->lock);
1666 	if (!intel_rps_is_active(rps)) {
1667 		mutex_unlock(&rps->lock);
1668 		return;
1669 	}
1670 
1671 	pm_iir |= vlv_wa_c0_ei(rps, pm_iir);
1672 
1673 	adj = rps->last_adj;
1674 	new_freq = rps->cur_freq;
1675 	min = rps->min_freq_softlimit;
1676 	max = rps->max_freq_softlimit;
1677 	if (client_boost)
1678 		max = rps->max_freq;
1679 
1680 	GT_TRACE(gt,
1681 		 "pm_iir:%x, client_boost:%s, last:%d, cur:%x, min:%x, max:%x\n",
1682 		 pm_iir, yesno(client_boost),
1683 		 adj, new_freq, min, max);
1684 
1685 	if (client_boost && new_freq < rps->boost_freq) {
1686 		new_freq = rps->boost_freq;
1687 		adj = 0;
1688 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1689 		if (adj > 0)
1690 			adj *= 2;
1691 		else /* CHV needs even encode values */
1692 			adj = IS_CHERRYVIEW(gt->i915) ? 2 : 1;
1693 
1694 		if (new_freq >= rps->max_freq_softlimit)
1695 			adj = 0;
1696 	} else if (client_boost) {
1697 		adj = 0;
1698 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1699 		if (rps->cur_freq > rps->efficient_freq)
1700 			new_freq = rps->efficient_freq;
1701 		else if (rps->cur_freq > rps->min_freq_softlimit)
1702 			new_freq = rps->min_freq_softlimit;
1703 		adj = 0;
1704 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1705 		if (adj < 0)
1706 			adj *= 2;
1707 		else /* CHV needs even encode values */
1708 			adj = IS_CHERRYVIEW(gt->i915) ? -2 : -1;
1709 
1710 		if (new_freq <= rps->min_freq_softlimit)
1711 			adj = 0;
1712 	} else { /* unknown event */
1713 		adj = 0;
1714 	}
1715 
1716 	/*
1717 	 * sysfs frequency limits may have snuck in while
1718 	 * servicing the interrupt
1719 	 */
1720 	new_freq += adj;
1721 	new_freq = clamp_t(int, new_freq, min, max);
1722 
1723 	if (intel_rps_set(rps, new_freq)) {
1724 		drm_dbg(&i915->drm, "Failed to set new GPU frequency\n");
1725 		adj = 0;
1726 	}
1727 	rps->last_adj = adj;
1728 
1729 	mutex_unlock(&rps->lock);
1730 
1731 out:
1732 	spin_lock_irq(&gt->irq_lock);
1733 	gen6_gt_pm_unmask_irq(gt, rps->pm_events);
1734 	spin_unlock_irq(&gt->irq_lock);
1735 }
1736 
gen11_rps_irq_handler(struct intel_rps * rps,u32 pm_iir)1737 void gen11_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1738 {
1739 	struct intel_gt *gt = rps_to_gt(rps);
1740 	const u32 events = rps->pm_events & pm_iir;
1741 
1742 	lockdep_assert_held(&gt->irq_lock);
1743 
1744 	if (unlikely(!events))
1745 		return;
1746 
1747 	GT_TRACE(gt, "irq events:%x\n", events);
1748 
1749 	gen6_gt_pm_mask_irq(gt, events);
1750 
1751 	rps->pm_iir |= events;
1752 	schedule_work(&rps->work);
1753 }
1754 
gen6_rps_irq_handler(struct intel_rps * rps,u32 pm_iir)1755 void gen6_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1756 {
1757 	struct intel_gt *gt = rps_to_gt(rps);
1758 	u32 events;
1759 
1760 	events = pm_iir & rps->pm_events;
1761 	if (events) {
1762 		spin_lock(&gt->irq_lock);
1763 
1764 		GT_TRACE(gt, "irq events:%x\n", events);
1765 
1766 		gen6_gt_pm_mask_irq(gt, events);
1767 		rps->pm_iir |= events;
1768 
1769 		schedule_work(&rps->work);
1770 		spin_unlock(&gt->irq_lock);
1771 	}
1772 
1773 	if (INTEL_GEN(gt->i915) >= 8)
1774 		return;
1775 
1776 	if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1777 		intel_engine_signal_breadcrumbs(gt->engine[VECS0]);
1778 
1779 	if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1780 		DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1781 }
1782 
gen5_rps_irq_handler(struct intel_rps * rps)1783 void gen5_rps_irq_handler(struct intel_rps *rps)
1784 {
1785 	struct intel_uncore *uncore = rps_to_uncore(rps);
1786 	u32 busy_up, busy_down, max_avg, min_avg;
1787 	u8 new_freq;
1788 
1789 	spin_lock(&mchdev_lock);
1790 
1791 	intel_uncore_write16(uncore,
1792 			     MEMINTRSTS,
1793 			     intel_uncore_read(uncore, MEMINTRSTS));
1794 
1795 	intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1796 	busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1797 	busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1798 	max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1799 	min_avg = intel_uncore_read(uncore, RCBMINAVG);
1800 
1801 	/* Handle RCS change request from hw */
1802 	new_freq = rps->cur_freq;
1803 	if (busy_up > max_avg)
1804 		new_freq++;
1805 	else if (busy_down < min_avg)
1806 		new_freq--;
1807 	new_freq = clamp(new_freq,
1808 			 rps->min_freq_softlimit,
1809 			 rps->max_freq_softlimit);
1810 
1811 	if (new_freq != rps->cur_freq && !__gen5_rps_set(rps, new_freq))
1812 		rps->cur_freq = new_freq;
1813 
1814 	spin_unlock(&mchdev_lock);
1815 }
1816 
intel_rps_init_early(struct intel_rps * rps)1817 void intel_rps_init_early(struct intel_rps *rps)
1818 {
1819 	mutex_init(&rps->lock);
1820 	mutex_init(&rps->power.mutex);
1821 
1822 	INIT_WORK(&rps->work, rps_work);
1823 	timer_setup(&rps->timer, rps_timer, 0);
1824 
1825 	atomic_set(&rps->num_waiters, 0);
1826 }
1827 
intel_rps_init(struct intel_rps * rps)1828 void intel_rps_init(struct intel_rps *rps)
1829 {
1830 	struct drm_i915_private *i915 = rps_to_i915(rps);
1831 
1832 	if (IS_CHERRYVIEW(i915))
1833 		chv_rps_init(rps);
1834 	else if (IS_VALLEYVIEW(i915))
1835 		vlv_rps_init(rps);
1836 	else if (INTEL_GEN(i915) >= 6)
1837 		gen6_rps_init(rps);
1838 	else if (IS_IRONLAKE_M(i915))
1839 		gen5_rps_init(rps);
1840 
1841 	/* Derive initial user preferences/limits from the hardware limits */
1842 	rps->max_freq_softlimit = rps->max_freq;
1843 	rps->min_freq_softlimit = rps->min_freq;
1844 
1845 	/* After setting max-softlimit, find the overclock max freq */
1846 	if (IS_GEN(i915, 6) || IS_IVYBRIDGE(i915) || IS_HASWELL(i915)) {
1847 		u32 params = 0;
1848 
1849 		sandybridge_pcode_read(i915, GEN6_READ_OC_PARAMS,
1850 				       &params, NULL);
1851 		if (params & BIT(31)) { /* OC supported */
1852 			drm_dbg(&i915->drm,
1853 				"Overclocking supported, max: %dMHz, overclock: %dMHz\n",
1854 				(rps->max_freq & 0xff) * 50,
1855 				(params & 0xff) * 50);
1856 			rps->max_freq = params & 0xff;
1857 		}
1858 	}
1859 
1860 	/* Finally allow us to boost to max by default */
1861 	rps->boost_freq = rps->max_freq;
1862 	rps->idle_freq = rps->min_freq;
1863 
1864 	/* Start in the middle, from here we will autotune based on workload */
1865 	rps->cur_freq = rps->efficient_freq;
1866 
1867 	rps->pm_intrmsk_mbz = 0;
1868 
1869 	/*
1870 	 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
1871 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
1872 	 *
1873 	 * TODO: verify if this can be reproduced on VLV,CHV.
1874 	 */
1875 	if (INTEL_GEN(i915) <= 7)
1876 		rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
1877 
1878 	if (INTEL_GEN(i915) >= 8 && INTEL_GEN(i915) < 11)
1879 		rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1880 }
1881 
intel_rps_sanitize(struct intel_rps * rps)1882 void intel_rps_sanitize(struct intel_rps *rps)
1883 {
1884 	if (INTEL_GEN(rps_to_i915(rps)) >= 6)
1885 		rps_disable_interrupts(rps);
1886 }
1887 
intel_rps_get_cagf(struct intel_rps * rps,u32 rpstat)1888 u32 intel_rps_get_cagf(struct intel_rps *rps, u32 rpstat)
1889 {
1890 	struct drm_i915_private *i915 = rps_to_i915(rps);
1891 	u32 cagf;
1892 
1893 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
1894 		cagf = (rpstat >> 8) & 0xff;
1895 	else if (INTEL_GEN(i915) >= 9)
1896 		cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1897 	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
1898 		cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1899 	else if (INTEL_GEN(i915) >= 6)
1900 		cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1901 	else
1902 		cagf = gen5_invert_freq(rps, (rpstat & MEMSTAT_PSTATE_MASK) >>
1903 					MEMSTAT_PSTATE_SHIFT);
1904 
1905 	return cagf;
1906 }
1907 
read_cagf(struct intel_rps * rps)1908 static u32 read_cagf(struct intel_rps *rps)
1909 {
1910 	struct drm_i915_private *i915 = rps_to_i915(rps);
1911 	struct intel_uncore *uncore = rps_to_uncore(rps);
1912 	u32 freq;
1913 
1914 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) {
1915 		vlv_punit_get(i915);
1916 		freq = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1917 		vlv_punit_put(i915);
1918 	} else if (INTEL_GEN(i915) >= 6) {
1919 		freq = intel_uncore_read(uncore, GEN6_RPSTAT1);
1920 	} else {
1921 		freq = intel_uncore_read(uncore, MEMSTAT_ILK);
1922 	}
1923 
1924 	return intel_rps_get_cagf(rps, freq);
1925 }
1926 
intel_rps_read_actual_frequency(struct intel_rps * rps)1927 u32 intel_rps_read_actual_frequency(struct intel_rps *rps)
1928 {
1929 	struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
1930 	intel_wakeref_t wakeref;
1931 	u32 freq = 0;
1932 
1933 	with_intel_runtime_pm_if_in_use(rpm, wakeref)
1934 		freq = intel_gpu_freq(rps, read_cagf(rps));
1935 
1936 	return freq;
1937 }
1938 
1939 /* External interface for intel_ips.ko */
1940 
1941 static struct drm_i915_private __rcu *ips_mchdev;
1942 
1943 /**
1944  * Tells the intel_ips driver that the i915 driver is now loaded, if
1945  * IPS got loaded first.
1946  *
1947  * This awkward dance is so that neither module has to depend on the
1948  * other in order for IPS to do the appropriate communication of
1949  * GPU turbo limits to i915.
1950  */
1951 static void
ips_ping_for_i915_load(void)1952 ips_ping_for_i915_load(void)
1953 {
1954 	void (*link)(void);
1955 
1956 	link = symbol_get(ips_link_to_i915_driver);
1957 	if (link) {
1958 		link();
1959 		symbol_put(ips_link_to_i915_driver);
1960 	}
1961 }
1962 
intel_rps_driver_register(struct intel_rps * rps)1963 void intel_rps_driver_register(struct intel_rps *rps)
1964 {
1965 	struct intel_gt *gt = rps_to_gt(rps);
1966 
1967 	/*
1968 	 * We only register the i915 ips part with intel-ips once everything is
1969 	 * set up, to avoid intel-ips sneaking in and reading bogus values.
1970 	 */
1971 	if (IS_GEN(gt->i915, 5)) {
1972 		GEM_BUG_ON(ips_mchdev);
1973 		rcu_assign_pointer(ips_mchdev, gt->i915);
1974 		ips_ping_for_i915_load();
1975 	}
1976 }
1977 
intel_rps_driver_unregister(struct intel_rps * rps)1978 void intel_rps_driver_unregister(struct intel_rps *rps)
1979 {
1980 	if (rcu_access_pointer(ips_mchdev) == rps_to_i915(rps))
1981 		rcu_assign_pointer(ips_mchdev, NULL);
1982 }
1983 
mchdev_get(void)1984 static struct drm_i915_private *mchdev_get(void)
1985 {
1986 	struct drm_i915_private *i915;
1987 
1988 	rcu_read_lock();
1989 	i915 = rcu_dereference(ips_mchdev);
1990 	if (i915 && !kref_get_unless_zero(&i915->drm.ref))
1991 		i915 = NULL;
1992 	rcu_read_unlock();
1993 
1994 	return i915;
1995 }
1996 
1997 /**
1998  * i915_read_mch_val - return value for IPS use
1999  *
2000  * Calculate and return a value for the IPS driver to use when deciding whether
2001  * we have thermal and power headroom to increase CPU or GPU power budget.
2002  */
i915_read_mch_val(void)2003 unsigned long i915_read_mch_val(void)
2004 {
2005 	struct drm_i915_private *i915;
2006 	unsigned long chipset_val = 0;
2007 	unsigned long graphics_val = 0;
2008 	intel_wakeref_t wakeref;
2009 
2010 	i915 = mchdev_get();
2011 	if (!i915)
2012 		return 0;
2013 
2014 	with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2015 		struct intel_ips *ips = &i915->gt.rps.ips;
2016 
2017 		spin_lock_irq(&mchdev_lock);
2018 		chipset_val = __ips_chipset_val(ips);
2019 		graphics_val = __ips_gfx_val(ips);
2020 		spin_unlock_irq(&mchdev_lock);
2021 	}
2022 
2023 	drm_dev_put(&i915->drm);
2024 	return chipset_val + graphics_val;
2025 }
2026 EXPORT_SYMBOL_GPL(i915_read_mch_val);
2027 
2028 /**
2029  * i915_gpu_raise - raise GPU frequency limit
2030  *
2031  * Raise the limit; IPS indicates we have thermal headroom.
2032  */
i915_gpu_raise(void)2033 bool i915_gpu_raise(void)
2034 {
2035 	struct drm_i915_private *i915;
2036 	struct intel_rps *rps;
2037 
2038 	i915 = mchdev_get();
2039 	if (!i915)
2040 		return false;
2041 
2042 	rps = &i915->gt.rps;
2043 
2044 	spin_lock_irq(&mchdev_lock);
2045 	if (rps->max_freq_softlimit < rps->max_freq)
2046 		rps->max_freq_softlimit++;
2047 	spin_unlock_irq(&mchdev_lock);
2048 
2049 	drm_dev_put(&i915->drm);
2050 	return true;
2051 }
2052 EXPORT_SYMBOL_GPL(i915_gpu_raise);
2053 
2054 /**
2055  * i915_gpu_lower - lower GPU frequency limit
2056  *
2057  * IPS indicates we're close to a thermal limit, so throttle back the GPU
2058  * frequency maximum.
2059  */
i915_gpu_lower(void)2060 bool i915_gpu_lower(void)
2061 {
2062 	struct drm_i915_private *i915;
2063 	struct intel_rps *rps;
2064 
2065 	i915 = mchdev_get();
2066 	if (!i915)
2067 		return false;
2068 
2069 	rps = &i915->gt.rps;
2070 
2071 	spin_lock_irq(&mchdev_lock);
2072 	if (rps->max_freq_softlimit > rps->min_freq)
2073 		rps->max_freq_softlimit--;
2074 	spin_unlock_irq(&mchdev_lock);
2075 
2076 	drm_dev_put(&i915->drm);
2077 	return true;
2078 }
2079 EXPORT_SYMBOL_GPL(i915_gpu_lower);
2080 
2081 /**
2082  * i915_gpu_busy - indicate GPU business to IPS
2083  *
2084  * Tell the IPS driver whether or not the GPU is busy.
2085  */
i915_gpu_busy(void)2086 bool i915_gpu_busy(void)
2087 {
2088 	struct drm_i915_private *i915;
2089 	bool ret;
2090 
2091 	i915 = mchdev_get();
2092 	if (!i915)
2093 		return false;
2094 
2095 	ret = i915->gt.awake;
2096 
2097 	drm_dev_put(&i915->drm);
2098 	return ret;
2099 }
2100 EXPORT_SYMBOL_GPL(i915_gpu_busy);
2101 
2102 /**
2103  * i915_gpu_turbo_disable - disable graphics turbo
2104  *
2105  * Disable graphics turbo by resetting the max frequency and setting the
2106  * current frequency to the default.
2107  */
i915_gpu_turbo_disable(void)2108 bool i915_gpu_turbo_disable(void)
2109 {
2110 	struct drm_i915_private *i915;
2111 	struct intel_rps *rps;
2112 	bool ret;
2113 
2114 	i915 = mchdev_get();
2115 	if (!i915)
2116 		return false;
2117 
2118 	rps = &i915->gt.rps;
2119 
2120 	spin_lock_irq(&mchdev_lock);
2121 	rps->max_freq_softlimit = rps->min_freq;
2122 	ret = !__gen5_rps_set(&i915->gt.rps, rps->min_freq);
2123 	spin_unlock_irq(&mchdev_lock);
2124 
2125 	drm_dev_put(&i915->drm);
2126 	return ret;
2127 }
2128 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
2129 
2130 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2131 #include "selftest_rps.c"
2132 #endif
2133