1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4 * Author: Joerg Roedel <jroedel@suse.de>
5 * Leo Duran <leo.duran@amd.com>
6 */
7
8 #define pr_fmt(fmt) "AMD-Vi: " fmt
9 #define dev_fmt(fmt) pr_fmt(fmt)
10
11 #include <linux/pci.h>
12 #include <linux/acpi.h>
13 #include <linux/list.h>
14 #include <linux/bitmap.h>
15 #include <linux/slab.h>
16 #include <linux/syscore_ops.h>
17 #include <linux/interrupt.h>
18 #include <linux/msi.h>
19 #include <linux/irq.h>
20 #include <linux/amd-iommu.h>
21 #include <linux/export.h>
22 #include <linux/kmemleak.h>
23 #include <linux/mem_encrypt.h>
24 #include <asm/pci-direct.h>
25 #include <asm/iommu.h>
26 #include <asm/apic.h>
27 #include <asm/gart.h>
28 #include <asm/x86_init.h>
29 #include <asm/iommu_table.h>
30 #include <asm/io_apic.h>
31 #include <asm/irq_remapping.h>
32 #include <asm/set_memory.h>
33
34 #include <linux/crash_dump.h>
35
36 #include "amd_iommu.h"
37 #include "../irq_remapping.h"
38
39 /*
40 * definitions for the ACPI scanning code
41 */
42 #define IVRS_HEADER_LENGTH 48
43
44 #define ACPI_IVHD_TYPE_MAX_SUPPORTED 0x40
45 #define ACPI_IVMD_TYPE_ALL 0x20
46 #define ACPI_IVMD_TYPE 0x21
47 #define ACPI_IVMD_TYPE_RANGE 0x22
48
49 #define IVHD_DEV_ALL 0x01
50 #define IVHD_DEV_SELECT 0x02
51 #define IVHD_DEV_SELECT_RANGE_START 0x03
52 #define IVHD_DEV_RANGE_END 0x04
53 #define IVHD_DEV_ALIAS 0x42
54 #define IVHD_DEV_ALIAS_RANGE 0x43
55 #define IVHD_DEV_EXT_SELECT 0x46
56 #define IVHD_DEV_EXT_SELECT_RANGE 0x47
57 #define IVHD_DEV_SPECIAL 0x48
58 #define IVHD_DEV_ACPI_HID 0xf0
59
60 #define UID_NOT_PRESENT 0
61 #define UID_IS_INTEGER 1
62 #define UID_IS_CHARACTER 2
63
64 #define IVHD_SPECIAL_IOAPIC 1
65 #define IVHD_SPECIAL_HPET 2
66
67 #define IVHD_FLAG_HT_TUN_EN_MASK 0x01
68 #define IVHD_FLAG_PASSPW_EN_MASK 0x02
69 #define IVHD_FLAG_RESPASSPW_EN_MASK 0x04
70 #define IVHD_FLAG_ISOC_EN_MASK 0x08
71
72 #define IVMD_FLAG_EXCL_RANGE 0x08
73 #define IVMD_FLAG_IW 0x04
74 #define IVMD_FLAG_IR 0x02
75 #define IVMD_FLAG_UNITY_MAP 0x01
76
77 #define ACPI_DEVFLAG_INITPASS 0x01
78 #define ACPI_DEVFLAG_EXTINT 0x02
79 #define ACPI_DEVFLAG_NMI 0x04
80 #define ACPI_DEVFLAG_SYSMGT1 0x10
81 #define ACPI_DEVFLAG_SYSMGT2 0x20
82 #define ACPI_DEVFLAG_LINT0 0x40
83 #define ACPI_DEVFLAG_LINT1 0x80
84 #define ACPI_DEVFLAG_ATSDIS 0x10000000
85
86 #define LOOP_TIMEOUT 100000
87 /*
88 * ACPI table definitions
89 *
90 * These data structures are laid over the table to parse the important values
91 * out of it.
92 */
93
94 extern const struct iommu_ops amd_iommu_ops;
95
96 /*
97 * structure describing one IOMMU in the ACPI table. Typically followed by one
98 * or more ivhd_entrys.
99 */
100 struct ivhd_header {
101 u8 type;
102 u8 flags;
103 u16 length;
104 u16 devid;
105 u16 cap_ptr;
106 u64 mmio_phys;
107 u16 pci_seg;
108 u16 info;
109 u32 efr_attr;
110
111 /* Following only valid on IVHD type 11h and 40h */
112 u64 efr_reg; /* Exact copy of MMIO_EXT_FEATURES */
113 u64 res;
114 } __attribute__((packed));
115
116 /*
117 * A device entry describing which devices a specific IOMMU translates and
118 * which requestor ids they use.
119 */
120 struct ivhd_entry {
121 u8 type;
122 u16 devid;
123 u8 flags;
124 u32 ext;
125 u32 hidh;
126 u64 cid;
127 u8 uidf;
128 u8 uidl;
129 u8 uid;
130 } __attribute__((packed));
131
132 /*
133 * An AMD IOMMU memory definition structure. It defines things like exclusion
134 * ranges for devices and regions that should be unity mapped.
135 */
136 struct ivmd_header {
137 u8 type;
138 u8 flags;
139 u16 length;
140 u16 devid;
141 u16 aux;
142 u64 resv;
143 u64 range_start;
144 u64 range_length;
145 } __attribute__((packed));
146
147 bool amd_iommu_dump;
148 bool amd_iommu_irq_remap __read_mostly;
149
150 enum io_pgtable_fmt amd_iommu_pgtable = AMD_IOMMU_V1;
151
152 int amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_VAPIC;
153 static int amd_iommu_xt_mode = IRQ_REMAP_XAPIC_MODE;
154
155 static bool amd_iommu_detected;
156 static bool __initdata amd_iommu_disabled;
157 static int amd_iommu_target_ivhd_type;
158
159 u16 amd_iommu_last_bdf; /* largest PCI device id we have
160 to handle */
161 LIST_HEAD(amd_iommu_unity_map); /* a list of required unity mappings
162 we find in ACPI */
163 bool amd_iommu_unmap_flush; /* if true, flush on every unmap */
164
165 LIST_HEAD(amd_iommu_list); /* list of all AMD IOMMUs in the
166 system */
167
168 /* Array to assign indices to IOMMUs*/
169 struct amd_iommu *amd_iommus[MAX_IOMMUS];
170
171 /* Number of IOMMUs present in the system */
172 static int amd_iommus_present;
173
174 /* IOMMUs have a non-present cache? */
175 bool amd_iommu_np_cache __read_mostly;
176 bool amd_iommu_iotlb_sup __read_mostly = true;
177
178 u32 amd_iommu_max_pasid __read_mostly = ~0;
179
180 bool amd_iommu_v2_present __read_mostly;
181 static bool amd_iommu_pc_present __read_mostly;
182
183 bool amd_iommu_force_isolation __read_mostly;
184
185 /*
186 * Pointer to the device table which is shared by all AMD IOMMUs
187 * it is indexed by the PCI device id or the HT unit id and contains
188 * information about the domain the device belongs to as well as the
189 * page table root pointer.
190 */
191 struct dev_table_entry *amd_iommu_dev_table;
192 /*
193 * Pointer to a device table which the content of old device table
194 * will be copied to. It's only be used in kdump kernel.
195 */
196 static struct dev_table_entry *old_dev_tbl_cpy;
197
198 /*
199 * The alias table is a driver specific data structure which contains the
200 * mappings of the PCI device ids to the actual requestor ids on the IOMMU.
201 * More than one device can share the same requestor id.
202 */
203 u16 *amd_iommu_alias_table;
204
205 /*
206 * The rlookup table is used to find the IOMMU which is responsible
207 * for a specific device. It is also indexed by the PCI device id.
208 */
209 struct amd_iommu **amd_iommu_rlookup_table;
210
211 /*
212 * This table is used to find the irq remapping table for a given device id
213 * quickly.
214 */
215 struct irq_remap_table **irq_lookup_table;
216
217 /*
218 * AMD IOMMU allows up to 2^16 different protection domains. This is a bitmap
219 * to know which ones are already in use.
220 */
221 unsigned long *amd_iommu_pd_alloc_bitmap;
222
223 static u32 dev_table_size; /* size of the device table */
224 static u32 alias_table_size; /* size of the alias table */
225 static u32 rlookup_table_size; /* size if the rlookup table */
226
227 enum iommu_init_state {
228 IOMMU_START_STATE,
229 IOMMU_IVRS_DETECTED,
230 IOMMU_ACPI_FINISHED,
231 IOMMU_ENABLED,
232 IOMMU_PCI_INIT,
233 IOMMU_INTERRUPTS_EN,
234 IOMMU_DMA_OPS,
235 IOMMU_INITIALIZED,
236 IOMMU_NOT_FOUND,
237 IOMMU_INIT_ERROR,
238 IOMMU_CMDLINE_DISABLED,
239 };
240
241 /* Early ioapic and hpet maps from kernel command line */
242 #define EARLY_MAP_SIZE 4
243 static struct devid_map __initdata early_ioapic_map[EARLY_MAP_SIZE];
244 static struct devid_map __initdata early_hpet_map[EARLY_MAP_SIZE];
245 static struct acpihid_map_entry __initdata early_acpihid_map[EARLY_MAP_SIZE];
246
247 static int __initdata early_ioapic_map_size;
248 static int __initdata early_hpet_map_size;
249 static int __initdata early_acpihid_map_size;
250
251 static bool __initdata cmdline_maps;
252
253 static enum iommu_init_state init_state = IOMMU_START_STATE;
254
255 static int amd_iommu_enable_interrupts(void);
256 static int __init iommu_go_to_state(enum iommu_init_state state);
257 static void init_device_table_dma(void);
258
259 static bool amd_iommu_pre_enabled = true;
260
261 static u32 amd_iommu_ivinfo __initdata;
262
translation_pre_enabled(struct amd_iommu * iommu)263 bool translation_pre_enabled(struct amd_iommu *iommu)
264 {
265 return (iommu->flags & AMD_IOMMU_FLAG_TRANS_PRE_ENABLED);
266 }
267
clear_translation_pre_enabled(struct amd_iommu * iommu)268 static void clear_translation_pre_enabled(struct amd_iommu *iommu)
269 {
270 iommu->flags &= ~AMD_IOMMU_FLAG_TRANS_PRE_ENABLED;
271 }
272
init_translation_status(struct amd_iommu * iommu)273 static void init_translation_status(struct amd_iommu *iommu)
274 {
275 u64 ctrl;
276
277 ctrl = readq(iommu->mmio_base + MMIO_CONTROL_OFFSET);
278 if (ctrl & (1<<CONTROL_IOMMU_EN))
279 iommu->flags |= AMD_IOMMU_FLAG_TRANS_PRE_ENABLED;
280 }
281
update_last_devid(u16 devid)282 static inline void update_last_devid(u16 devid)
283 {
284 if (devid > amd_iommu_last_bdf)
285 amd_iommu_last_bdf = devid;
286 }
287
tbl_size(int entry_size)288 static inline unsigned long tbl_size(int entry_size)
289 {
290 unsigned shift = PAGE_SHIFT +
291 get_order(((int)amd_iommu_last_bdf + 1) * entry_size);
292
293 return 1UL << shift;
294 }
295
amd_iommu_get_num_iommus(void)296 int amd_iommu_get_num_iommus(void)
297 {
298 return amd_iommus_present;
299 }
300
301 /*
302 * For IVHD type 0x11/0x40, EFR is also available via IVHD.
303 * Default to IVHD EFR since it is available sooner
304 * (i.e. before PCI init).
305 */
early_iommu_features_init(struct amd_iommu * iommu,struct ivhd_header * h)306 static void __init early_iommu_features_init(struct amd_iommu *iommu,
307 struct ivhd_header *h)
308 {
309 if (amd_iommu_ivinfo & IOMMU_IVINFO_EFRSUP)
310 iommu->features = h->efr_reg;
311 }
312
313 /* Access to l1 and l2 indexed register spaces */
314
iommu_read_l1(struct amd_iommu * iommu,u16 l1,u8 address)315 static u32 iommu_read_l1(struct amd_iommu *iommu, u16 l1, u8 address)
316 {
317 u32 val;
318
319 pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16));
320 pci_read_config_dword(iommu->dev, 0xfc, &val);
321 return val;
322 }
323
iommu_write_l1(struct amd_iommu * iommu,u16 l1,u8 address,u32 val)324 static void iommu_write_l1(struct amd_iommu *iommu, u16 l1, u8 address, u32 val)
325 {
326 pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16 | 1 << 31));
327 pci_write_config_dword(iommu->dev, 0xfc, val);
328 pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16));
329 }
330
iommu_read_l2(struct amd_iommu * iommu,u8 address)331 static u32 iommu_read_l2(struct amd_iommu *iommu, u8 address)
332 {
333 u32 val;
334
335 pci_write_config_dword(iommu->dev, 0xf0, address);
336 pci_read_config_dword(iommu->dev, 0xf4, &val);
337 return val;
338 }
339
iommu_write_l2(struct amd_iommu * iommu,u8 address,u32 val)340 static void iommu_write_l2(struct amd_iommu *iommu, u8 address, u32 val)
341 {
342 pci_write_config_dword(iommu->dev, 0xf0, (address | 1 << 8));
343 pci_write_config_dword(iommu->dev, 0xf4, val);
344 }
345
346 /****************************************************************************
347 *
348 * AMD IOMMU MMIO register space handling functions
349 *
350 * These functions are used to program the IOMMU device registers in
351 * MMIO space required for that driver.
352 *
353 ****************************************************************************/
354
355 /*
356 * This function set the exclusion range in the IOMMU. DMA accesses to the
357 * exclusion range are passed through untranslated
358 */
iommu_set_exclusion_range(struct amd_iommu * iommu)359 static void iommu_set_exclusion_range(struct amd_iommu *iommu)
360 {
361 u64 start = iommu->exclusion_start & PAGE_MASK;
362 u64 limit = (start + iommu->exclusion_length - 1) & PAGE_MASK;
363 u64 entry;
364
365 if (!iommu->exclusion_start)
366 return;
367
368 entry = start | MMIO_EXCL_ENABLE_MASK;
369 memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
370 &entry, sizeof(entry));
371
372 entry = limit;
373 memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
374 &entry, sizeof(entry));
375 }
376
iommu_set_cwwb_range(struct amd_iommu * iommu)377 static void iommu_set_cwwb_range(struct amd_iommu *iommu)
378 {
379 u64 start = iommu_virt_to_phys((void *)iommu->cmd_sem);
380 u64 entry = start & PM_ADDR_MASK;
381
382 if (!iommu_feature(iommu, FEATURE_SNP))
383 return;
384
385 /* Note:
386 * Re-purpose Exclusion base/limit registers for Completion wait
387 * write-back base/limit.
388 */
389 memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
390 &entry, sizeof(entry));
391
392 /* Note:
393 * Default to 4 Kbytes, which can be specified by setting base
394 * address equal to the limit address.
395 */
396 memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
397 &entry, sizeof(entry));
398 }
399
400 /* Programs the physical address of the device table into the IOMMU hardware */
iommu_set_device_table(struct amd_iommu * iommu)401 static void iommu_set_device_table(struct amd_iommu *iommu)
402 {
403 u64 entry;
404
405 BUG_ON(iommu->mmio_base == NULL);
406
407 entry = iommu_virt_to_phys(amd_iommu_dev_table);
408 entry |= (dev_table_size >> 12) - 1;
409 memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET,
410 &entry, sizeof(entry));
411 }
412
413 /* Generic functions to enable/disable certain features of the IOMMU. */
iommu_feature_enable(struct amd_iommu * iommu,u8 bit)414 static void iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
415 {
416 u64 ctrl;
417
418 ctrl = readq(iommu->mmio_base + MMIO_CONTROL_OFFSET);
419 ctrl |= (1ULL << bit);
420 writeq(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
421 }
422
iommu_feature_disable(struct amd_iommu * iommu,u8 bit)423 static void iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
424 {
425 u64 ctrl;
426
427 ctrl = readq(iommu->mmio_base + MMIO_CONTROL_OFFSET);
428 ctrl &= ~(1ULL << bit);
429 writeq(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
430 }
431
iommu_set_inv_tlb_timeout(struct amd_iommu * iommu,int timeout)432 static void iommu_set_inv_tlb_timeout(struct amd_iommu *iommu, int timeout)
433 {
434 u64 ctrl;
435
436 ctrl = readq(iommu->mmio_base + MMIO_CONTROL_OFFSET);
437 ctrl &= ~CTRL_INV_TO_MASK;
438 ctrl |= (timeout << CONTROL_INV_TIMEOUT) & CTRL_INV_TO_MASK;
439 writeq(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
440 }
441
442 /* Function to enable the hardware */
iommu_enable(struct amd_iommu * iommu)443 static void iommu_enable(struct amd_iommu *iommu)
444 {
445 iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
446 }
447
iommu_disable(struct amd_iommu * iommu)448 static void iommu_disable(struct amd_iommu *iommu)
449 {
450 if (!iommu->mmio_base)
451 return;
452
453 /* Disable command buffer */
454 iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
455
456 /* Disable event logging and event interrupts */
457 iommu_feature_disable(iommu, CONTROL_EVT_INT_EN);
458 iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN);
459
460 /* Disable IOMMU GA_LOG */
461 iommu_feature_disable(iommu, CONTROL_GALOG_EN);
462 iommu_feature_disable(iommu, CONTROL_GAINT_EN);
463
464 /* Disable IOMMU hardware itself */
465 iommu_feature_disable(iommu, CONTROL_IOMMU_EN);
466 }
467
468 /*
469 * mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in
470 * the system has one.
471 */
iommu_map_mmio_space(u64 address,u64 end)472 static u8 __iomem * __init iommu_map_mmio_space(u64 address, u64 end)
473 {
474 if (!request_mem_region(address, end, "amd_iommu")) {
475 pr_err("Can not reserve memory region %llx-%llx for mmio\n",
476 address, end);
477 pr_err("This is a BIOS bug. Please contact your hardware vendor\n");
478 return NULL;
479 }
480
481 return (u8 __iomem *)ioremap(address, end);
482 }
483
iommu_unmap_mmio_space(struct amd_iommu * iommu)484 static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu)
485 {
486 if (iommu->mmio_base)
487 iounmap(iommu->mmio_base);
488 release_mem_region(iommu->mmio_phys, iommu->mmio_phys_end);
489 }
490
get_ivhd_header_size(struct ivhd_header * h)491 static inline u32 get_ivhd_header_size(struct ivhd_header *h)
492 {
493 u32 size = 0;
494
495 switch (h->type) {
496 case 0x10:
497 size = 24;
498 break;
499 case 0x11:
500 case 0x40:
501 size = 40;
502 break;
503 }
504 return size;
505 }
506
507 /****************************************************************************
508 *
509 * The functions below belong to the first pass of AMD IOMMU ACPI table
510 * parsing. In this pass we try to find out the highest device id this
511 * code has to handle. Upon this information the size of the shared data
512 * structures is determined later.
513 *
514 ****************************************************************************/
515
516 /*
517 * This function calculates the length of a given IVHD entry
518 */
ivhd_entry_length(u8 * ivhd)519 static inline int ivhd_entry_length(u8 *ivhd)
520 {
521 u32 type = ((struct ivhd_entry *)ivhd)->type;
522
523 if (type < 0x80) {
524 return 0x04 << (*ivhd >> 6);
525 } else if (type == IVHD_DEV_ACPI_HID) {
526 /* For ACPI_HID, offset 21 is uid len */
527 return *((u8 *)ivhd + 21) + 22;
528 }
529 return 0;
530 }
531
532 /*
533 * After reading the highest device id from the IOMMU PCI capability header
534 * this function looks if there is a higher device id defined in the ACPI table
535 */
find_last_devid_from_ivhd(struct ivhd_header * h)536 static int __init find_last_devid_from_ivhd(struct ivhd_header *h)
537 {
538 u8 *p = (void *)h, *end = (void *)h;
539 struct ivhd_entry *dev;
540
541 u32 ivhd_size = get_ivhd_header_size(h);
542
543 if (!ivhd_size) {
544 pr_err("Unsupported IVHD type %#x\n", h->type);
545 return -EINVAL;
546 }
547
548 p += ivhd_size;
549 end += h->length;
550
551 while (p < end) {
552 dev = (struct ivhd_entry *)p;
553 switch (dev->type) {
554 case IVHD_DEV_ALL:
555 /* Use maximum BDF value for DEV_ALL */
556 update_last_devid(0xffff);
557 break;
558 case IVHD_DEV_SELECT:
559 case IVHD_DEV_RANGE_END:
560 case IVHD_DEV_ALIAS:
561 case IVHD_DEV_EXT_SELECT:
562 /* all the above subfield types refer to device ids */
563 update_last_devid(dev->devid);
564 break;
565 default:
566 break;
567 }
568 p += ivhd_entry_length(p);
569 }
570
571 WARN_ON(p != end);
572
573 return 0;
574 }
575
check_ivrs_checksum(struct acpi_table_header * table)576 static int __init check_ivrs_checksum(struct acpi_table_header *table)
577 {
578 int i;
579 u8 checksum = 0, *p = (u8 *)table;
580
581 for (i = 0; i < table->length; ++i)
582 checksum += p[i];
583 if (checksum != 0) {
584 /* ACPI table corrupt */
585 pr_err(FW_BUG "IVRS invalid checksum\n");
586 return -ENODEV;
587 }
588
589 return 0;
590 }
591
592 /*
593 * Iterate over all IVHD entries in the ACPI table and find the highest device
594 * id which we need to handle. This is the first of three functions which parse
595 * the ACPI table. So we check the checksum here.
596 */
find_last_devid_acpi(struct acpi_table_header * table)597 static int __init find_last_devid_acpi(struct acpi_table_header *table)
598 {
599 u8 *p = (u8 *)table, *end = (u8 *)table;
600 struct ivhd_header *h;
601
602 p += IVRS_HEADER_LENGTH;
603
604 end += table->length;
605 while (p < end) {
606 h = (struct ivhd_header *)p;
607 if (h->type == amd_iommu_target_ivhd_type) {
608 int ret = find_last_devid_from_ivhd(h);
609
610 if (ret)
611 return ret;
612 }
613 p += h->length;
614 }
615 WARN_ON(p != end);
616
617 return 0;
618 }
619
620 /****************************************************************************
621 *
622 * The following functions belong to the code path which parses the ACPI table
623 * the second time. In this ACPI parsing iteration we allocate IOMMU specific
624 * data structures, initialize the device/alias/rlookup table and also
625 * basically initialize the hardware.
626 *
627 ****************************************************************************/
628
629 /*
630 * Allocates the command buffer. This buffer is per AMD IOMMU. We can
631 * write commands to that buffer later and the IOMMU will execute them
632 * asynchronously
633 */
alloc_command_buffer(struct amd_iommu * iommu)634 static int __init alloc_command_buffer(struct amd_iommu *iommu)
635 {
636 iommu->cmd_buf = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
637 get_order(CMD_BUFFER_SIZE));
638
639 return iommu->cmd_buf ? 0 : -ENOMEM;
640 }
641
642 /*
643 * This function resets the command buffer if the IOMMU stopped fetching
644 * commands from it.
645 */
amd_iommu_reset_cmd_buffer(struct amd_iommu * iommu)646 void amd_iommu_reset_cmd_buffer(struct amd_iommu *iommu)
647 {
648 iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
649
650 writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
651 writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
652 iommu->cmd_buf_head = 0;
653 iommu->cmd_buf_tail = 0;
654
655 iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
656 }
657
658 /*
659 * This function writes the command buffer address to the hardware and
660 * enables it.
661 */
iommu_enable_command_buffer(struct amd_iommu * iommu)662 static void iommu_enable_command_buffer(struct amd_iommu *iommu)
663 {
664 u64 entry;
665
666 BUG_ON(iommu->cmd_buf == NULL);
667
668 entry = iommu_virt_to_phys(iommu->cmd_buf);
669 entry |= MMIO_CMD_SIZE_512;
670
671 memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
672 &entry, sizeof(entry));
673
674 amd_iommu_reset_cmd_buffer(iommu);
675 }
676
677 /*
678 * This function disables the command buffer
679 */
iommu_disable_command_buffer(struct amd_iommu * iommu)680 static void iommu_disable_command_buffer(struct amd_iommu *iommu)
681 {
682 iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
683 }
684
free_command_buffer(struct amd_iommu * iommu)685 static void __init free_command_buffer(struct amd_iommu *iommu)
686 {
687 free_pages((unsigned long)iommu->cmd_buf, get_order(CMD_BUFFER_SIZE));
688 }
689
iommu_alloc_4k_pages(struct amd_iommu * iommu,gfp_t gfp,size_t size)690 static void *__init iommu_alloc_4k_pages(struct amd_iommu *iommu,
691 gfp_t gfp, size_t size)
692 {
693 int order = get_order(size);
694 void *buf = (void *)__get_free_pages(gfp, order);
695
696 if (buf &&
697 iommu_feature(iommu, FEATURE_SNP) &&
698 set_memory_4k((unsigned long)buf, (1 << order))) {
699 free_pages((unsigned long)buf, order);
700 buf = NULL;
701 }
702
703 return buf;
704 }
705
706 /* allocates the memory where the IOMMU will log its events to */
alloc_event_buffer(struct amd_iommu * iommu)707 static int __init alloc_event_buffer(struct amd_iommu *iommu)
708 {
709 iommu->evt_buf = iommu_alloc_4k_pages(iommu, GFP_KERNEL | __GFP_ZERO,
710 EVT_BUFFER_SIZE);
711
712 return iommu->evt_buf ? 0 : -ENOMEM;
713 }
714
iommu_enable_event_buffer(struct amd_iommu * iommu)715 static void iommu_enable_event_buffer(struct amd_iommu *iommu)
716 {
717 u64 entry;
718
719 BUG_ON(iommu->evt_buf == NULL);
720
721 entry = iommu_virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK;
722
723 memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET,
724 &entry, sizeof(entry));
725
726 /* set head and tail to zero manually */
727 writel(0x00, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
728 writel(0x00, iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
729
730 iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
731 }
732
733 /*
734 * This function disables the event log buffer
735 */
iommu_disable_event_buffer(struct amd_iommu * iommu)736 static void iommu_disable_event_buffer(struct amd_iommu *iommu)
737 {
738 iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN);
739 }
740
free_event_buffer(struct amd_iommu * iommu)741 static void __init free_event_buffer(struct amd_iommu *iommu)
742 {
743 free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE));
744 }
745
746 /* allocates the memory where the IOMMU will log its events to */
alloc_ppr_log(struct amd_iommu * iommu)747 static int __init alloc_ppr_log(struct amd_iommu *iommu)
748 {
749 iommu->ppr_log = iommu_alloc_4k_pages(iommu, GFP_KERNEL | __GFP_ZERO,
750 PPR_LOG_SIZE);
751
752 return iommu->ppr_log ? 0 : -ENOMEM;
753 }
754
iommu_enable_ppr_log(struct amd_iommu * iommu)755 static void iommu_enable_ppr_log(struct amd_iommu *iommu)
756 {
757 u64 entry;
758
759 if (iommu->ppr_log == NULL)
760 return;
761
762 entry = iommu_virt_to_phys(iommu->ppr_log) | PPR_LOG_SIZE_512;
763
764 memcpy_toio(iommu->mmio_base + MMIO_PPR_LOG_OFFSET,
765 &entry, sizeof(entry));
766
767 /* set head and tail to zero manually */
768 writel(0x00, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
769 writel(0x00, iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
770
771 iommu_feature_enable(iommu, CONTROL_PPRLOG_EN);
772 iommu_feature_enable(iommu, CONTROL_PPR_EN);
773 }
774
free_ppr_log(struct amd_iommu * iommu)775 static void __init free_ppr_log(struct amd_iommu *iommu)
776 {
777 free_pages((unsigned long)iommu->ppr_log, get_order(PPR_LOG_SIZE));
778 }
779
free_ga_log(struct amd_iommu * iommu)780 static void free_ga_log(struct amd_iommu *iommu)
781 {
782 #ifdef CONFIG_IRQ_REMAP
783 free_pages((unsigned long)iommu->ga_log, get_order(GA_LOG_SIZE));
784 free_pages((unsigned long)iommu->ga_log_tail, get_order(8));
785 #endif
786 }
787
iommu_ga_log_enable(struct amd_iommu * iommu)788 static int iommu_ga_log_enable(struct amd_iommu *iommu)
789 {
790 #ifdef CONFIG_IRQ_REMAP
791 u32 status, i;
792
793 if (!iommu->ga_log)
794 return -EINVAL;
795
796 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
797
798 /* Check if already running */
799 if (status & (MMIO_STATUS_GALOG_RUN_MASK))
800 return 0;
801
802 iommu_feature_enable(iommu, CONTROL_GAINT_EN);
803 iommu_feature_enable(iommu, CONTROL_GALOG_EN);
804
805 for (i = 0; i < LOOP_TIMEOUT; ++i) {
806 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
807 if (status & (MMIO_STATUS_GALOG_RUN_MASK))
808 break;
809 }
810
811 if (i >= LOOP_TIMEOUT)
812 return -EINVAL;
813 #endif /* CONFIG_IRQ_REMAP */
814 return 0;
815 }
816
817 #ifdef CONFIG_IRQ_REMAP
iommu_init_ga_log(struct amd_iommu * iommu)818 static int iommu_init_ga_log(struct amd_iommu *iommu)
819 {
820 u64 entry;
821
822 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir))
823 return 0;
824
825 iommu->ga_log = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
826 get_order(GA_LOG_SIZE));
827 if (!iommu->ga_log)
828 goto err_out;
829
830 iommu->ga_log_tail = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
831 get_order(8));
832 if (!iommu->ga_log_tail)
833 goto err_out;
834
835 entry = iommu_virt_to_phys(iommu->ga_log) | GA_LOG_SIZE_512;
836 memcpy_toio(iommu->mmio_base + MMIO_GA_LOG_BASE_OFFSET,
837 &entry, sizeof(entry));
838 entry = (iommu_virt_to_phys(iommu->ga_log_tail) &
839 (BIT_ULL(52)-1)) & ~7ULL;
840 memcpy_toio(iommu->mmio_base + MMIO_GA_LOG_TAIL_OFFSET,
841 &entry, sizeof(entry));
842 writel(0x00, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
843 writel(0x00, iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
844
845 return 0;
846 err_out:
847 free_ga_log(iommu);
848 return -EINVAL;
849 }
850 #endif /* CONFIG_IRQ_REMAP */
851
iommu_init_ga(struct amd_iommu * iommu)852 static int iommu_init_ga(struct amd_iommu *iommu)
853 {
854 int ret = 0;
855
856 #ifdef CONFIG_IRQ_REMAP
857 /* Note: We have already checked GASup from IVRS table.
858 * Now, we need to make sure that GAMSup is set.
859 */
860 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
861 !iommu_feature(iommu, FEATURE_GAM_VAPIC))
862 amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_LEGACY_GA;
863
864 ret = iommu_init_ga_log(iommu);
865 #endif /* CONFIG_IRQ_REMAP */
866
867 return ret;
868 }
869
alloc_cwwb_sem(struct amd_iommu * iommu)870 static int __init alloc_cwwb_sem(struct amd_iommu *iommu)
871 {
872 iommu->cmd_sem = iommu_alloc_4k_pages(iommu, GFP_KERNEL | __GFP_ZERO, 1);
873
874 return iommu->cmd_sem ? 0 : -ENOMEM;
875 }
876
free_cwwb_sem(struct amd_iommu * iommu)877 static void __init free_cwwb_sem(struct amd_iommu *iommu)
878 {
879 if (iommu->cmd_sem)
880 free_page((unsigned long)iommu->cmd_sem);
881 }
882
iommu_enable_xt(struct amd_iommu * iommu)883 static void iommu_enable_xt(struct amd_iommu *iommu)
884 {
885 #ifdef CONFIG_IRQ_REMAP
886 /*
887 * XT mode (32-bit APIC destination ID) requires
888 * GA mode (128-bit IRTE support) as a prerequisite.
889 */
890 if (AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir) &&
891 amd_iommu_xt_mode == IRQ_REMAP_X2APIC_MODE)
892 iommu_feature_enable(iommu, CONTROL_XT_EN);
893 #endif /* CONFIG_IRQ_REMAP */
894 }
895
iommu_enable_gt(struct amd_iommu * iommu)896 static void iommu_enable_gt(struct amd_iommu *iommu)
897 {
898 if (!iommu_feature(iommu, FEATURE_GT))
899 return;
900
901 iommu_feature_enable(iommu, CONTROL_GT_EN);
902 }
903
904 /* sets a specific bit in the device table entry. */
set_dev_entry_bit(u16 devid,u8 bit)905 static void set_dev_entry_bit(u16 devid, u8 bit)
906 {
907 int i = (bit >> 6) & 0x03;
908 int _bit = bit & 0x3f;
909
910 amd_iommu_dev_table[devid].data[i] |= (1UL << _bit);
911 }
912
get_dev_entry_bit(u16 devid,u8 bit)913 static int get_dev_entry_bit(u16 devid, u8 bit)
914 {
915 int i = (bit >> 6) & 0x03;
916 int _bit = bit & 0x3f;
917
918 return (amd_iommu_dev_table[devid].data[i] & (1UL << _bit)) >> _bit;
919 }
920
921
copy_device_table(void)922 static bool copy_device_table(void)
923 {
924 u64 int_ctl, int_tab_len, entry = 0, last_entry = 0;
925 struct dev_table_entry *old_devtb = NULL;
926 u32 lo, hi, devid, old_devtb_size;
927 phys_addr_t old_devtb_phys;
928 struct amd_iommu *iommu;
929 u16 dom_id, dte_v, irq_v;
930 gfp_t gfp_flag;
931 u64 tmp;
932
933 if (!amd_iommu_pre_enabled)
934 return false;
935
936 pr_warn("Translation is already enabled - trying to copy translation structures\n");
937 for_each_iommu(iommu) {
938 /* All IOMMUs should use the same device table with the same size */
939 lo = readl(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET);
940 hi = readl(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET + 4);
941 entry = (((u64) hi) << 32) + lo;
942 if (last_entry && last_entry != entry) {
943 pr_err("IOMMU:%d should use the same dev table as others!\n",
944 iommu->index);
945 return false;
946 }
947 last_entry = entry;
948
949 old_devtb_size = ((entry & ~PAGE_MASK) + 1) << 12;
950 if (old_devtb_size != dev_table_size) {
951 pr_err("The device table size of IOMMU:%d is not expected!\n",
952 iommu->index);
953 return false;
954 }
955 }
956
957 /*
958 * When SME is enabled in the first kernel, the entry includes the
959 * memory encryption mask(sme_me_mask), we must remove the memory
960 * encryption mask to obtain the true physical address in kdump kernel.
961 */
962 old_devtb_phys = __sme_clr(entry) & PAGE_MASK;
963
964 if (old_devtb_phys >= 0x100000000ULL) {
965 pr_err("The address of old device table is above 4G, not trustworthy!\n");
966 return false;
967 }
968 old_devtb = (sme_active() && is_kdump_kernel())
969 ? (__force void *)ioremap_encrypted(old_devtb_phys,
970 dev_table_size)
971 : memremap(old_devtb_phys, dev_table_size, MEMREMAP_WB);
972
973 if (!old_devtb)
974 return false;
975
976 gfp_flag = GFP_KERNEL | __GFP_ZERO | GFP_DMA32;
977 old_dev_tbl_cpy = (void *)__get_free_pages(gfp_flag,
978 get_order(dev_table_size));
979 if (old_dev_tbl_cpy == NULL) {
980 pr_err("Failed to allocate memory for copying old device table!\n");
981 return false;
982 }
983
984 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
985 old_dev_tbl_cpy[devid] = old_devtb[devid];
986 dom_id = old_devtb[devid].data[1] & DEV_DOMID_MASK;
987 dte_v = old_devtb[devid].data[0] & DTE_FLAG_V;
988
989 if (dte_v && dom_id) {
990 old_dev_tbl_cpy[devid].data[0] = old_devtb[devid].data[0];
991 old_dev_tbl_cpy[devid].data[1] = old_devtb[devid].data[1];
992 __set_bit(dom_id, amd_iommu_pd_alloc_bitmap);
993 /* If gcr3 table existed, mask it out */
994 if (old_devtb[devid].data[0] & DTE_FLAG_GV) {
995 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
996 tmp |= DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
997 old_dev_tbl_cpy[devid].data[1] &= ~tmp;
998 tmp = DTE_GCR3_VAL_A(~0ULL) << DTE_GCR3_SHIFT_A;
999 tmp |= DTE_FLAG_GV;
1000 old_dev_tbl_cpy[devid].data[0] &= ~tmp;
1001 }
1002 }
1003
1004 irq_v = old_devtb[devid].data[2] & DTE_IRQ_REMAP_ENABLE;
1005 int_ctl = old_devtb[devid].data[2] & DTE_IRQ_REMAP_INTCTL_MASK;
1006 int_tab_len = old_devtb[devid].data[2] & DTE_INTTABLEN_MASK;
1007 if (irq_v && (int_ctl || int_tab_len)) {
1008 if ((int_ctl != DTE_IRQ_REMAP_INTCTL) ||
1009 (int_tab_len != DTE_INTTABLEN)) {
1010 pr_err("Wrong old irq remapping flag: %#x\n", devid);
1011 return false;
1012 }
1013
1014 old_dev_tbl_cpy[devid].data[2] = old_devtb[devid].data[2];
1015 }
1016 }
1017 memunmap(old_devtb);
1018
1019 return true;
1020 }
1021
amd_iommu_apply_erratum_63(u16 devid)1022 void amd_iommu_apply_erratum_63(u16 devid)
1023 {
1024 int sysmgt;
1025
1026 sysmgt = get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1) |
1027 (get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2) << 1);
1028
1029 if (sysmgt == 0x01)
1030 set_dev_entry_bit(devid, DEV_ENTRY_IW);
1031 }
1032
1033 /* Writes the specific IOMMU for a device into the rlookup table */
set_iommu_for_device(struct amd_iommu * iommu,u16 devid)1034 static void __init set_iommu_for_device(struct amd_iommu *iommu, u16 devid)
1035 {
1036 amd_iommu_rlookup_table[devid] = iommu;
1037 }
1038
1039 /*
1040 * This function takes the device specific flags read from the ACPI
1041 * table and sets up the device table entry with that information
1042 */
set_dev_entry_from_acpi(struct amd_iommu * iommu,u16 devid,u32 flags,u32 ext_flags)1043 static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu,
1044 u16 devid, u32 flags, u32 ext_flags)
1045 {
1046 if (flags & ACPI_DEVFLAG_INITPASS)
1047 set_dev_entry_bit(devid, DEV_ENTRY_INIT_PASS);
1048 if (flags & ACPI_DEVFLAG_EXTINT)
1049 set_dev_entry_bit(devid, DEV_ENTRY_EINT_PASS);
1050 if (flags & ACPI_DEVFLAG_NMI)
1051 set_dev_entry_bit(devid, DEV_ENTRY_NMI_PASS);
1052 if (flags & ACPI_DEVFLAG_SYSMGT1)
1053 set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1);
1054 if (flags & ACPI_DEVFLAG_SYSMGT2)
1055 set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2);
1056 if (flags & ACPI_DEVFLAG_LINT0)
1057 set_dev_entry_bit(devid, DEV_ENTRY_LINT0_PASS);
1058 if (flags & ACPI_DEVFLAG_LINT1)
1059 set_dev_entry_bit(devid, DEV_ENTRY_LINT1_PASS);
1060
1061 amd_iommu_apply_erratum_63(devid);
1062
1063 set_iommu_for_device(iommu, devid);
1064 }
1065
add_special_device(u8 type,u8 id,u16 * devid,bool cmd_line)1066 int __init add_special_device(u8 type, u8 id, u16 *devid, bool cmd_line)
1067 {
1068 struct devid_map *entry;
1069 struct list_head *list;
1070
1071 if (type == IVHD_SPECIAL_IOAPIC)
1072 list = &ioapic_map;
1073 else if (type == IVHD_SPECIAL_HPET)
1074 list = &hpet_map;
1075 else
1076 return -EINVAL;
1077
1078 list_for_each_entry(entry, list, list) {
1079 if (!(entry->id == id && entry->cmd_line))
1080 continue;
1081
1082 pr_info("Command-line override present for %s id %d - ignoring\n",
1083 type == IVHD_SPECIAL_IOAPIC ? "IOAPIC" : "HPET", id);
1084
1085 *devid = entry->devid;
1086
1087 return 0;
1088 }
1089
1090 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
1091 if (!entry)
1092 return -ENOMEM;
1093
1094 entry->id = id;
1095 entry->devid = *devid;
1096 entry->cmd_line = cmd_line;
1097
1098 list_add_tail(&entry->list, list);
1099
1100 return 0;
1101 }
1102
add_acpi_hid_device(u8 * hid,u8 * uid,u16 * devid,bool cmd_line)1103 static int __init add_acpi_hid_device(u8 *hid, u8 *uid, u16 *devid,
1104 bool cmd_line)
1105 {
1106 struct acpihid_map_entry *entry;
1107 struct list_head *list = &acpihid_map;
1108
1109 list_for_each_entry(entry, list, list) {
1110 if (strcmp(entry->hid, hid) ||
1111 (*uid && *entry->uid && strcmp(entry->uid, uid)) ||
1112 !entry->cmd_line)
1113 continue;
1114
1115 pr_info("Command-line override for hid:%s uid:%s\n",
1116 hid, uid);
1117 *devid = entry->devid;
1118 return 0;
1119 }
1120
1121 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
1122 if (!entry)
1123 return -ENOMEM;
1124
1125 memcpy(entry->uid, uid, strlen(uid));
1126 memcpy(entry->hid, hid, strlen(hid));
1127 entry->devid = *devid;
1128 entry->cmd_line = cmd_line;
1129 entry->root_devid = (entry->devid & (~0x7));
1130
1131 pr_info("%s, add hid:%s, uid:%s, rdevid:%d\n",
1132 entry->cmd_line ? "cmd" : "ivrs",
1133 entry->hid, entry->uid, entry->root_devid);
1134
1135 list_add_tail(&entry->list, list);
1136 return 0;
1137 }
1138
add_early_maps(void)1139 static int __init add_early_maps(void)
1140 {
1141 int i, ret;
1142
1143 for (i = 0; i < early_ioapic_map_size; ++i) {
1144 ret = add_special_device(IVHD_SPECIAL_IOAPIC,
1145 early_ioapic_map[i].id,
1146 &early_ioapic_map[i].devid,
1147 early_ioapic_map[i].cmd_line);
1148 if (ret)
1149 return ret;
1150 }
1151
1152 for (i = 0; i < early_hpet_map_size; ++i) {
1153 ret = add_special_device(IVHD_SPECIAL_HPET,
1154 early_hpet_map[i].id,
1155 &early_hpet_map[i].devid,
1156 early_hpet_map[i].cmd_line);
1157 if (ret)
1158 return ret;
1159 }
1160
1161 for (i = 0; i < early_acpihid_map_size; ++i) {
1162 ret = add_acpi_hid_device(early_acpihid_map[i].hid,
1163 early_acpihid_map[i].uid,
1164 &early_acpihid_map[i].devid,
1165 early_acpihid_map[i].cmd_line);
1166 if (ret)
1167 return ret;
1168 }
1169
1170 return 0;
1171 }
1172
1173 /*
1174 * Takes a pointer to an AMD IOMMU entry in the ACPI table and
1175 * initializes the hardware and our data structures with it.
1176 */
init_iommu_from_acpi(struct amd_iommu * iommu,struct ivhd_header * h)1177 static int __init init_iommu_from_acpi(struct amd_iommu *iommu,
1178 struct ivhd_header *h)
1179 {
1180 u8 *p = (u8 *)h;
1181 u8 *end = p, flags = 0;
1182 u16 devid = 0, devid_start = 0, devid_to = 0;
1183 u32 dev_i, ext_flags = 0;
1184 bool alias = false;
1185 struct ivhd_entry *e;
1186 u32 ivhd_size;
1187 int ret;
1188
1189
1190 ret = add_early_maps();
1191 if (ret)
1192 return ret;
1193
1194 amd_iommu_apply_ivrs_quirks();
1195
1196 /*
1197 * First save the recommended feature enable bits from ACPI
1198 */
1199 iommu->acpi_flags = h->flags;
1200
1201 /*
1202 * Done. Now parse the device entries
1203 */
1204 ivhd_size = get_ivhd_header_size(h);
1205 if (!ivhd_size) {
1206 pr_err("Unsupported IVHD type %#x\n", h->type);
1207 return -EINVAL;
1208 }
1209
1210 p += ivhd_size;
1211
1212 end += h->length;
1213
1214
1215 while (p < end) {
1216 e = (struct ivhd_entry *)p;
1217 switch (e->type) {
1218 case IVHD_DEV_ALL:
1219
1220 DUMP_printk(" DEV_ALL\t\t\tflags: %02x\n", e->flags);
1221
1222 for (dev_i = 0; dev_i <= amd_iommu_last_bdf; ++dev_i)
1223 set_dev_entry_from_acpi(iommu, dev_i, e->flags, 0);
1224 break;
1225 case IVHD_DEV_SELECT:
1226
1227 DUMP_printk(" DEV_SELECT\t\t\t devid: %02x:%02x.%x "
1228 "flags: %02x\n",
1229 PCI_BUS_NUM(e->devid),
1230 PCI_SLOT(e->devid),
1231 PCI_FUNC(e->devid),
1232 e->flags);
1233
1234 devid = e->devid;
1235 set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
1236 break;
1237 case IVHD_DEV_SELECT_RANGE_START:
1238
1239 DUMP_printk(" DEV_SELECT_RANGE_START\t "
1240 "devid: %02x:%02x.%x flags: %02x\n",
1241 PCI_BUS_NUM(e->devid),
1242 PCI_SLOT(e->devid),
1243 PCI_FUNC(e->devid),
1244 e->flags);
1245
1246 devid_start = e->devid;
1247 flags = e->flags;
1248 ext_flags = 0;
1249 alias = false;
1250 break;
1251 case IVHD_DEV_ALIAS:
1252
1253 DUMP_printk(" DEV_ALIAS\t\t\t devid: %02x:%02x.%x "
1254 "flags: %02x devid_to: %02x:%02x.%x\n",
1255 PCI_BUS_NUM(e->devid),
1256 PCI_SLOT(e->devid),
1257 PCI_FUNC(e->devid),
1258 e->flags,
1259 PCI_BUS_NUM(e->ext >> 8),
1260 PCI_SLOT(e->ext >> 8),
1261 PCI_FUNC(e->ext >> 8));
1262
1263 devid = e->devid;
1264 devid_to = e->ext >> 8;
1265 set_dev_entry_from_acpi(iommu, devid , e->flags, 0);
1266 set_dev_entry_from_acpi(iommu, devid_to, e->flags, 0);
1267 amd_iommu_alias_table[devid] = devid_to;
1268 break;
1269 case IVHD_DEV_ALIAS_RANGE:
1270
1271 DUMP_printk(" DEV_ALIAS_RANGE\t\t "
1272 "devid: %02x:%02x.%x flags: %02x "
1273 "devid_to: %02x:%02x.%x\n",
1274 PCI_BUS_NUM(e->devid),
1275 PCI_SLOT(e->devid),
1276 PCI_FUNC(e->devid),
1277 e->flags,
1278 PCI_BUS_NUM(e->ext >> 8),
1279 PCI_SLOT(e->ext >> 8),
1280 PCI_FUNC(e->ext >> 8));
1281
1282 devid_start = e->devid;
1283 flags = e->flags;
1284 devid_to = e->ext >> 8;
1285 ext_flags = 0;
1286 alias = true;
1287 break;
1288 case IVHD_DEV_EXT_SELECT:
1289
1290 DUMP_printk(" DEV_EXT_SELECT\t\t devid: %02x:%02x.%x "
1291 "flags: %02x ext: %08x\n",
1292 PCI_BUS_NUM(e->devid),
1293 PCI_SLOT(e->devid),
1294 PCI_FUNC(e->devid),
1295 e->flags, e->ext);
1296
1297 devid = e->devid;
1298 set_dev_entry_from_acpi(iommu, devid, e->flags,
1299 e->ext);
1300 break;
1301 case IVHD_DEV_EXT_SELECT_RANGE:
1302
1303 DUMP_printk(" DEV_EXT_SELECT_RANGE\t devid: "
1304 "%02x:%02x.%x flags: %02x ext: %08x\n",
1305 PCI_BUS_NUM(e->devid),
1306 PCI_SLOT(e->devid),
1307 PCI_FUNC(e->devid),
1308 e->flags, e->ext);
1309
1310 devid_start = e->devid;
1311 flags = e->flags;
1312 ext_flags = e->ext;
1313 alias = false;
1314 break;
1315 case IVHD_DEV_RANGE_END:
1316
1317 DUMP_printk(" DEV_RANGE_END\t\t devid: %02x:%02x.%x\n",
1318 PCI_BUS_NUM(e->devid),
1319 PCI_SLOT(e->devid),
1320 PCI_FUNC(e->devid));
1321
1322 devid = e->devid;
1323 for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
1324 if (alias) {
1325 amd_iommu_alias_table[dev_i] = devid_to;
1326 set_dev_entry_from_acpi(iommu,
1327 devid_to, flags, ext_flags);
1328 }
1329 set_dev_entry_from_acpi(iommu, dev_i,
1330 flags, ext_flags);
1331 }
1332 break;
1333 case IVHD_DEV_SPECIAL: {
1334 u8 handle, type;
1335 const char *var;
1336 u16 devid;
1337 int ret;
1338
1339 handle = e->ext & 0xff;
1340 devid = (e->ext >> 8) & 0xffff;
1341 type = (e->ext >> 24) & 0xff;
1342
1343 if (type == IVHD_SPECIAL_IOAPIC)
1344 var = "IOAPIC";
1345 else if (type == IVHD_SPECIAL_HPET)
1346 var = "HPET";
1347 else
1348 var = "UNKNOWN";
1349
1350 DUMP_printk(" DEV_SPECIAL(%s[%d])\t\tdevid: %02x:%02x.%x\n",
1351 var, (int)handle,
1352 PCI_BUS_NUM(devid),
1353 PCI_SLOT(devid),
1354 PCI_FUNC(devid));
1355
1356 ret = add_special_device(type, handle, &devid, false);
1357 if (ret)
1358 return ret;
1359
1360 /*
1361 * add_special_device might update the devid in case a
1362 * command-line override is present. So call
1363 * set_dev_entry_from_acpi after add_special_device.
1364 */
1365 set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
1366
1367 break;
1368 }
1369 case IVHD_DEV_ACPI_HID: {
1370 u16 devid;
1371 u8 hid[ACPIHID_HID_LEN];
1372 u8 uid[ACPIHID_UID_LEN];
1373 int ret;
1374
1375 if (h->type != 0x40) {
1376 pr_err(FW_BUG "Invalid IVHD device type %#x\n",
1377 e->type);
1378 break;
1379 }
1380
1381 memcpy(hid, (u8 *)(&e->ext), ACPIHID_HID_LEN - 1);
1382 hid[ACPIHID_HID_LEN - 1] = '\0';
1383
1384 if (!(*hid)) {
1385 pr_err(FW_BUG "Invalid HID.\n");
1386 break;
1387 }
1388
1389 uid[0] = '\0';
1390 switch (e->uidf) {
1391 case UID_NOT_PRESENT:
1392
1393 if (e->uidl != 0)
1394 pr_warn(FW_BUG "Invalid UID length.\n");
1395
1396 break;
1397 case UID_IS_INTEGER:
1398
1399 sprintf(uid, "%d", e->uid);
1400
1401 break;
1402 case UID_IS_CHARACTER:
1403
1404 memcpy(uid, &e->uid, e->uidl);
1405 uid[e->uidl] = '\0';
1406
1407 break;
1408 default:
1409 break;
1410 }
1411
1412 devid = e->devid;
1413 DUMP_printk(" DEV_ACPI_HID(%s[%s])\t\tdevid: %02x:%02x.%x\n",
1414 hid, uid,
1415 PCI_BUS_NUM(devid),
1416 PCI_SLOT(devid),
1417 PCI_FUNC(devid));
1418
1419 flags = e->flags;
1420
1421 ret = add_acpi_hid_device(hid, uid, &devid, false);
1422 if (ret)
1423 return ret;
1424
1425 /*
1426 * add_special_device might update the devid in case a
1427 * command-line override is present. So call
1428 * set_dev_entry_from_acpi after add_special_device.
1429 */
1430 set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
1431
1432 break;
1433 }
1434 default:
1435 break;
1436 }
1437
1438 p += ivhd_entry_length(p);
1439 }
1440
1441 return 0;
1442 }
1443
free_iommu_one(struct amd_iommu * iommu)1444 static void __init free_iommu_one(struct amd_iommu *iommu)
1445 {
1446 free_cwwb_sem(iommu);
1447 free_command_buffer(iommu);
1448 free_event_buffer(iommu);
1449 free_ppr_log(iommu);
1450 free_ga_log(iommu);
1451 iommu_unmap_mmio_space(iommu);
1452 }
1453
free_iommu_all(void)1454 static void __init free_iommu_all(void)
1455 {
1456 struct amd_iommu *iommu, *next;
1457
1458 for_each_iommu_safe(iommu, next) {
1459 list_del(&iommu->list);
1460 free_iommu_one(iommu);
1461 kfree(iommu);
1462 }
1463 }
1464
1465 /*
1466 * Family15h Model 10h-1fh erratum 746 (IOMMU Logging May Stall Translations)
1467 * Workaround:
1468 * BIOS should disable L2B micellaneous clock gating by setting
1469 * L2_L2B_CK_GATE_CONTROL[CKGateL2BMiscDisable](D0F2xF4_x90[2]) = 1b
1470 */
amd_iommu_erratum_746_workaround(struct amd_iommu * iommu)1471 static void amd_iommu_erratum_746_workaround(struct amd_iommu *iommu)
1472 {
1473 u32 value;
1474
1475 if ((boot_cpu_data.x86 != 0x15) ||
1476 (boot_cpu_data.x86_model < 0x10) ||
1477 (boot_cpu_data.x86_model > 0x1f))
1478 return;
1479
1480 pci_write_config_dword(iommu->dev, 0xf0, 0x90);
1481 pci_read_config_dword(iommu->dev, 0xf4, &value);
1482
1483 if (value & BIT(2))
1484 return;
1485
1486 /* Select NB indirect register 0x90 and enable writing */
1487 pci_write_config_dword(iommu->dev, 0xf0, 0x90 | (1 << 8));
1488
1489 pci_write_config_dword(iommu->dev, 0xf4, value | 0x4);
1490 pci_info(iommu->dev, "Applying erratum 746 workaround\n");
1491
1492 /* Clear the enable writing bit */
1493 pci_write_config_dword(iommu->dev, 0xf0, 0x90);
1494 }
1495
1496 /*
1497 * Family15h Model 30h-3fh (IOMMU Mishandles ATS Write Permission)
1498 * Workaround:
1499 * BIOS should enable ATS write permission check by setting
1500 * L2_DEBUG_3[AtsIgnoreIWDis](D0F2xF4_x47[0]) = 1b
1501 */
amd_iommu_ats_write_check_workaround(struct amd_iommu * iommu)1502 static void amd_iommu_ats_write_check_workaround(struct amd_iommu *iommu)
1503 {
1504 u32 value;
1505
1506 if ((boot_cpu_data.x86 != 0x15) ||
1507 (boot_cpu_data.x86_model < 0x30) ||
1508 (boot_cpu_data.x86_model > 0x3f))
1509 return;
1510
1511 /* Test L2_DEBUG_3[AtsIgnoreIWDis] == 1 */
1512 value = iommu_read_l2(iommu, 0x47);
1513
1514 if (value & BIT(0))
1515 return;
1516
1517 /* Set L2_DEBUG_3[AtsIgnoreIWDis] = 1 */
1518 iommu_write_l2(iommu, 0x47, value | BIT(0));
1519
1520 pci_info(iommu->dev, "Applying ATS write check workaround\n");
1521 }
1522
1523 /*
1524 * This function clues the initialization function for one IOMMU
1525 * together and also allocates the command buffer and programs the
1526 * hardware. It does NOT enable the IOMMU. This is done afterwards.
1527 */
init_iommu_one(struct amd_iommu * iommu,struct ivhd_header * h)1528 static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h)
1529 {
1530 int ret;
1531
1532 raw_spin_lock_init(&iommu->lock);
1533 iommu->cmd_sem_val = 0;
1534
1535 /* Add IOMMU to internal data structures */
1536 list_add_tail(&iommu->list, &amd_iommu_list);
1537 iommu->index = amd_iommus_present++;
1538
1539 if (unlikely(iommu->index >= MAX_IOMMUS)) {
1540 WARN(1, "System has more IOMMUs than supported by this driver\n");
1541 return -ENOSYS;
1542 }
1543
1544 /* Index is fine - add IOMMU to the array */
1545 amd_iommus[iommu->index] = iommu;
1546
1547 /*
1548 * Copy data from ACPI table entry to the iommu struct
1549 */
1550 iommu->devid = h->devid;
1551 iommu->cap_ptr = h->cap_ptr;
1552 iommu->pci_seg = h->pci_seg;
1553 iommu->mmio_phys = h->mmio_phys;
1554
1555 switch (h->type) {
1556 case 0x10:
1557 /* Check if IVHD EFR contains proper max banks/counters */
1558 if ((h->efr_attr != 0) &&
1559 ((h->efr_attr & (0xF << 13)) != 0) &&
1560 ((h->efr_attr & (0x3F << 17)) != 0))
1561 iommu->mmio_phys_end = MMIO_REG_END_OFFSET;
1562 else
1563 iommu->mmio_phys_end = MMIO_CNTR_CONF_OFFSET;
1564
1565 /*
1566 * Note: GA (128-bit IRTE) mode requires cmpxchg16b supports.
1567 * GAM also requires GA mode. Therefore, we need to
1568 * check cmpxchg16b support before enabling it.
1569 */
1570 if (!boot_cpu_has(X86_FEATURE_CX16) ||
1571 ((h->efr_attr & (0x1 << IOMMU_FEAT_GASUP_SHIFT)) == 0))
1572 amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_LEGACY;
1573 break;
1574 case 0x11:
1575 case 0x40:
1576 if (h->efr_reg & (1 << 9))
1577 iommu->mmio_phys_end = MMIO_REG_END_OFFSET;
1578 else
1579 iommu->mmio_phys_end = MMIO_CNTR_CONF_OFFSET;
1580
1581 /*
1582 * Note: GA (128-bit IRTE) mode requires cmpxchg16b supports.
1583 * XT, GAM also requires GA mode. Therefore, we need to
1584 * check cmpxchg16b support before enabling them.
1585 */
1586 if (!boot_cpu_has(X86_FEATURE_CX16) ||
1587 ((h->efr_reg & (0x1 << IOMMU_EFR_GASUP_SHIFT)) == 0)) {
1588 amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_LEGACY;
1589 break;
1590 }
1591
1592 if (h->efr_reg & BIT(IOMMU_EFR_XTSUP_SHIFT))
1593 amd_iommu_xt_mode = IRQ_REMAP_X2APIC_MODE;
1594
1595 early_iommu_features_init(iommu, h);
1596
1597 break;
1598 default:
1599 return -EINVAL;
1600 }
1601
1602 iommu->mmio_base = iommu_map_mmio_space(iommu->mmio_phys,
1603 iommu->mmio_phys_end);
1604 if (!iommu->mmio_base)
1605 return -ENOMEM;
1606
1607 if (alloc_cwwb_sem(iommu))
1608 return -ENOMEM;
1609
1610 if (alloc_command_buffer(iommu))
1611 return -ENOMEM;
1612
1613 if (alloc_event_buffer(iommu))
1614 return -ENOMEM;
1615
1616 iommu->int_enabled = false;
1617
1618 init_translation_status(iommu);
1619 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
1620 iommu_disable(iommu);
1621 clear_translation_pre_enabled(iommu);
1622 pr_warn("Translation was enabled for IOMMU:%d but we are not in kdump mode\n",
1623 iommu->index);
1624 }
1625 if (amd_iommu_pre_enabled)
1626 amd_iommu_pre_enabled = translation_pre_enabled(iommu);
1627
1628 ret = init_iommu_from_acpi(iommu, h);
1629 if (ret)
1630 return ret;
1631
1632 if (amd_iommu_irq_remap) {
1633 ret = amd_iommu_create_irq_domain(iommu);
1634 if (ret)
1635 return ret;
1636 }
1637
1638 /*
1639 * Make sure IOMMU is not considered to translate itself. The IVRS
1640 * table tells us so, but this is a lie!
1641 */
1642 amd_iommu_rlookup_table[iommu->devid] = NULL;
1643
1644 return 0;
1645 }
1646
1647 /**
1648 * get_highest_supported_ivhd_type - Look up the appropriate IVHD type
1649 * @ivrs: Pointer to the IVRS header
1650 *
1651 * This function search through all IVDB of the maximum supported IVHD
1652 */
get_highest_supported_ivhd_type(struct acpi_table_header * ivrs)1653 static u8 get_highest_supported_ivhd_type(struct acpi_table_header *ivrs)
1654 {
1655 u8 *base = (u8 *)ivrs;
1656 struct ivhd_header *ivhd = (struct ivhd_header *)
1657 (base + IVRS_HEADER_LENGTH);
1658 u8 last_type = ivhd->type;
1659 u16 devid = ivhd->devid;
1660
1661 while (((u8 *)ivhd - base < ivrs->length) &&
1662 (ivhd->type <= ACPI_IVHD_TYPE_MAX_SUPPORTED)) {
1663 u8 *p = (u8 *) ivhd;
1664
1665 if (ivhd->devid == devid)
1666 last_type = ivhd->type;
1667 ivhd = (struct ivhd_header *)(p + ivhd->length);
1668 }
1669
1670 return last_type;
1671 }
1672
1673 /*
1674 * Iterates over all IOMMU entries in the ACPI table, allocates the
1675 * IOMMU structure and initializes it with init_iommu_one()
1676 */
init_iommu_all(struct acpi_table_header * table)1677 static int __init init_iommu_all(struct acpi_table_header *table)
1678 {
1679 u8 *p = (u8 *)table, *end = (u8 *)table;
1680 struct ivhd_header *h;
1681 struct amd_iommu *iommu;
1682 int ret;
1683
1684 end += table->length;
1685 p += IVRS_HEADER_LENGTH;
1686
1687 while (p < end) {
1688 h = (struct ivhd_header *)p;
1689 if (*p == amd_iommu_target_ivhd_type) {
1690
1691 DUMP_printk("device: %02x:%02x.%01x cap: %04x "
1692 "seg: %d flags: %01x info %04x\n",
1693 PCI_BUS_NUM(h->devid), PCI_SLOT(h->devid),
1694 PCI_FUNC(h->devid), h->cap_ptr,
1695 h->pci_seg, h->flags, h->info);
1696 DUMP_printk(" mmio-addr: %016llx\n",
1697 h->mmio_phys);
1698
1699 iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
1700 if (iommu == NULL)
1701 return -ENOMEM;
1702
1703 ret = init_iommu_one(iommu, h);
1704 if (ret)
1705 return ret;
1706 }
1707 p += h->length;
1708
1709 }
1710 WARN_ON(p != end);
1711
1712 return 0;
1713 }
1714
init_iommu_perf_ctr(struct amd_iommu * iommu)1715 static void init_iommu_perf_ctr(struct amd_iommu *iommu)
1716 {
1717 u64 val;
1718 struct pci_dev *pdev = iommu->dev;
1719
1720 if (!iommu_feature(iommu, FEATURE_PC))
1721 return;
1722
1723 amd_iommu_pc_present = true;
1724
1725 pci_info(pdev, "IOMMU performance counters supported\n");
1726
1727 val = readl(iommu->mmio_base + MMIO_CNTR_CONF_OFFSET);
1728 iommu->max_banks = (u8) ((val >> 12) & 0x3f);
1729 iommu->max_counters = (u8) ((val >> 7) & 0xf);
1730
1731 return;
1732 }
1733
amd_iommu_show_cap(struct device * dev,struct device_attribute * attr,char * buf)1734 static ssize_t amd_iommu_show_cap(struct device *dev,
1735 struct device_attribute *attr,
1736 char *buf)
1737 {
1738 struct amd_iommu *iommu = dev_to_amd_iommu(dev);
1739 return sprintf(buf, "%x\n", iommu->cap);
1740 }
1741 static DEVICE_ATTR(cap, S_IRUGO, amd_iommu_show_cap, NULL);
1742
amd_iommu_show_features(struct device * dev,struct device_attribute * attr,char * buf)1743 static ssize_t amd_iommu_show_features(struct device *dev,
1744 struct device_attribute *attr,
1745 char *buf)
1746 {
1747 struct amd_iommu *iommu = dev_to_amd_iommu(dev);
1748 return sprintf(buf, "%llx\n", iommu->features);
1749 }
1750 static DEVICE_ATTR(features, S_IRUGO, amd_iommu_show_features, NULL);
1751
1752 static struct attribute *amd_iommu_attrs[] = {
1753 &dev_attr_cap.attr,
1754 &dev_attr_features.attr,
1755 NULL,
1756 };
1757
1758 static struct attribute_group amd_iommu_group = {
1759 .name = "amd-iommu",
1760 .attrs = amd_iommu_attrs,
1761 };
1762
1763 static const struct attribute_group *amd_iommu_groups[] = {
1764 &amd_iommu_group,
1765 NULL,
1766 };
1767
1768 /*
1769 * Note: IVHD 0x11 and 0x40 also contains exact copy
1770 * of the IOMMU Extended Feature Register [MMIO Offset 0030h].
1771 * Default to EFR in IVHD since it is available sooner (i.e. before PCI init).
1772 */
late_iommu_features_init(struct amd_iommu * iommu)1773 static void __init late_iommu_features_init(struct amd_iommu *iommu)
1774 {
1775 u64 features;
1776
1777 if (!(iommu->cap & (1 << IOMMU_CAP_EFR)))
1778 return;
1779
1780 /* read extended feature bits */
1781 features = readq(iommu->mmio_base + MMIO_EXT_FEATURES);
1782
1783 if (!iommu->features) {
1784 iommu->features = features;
1785 return;
1786 }
1787
1788 /*
1789 * Sanity check and warn if EFR values from
1790 * IVHD and MMIO conflict.
1791 */
1792 if (features != iommu->features)
1793 pr_warn(FW_WARN "EFR mismatch. Use IVHD EFR (%#llx : %#llx).\n",
1794 features, iommu->features);
1795 }
1796
iommu_init_pci(struct amd_iommu * iommu)1797 static int __init iommu_init_pci(struct amd_iommu *iommu)
1798 {
1799 int cap_ptr = iommu->cap_ptr;
1800 int ret;
1801
1802 iommu->dev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(iommu->devid),
1803 iommu->devid & 0xff);
1804 if (!iommu->dev)
1805 return -ENODEV;
1806
1807 /* Prevent binding other PCI device drivers to IOMMU devices */
1808 iommu->dev->match_driver = false;
1809
1810 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET,
1811 &iommu->cap);
1812
1813 if (!(iommu->cap & (1 << IOMMU_CAP_IOTLB)))
1814 amd_iommu_iotlb_sup = false;
1815
1816 late_iommu_features_init(iommu);
1817
1818 if (iommu_feature(iommu, FEATURE_GT)) {
1819 int glxval;
1820 u32 max_pasid;
1821 u64 pasmax;
1822
1823 pasmax = iommu->features & FEATURE_PASID_MASK;
1824 pasmax >>= FEATURE_PASID_SHIFT;
1825 max_pasid = (1 << (pasmax + 1)) - 1;
1826
1827 amd_iommu_max_pasid = min(amd_iommu_max_pasid, max_pasid);
1828
1829 BUG_ON(amd_iommu_max_pasid & ~PASID_MASK);
1830
1831 glxval = iommu->features & FEATURE_GLXVAL_MASK;
1832 glxval >>= FEATURE_GLXVAL_SHIFT;
1833
1834 if (amd_iommu_max_glx_val == -1)
1835 amd_iommu_max_glx_val = glxval;
1836 else
1837 amd_iommu_max_glx_val = min(amd_iommu_max_glx_val, glxval);
1838 }
1839
1840 if (iommu_feature(iommu, FEATURE_GT) &&
1841 iommu_feature(iommu, FEATURE_PPR)) {
1842 iommu->is_iommu_v2 = true;
1843 amd_iommu_v2_present = true;
1844 }
1845
1846 if (iommu_feature(iommu, FEATURE_PPR) && alloc_ppr_log(iommu))
1847 return -ENOMEM;
1848
1849 ret = iommu_init_ga(iommu);
1850 if (ret)
1851 return ret;
1852
1853 if (iommu->cap & (1UL << IOMMU_CAP_NPCACHE))
1854 amd_iommu_np_cache = true;
1855
1856 init_iommu_perf_ctr(iommu);
1857
1858 if (is_rd890_iommu(iommu->dev)) {
1859 int i, j;
1860
1861 iommu->root_pdev =
1862 pci_get_domain_bus_and_slot(0, iommu->dev->bus->number,
1863 PCI_DEVFN(0, 0));
1864
1865 /*
1866 * Some rd890 systems may not be fully reconfigured by the
1867 * BIOS, so it's necessary for us to store this information so
1868 * it can be reprogrammed on resume
1869 */
1870 pci_read_config_dword(iommu->dev, iommu->cap_ptr + 4,
1871 &iommu->stored_addr_lo);
1872 pci_read_config_dword(iommu->dev, iommu->cap_ptr + 8,
1873 &iommu->stored_addr_hi);
1874
1875 /* Low bit locks writes to configuration space */
1876 iommu->stored_addr_lo &= ~1;
1877
1878 for (i = 0; i < 6; i++)
1879 for (j = 0; j < 0x12; j++)
1880 iommu->stored_l1[i][j] = iommu_read_l1(iommu, i, j);
1881
1882 for (i = 0; i < 0x83; i++)
1883 iommu->stored_l2[i] = iommu_read_l2(iommu, i);
1884 }
1885
1886 amd_iommu_erratum_746_workaround(iommu);
1887 amd_iommu_ats_write_check_workaround(iommu);
1888
1889 iommu_device_sysfs_add(&iommu->iommu, &iommu->dev->dev,
1890 amd_iommu_groups, "ivhd%d", iommu->index);
1891 iommu_device_register(&iommu->iommu, &amd_iommu_ops, NULL);
1892
1893 return pci_enable_device(iommu->dev);
1894 }
1895
print_iommu_info(void)1896 static void print_iommu_info(void)
1897 {
1898 static const char * const feat_str[] = {
1899 "PreF", "PPR", "X2APIC", "NX", "GT", "[5]",
1900 "IA", "GA", "HE", "PC"
1901 };
1902 struct amd_iommu *iommu;
1903
1904 for_each_iommu(iommu) {
1905 struct pci_dev *pdev = iommu->dev;
1906 int i;
1907
1908 pci_info(pdev, "Found IOMMU cap 0x%x\n", iommu->cap_ptr);
1909
1910 if (iommu->cap & (1 << IOMMU_CAP_EFR)) {
1911 pci_info(pdev, "Extended features (%#llx):",
1912 iommu->features);
1913 for (i = 0; i < ARRAY_SIZE(feat_str); ++i) {
1914 if (iommu_feature(iommu, (1ULL << i)))
1915 pr_cont(" %s", feat_str[i]);
1916 }
1917
1918 if (iommu->features & FEATURE_GAM_VAPIC)
1919 pr_cont(" GA_vAPIC");
1920
1921 pr_cont("\n");
1922 }
1923 }
1924 if (irq_remapping_enabled) {
1925 pr_info("Interrupt remapping enabled\n");
1926 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir))
1927 pr_info("Virtual APIC enabled\n");
1928 if (amd_iommu_xt_mode == IRQ_REMAP_X2APIC_MODE)
1929 pr_info("X2APIC enabled\n");
1930 }
1931 }
1932
amd_iommu_init_pci(void)1933 static int __init amd_iommu_init_pci(void)
1934 {
1935 struct amd_iommu *iommu;
1936 int ret;
1937
1938 for_each_iommu(iommu) {
1939 ret = iommu_init_pci(iommu);
1940 if (ret)
1941 break;
1942
1943 /* Need to setup range after PCI init */
1944 iommu_set_cwwb_range(iommu);
1945 }
1946
1947 /*
1948 * Order is important here to make sure any unity map requirements are
1949 * fulfilled. The unity mappings are created and written to the device
1950 * table during the amd_iommu_init_api() call.
1951 *
1952 * After that we call init_device_table_dma() to make sure any
1953 * uninitialized DTE will block DMA, and in the end we flush the caches
1954 * of all IOMMUs to make sure the changes to the device table are
1955 * active.
1956 */
1957 ret = amd_iommu_init_api();
1958
1959 init_device_table_dma();
1960
1961 for_each_iommu(iommu)
1962 iommu_flush_all_caches(iommu);
1963
1964 if (!ret)
1965 print_iommu_info();
1966
1967 return ret;
1968 }
1969
1970 /****************************************************************************
1971 *
1972 * The following functions initialize the MSI interrupts for all IOMMUs
1973 * in the system. It's a bit challenging because there could be multiple
1974 * IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per
1975 * pci_dev.
1976 *
1977 ****************************************************************************/
1978
iommu_setup_msi(struct amd_iommu * iommu)1979 static int iommu_setup_msi(struct amd_iommu *iommu)
1980 {
1981 int r;
1982
1983 r = pci_enable_msi(iommu->dev);
1984 if (r)
1985 return r;
1986
1987 r = request_threaded_irq(iommu->dev->irq,
1988 amd_iommu_int_handler,
1989 amd_iommu_int_thread,
1990 0, "AMD-Vi",
1991 iommu);
1992
1993 if (r) {
1994 pci_disable_msi(iommu->dev);
1995 return r;
1996 }
1997
1998 return 0;
1999 }
2000
2001 union intcapxt {
2002 u64 capxt;
2003 struct {
2004 u64 reserved_0 : 2,
2005 dest_mode_logical : 1,
2006 reserved_1 : 5,
2007 destid_0_23 : 24,
2008 vector : 8,
2009 reserved_2 : 16,
2010 destid_24_31 : 8;
2011 };
2012 } __attribute__ ((packed));
2013
2014 /*
2015 * There isn't really any need to mask/unmask at the irqchip level because
2016 * the 64-bit INTCAPXT registers can be updated atomically without tearing
2017 * when the affinity is being updated.
2018 */
intcapxt_unmask_irq(struct irq_data * data)2019 static void intcapxt_unmask_irq(struct irq_data *data)
2020 {
2021 }
2022
intcapxt_mask_irq(struct irq_data * data)2023 static void intcapxt_mask_irq(struct irq_data *data)
2024 {
2025 }
2026
2027 static struct irq_chip intcapxt_controller;
2028
intcapxt_irqdomain_activate(struct irq_domain * domain,struct irq_data * irqd,bool reserve)2029 static int intcapxt_irqdomain_activate(struct irq_domain *domain,
2030 struct irq_data *irqd, bool reserve)
2031 {
2032 struct amd_iommu *iommu = irqd->chip_data;
2033 struct irq_cfg *cfg = irqd_cfg(irqd);
2034 union intcapxt xt;
2035
2036 xt.capxt = 0ULL;
2037 xt.dest_mode_logical = apic->dest_mode_logical;
2038 xt.vector = cfg->vector;
2039 xt.destid_0_23 = cfg->dest_apicid & GENMASK(23, 0);
2040 xt.destid_24_31 = cfg->dest_apicid >> 24;
2041
2042 /**
2043 * Current IOMMU implemtation uses the same IRQ for all
2044 * 3 IOMMU interrupts.
2045 */
2046 writeq(xt.capxt, iommu->mmio_base + MMIO_INTCAPXT_EVT_OFFSET);
2047 writeq(xt.capxt, iommu->mmio_base + MMIO_INTCAPXT_PPR_OFFSET);
2048 writeq(xt.capxt, iommu->mmio_base + MMIO_INTCAPXT_GALOG_OFFSET);
2049 return 0;
2050 }
2051
intcapxt_irqdomain_deactivate(struct irq_domain * domain,struct irq_data * irqd)2052 static void intcapxt_irqdomain_deactivate(struct irq_domain *domain,
2053 struct irq_data *irqd)
2054 {
2055 intcapxt_mask_irq(irqd);
2056 }
2057
2058
intcapxt_irqdomain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)2059 static int intcapxt_irqdomain_alloc(struct irq_domain *domain, unsigned int virq,
2060 unsigned int nr_irqs, void *arg)
2061 {
2062 struct irq_alloc_info *info = arg;
2063 int i, ret;
2064
2065 if (!info || info->type != X86_IRQ_ALLOC_TYPE_AMDVI)
2066 return -EINVAL;
2067
2068 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
2069 if (ret < 0)
2070 return ret;
2071
2072 for (i = virq; i < virq + nr_irqs; i++) {
2073 struct irq_data *irqd = irq_domain_get_irq_data(domain, i);
2074
2075 irqd->chip = &intcapxt_controller;
2076 irqd->chip_data = info->data;
2077 __irq_set_handler(i, handle_edge_irq, 0, "edge");
2078 }
2079
2080 return ret;
2081 }
2082
intcapxt_irqdomain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)2083 static void intcapxt_irqdomain_free(struct irq_domain *domain, unsigned int virq,
2084 unsigned int nr_irqs)
2085 {
2086 irq_domain_free_irqs_top(domain, virq, nr_irqs);
2087 }
2088
intcapxt_set_affinity(struct irq_data * irqd,const struct cpumask * mask,bool force)2089 static int intcapxt_set_affinity(struct irq_data *irqd,
2090 const struct cpumask *mask, bool force)
2091 {
2092 struct irq_data *parent = irqd->parent_data;
2093 int ret;
2094
2095 ret = parent->chip->irq_set_affinity(parent, mask, force);
2096 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
2097 return ret;
2098
2099 return intcapxt_irqdomain_activate(irqd->domain, irqd, false);
2100 }
2101
2102 static struct irq_chip intcapxt_controller = {
2103 .name = "IOMMU-MSI",
2104 .irq_unmask = intcapxt_unmask_irq,
2105 .irq_mask = intcapxt_mask_irq,
2106 .irq_ack = irq_chip_ack_parent,
2107 .irq_retrigger = irq_chip_retrigger_hierarchy,
2108 .irq_set_affinity = intcapxt_set_affinity,
2109 .flags = IRQCHIP_SKIP_SET_WAKE,
2110 };
2111
2112 static const struct irq_domain_ops intcapxt_domain_ops = {
2113 .alloc = intcapxt_irqdomain_alloc,
2114 .free = intcapxt_irqdomain_free,
2115 .activate = intcapxt_irqdomain_activate,
2116 .deactivate = intcapxt_irqdomain_deactivate,
2117 };
2118
2119
2120 static struct irq_domain *iommu_irqdomain;
2121
iommu_get_irqdomain(void)2122 static struct irq_domain *iommu_get_irqdomain(void)
2123 {
2124 struct fwnode_handle *fn;
2125
2126 /* No need for locking here (yet) as the init is single-threaded */
2127 if (iommu_irqdomain)
2128 return iommu_irqdomain;
2129
2130 fn = irq_domain_alloc_named_fwnode("AMD-Vi-MSI");
2131 if (!fn)
2132 return NULL;
2133
2134 iommu_irqdomain = irq_domain_create_hierarchy(x86_vector_domain, 0, 0,
2135 fn, &intcapxt_domain_ops,
2136 NULL);
2137 if (!iommu_irqdomain)
2138 irq_domain_free_fwnode(fn);
2139
2140 return iommu_irqdomain;
2141 }
2142
iommu_setup_intcapxt(struct amd_iommu * iommu)2143 static int iommu_setup_intcapxt(struct amd_iommu *iommu)
2144 {
2145 struct irq_domain *domain;
2146 struct irq_alloc_info info;
2147 int irq, ret;
2148
2149 domain = iommu_get_irqdomain();
2150 if (!domain)
2151 return -ENXIO;
2152
2153 init_irq_alloc_info(&info, NULL);
2154 info.type = X86_IRQ_ALLOC_TYPE_AMDVI;
2155 info.data = iommu;
2156
2157 irq = irq_domain_alloc_irqs(domain, 1, NUMA_NO_NODE, &info);
2158 if (irq < 0) {
2159 irq_domain_remove(domain);
2160 return irq;
2161 }
2162
2163 ret = request_threaded_irq(irq, amd_iommu_int_handler,
2164 amd_iommu_int_thread, 0, "AMD-Vi", iommu);
2165 if (ret) {
2166 irq_domain_free_irqs(irq, 1);
2167 irq_domain_remove(domain);
2168 return ret;
2169 }
2170
2171 iommu_feature_enable(iommu, CONTROL_INTCAPXT_EN);
2172 return 0;
2173 }
2174
iommu_init_irq(struct amd_iommu * iommu)2175 static int iommu_init_irq(struct amd_iommu *iommu)
2176 {
2177 int ret;
2178
2179 if (iommu->int_enabled)
2180 goto enable_faults;
2181
2182 if (amd_iommu_xt_mode == IRQ_REMAP_X2APIC_MODE)
2183 ret = iommu_setup_intcapxt(iommu);
2184 else if (iommu->dev->msi_cap)
2185 ret = iommu_setup_msi(iommu);
2186 else
2187 ret = -ENODEV;
2188
2189 if (ret)
2190 return ret;
2191
2192 iommu->int_enabled = true;
2193 enable_faults:
2194 iommu_feature_enable(iommu, CONTROL_EVT_INT_EN);
2195
2196 if (iommu->ppr_log != NULL)
2197 iommu_feature_enable(iommu, CONTROL_PPRINT_EN);
2198
2199 iommu_ga_log_enable(iommu);
2200
2201 return 0;
2202 }
2203
2204 /****************************************************************************
2205 *
2206 * The next functions belong to the third pass of parsing the ACPI
2207 * table. In this last pass the memory mapping requirements are
2208 * gathered (like exclusion and unity mapping ranges).
2209 *
2210 ****************************************************************************/
2211
free_unity_maps(void)2212 static void __init free_unity_maps(void)
2213 {
2214 struct unity_map_entry *entry, *next;
2215
2216 list_for_each_entry_safe(entry, next, &amd_iommu_unity_map, list) {
2217 list_del(&entry->list);
2218 kfree(entry);
2219 }
2220 }
2221
2222 /* called for unity map ACPI definition */
init_unity_map_range(struct ivmd_header * m)2223 static int __init init_unity_map_range(struct ivmd_header *m)
2224 {
2225 struct unity_map_entry *e = NULL;
2226 char *s;
2227
2228 e = kzalloc(sizeof(*e), GFP_KERNEL);
2229 if (e == NULL)
2230 return -ENOMEM;
2231
2232 switch (m->type) {
2233 default:
2234 kfree(e);
2235 return 0;
2236 case ACPI_IVMD_TYPE:
2237 s = "IVMD_TYPEi\t\t\t";
2238 e->devid_start = e->devid_end = m->devid;
2239 break;
2240 case ACPI_IVMD_TYPE_ALL:
2241 s = "IVMD_TYPE_ALL\t\t";
2242 e->devid_start = 0;
2243 e->devid_end = amd_iommu_last_bdf;
2244 break;
2245 case ACPI_IVMD_TYPE_RANGE:
2246 s = "IVMD_TYPE_RANGE\t\t";
2247 e->devid_start = m->devid;
2248 e->devid_end = m->aux;
2249 break;
2250 }
2251 e->address_start = PAGE_ALIGN(m->range_start);
2252 e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
2253 e->prot = m->flags >> 1;
2254
2255 /*
2256 * Treat per-device exclusion ranges as r/w unity-mapped regions
2257 * since some buggy BIOSes might lead to the overwritten exclusion
2258 * range (exclusion_start and exclusion_length members). This
2259 * happens when there are multiple exclusion ranges (IVMD entries)
2260 * defined in ACPI table.
2261 */
2262 if (m->flags & IVMD_FLAG_EXCL_RANGE)
2263 e->prot = (IVMD_FLAG_IW | IVMD_FLAG_IR) >> 1;
2264
2265 DUMP_printk("%s devid_start: %02x:%02x.%x devid_end: %02x:%02x.%x"
2266 " range_start: %016llx range_end: %016llx flags: %x\n", s,
2267 PCI_BUS_NUM(e->devid_start), PCI_SLOT(e->devid_start),
2268 PCI_FUNC(e->devid_start), PCI_BUS_NUM(e->devid_end),
2269 PCI_SLOT(e->devid_end), PCI_FUNC(e->devid_end),
2270 e->address_start, e->address_end, m->flags);
2271
2272 list_add_tail(&e->list, &amd_iommu_unity_map);
2273
2274 return 0;
2275 }
2276
2277 /* iterates over all memory definitions we find in the ACPI table */
init_memory_definitions(struct acpi_table_header * table)2278 static int __init init_memory_definitions(struct acpi_table_header *table)
2279 {
2280 u8 *p = (u8 *)table, *end = (u8 *)table;
2281 struct ivmd_header *m;
2282
2283 end += table->length;
2284 p += IVRS_HEADER_LENGTH;
2285
2286 while (p < end) {
2287 m = (struct ivmd_header *)p;
2288 if (m->flags & (IVMD_FLAG_UNITY_MAP | IVMD_FLAG_EXCL_RANGE))
2289 init_unity_map_range(m);
2290
2291 p += m->length;
2292 }
2293
2294 return 0;
2295 }
2296
2297 /*
2298 * Init the device table to not allow DMA access for devices
2299 */
init_device_table_dma(void)2300 static void init_device_table_dma(void)
2301 {
2302 u32 devid;
2303
2304 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
2305 set_dev_entry_bit(devid, DEV_ENTRY_VALID);
2306 set_dev_entry_bit(devid, DEV_ENTRY_TRANSLATION);
2307 }
2308 }
2309
uninit_device_table_dma(void)2310 static void __init uninit_device_table_dma(void)
2311 {
2312 u32 devid;
2313
2314 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
2315 amd_iommu_dev_table[devid].data[0] = 0ULL;
2316 amd_iommu_dev_table[devid].data[1] = 0ULL;
2317 }
2318 }
2319
init_device_table(void)2320 static void init_device_table(void)
2321 {
2322 u32 devid;
2323
2324 if (!amd_iommu_irq_remap)
2325 return;
2326
2327 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
2328 set_dev_entry_bit(devid, DEV_ENTRY_IRQ_TBL_EN);
2329 }
2330
iommu_init_flags(struct amd_iommu * iommu)2331 static void iommu_init_flags(struct amd_iommu *iommu)
2332 {
2333 iommu->acpi_flags & IVHD_FLAG_HT_TUN_EN_MASK ?
2334 iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
2335 iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);
2336
2337 iommu->acpi_flags & IVHD_FLAG_PASSPW_EN_MASK ?
2338 iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
2339 iommu_feature_disable(iommu, CONTROL_PASSPW_EN);
2340
2341 iommu->acpi_flags & IVHD_FLAG_RESPASSPW_EN_MASK ?
2342 iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
2343 iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);
2344
2345 iommu->acpi_flags & IVHD_FLAG_ISOC_EN_MASK ?
2346 iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
2347 iommu_feature_disable(iommu, CONTROL_ISOC_EN);
2348
2349 /*
2350 * make IOMMU memory accesses cache coherent
2351 */
2352 iommu_feature_enable(iommu, CONTROL_COHERENT_EN);
2353
2354 /* Set IOTLB invalidation timeout to 1s */
2355 iommu_set_inv_tlb_timeout(iommu, CTRL_INV_TO_1S);
2356 }
2357
iommu_apply_resume_quirks(struct amd_iommu * iommu)2358 static void iommu_apply_resume_quirks(struct amd_iommu *iommu)
2359 {
2360 int i, j;
2361 u32 ioc_feature_control;
2362 struct pci_dev *pdev = iommu->root_pdev;
2363
2364 /* RD890 BIOSes may not have completely reconfigured the iommu */
2365 if (!is_rd890_iommu(iommu->dev) || !pdev)
2366 return;
2367
2368 /*
2369 * First, we need to ensure that the iommu is enabled. This is
2370 * controlled by a register in the northbridge
2371 */
2372
2373 /* Select Northbridge indirect register 0x75 and enable writing */
2374 pci_write_config_dword(pdev, 0x60, 0x75 | (1 << 7));
2375 pci_read_config_dword(pdev, 0x64, &ioc_feature_control);
2376
2377 /* Enable the iommu */
2378 if (!(ioc_feature_control & 0x1))
2379 pci_write_config_dword(pdev, 0x64, ioc_feature_control | 1);
2380
2381 /* Restore the iommu BAR */
2382 pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4,
2383 iommu->stored_addr_lo);
2384 pci_write_config_dword(iommu->dev, iommu->cap_ptr + 8,
2385 iommu->stored_addr_hi);
2386
2387 /* Restore the l1 indirect regs for each of the 6 l1s */
2388 for (i = 0; i < 6; i++)
2389 for (j = 0; j < 0x12; j++)
2390 iommu_write_l1(iommu, i, j, iommu->stored_l1[i][j]);
2391
2392 /* Restore the l2 indirect regs */
2393 for (i = 0; i < 0x83; i++)
2394 iommu_write_l2(iommu, i, iommu->stored_l2[i]);
2395
2396 /* Lock PCI setup registers */
2397 pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4,
2398 iommu->stored_addr_lo | 1);
2399 }
2400
iommu_enable_ga(struct amd_iommu * iommu)2401 static void iommu_enable_ga(struct amd_iommu *iommu)
2402 {
2403 #ifdef CONFIG_IRQ_REMAP
2404 switch (amd_iommu_guest_ir) {
2405 case AMD_IOMMU_GUEST_IR_VAPIC:
2406 iommu_feature_enable(iommu, CONTROL_GAM_EN);
2407 fallthrough;
2408 case AMD_IOMMU_GUEST_IR_LEGACY_GA:
2409 iommu_feature_enable(iommu, CONTROL_GA_EN);
2410 iommu->irte_ops = &irte_128_ops;
2411 break;
2412 default:
2413 iommu->irte_ops = &irte_32_ops;
2414 break;
2415 }
2416 #endif
2417 }
2418
early_enable_iommu(struct amd_iommu * iommu)2419 static void early_enable_iommu(struct amd_iommu *iommu)
2420 {
2421 iommu_disable(iommu);
2422 iommu_init_flags(iommu);
2423 iommu_set_device_table(iommu);
2424 iommu_enable_command_buffer(iommu);
2425 iommu_enable_event_buffer(iommu);
2426 iommu_set_exclusion_range(iommu);
2427 iommu_enable_ga(iommu);
2428 iommu_enable_xt(iommu);
2429 iommu_enable(iommu);
2430 iommu_flush_all_caches(iommu);
2431 }
2432
2433 /*
2434 * This function finally enables all IOMMUs found in the system after
2435 * they have been initialized.
2436 *
2437 * Or if in kdump kernel and IOMMUs are all pre-enabled, try to copy
2438 * the old content of device table entries. Not this case or copy failed,
2439 * just continue as normal kernel does.
2440 */
early_enable_iommus(void)2441 static void early_enable_iommus(void)
2442 {
2443 struct amd_iommu *iommu;
2444
2445
2446 if (!copy_device_table()) {
2447 /*
2448 * If come here because of failure in copying device table from old
2449 * kernel with all IOMMUs enabled, print error message and try to
2450 * free allocated old_dev_tbl_cpy.
2451 */
2452 if (amd_iommu_pre_enabled)
2453 pr_err("Failed to copy DEV table from previous kernel.\n");
2454 if (old_dev_tbl_cpy != NULL)
2455 free_pages((unsigned long)old_dev_tbl_cpy,
2456 get_order(dev_table_size));
2457
2458 for_each_iommu(iommu) {
2459 clear_translation_pre_enabled(iommu);
2460 early_enable_iommu(iommu);
2461 }
2462 } else {
2463 pr_info("Copied DEV table from previous kernel.\n");
2464 free_pages((unsigned long)amd_iommu_dev_table,
2465 get_order(dev_table_size));
2466 amd_iommu_dev_table = old_dev_tbl_cpy;
2467 for_each_iommu(iommu) {
2468 iommu_disable_command_buffer(iommu);
2469 iommu_disable_event_buffer(iommu);
2470 iommu_enable_command_buffer(iommu);
2471 iommu_enable_event_buffer(iommu);
2472 iommu_enable_ga(iommu);
2473 iommu_enable_xt(iommu);
2474 iommu_set_device_table(iommu);
2475 iommu_flush_all_caches(iommu);
2476 }
2477 }
2478
2479 #ifdef CONFIG_IRQ_REMAP
2480 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir))
2481 amd_iommu_irq_ops.capability |= (1 << IRQ_POSTING_CAP);
2482 #endif
2483 }
2484
enable_iommus_v2(void)2485 static void enable_iommus_v2(void)
2486 {
2487 struct amd_iommu *iommu;
2488
2489 for_each_iommu(iommu) {
2490 iommu_enable_ppr_log(iommu);
2491 iommu_enable_gt(iommu);
2492 }
2493 }
2494
enable_iommus(void)2495 static void enable_iommus(void)
2496 {
2497 early_enable_iommus();
2498
2499 enable_iommus_v2();
2500 }
2501
disable_iommus(void)2502 static void disable_iommus(void)
2503 {
2504 struct amd_iommu *iommu;
2505
2506 for_each_iommu(iommu)
2507 iommu_disable(iommu);
2508
2509 #ifdef CONFIG_IRQ_REMAP
2510 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir))
2511 amd_iommu_irq_ops.capability &= ~(1 << IRQ_POSTING_CAP);
2512 #endif
2513 }
2514
2515 /*
2516 * Suspend/Resume support
2517 * disable suspend until real resume implemented
2518 */
2519
amd_iommu_resume(void)2520 static void amd_iommu_resume(void)
2521 {
2522 struct amd_iommu *iommu;
2523
2524 for_each_iommu(iommu)
2525 iommu_apply_resume_quirks(iommu);
2526
2527 /* re-load the hardware */
2528 enable_iommus();
2529
2530 amd_iommu_enable_interrupts();
2531 }
2532
amd_iommu_suspend(void)2533 static int amd_iommu_suspend(void)
2534 {
2535 /* disable IOMMUs to go out of the way for BIOS */
2536 disable_iommus();
2537
2538 return 0;
2539 }
2540
2541 static struct syscore_ops amd_iommu_syscore_ops = {
2542 .suspend = amd_iommu_suspend,
2543 .resume = amd_iommu_resume,
2544 };
2545
free_iommu_resources(void)2546 static void __init free_iommu_resources(void)
2547 {
2548 kmemleak_free(irq_lookup_table);
2549 free_pages((unsigned long)irq_lookup_table,
2550 get_order(rlookup_table_size));
2551 irq_lookup_table = NULL;
2552
2553 kmem_cache_destroy(amd_iommu_irq_cache);
2554 amd_iommu_irq_cache = NULL;
2555
2556 free_pages((unsigned long)amd_iommu_rlookup_table,
2557 get_order(rlookup_table_size));
2558 amd_iommu_rlookup_table = NULL;
2559
2560 free_pages((unsigned long)amd_iommu_alias_table,
2561 get_order(alias_table_size));
2562 amd_iommu_alias_table = NULL;
2563
2564 free_pages((unsigned long)amd_iommu_dev_table,
2565 get_order(dev_table_size));
2566 amd_iommu_dev_table = NULL;
2567
2568 free_iommu_all();
2569 }
2570
2571 /* SB IOAPIC is always on this device in AMD systems */
2572 #define IOAPIC_SB_DEVID ((0x00 << 8) | PCI_DEVFN(0x14, 0))
2573
check_ioapic_information(void)2574 static bool __init check_ioapic_information(void)
2575 {
2576 const char *fw_bug = FW_BUG;
2577 bool ret, has_sb_ioapic;
2578 int idx;
2579
2580 has_sb_ioapic = false;
2581 ret = false;
2582
2583 /*
2584 * If we have map overrides on the kernel command line the
2585 * messages in this function might not describe firmware bugs
2586 * anymore - so be careful
2587 */
2588 if (cmdline_maps)
2589 fw_bug = "";
2590
2591 for (idx = 0; idx < nr_ioapics; idx++) {
2592 int devid, id = mpc_ioapic_id(idx);
2593
2594 devid = get_ioapic_devid(id);
2595 if (devid < 0) {
2596 pr_err("%s: IOAPIC[%d] not in IVRS table\n",
2597 fw_bug, id);
2598 ret = false;
2599 } else if (devid == IOAPIC_SB_DEVID) {
2600 has_sb_ioapic = true;
2601 ret = true;
2602 }
2603 }
2604
2605 if (!has_sb_ioapic) {
2606 /*
2607 * We expect the SB IOAPIC to be listed in the IVRS
2608 * table. The system timer is connected to the SB IOAPIC
2609 * and if we don't have it in the list the system will
2610 * panic at boot time. This situation usually happens
2611 * when the BIOS is buggy and provides us the wrong
2612 * device id for the IOAPIC in the system.
2613 */
2614 pr_err("%s: No southbridge IOAPIC found\n", fw_bug);
2615 }
2616
2617 if (!ret)
2618 pr_err("Disabling interrupt remapping\n");
2619
2620 return ret;
2621 }
2622
free_dma_resources(void)2623 static void __init free_dma_resources(void)
2624 {
2625 free_pages((unsigned long)amd_iommu_pd_alloc_bitmap,
2626 get_order(MAX_DOMAIN_ID/8));
2627 amd_iommu_pd_alloc_bitmap = NULL;
2628
2629 free_unity_maps();
2630 }
2631
ivinfo_init(void * ivrs)2632 static void __init ivinfo_init(void *ivrs)
2633 {
2634 amd_iommu_ivinfo = *((u32 *)(ivrs + IOMMU_IVINFO_OFFSET));
2635 }
2636
2637 /*
2638 * This is the hardware init function for AMD IOMMU in the system.
2639 * This function is called either from amd_iommu_init or from the interrupt
2640 * remapping setup code.
2641 *
2642 * This function basically parses the ACPI table for AMD IOMMU (IVRS)
2643 * four times:
2644 *
2645 * 1 pass) Discover the most comprehensive IVHD type to use.
2646 *
2647 * 2 pass) Find the highest PCI device id the driver has to handle.
2648 * Upon this information the size of the data structures is
2649 * determined that needs to be allocated.
2650 *
2651 * 3 pass) Initialize the data structures just allocated with the
2652 * information in the ACPI table about available AMD IOMMUs
2653 * in the system. It also maps the PCI devices in the
2654 * system to specific IOMMUs
2655 *
2656 * 4 pass) After the basic data structures are allocated and
2657 * initialized we update them with information about memory
2658 * remapping requirements parsed out of the ACPI table in
2659 * this last pass.
2660 *
2661 * After everything is set up the IOMMUs are enabled and the necessary
2662 * hotplug and suspend notifiers are registered.
2663 */
early_amd_iommu_init(void)2664 static int __init early_amd_iommu_init(void)
2665 {
2666 struct acpi_table_header *ivrs_base;
2667 int i, remap_cache_sz, ret;
2668 acpi_status status;
2669
2670 if (!amd_iommu_detected)
2671 return -ENODEV;
2672
2673 status = acpi_get_table("IVRS", 0, &ivrs_base);
2674 if (status == AE_NOT_FOUND)
2675 return -ENODEV;
2676 else if (ACPI_FAILURE(status)) {
2677 const char *err = acpi_format_exception(status);
2678 pr_err("IVRS table error: %s\n", err);
2679 return -EINVAL;
2680 }
2681
2682 /*
2683 * Validate checksum here so we don't need to do it when
2684 * we actually parse the table
2685 */
2686 ret = check_ivrs_checksum(ivrs_base);
2687 if (ret)
2688 goto out;
2689
2690 ivinfo_init(ivrs_base);
2691
2692 amd_iommu_target_ivhd_type = get_highest_supported_ivhd_type(ivrs_base);
2693 DUMP_printk("Using IVHD type %#x\n", amd_iommu_target_ivhd_type);
2694
2695 /*
2696 * First parse ACPI tables to find the largest Bus/Dev/Func
2697 * we need to handle. Upon this information the shared data
2698 * structures for the IOMMUs in the system will be allocated
2699 */
2700 ret = find_last_devid_acpi(ivrs_base);
2701 if (ret)
2702 goto out;
2703
2704 dev_table_size = tbl_size(DEV_TABLE_ENTRY_SIZE);
2705 alias_table_size = tbl_size(ALIAS_TABLE_ENTRY_SIZE);
2706 rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE);
2707
2708 /* Device table - directly used by all IOMMUs */
2709 ret = -ENOMEM;
2710 amd_iommu_dev_table = (void *)__get_free_pages(
2711 GFP_KERNEL | __GFP_ZERO | GFP_DMA32,
2712 get_order(dev_table_size));
2713 if (amd_iommu_dev_table == NULL)
2714 goto out;
2715
2716 /*
2717 * Alias table - map PCI Bus/Dev/Func to Bus/Dev/Func the
2718 * IOMMU see for that device
2719 */
2720 amd_iommu_alias_table = (void *)__get_free_pages(GFP_KERNEL,
2721 get_order(alias_table_size));
2722 if (amd_iommu_alias_table == NULL)
2723 goto out;
2724
2725 /* IOMMU rlookup table - find the IOMMU for a specific device */
2726 amd_iommu_rlookup_table = (void *)__get_free_pages(
2727 GFP_KERNEL | __GFP_ZERO,
2728 get_order(rlookup_table_size));
2729 if (amd_iommu_rlookup_table == NULL)
2730 goto out;
2731
2732 amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages(
2733 GFP_KERNEL | __GFP_ZERO,
2734 get_order(MAX_DOMAIN_ID/8));
2735 if (amd_iommu_pd_alloc_bitmap == NULL)
2736 goto out;
2737
2738 /*
2739 * let all alias entries point to itself
2740 */
2741 for (i = 0; i <= amd_iommu_last_bdf; ++i)
2742 amd_iommu_alias_table[i] = i;
2743
2744 /*
2745 * never allocate domain 0 because its used as the non-allocated and
2746 * error value placeholder
2747 */
2748 __set_bit(0, amd_iommu_pd_alloc_bitmap);
2749
2750 /*
2751 * now the data structures are allocated and basically initialized
2752 * start the real acpi table scan
2753 */
2754 ret = init_iommu_all(ivrs_base);
2755 if (ret)
2756 goto out;
2757
2758 /* Disable any previously enabled IOMMUs */
2759 if (!is_kdump_kernel() || amd_iommu_disabled)
2760 disable_iommus();
2761
2762 if (amd_iommu_irq_remap)
2763 amd_iommu_irq_remap = check_ioapic_information();
2764
2765 if (amd_iommu_irq_remap) {
2766 /*
2767 * Interrupt remapping enabled, create kmem_cache for the
2768 * remapping tables.
2769 */
2770 ret = -ENOMEM;
2771 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
2772 remap_cache_sz = MAX_IRQS_PER_TABLE * sizeof(u32);
2773 else
2774 remap_cache_sz = MAX_IRQS_PER_TABLE * (sizeof(u64) * 2);
2775 amd_iommu_irq_cache = kmem_cache_create("irq_remap_cache",
2776 remap_cache_sz,
2777 DTE_INTTAB_ALIGNMENT,
2778 0, NULL);
2779 if (!amd_iommu_irq_cache)
2780 goto out;
2781
2782 irq_lookup_table = (void *)__get_free_pages(
2783 GFP_KERNEL | __GFP_ZERO,
2784 get_order(rlookup_table_size));
2785 kmemleak_alloc(irq_lookup_table, rlookup_table_size,
2786 1, GFP_KERNEL);
2787 if (!irq_lookup_table)
2788 goto out;
2789 }
2790
2791 ret = init_memory_definitions(ivrs_base);
2792 if (ret)
2793 goto out;
2794
2795 /* init the device table */
2796 init_device_table();
2797
2798 out:
2799 /* Don't leak any ACPI memory */
2800 acpi_put_table(ivrs_base);
2801
2802 return ret;
2803 }
2804
amd_iommu_enable_interrupts(void)2805 static int amd_iommu_enable_interrupts(void)
2806 {
2807 struct amd_iommu *iommu;
2808 int ret = 0;
2809
2810 for_each_iommu(iommu) {
2811 ret = iommu_init_irq(iommu);
2812 if (ret)
2813 goto out;
2814 }
2815
2816 out:
2817 return ret;
2818 }
2819
detect_ivrs(void)2820 static bool detect_ivrs(void)
2821 {
2822 struct acpi_table_header *ivrs_base;
2823 acpi_status status;
2824 int i;
2825
2826 status = acpi_get_table("IVRS", 0, &ivrs_base);
2827 if (status == AE_NOT_FOUND)
2828 return false;
2829 else if (ACPI_FAILURE(status)) {
2830 const char *err = acpi_format_exception(status);
2831 pr_err("IVRS table error: %s\n", err);
2832 return false;
2833 }
2834
2835 acpi_put_table(ivrs_base);
2836
2837 /* Don't use IOMMU if there is Stoney Ridge graphics */
2838 for (i = 0; i < 32; i++) {
2839 u32 pci_id;
2840
2841 pci_id = read_pci_config(0, i, 0, 0);
2842 if ((pci_id & 0xffff) == 0x1002 && (pci_id >> 16) == 0x98e4) {
2843 pr_info("Disable IOMMU on Stoney Ridge\n");
2844 return false;
2845 }
2846 }
2847
2848 /* Make sure ACS will be enabled during PCI probe */
2849 pci_request_acs();
2850
2851 return true;
2852 }
2853
2854 /****************************************************************************
2855 *
2856 * AMD IOMMU Initialization State Machine
2857 *
2858 ****************************************************************************/
2859
state_next(void)2860 static int __init state_next(void)
2861 {
2862 int ret = 0;
2863
2864 switch (init_state) {
2865 case IOMMU_START_STATE:
2866 if (!detect_ivrs()) {
2867 init_state = IOMMU_NOT_FOUND;
2868 ret = -ENODEV;
2869 } else {
2870 init_state = IOMMU_IVRS_DETECTED;
2871 }
2872 break;
2873 case IOMMU_IVRS_DETECTED:
2874 if (amd_iommu_disabled) {
2875 init_state = IOMMU_CMDLINE_DISABLED;
2876 ret = -EINVAL;
2877 } else {
2878 ret = early_amd_iommu_init();
2879 init_state = ret ? IOMMU_INIT_ERROR : IOMMU_ACPI_FINISHED;
2880 }
2881 break;
2882 case IOMMU_ACPI_FINISHED:
2883 early_enable_iommus();
2884 x86_platform.iommu_shutdown = disable_iommus;
2885 init_state = IOMMU_ENABLED;
2886 break;
2887 case IOMMU_ENABLED:
2888 register_syscore_ops(&amd_iommu_syscore_ops);
2889 ret = amd_iommu_init_pci();
2890 init_state = ret ? IOMMU_INIT_ERROR : IOMMU_PCI_INIT;
2891 enable_iommus_v2();
2892 break;
2893 case IOMMU_PCI_INIT:
2894 ret = amd_iommu_enable_interrupts();
2895 init_state = ret ? IOMMU_INIT_ERROR : IOMMU_INTERRUPTS_EN;
2896 break;
2897 case IOMMU_INTERRUPTS_EN:
2898 ret = amd_iommu_init_dma_ops();
2899 init_state = ret ? IOMMU_INIT_ERROR : IOMMU_DMA_OPS;
2900 break;
2901 case IOMMU_DMA_OPS:
2902 init_state = IOMMU_INITIALIZED;
2903 break;
2904 case IOMMU_INITIALIZED:
2905 /* Nothing to do */
2906 break;
2907 case IOMMU_NOT_FOUND:
2908 case IOMMU_INIT_ERROR:
2909 case IOMMU_CMDLINE_DISABLED:
2910 /* Error states => do nothing */
2911 ret = -EINVAL;
2912 break;
2913 default:
2914 /* Unknown state */
2915 BUG();
2916 }
2917
2918 if (ret) {
2919 free_dma_resources();
2920 if (!irq_remapping_enabled) {
2921 disable_iommus();
2922 free_iommu_resources();
2923 } else {
2924 struct amd_iommu *iommu;
2925
2926 uninit_device_table_dma();
2927 for_each_iommu(iommu)
2928 iommu_flush_all_caches(iommu);
2929 }
2930 }
2931 return ret;
2932 }
2933
iommu_go_to_state(enum iommu_init_state state)2934 static int __init iommu_go_to_state(enum iommu_init_state state)
2935 {
2936 int ret = -EINVAL;
2937
2938 while (init_state != state) {
2939 if (init_state == IOMMU_NOT_FOUND ||
2940 init_state == IOMMU_INIT_ERROR ||
2941 init_state == IOMMU_CMDLINE_DISABLED)
2942 break;
2943 ret = state_next();
2944 }
2945
2946 return ret;
2947 }
2948
2949 #ifdef CONFIG_IRQ_REMAP
amd_iommu_prepare(void)2950 int __init amd_iommu_prepare(void)
2951 {
2952 int ret;
2953
2954 amd_iommu_irq_remap = true;
2955
2956 ret = iommu_go_to_state(IOMMU_ACPI_FINISHED);
2957 if (ret) {
2958 amd_iommu_irq_remap = false;
2959 return ret;
2960 }
2961
2962 return amd_iommu_irq_remap ? 0 : -ENODEV;
2963 }
2964
amd_iommu_enable(void)2965 int __init amd_iommu_enable(void)
2966 {
2967 int ret;
2968
2969 ret = iommu_go_to_state(IOMMU_ENABLED);
2970 if (ret)
2971 return ret;
2972
2973 irq_remapping_enabled = 1;
2974 return amd_iommu_xt_mode;
2975 }
2976
amd_iommu_disable(void)2977 void amd_iommu_disable(void)
2978 {
2979 amd_iommu_suspend();
2980 }
2981
amd_iommu_reenable(int mode)2982 int amd_iommu_reenable(int mode)
2983 {
2984 amd_iommu_resume();
2985
2986 return 0;
2987 }
2988
amd_iommu_enable_faulting(void)2989 int __init amd_iommu_enable_faulting(void)
2990 {
2991 /* We enable MSI later when PCI is initialized */
2992 return 0;
2993 }
2994 #endif
2995
2996 /*
2997 * This is the core init function for AMD IOMMU hardware in the system.
2998 * This function is called from the generic x86 DMA layer initialization
2999 * code.
3000 */
amd_iommu_init(void)3001 static int __init amd_iommu_init(void)
3002 {
3003 struct amd_iommu *iommu;
3004 int ret;
3005
3006 ret = iommu_go_to_state(IOMMU_INITIALIZED);
3007 #ifdef CONFIG_GART_IOMMU
3008 if (ret && list_empty(&amd_iommu_list)) {
3009 /*
3010 * We failed to initialize the AMD IOMMU - try fallback
3011 * to GART if possible.
3012 */
3013 gart_iommu_init();
3014 }
3015 #endif
3016
3017 for_each_iommu(iommu)
3018 amd_iommu_debugfs_setup(iommu);
3019
3020 return ret;
3021 }
3022
amd_iommu_sme_check(void)3023 static bool amd_iommu_sme_check(void)
3024 {
3025 if (!sme_active() || (boot_cpu_data.x86 != 0x17))
3026 return true;
3027
3028 /* For Fam17h, a specific level of support is required */
3029 if (boot_cpu_data.microcode >= 0x08001205)
3030 return true;
3031
3032 if ((boot_cpu_data.microcode >= 0x08001126) &&
3033 (boot_cpu_data.microcode <= 0x080011ff))
3034 return true;
3035
3036 pr_notice("IOMMU not currently supported when SME is active\n");
3037
3038 return false;
3039 }
3040
3041 /****************************************************************************
3042 *
3043 * Early detect code. This code runs at IOMMU detection time in the DMA
3044 * layer. It just looks if there is an IVRS ACPI table to detect AMD
3045 * IOMMUs
3046 *
3047 ****************************************************************************/
amd_iommu_detect(void)3048 int __init amd_iommu_detect(void)
3049 {
3050 int ret;
3051
3052 if (no_iommu || (iommu_detected && !gart_iommu_aperture))
3053 return -ENODEV;
3054
3055 if (!amd_iommu_sme_check())
3056 return -ENODEV;
3057
3058 ret = iommu_go_to_state(IOMMU_IVRS_DETECTED);
3059 if (ret)
3060 return ret;
3061
3062 amd_iommu_detected = true;
3063 iommu_detected = 1;
3064 x86_init.iommu.iommu_init = amd_iommu_init;
3065
3066 return 1;
3067 }
3068
3069 /****************************************************************************
3070 *
3071 * Parsing functions for the AMD IOMMU specific kernel command line
3072 * options.
3073 *
3074 ****************************************************************************/
3075
parse_amd_iommu_dump(char * str)3076 static int __init parse_amd_iommu_dump(char *str)
3077 {
3078 amd_iommu_dump = true;
3079
3080 return 1;
3081 }
3082
parse_amd_iommu_intr(char * str)3083 static int __init parse_amd_iommu_intr(char *str)
3084 {
3085 for (; *str; ++str) {
3086 if (strncmp(str, "legacy", 6) == 0) {
3087 amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_LEGACY_GA;
3088 break;
3089 }
3090 if (strncmp(str, "vapic", 5) == 0) {
3091 amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_VAPIC;
3092 break;
3093 }
3094 }
3095 return 1;
3096 }
3097
parse_amd_iommu_options(char * str)3098 static int __init parse_amd_iommu_options(char *str)
3099 {
3100 for (; *str; ++str) {
3101 if (strncmp(str, "fullflush", 9) == 0)
3102 amd_iommu_unmap_flush = true;
3103 if (strncmp(str, "off", 3) == 0)
3104 amd_iommu_disabled = true;
3105 if (strncmp(str, "force_isolation", 15) == 0)
3106 amd_iommu_force_isolation = true;
3107 }
3108
3109 return 1;
3110 }
3111
parse_ivrs_ioapic(char * str)3112 static int __init parse_ivrs_ioapic(char *str)
3113 {
3114 unsigned int bus, dev, fn;
3115 int ret, id, i;
3116 u16 devid;
3117
3118 ret = sscanf(str, "[%d]=%x:%x.%x", &id, &bus, &dev, &fn);
3119
3120 if (ret != 4) {
3121 pr_err("Invalid command line: ivrs_ioapic%s\n", str);
3122 return 1;
3123 }
3124
3125 if (early_ioapic_map_size == EARLY_MAP_SIZE) {
3126 pr_err("Early IOAPIC map overflow - ignoring ivrs_ioapic%s\n",
3127 str);
3128 return 1;
3129 }
3130
3131 devid = ((bus & 0xff) << 8) | ((dev & 0x1f) << 3) | (fn & 0x7);
3132
3133 cmdline_maps = true;
3134 i = early_ioapic_map_size++;
3135 early_ioapic_map[i].id = id;
3136 early_ioapic_map[i].devid = devid;
3137 early_ioapic_map[i].cmd_line = true;
3138
3139 return 1;
3140 }
3141
parse_ivrs_hpet(char * str)3142 static int __init parse_ivrs_hpet(char *str)
3143 {
3144 unsigned int bus, dev, fn;
3145 int ret, id, i;
3146 u16 devid;
3147
3148 ret = sscanf(str, "[%d]=%x:%x.%x", &id, &bus, &dev, &fn);
3149
3150 if (ret != 4) {
3151 pr_err("Invalid command line: ivrs_hpet%s\n", str);
3152 return 1;
3153 }
3154
3155 if (early_hpet_map_size == EARLY_MAP_SIZE) {
3156 pr_err("Early HPET map overflow - ignoring ivrs_hpet%s\n",
3157 str);
3158 return 1;
3159 }
3160
3161 devid = ((bus & 0xff) << 8) | ((dev & 0x1f) << 3) | (fn & 0x7);
3162
3163 cmdline_maps = true;
3164 i = early_hpet_map_size++;
3165 early_hpet_map[i].id = id;
3166 early_hpet_map[i].devid = devid;
3167 early_hpet_map[i].cmd_line = true;
3168
3169 return 1;
3170 }
3171
parse_ivrs_acpihid(char * str)3172 static int __init parse_ivrs_acpihid(char *str)
3173 {
3174 u32 bus, dev, fn;
3175 char *hid, *uid, *p;
3176 char acpiid[ACPIHID_UID_LEN + ACPIHID_HID_LEN] = {0};
3177 int ret, i;
3178
3179 ret = sscanf(str, "[%x:%x.%x]=%s", &bus, &dev, &fn, acpiid);
3180 if (ret != 4) {
3181 pr_err("Invalid command line: ivrs_acpihid(%s)\n", str);
3182 return 1;
3183 }
3184
3185 p = acpiid;
3186 hid = strsep(&p, ":");
3187 uid = p;
3188
3189 if (!hid || !(*hid) || !uid) {
3190 pr_err("Invalid command line: hid or uid\n");
3191 return 1;
3192 }
3193
3194 i = early_acpihid_map_size++;
3195 memcpy(early_acpihid_map[i].hid, hid, strlen(hid));
3196 memcpy(early_acpihid_map[i].uid, uid, strlen(uid));
3197 early_acpihid_map[i].devid =
3198 ((bus & 0xff) << 8) | ((dev & 0x1f) << 3) | (fn & 0x7);
3199 early_acpihid_map[i].cmd_line = true;
3200
3201 return 1;
3202 }
3203
3204 __setup("amd_iommu_dump", parse_amd_iommu_dump);
3205 __setup("amd_iommu=", parse_amd_iommu_options);
3206 __setup("amd_iommu_intr=", parse_amd_iommu_intr);
3207 __setup("ivrs_ioapic", parse_ivrs_ioapic);
3208 __setup("ivrs_hpet", parse_ivrs_hpet);
3209 __setup("ivrs_acpihid", parse_ivrs_acpihid);
3210
3211 IOMMU_INIT_FINISH(amd_iommu_detect,
3212 gart_iommu_hole_init,
3213 NULL,
3214 NULL);
3215
amd_iommu_v2_supported(void)3216 bool amd_iommu_v2_supported(void)
3217 {
3218 return amd_iommu_v2_present;
3219 }
3220 EXPORT_SYMBOL(amd_iommu_v2_supported);
3221
get_amd_iommu(unsigned int idx)3222 struct amd_iommu *get_amd_iommu(unsigned int idx)
3223 {
3224 unsigned int i = 0;
3225 struct amd_iommu *iommu;
3226
3227 for_each_iommu(iommu)
3228 if (i++ == idx)
3229 return iommu;
3230 return NULL;
3231 }
3232
3233 /****************************************************************************
3234 *
3235 * IOMMU EFR Performance Counter support functionality. This code allows
3236 * access to the IOMMU PC functionality.
3237 *
3238 ****************************************************************************/
3239
amd_iommu_pc_get_max_banks(unsigned int idx)3240 u8 amd_iommu_pc_get_max_banks(unsigned int idx)
3241 {
3242 struct amd_iommu *iommu = get_amd_iommu(idx);
3243
3244 if (iommu)
3245 return iommu->max_banks;
3246
3247 return 0;
3248 }
3249 EXPORT_SYMBOL(amd_iommu_pc_get_max_banks);
3250
amd_iommu_pc_supported(void)3251 bool amd_iommu_pc_supported(void)
3252 {
3253 return amd_iommu_pc_present;
3254 }
3255 EXPORT_SYMBOL(amd_iommu_pc_supported);
3256
amd_iommu_pc_get_max_counters(unsigned int idx)3257 u8 amd_iommu_pc_get_max_counters(unsigned int idx)
3258 {
3259 struct amd_iommu *iommu = get_amd_iommu(idx);
3260
3261 if (iommu)
3262 return iommu->max_counters;
3263
3264 return 0;
3265 }
3266 EXPORT_SYMBOL(amd_iommu_pc_get_max_counters);
3267
iommu_pc_get_set_reg(struct amd_iommu * iommu,u8 bank,u8 cntr,u8 fxn,u64 * value,bool is_write)3268 static int iommu_pc_get_set_reg(struct amd_iommu *iommu, u8 bank, u8 cntr,
3269 u8 fxn, u64 *value, bool is_write)
3270 {
3271 u32 offset;
3272 u32 max_offset_lim;
3273
3274 /* Make sure the IOMMU PC resource is available */
3275 if (!amd_iommu_pc_present)
3276 return -ENODEV;
3277
3278 /* Check for valid iommu and pc register indexing */
3279 if (WARN_ON(!iommu || (fxn > 0x28) || (fxn & 7)))
3280 return -ENODEV;
3281
3282 offset = (u32)(((0x40 | bank) << 12) | (cntr << 8) | fxn);
3283
3284 /* Limit the offset to the hw defined mmio region aperture */
3285 max_offset_lim = (u32)(((0x40 | iommu->max_banks) << 12) |
3286 (iommu->max_counters << 8) | 0x28);
3287 if ((offset < MMIO_CNTR_REG_OFFSET) ||
3288 (offset > max_offset_lim))
3289 return -EINVAL;
3290
3291 if (is_write) {
3292 u64 val = *value & GENMASK_ULL(47, 0);
3293
3294 writel((u32)val, iommu->mmio_base + offset);
3295 writel((val >> 32), iommu->mmio_base + offset + 4);
3296 } else {
3297 *value = readl(iommu->mmio_base + offset + 4);
3298 *value <<= 32;
3299 *value |= readl(iommu->mmio_base + offset);
3300 *value &= GENMASK_ULL(47, 0);
3301 }
3302
3303 return 0;
3304 }
3305
amd_iommu_pc_get_reg(struct amd_iommu * iommu,u8 bank,u8 cntr,u8 fxn,u64 * value)3306 int amd_iommu_pc_get_reg(struct amd_iommu *iommu, u8 bank, u8 cntr, u8 fxn, u64 *value)
3307 {
3308 if (!iommu)
3309 return -EINVAL;
3310
3311 return iommu_pc_get_set_reg(iommu, bank, cntr, fxn, value, false);
3312 }
3313
amd_iommu_pc_set_reg(struct amd_iommu * iommu,u8 bank,u8 cntr,u8 fxn,u64 * value)3314 int amd_iommu_pc_set_reg(struct amd_iommu *iommu, u8 bank, u8 cntr, u8 fxn, u64 *value)
3315 {
3316 if (!iommu)
3317 return -EINVAL;
3318
3319 return iommu_pc_get_set_reg(iommu, bank, cntr, fxn, value, true);
3320 }
3321