1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/mm.h>
16 #include <linux/sched/signal.h>
17 #include <linux/blkpg.h>
18 #include <linux/bio.h>
19 #include <linux/mempool.h>
20 #include <linux/dax.h>
21 #include <linux/slab.h>
22 #include <linux/idr.h>
23 #include <linux/uio.h>
24 #include <linux/hdreg.h>
25 #include <linux/delay.h>
26 #include <linux/wait.h>
27 #include <linux/pr.h>
28 #include <linux/refcount.h>
29 #include <linux/part_stat.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/keyslot-manager.h>
32
33 #define DM_MSG_PREFIX "core"
34
35 /*
36 * Cookies are numeric values sent with CHANGE and REMOVE
37 * uevents while resuming, removing or renaming the device.
38 */
39 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
40 #define DM_COOKIE_LENGTH 24
41
42 static const char *_name = DM_NAME;
43
44 static unsigned int major = 0;
45 static unsigned int _major = 0;
46
47 static DEFINE_IDR(_minor_idr);
48
49 static DEFINE_SPINLOCK(_minor_lock);
50
51 static void do_deferred_remove(struct work_struct *w);
52
53 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
54
55 static struct workqueue_struct *deferred_remove_workqueue;
56
57 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
58 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
59
dm_issue_global_event(void)60 void dm_issue_global_event(void)
61 {
62 atomic_inc(&dm_global_event_nr);
63 wake_up(&dm_global_eventq);
64 }
65
66 /*
67 * One of these is allocated (on-stack) per original bio.
68 */
69 struct clone_info {
70 struct dm_table *map;
71 struct bio *bio;
72 struct dm_io *io;
73 sector_t sector;
74 unsigned sector_count;
75 };
76
77 /*
78 * One of these is allocated per clone bio.
79 */
80 #define DM_TIO_MAGIC 7282014
81 struct dm_target_io {
82 unsigned magic;
83 struct dm_io *io;
84 struct dm_target *ti;
85 unsigned target_bio_nr;
86 unsigned *len_ptr;
87 bool inside_dm_io;
88 struct bio clone;
89 };
90
91 /*
92 * One of these is allocated per original bio.
93 * It contains the first clone used for that original.
94 */
95 #define DM_IO_MAGIC 5191977
96 struct dm_io {
97 unsigned magic;
98 struct mapped_device *md;
99 blk_status_t status;
100 atomic_t io_count;
101 struct bio *orig_bio;
102 unsigned long start_time;
103 spinlock_t endio_lock;
104 struct dm_stats_aux stats_aux;
105 /* last member of dm_target_io is 'struct bio' */
106 struct dm_target_io tio;
107 };
108
109 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
110 #define DM_IO_BIO_OFFSET \
111 (offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
112
dm_per_bio_data(struct bio * bio,size_t data_size)113 void *dm_per_bio_data(struct bio *bio, size_t data_size)
114 {
115 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
116 if (!tio->inside_dm_io)
117 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
118 return (char *)bio - DM_IO_BIO_OFFSET - data_size;
119 }
120 EXPORT_SYMBOL_GPL(dm_per_bio_data);
121
dm_bio_from_per_bio_data(void * data,size_t data_size)122 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
123 {
124 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
125 if (io->magic == DM_IO_MAGIC)
126 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
127 BUG_ON(io->magic != DM_TIO_MAGIC);
128 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
129 }
130 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
131
dm_bio_get_target_bio_nr(const struct bio * bio)132 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
133 {
134 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
135 }
136 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
137
138 #define MINOR_ALLOCED ((void *)-1)
139
140 /*
141 * Bits for the md->flags field.
142 */
143 #define DMF_BLOCK_IO_FOR_SUSPEND 0
144 #define DMF_SUSPENDED 1
145 #define DMF_FROZEN 2
146 #define DMF_FREEING 3
147 #define DMF_DELETING 4
148 #define DMF_NOFLUSH_SUSPENDING 5
149 #define DMF_DEFERRED_REMOVE 6
150 #define DMF_SUSPENDED_INTERNALLY 7
151 #define DMF_POST_SUSPENDING 8
152
153 #define DM_NUMA_NODE NUMA_NO_NODE
154 static int dm_numa_node = DM_NUMA_NODE;
155
156 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE)
157 static int swap_bios = DEFAULT_SWAP_BIOS;
get_swap_bios(void)158 static int get_swap_bios(void)
159 {
160 int latch = READ_ONCE(swap_bios);
161 if (unlikely(latch <= 0))
162 latch = DEFAULT_SWAP_BIOS;
163 return latch;
164 }
165
166 /*
167 * For mempools pre-allocation at the table loading time.
168 */
169 struct dm_md_mempools {
170 struct bio_set bs;
171 struct bio_set io_bs;
172 };
173
174 struct table_device {
175 struct list_head list;
176 refcount_t count;
177 struct dm_dev dm_dev;
178 };
179
180 /*
181 * Bio-based DM's mempools' reserved IOs set by the user.
182 */
183 #define RESERVED_BIO_BASED_IOS 16
184 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
185
__dm_get_module_param_int(int * module_param,int min,int max)186 static int __dm_get_module_param_int(int *module_param, int min, int max)
187 {
188 int param = READ_ONCE(*module_param);
189 int modified_param = 0;
190 bool modified = true;
191
192 if (param < min)
193 modified_param = min;
194 else if (param > max)
195 modified_param = max;
196 else
197 modified = false;
198
199 if (modified) {
200 (void)cmpxchg(module_param, param, modified_param);
201 param = modified_param;
202 }
203
204 return param;
205 }
206
__dm_get_module_param(unsigned * module_param,unsigned def,unsigned max)207 unsigned __dm_get_module_param(unsigned *module_param,
208 unsigned def, unsigned max)
209 {
210 unsigned param = READ_ONCE(*module_param);
211 unsigned modified_param = 0;
212
213 if (!param)
214 modified_param = def;
215 else if (param > max)
216 modified_param = max;
217
218 if (modified_param) {
219 (void)cmpxchg(module_param, param, modified_param);
220 param = modified_param;
221 }
222
223 return param;
224 }
225
dm_get_reserved_bio_based_ios(void)226 unsigned dm_get_reserved_bio_based_ios(void)
227 {
228 return __dm_get_module_param(&reserved_bio_based_ios,
229 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
230 }
231 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
232
dm_get_numa_node(void)233 static unsigned dm_get_numa_node(void)
234 {
235 return __dm_get_module_param_int(&dm_numa_node,
236 DM_NUMA_NODE, num_online_nodes() - 1);
237 }
238
local_init(void)239 static int __init local_init(void)
240 {
241 int r;
242
243 r = dm_uevent_init();
244 if (r)
245 return r;
246
247 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
248 if (!deferred_remove_workqueue) {
249 r = -ENOMEM;
250 goto out_uevent_exit;
251 }
252
253 _major = major;
254 r = register_blkdev(_major, _name);
255 if (r < 0)
256 goto out_free_workqueue;
257
258 if (!_major)
259 _major = r;
260
261 return 0;
262
263 out_free_workqueue:
264 destroy_workqueue(deferred_remove_workqueue);
265 out_uevent_exit:
266 dm_uevent_exit();
267
268 return r;
269 }
270
local_exit(void)271 static void local_exit(void)
272 {
273 flush_scheduled_work();
274 destroy_workqueue(deferred_remove_workqueue);
275
276 unregister_blkdev(_major, _name);
277 dm_uevent_exit();
278
279 _major = 0;
280
281 DMINFO("cleaned up");
282 }
283
284 static int (*_inits[])(void) __initdata = {
285 local_init,
286 dm_target_init,
287 dm_linear_init,
288 dm_stripe_init,
289 dm_io_init,
290 dm_kcopyd_init,
291 dm_interface_init,
292 dm_statistics_init,
293 };
294
295 static void (*_exits[])(void) = {
296 local_exit,
297 dm_target_exit,
298 dm_linear_exit,
299 dm_stripe_exit,
300 dm_io_exit,
301 dm_kcopyd_exit,
302 dm_interface_exit,
303 dm_statistics_exit,
304 };
305
dm_init(void)306 static int __init dm_init(void)
307 {
308 const int count = ARRAY_SIZE(_inits);
309
310 int r, i;
311
312 for (i = 0; i < count; i++) {
313 r = _inits[i]();
314 if (r)
315 goto bad;
316 }
317
318 return 0;
319
320 bad:
321 while (i--)
322 _exits[i]();
323
324 return r;
325 }
326
dm_exit(void)327 static void __exit dm_exit(void)
328 {
329 int i = ARRAY_SIZE(_exits);
330
331 while (i--)
332 _exits[i]();
333
334 /*
335 * Should be empty by this point.
336 */
337 idr_destroy(&_minor_idr);
338 }
339
340 /*
341 * Block device functions
342 */
dm_deleting_md(struct mapped_device * md)343 int dm_deleting_md(struct mapped_device *md)
344 {
345 return test_bit(DMF_DELETING, &md->flags);
346 }
347
dm_blk_open(struct block_device * bdev,fmode_t mode)348 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
349 {
350 struct mapped_device *md;
351
352 spin_lock(&_minor_lock);
353
354 md = bdev->bd_disk->private_data;
355 if (!md)
356 goto out;
357
358 if (test_bit(DMF_FREEING, &md->flags) ||
359 dm_deleting_md(md)) {
360 md = NULL;
361 goto out;
362 }
363
364 dm_get(md);
365 atomic_inc(&md->open_count);
366 out:
367 spin_unlock(&_minor_lock);
368
369 return md ? 0 : -ENXIO;
370 }
371
dm_blk_close(struct gendisk * disk,fmode_t mode)372 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
373 {
374 struct mapped_device *md;
375
376 spin_lock(&_minor_lock);
377
378 md = disk->private_data;
379 if (WARN_ON(!md))
380 goto out;
381
382 if (atomic_dec_and_test(&md->open_count) &&
383 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
384 queue_work(deferred_remove_workqueue, &deferred_remove_work);
385
386 dm_put(md);
387 out:
388 spin_unlock(&_minor_lock);
389 }
390
dm_open_count(struct mapped_device * md)391 int dm_open_count(struct mapped_device *md)
392 {
393 return atomic_read(&md->open_count);
394 }
395
396 /*
397 * Guarantees nothing is using the device before it's deleted.
398 */
dm_lock_for_deletion(struct mapped_device * md,bool mark_deferred,bool only_deferred)399 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
400 {
401 int r = 0;
402
403 spin_lock(&_minor_lock);
404
405 if (dm_open_count(md)) {
406 r = -EBUSY;
407 if (mark_deferred)
408 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
409 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
410 r = -EEXIST;
411 else
412 set_bit(DMF_DELETING, &md->flags);
413
414 spin_unlock(&_minor_lock);
415
416 return r;
417 }
418
dm_cancel_deferred_remove(struct mapped_device * md)419 int dm_cancel_deferred_remove(struct mapped_device *md)
420 {
421 int r = 0;
422
423 spin_lock(&_minor_lock);
424
425 if (test_bit(DMF_DELETING, &md->flags))
426 r = -EBUSY;
427 else
428 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
429
430 spin_unlock(&_minor_lock);
431
432 return r;
433 }
434
do_deferred_remove(struct work_struct * w)435 static void do_deferred_remove(struct work_struct *w)
436 {
437 dm_deferred_remove();
438 }
439
dm_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)440 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
441 {
442 struct mapped_device *md = bdev->bd_disk->private_data;
443
444 return dm_get_geometry(md, geo);
445 }
446
447 #ifdef CONFIG_BLK_DEV_ZONED
dm_report_zones_cb(struct blk_zone * zone,unsigned int idx,void * data)448 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
449 {
450 struct dm_report_zones_args *args = data;
451 sector_t sector_diff = args->tgt->begin - args->start;
452
453 /*
454 * Ignore zones beyond the target range.
455 */
456 if (zone->start >= args->start + args->tgt->len)
457 return 0;
458
459 /*
460 * Remap the start sector and write pointer position of the zone
461 * to match its position in the target range.
462 */
463 zone->start += sector_diff;
464 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
465 if (zone->cond == BLK_ZONE_COND_FULL)
466 zone->wp = zone->start + zone->len;
467 else if (zone->cond == BLK_ZONE_COND_EMPTY)
468 zone->wp = zone->start;
469 else
470 zone->wp += sector_diff;
471 }
472
473 args->next_sector = zone->start + zone->len;
474 return args->orig_cb(zone, args->zone_idx++, args->orig_data);
475 }
476 EXPORT_SYMBOL_GPL(dm_report_zones_cb);
477
dm_blk_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)478 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
479 unsigned int nr_zones, report_zones_cb cb, void *data)
480 {
481 struct mapped_device *md = disk->private_data;
482 struct dm_table *map;
483 int srcu_idx, ret;
484 struct dm_report_zones_args args = {
485 .next_sector = sector,
486 .orig_data = data,
487 .orig_cb = cb,
488 };
489
490 if (dm_suspended_md(md))
491 return -EAGAIN;
492
493 map = dm_get_live_table(md, &srcu_idx);
494 if (!map) {
495 ret = -EIO;
496 goto out;
497 }
498
499 do {
500 struct dm_target *tgt;
501
502 tgt = dm_table_find_target(map, args.next_sector);
503 if (WARN_ON_ONCE(!tgt->type->report_zones)) {
504 ret = -EIO;
505 goto out;
506 }
507
508 args.tgt = tgt;
509 ret = tgt->type->report_zones(tgt, &args,
510 nr_zones - args.zone_idx);
511 if (ret < 0)
512 goto out;
513 } while (args.zone_idx < nr_zones &&
514 args.next_sector < get_capacity(disk));
515
516 ret = args.zone_idx;
517 out:
518 dm_put_live_table(md, srcu_idx);
519 return ret;
520 }
521 #else
522 #define dm_blk_report_zones NULL
523 #endif /* CONFIG_BLK_DEV_ZONED */
524
dm_prepare_ioctl(struct mapped_device * md,int * srcu_idx,struct block_device ** bdev)525 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
526 struct block_device **bdev)
527 {
528 struct dm_target *tgt;
529 struct dm_table *map;
530 int r;
531
532 retry:
533 r = -ENOTTY;
534 map = dm_get_live_table(md, srcu_idx);
535 if (!map || !dm_table_get_size(map))
536 return r;
537
538 /* We only support devices that have a single target */
539 if (dm_table_get_num_targets(map) != 1)
540 return r;
541
542 tgt = dm_table_get_target(map, 0);
543 if (!tgt->type->prepare_ioctl)
544 return r;
545
546 if (dm_suspended_md(md))
547 return -EAGAIN;
548
549 r = tgt->type->prepare_ioctl(tgt, bdev);
550 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
551 dm_put_live_table(md, *srcu_idx);
552 msleep(10);
553 goto retry;
554 }
555
556 return r;
557 }
558
dm_unprepare_ioctl(struct mapped_device * md,int srcu_idx)559 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
560 {
561 dm_put_live_table(md, srcu_idx);
562 }
563
dm_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)564 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
565 unsigned int cmd, unsigned long arg)
566 {
567 struct mapped_device *md = bdev->bd_disk->private_data;
568 int r, srcu_idx;
569
570 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
571 if (r < 0)
572 goto out;
573
574 if (r > 0) {
575 /*
576 * Target determined this ioctl is being issued against a
577 * subset of the parent bdev; require extra privileges.
578 */
579 if (!capable(CAP_SYS_RAWIO)) {
580 DMDEBUG_LIMIT(
581 "%s: sending ioctl %x to DM device without required privilege.",
582 current->comm, cmd);
583 r = -ENOIOCTLCMD;
584 goto out;
585 }
586 }
587
588 if (!bdev->bd_disk->fops->ioctl)
589 r = -ENOTTY;
590 else
591 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
592 out:
593 dm_unprepare_ioctl(md, srcu_idx);
594 return r;
595 }
596
dm_start_time_ns_from_clone(struct bio * bio)597 u64 dm_start_time_ns_from_clone(struct bio *bio)
598 {
599 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
600 struct dm_io *io = tio->io;
601
602 return jiffies_to_nsecs(io->start_time);
603 }
604 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
605
start_io_acct(struct dm_io * io)606 static void start_io_acct(struct dm_io *io)
607 {
608 struct mapped_device *md = io->md;
609 struct bio *bio = io->orig_bio;
610
611 io->start_time = bio_start_io_acct(bio);
612 if (unlikely(dm_stats_used(&md->stats)))
613 dm_stats_account_io(&md->stats, bio_data_dir(bio),
614 bio->bi_iter.bi_sector, bio_sectors(bio),
615 false, 0, &io->stats_aux);
616 }
617
end_io_acct(struct dm_io * io)618 static void end_io_acct(struct dm_io *io)
619 {
620 struct mapped_device *md = io->md;
621 struct bio *bio = io->orig_bio;
622 unsigned long duration = jiffies - io->start_time;
623
624 bio_end_io_acct(bio, io->start_time);
625
626 if (unlikely(dm_stats_used(&md->stats)))
627 dm_stats_account_io(&md->stats, bio_data_dir(bio),
628 bio->bi_iter.bi_sector, bio_sectors(bio),
629 true, duration, &io->stats_aux);
630
631 /* nudge anyone waiting on suspend queue */
632 if (unlikely(wq_has_sleeper(&md->wait)))
633 wake_up(&md->wait);
634 }
635
alloc_io(struct mapped_device * md,struct bio * bio)636 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
637 {
638 struct dm_io *io;
639 struct dm_target_io *tio;
640 struct bio *clone;
641
642 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
643 if (!clone)
644 return NULL;
645
646 tio = container_of(clone, struct dm_target_io, clone);
647 tio->inside_dm_io = true;
648 tio->io = NULL;
649
650 io = container_of(tio, struct dm_io, tio);
651 io->magic = DM_IO_MAGIC;
652 io->status = 0;
653 atomic_set(&io->io_count, 1);
654 io->orig_bio = bio;
655 io->md = md;
656 spin_lock_init(&io->endio_lock);
657
658 start_io_acct(io);
659
660 return io;
661 }
662
free_io(struct mapped_device * md,struct dm_io * io)663 static void free_io(struct mapped_device *md, struct dm_io *io)
664 {
665 bio_put(&io->tio.clone);
666 }
667
alloc_tio(struct clone_info * ci,struct dm_target * ti,unsigned target_bio_nr,gfp_t gfp_mask)668 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
669 unsigned target_bio_nr, gfp_t gfp_mask)
670 {
671 struct dm_target_io *tio;
672
673 if (!ci->io->tio.io) {
674 /* the dm_target_io embedded in ci->io is available */
675 tio = &ci->io->tio;
676 } else {
677 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
678 if (!clone)
679 return NULL;
680
681 tio = container_of(clone, struct dm_target_io, clone);
682 tio->inside_dm_io = false;
683 }
684
685 tio->magic = DM_TIO_MAGIC;
686 tio->io = ci->io;
687 tio->ti = ti;
688 tio->target_bio_nr = target_bio_nr;
689
690 return tio;
691 }
692
free_tio(struct dm_target_io * tio)693 static void free_tio(struct dm_target_io *tio)
694 {
695 if (tio->inside_dm_io)
696 return;
697 bio_put(&tio->clone);
698 }
699
700 /*
701 * Add the bio to the list of deferred io.
702 */
queue_io(struct mapped_device * md,struct bio * bio)703 static void queue_io(struct mapped_device *md, struct bio *bio)
704 {
705 unsigned long flags;
706
707 spin_lock_irqsave(&md->deferred_lock, flags);
708 bio_list_add(&md->deferred, bio);
709 spin_unlock_irqrestore(&md->deferred_lock, flags);
710 queue_work(md->wq, &md->work);
711 }
712
713 /*
714 * Everyone (including functions in this file), should use this
715 * function to access the md->map field, and make sure they call
716 * dm_put_live_table() when finished.
717 */
dm_get_live_table(struct mapped_device * md,int * srcu_idx)718 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
719 {
720 *srcu_idx = srcu_read_lock(&md->io_barrier);
721
722 return srcu_dereference(md->map, &md->io_barrier);
723 }
724
dm_put_live_table(struct mapped_device * md,int srcu_idx)725 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
726 {
727 srcu_read_unlock(&md->io_barrier, srcu_idx);
728 }
729
dm_sync_table(struct mapped_device * md)730 void dm_sync_table(struct mapped_device *md)
731 {
732 synchronize_srcu(&md->io_barrier);
733 synchronize_rcu_expedited();
734 }
735
736 /*
737 * A fast alternative to dm_get_live_table/dm_put_live_table.
738 * The caller must not block between these two functions.
739 */
dm_get_live_table_fast(struct mapped_device * md)740 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
741 {
742 rcu_read_lock();
743 return rcu_dereference(md->map);
744 }
745
dm_put_live_table_fast(struct mapped_device * md)746 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
747 {
748 rcu_read_unlock();
749 }
750
751 static char *_dm_claim_ptr = "I belong to device-mapper";
752
753 /*
754 * Open a table device so we can use it as a map destination.
755 */
open_table_device(struct table_device * td,dev_t dev,struct mapped_device * md)756 static int open_table_device(struct table_device *td, dev_t dev,
757 struct mapped_device *md)
758 {
759 struct block_device *bdev;
760
761 int r;
762
763 BUG_ON(td->dm_dev.bdev);
764
765 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
766 if (IS_ERR(bdev))
767 return PTR_ERR(bdev);
768
769 r = bd_link_disk_holder(bdev, dm_disk(md));
770 if (r) {
771 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
772 return r;
773 }
774
775 td->dm_dev.bdev = bdev;
776 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
777 return 0;
778 }
779
780 /*
781 * Close a table device that we've been using.
782 */
close_table_device(struct table_device * td,struct mapped_device * md)783 static void close_table_device(struct table_device *td, struct mapped_device *md)
784 {
785 if (!td->dm_dev.bdev)
786 return;
787
788 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
789 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
790 put_dax(td->dm_dev.dax_dev);
791 td->dm_dev.bdev = NULL;
792 td->dm_dev.dax_dev = NULL;
793 }
794
find_table_device(struct list_head * l,dev_t dev,fmode_t mode)795 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
796 fmode_t mode)
797 {
798 struct table_device *td;
799
800 list_for_each_entry(td, l, list)
801 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
802 return td;
803
804 return NULL;
805 }
806
dm_get_table_device(struct mapped_device * md,dev_t dev,fmode_t mode,struct dm_dev ** result)807 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
808 struct dm_dev **result)
809 {
810 int r;
811 struct table_device *td;
812
813 mutex_lock(&md->table_devices_lock);
814 td = find_table_device(&md->table_devices, dev, mode);
815 if (!td) {
816 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
817 if (!td) {
818 mutex_unlock(&md->table_devices_lock);
819 return -ENOMEM;
820 }
821
822 td->dm_dev.mode = mode;
823 td->dm_dev.bdev = NULL;
824
825 if ((r = open_table_device(td, dev, md))) {
826 mutex_unlock(&md->table_devices_lock);
827 kfree(td);
828 return r;
829 }
830
831 format_dev_t(td->dm_dev.name, dev);
832
833 refcount_set(&td->count, 1);
834 list_add(&td->list, &md->table_devices);
835 } else {
836 refcount_inc(&td->count);
837 }
838 mutex_unlock(&md->table_devices_lock);
839
840 *result = &td->dm_dev;
841 return 0;
842 }
843
dm_put_table_device(struct mapped_device * md,struct dm_dev * d)844 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
845 {
846 struct table_device *td = container_of(d, struct table_device, dm_dev);
847
848 mutex_lock(&md->table_devices_lock);
849 if (refcount_dec_and_test(&td->count)) {
850 close_table_device(td, md);
851 list_del(&td->list);
852 kfree(td);
853 }
854 mutex_unlock(&md->table_devices_lock);
855 }
856
free_table_devices(struct list_head * devices)857 static void free_table_devices(struct list_head *devices)
858 {
859 struct list_head *tmp, *next;
860
861 list_for_each_safe(tmp, next, devices) {
862 struct table_device *td = list_entry(tmp, struct table_device, list);
863
864 DMWARN("dm_destroy: %s still exists with %d references",
865 td->dm_dev.name, refcount_read(&td->count));
866 kfree(td);
867 }
868 }
869
870 /*
871 * Get the geometry associated with a dm device
872 */
dm_get_geometry(struct mapped_device * md,struct hd_geometry * geo)873 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
874 {
875 *geo = md->geometry;
876
877 return 0;
878 }
879
880 /*
881 * Set the geometry of a device.
882 */
dm_set_geometry(struct mapped_device * md,struct hd_geometry * geo)883 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
884 {
885 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
886
887 if (geo->start > sz) {
888 DMWARN("Start sector is beyond the geometry limits.");
889 return -EINVAL;
890 }
891
892 md->geometry = *geo;
893
894 return 0;
895 }
896
__noflush_suspending(struct mapped_device * md)897 static int __noflush_suspending(struct mapped_device *md)
898 {
899 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
900 }
901
902 /*
903 * Decrements the number of outstanding ios that a bio has been
904 * cloned into, completing the original io if necc.
905 */
dec_pending(struct dm_io * io,blk_status_t error)906 static void dec_pending(struct dm_io *io, blk_status_t error)
907 {
908 unsigned long flags;
909 blk_status_t io_error;
910 struct bio *bio;
911 struct mapped_device *md = io->md;
912
913 /* Push-back supersedes any I/O errors */
914 if (unlikely(error)) {
915 spin_lock_irqsave(&io->endio_lock, flags);
916 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
917 io->status = error;
918 spin_unlock_irqrestore(&io->endio_lock, flags);
919 }
920
921 if (atomic_dec_and_test(&io->io_count)) {
922 if (io->status == BLK_STS_DM_REQUEUE) {
923 /*
924 * Target requested pushing back the I/O.
925 */
926 spin_lock_irqsave(&md->deferred_lock, flags);
927 if (__noflush_suspending(md))
928 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
929 bio_list_add_head(&md->deferred, io->orig_bio);
930 else
931 /* noflush suspend was interrupted. */
932 io->status = BLK_STS_IOERR;
933 spin_unlock_irqrestore(&md->deferred_lock, flags);
934 }
935
936 io_error = io->status;
937 bio = io->orig_bio;
938 end_io_acct(io);
939 free_io(md, io);
940
941 if (io_error == BLK_STS_DM_REQUEUE)
942 return;
943
944 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
945 /*
946 * Preflush done for flush with data, reissue
947 * without REQ_PREFLUSH.
948 */
949 bio->bi_opf &= ~REQ_PREFLUSH;
950 queue_io(md, bio);
951 } else {
952 /* done with normal IO or empty flush */
953 if (io_error)
954 bio->bi_status = io_error;
955 bio_endio(bio);
956 }
957 }
958 }
959
disable_discard(struct mapped_device * md)960 void disable_discard(struct mapped_device *md)
961 {
962 struct queue_limits *limits = dm_get_queue_limits(md);
963
964 /* device doesn't really support DISCARD, disable it */
965 limits->max_discard_sectors = 0;
966 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
967 }
968
disable_write_same(struct mapped_device * md)969 void disable_write_same(struct mapped_device *md)
970 {
971 struct queue_limits *limits = dm_get_queue_limits(md);
972
973 /* device doesn't really support WRITE SAME, disable it */
974 limits->max_write_same_sectors = 0;
975 }
976
disable_write_zeroes(struct mapped_device * md)977 void disable_write_zeroes(struct mapped_device *md)
978 {
979 struct queue_limits *limits = dm_get_queue_limits(md);
980
981 /* device doesn't really support WRITE ZEROES, disable it */
982 limits->max_write_zeroes_sectors = 0;
983 }
984
swap_bios_limit(struct dm_target * ti,struct bio * bio)985 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
986 {
987 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
988 }
989
clone_endio(struct bio * bio)990 static void clone_endio(struct bio *bio)
991 {
992 blk_status_t error = bio->bi_status;
993 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
994 struct dm_io *io = tio->io;
995 struct mapped_device *md = tio->io->md;
996 dm_endio_fn endio = tio->ti->type->end_io;
997 struct bio *orig_bio = io->orig_bio;
998 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
999
1000 if (unlikely(error == BLK_STS_TARGET)) {
1001 if (bio_op(bio) == REQ_OP_DISCARD &&
1002 !q->limits.max_discard_sectors)
1003 disable_discard(md);
1004 else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
1005 !q->limits.max_write_same_sectors)
1006 disable_write_same(md);
1007 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1008 !q->limits.max_write_zeroes_sectors)
1009 disable_write_zeroes(md);
1010 }
1011
1012 /*
1013 * For zone-append bios get offset in zone of the written
1014 * sector and add that to the original bio sector pos.
1015 */
1016 if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) {
1017 sector_t written_sector = bio->bi_iter.bi_sector;
1018 struct request_queue *q = orig_bio->bi_bdev->bd_disk->queue;
1019 u64 mask = (u64)blk_queue_zone_sectors(q) - 1;
1020
1021 orig_bio->bi_iter.bi_sector += written_sector & mask;
1022 }
1023
1024 if (endio) {
1025 int r = endio(tio->ti, bio, &error);
1026 switch (r) {
1027 case DM_ENDIO_REQUEUE:
1028 error = BLK_STS_DM_REQUEUE;
1029 fallthrough;
1030 case DM_ENDIO_DONE:
1031 break;
1032 case DM_ENDIO_INCOMPLETE:
1033 /* The target will handle the io */
1034 return;
1035 default:
1036 DMWARN("unimplemented target endio return value: %d", r);
1037 BUG();
1038 }
1039 }
1040
1041 if (unlikely(swap_bios_limit(tio->ti, bio))) {
1042 struct mapped_device *md = io->md;
1043 up(&md->swap_bios_semaphore);
1044 }
1045
1046 free_tio(tio);
1047 dec_pending(io, error);
1048 }
1049
1050 /*
1051 * Return maximum size of I/O possible at the supplied sector up to the current
1052 * target boundary.
1053 */
max_io_len_target_boundary(struct dm_target * ti,sector_t target_offset)1054 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1055 sector_t target_offset)
1056 {
1057 return ti->len - target_offset;
1058 }
1059
max_io_len(struct dm_target * ti,sector_t sector)1060 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1061 {
1062 sector_t target_offset = dm_target_offset(ti, sector);
1063 sector_t len = max_io_len_target_boundary(ti, target_offset);
1064 sector_t max_len;
1065
1066 /*
1067 * Does the target need to split IO even further?
1068 * - varied (per target) IO splitting is a tenet of DM; this
1069 * explains why stacked chunk_sectors based splitting via
1070 * blk_max_size_offset() isn't possible here. So pass in
1071 * ti->max_io_len to override stacked chunk_sectors.
1072 */
1073 if (ti->max_io_len) {
1074 max_len = blk_max_size_offset(ti->table->md->queue,
1075 target_offset, ti->max_io_len);
1076 if (len > max_len)
1077 len = max_len;
1078 }
1079
1080 return len;
1081 }
1082
dm_set_target_max_io_len(struct dm_target * ti,sector_t len)1083 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1084 {
1085 if (len > UINT_MAX) {
1086 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1087 (unsigned long long)len, UINT_MAX);
1088 ti->error = "Maximum size of target IO is too large";
1089 return -EINVAL;
1090 }
1091
1092 ti->max_io_len = (uint32_t) len;
1093
1094 return 0;
1095 }
1096 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1097
dm_dax_get_live_target(struct mapped_device * md,sector_t sector,int * srcu_idx)1098 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1099 sector_t sector, int *srcu_idx)
1100 __acquires(md->io_barrier)
1101 {
1102 struct dm_table *map;
1103 struct dm_target *ti;
1104
1105 map = dm_get_live_table(md, srcu_idx);
1106 if (!map)
1107 return NULL;
1108
1109 ti = dm_table_find_target(map, sector);
1110 if (!ti)
1111 return NULL;
1112
1113 return ti;
1114 }
1115
dm_dax_direct_access(struct dax_device * dax_dev,pgoff_t pgoff,long nr_pages,void ** kaddr,pfn_t * pfn)1116 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1117 long nr_pages, void **kaddr, pfn_t *pfn)
1118 {
1119 struct mapped_device *md = dax_get_private(dax_dev);
1120 sector_t sector = pgoff * PAGE_SECTORS;
1121 struct dm_target *ti;
1122 long len, ret = -EIO;
1123 int srcu_idx;
1124
1125 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1126
1127 if (!ti)
1128 goto out;
1129 if (!ti->type->direct_access)
1130 goto out;
1131 len = max_io_len(ti, sector) / PAGE_SECTORS;
1132 if (len < 1)
1133 goto out;
1134 nr_pages = min(len, nr_pages);
1135 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1136
1137 out:
1138 dm_put_live_table(md, srcu_idx);
1139
1140 return ret;
1141 }
1142
dm_dax_supported(struct dax_device * dax_dev,struct block_device * bdev,int blocksize,sector_t start,sector_t len)1143 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1144 int blocksize, sector_t start, sector_t len)
1145 {
1146 struct mapped_device *md = dax_get_private(dax_dev);
1147 struct dm_table *map;
1148 bool ret = false;
1149 int srcu_idx;
1150
1151 map = dm_get_live_table(md, &srcu_idx);
1152 if (!map)
1153 goto out;
1154
1155 ret = dm_table_supports_dax(map, device_not_dax_capable, &blocksize);
1156
1157 out:
1158 dm_put_live_table(md, srcu_idx);
1159
1160 return ret;
1161 }
1162
dm_dax_copy_from_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1163 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1164 void *addr, size_t bytes, struct iov_iter *i)
1165 {
1166 struct mapped_device *md = dax_get_private(dax_dev);
1167 sector_t sector = pgoff * PAGE_SECTORS;
1168 struct dm_target *ti;
1169 long ret = 0;
1170 int srcu_idx;
1171
1172 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1173
1174 if (!ti)
1175 goto out;
1176 if (!ti->type->dax_copy_from_iter) {
1177 ret = copy_from_iter(addr, bytes, i);
1178 goto out;
1179 }
1180 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1181 out:
1182 dm_put_live_table(md, srcu_idx);
1183
1184 return ret;
1185 }
1186
dm_dax_copy_to_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1187 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1188 void *addr, size_t bytes, struct iov_iter *i)
1189 {
1190 struct mapped_device *md = dax_get_private(dax_dev);
1191 sector_t sector = pgoff * PAGE_SECTORS;
1192 struct dm_target *ti;
1193 long ret = 0;
1194 int srcu_idx;
1195
1196 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1197
1198 if (!ti)
1199 goto out;
1200 if (!ti->type->dax_copy_to_iter) {
1201 ret = copy_to_iter(addr, bytes, i);
1202 goto out;
1203 }
1204 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1205 out:
1206 dm_put_live_table(md, srcu_idx);
1207
1208 return ret;
1209 }
1210
dm_dax_zero_page_range(struct dax_device * dax_dev,pgoff_t pgoff,size_t nr_pages)1211 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1212 size_t nr_pages)
1213 {
1214 struct mapped_device *md = dax_get_private(dax_dev);
1215 sector_t sector = pgoff * PAGE_SECTORS;
1216 struct dm_target *ti;
1217 int ret = -EIO;
1218 int srcu_idx;
1219
1220 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1221
1222 if (!ti)
1223 goto out;
1224 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1225 /*
1226 * ->zero_page_range() is mandatory dax operation. If we are
1227 * here, something is wrong.
1228 */
1229 goto out;
1230 }
1231 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1232 out:
1233 dm_put_live_table(md, srcu_idx);
1234
1235 return ret;
1236 }
1237
1238 /*
1239 * A target may call dm_accept_partial_bio only from the map routine. It is
1240 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1241 * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1242 *
1243 * dm_accept_partial_bio informs the dm that the target only wants to process
1244 * additional n_sectors sectors of the bio and the rest of the data should be
1245 * sent in a next bio.
1246 *
1247 * A diagram that explains the arithmetics:
1248 * +--------------------+---------------+-------+
1249 * | 1 | 2 | 3 |
1250 * +--------------------+---------------+-------+
1251 *
1252 * <-------------- *tio->len_ptr --------------->
1253 * <------- bi_size ------->
1254 * <-- n_sectors -->
1255 *
1256 * Region 1 was already iterated over with bio_advance or similar function.
1257 * (it may be empty if the target doesn't use bio_advance)
1258 * Region 2 is the remaining bio size that the target wants to process.
1259 * (it may be empty if region 1 is non-empty, although there is no reason
1260 * to make it empty)
1261 * The target requires that region 3 is to be sent in the next bio.
1262 *
1263 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1264 * the partially processed part (the sum of regions 1+2) must be the same for all
1265 * copies of the bio.
1266 */
dm_accept_partial_bio(struct bio * bio,unsigned n_sectors)1267 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1268 {
1269 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1270 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1271 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1272 BUG_ON(bi_size > *tio->len_ptr);
1273 BUG_ON(n_sectors > bi_size);
1274 *tio->len_ptr -= bi_size - n_sectors;
1275 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1276 }
1277 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1278
__set_swap_bios_limit(struct mapped_device * md,int latch)1279 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1280 {
1281 mutex_lock(&md->swap_bios_lock);
1282 while (latch < md->swap_bios) {
1283 cond_resched();
1284 down(&md->swap_bios_semaphore);
1285 md->swap_bios--;
1286 }
1287 while (latch > md->swap_bios) {
1288 cond_resched();
1289 up(&md->swap_bios_semaphore);
1290 md->swap_bios++;
1291 }
1292 mutex_unlock(&md->swap_bios_lock);
1293 }
1294
__map_bio(struct dm_target_io * tio)1295 static blk_qc_t __map_bio(struct dm_target_io *tio)
1296 {
1297 int r;
1298 sector_t sector;
1299 struct bio *clone = &tio->clone;
1300 struct dm_io *io = tio->io;
1301 struct dm_target *ti = tio->ti;
1302 blk_qc_t ret = BLK_QC_T_NONE;
1303
1304 clone->bi_end_io = clone_endio;
1305
1306 /*
1307 * Map the clone. If r == 0 we don't need to do
1308 * anything, the target has assumed ownership of
1309 * this io.
1310 */
1311 atomic_inc(&io->io_count);
1312 sector = clone->bi_iter.bi_sector;
1313
1314 if (unlikely(swap_bios_limit(ti, clone))) {
1315 struct mapped_device *md = io->md;
1316 int latch = get_swap_bios();
1317 if (unlikely(latch != md->swap_bios))
1318 __set_swap_bios_limit(md, latch);
1319 down(&md->swap_bios_semaphore);
1320 }
1321
1322 r = ti->type->map(ti, clone);
1323 switch (r) {
1324 case DM_MAPIO_SUBMITTED:
1325 break;
1326 case DM_MAPIO_REMAPPED:
1327 /* the bio has been remapped so dispatch it */
1328 trace_block_bio_remap(clone, bio_dev(io->orig_bio), sector);
1329 ret = submit_bio_noacct(clone);
1330 break;
1331 case DM_MAPIO_KILL:
1332 if (unlikely(swap_bios_limit(ti, clone))) {
1333 struct mapped_device *md = io->md;
1334 up(&md->swap_bios_semaphore);
1335 }
1336 free_tio(tio);
1337 dec_pending(io, BLK_STS_IOERR);
1338 break;
1339 case DM_MAPIO_REQUEUE:
1340 if (unlikely(swap_bios_limit(ti, clone))) {
1341 struct mapped_device *md = io->md;
1342 up(&md->swap_bios_semaphore);
1343 }
1344 free_tio(tio);
1345 dec_pending(io, BLK_STS_DM_REQUEUE);
1346 break;
1347 default:
1348 DMWARN("unimplemented target map return value: %d", r);
1349 BUG();
1350 }
1351
1352 return ret;
1353 }
1354
bio_setup_sector(struct bio * bio,sector_t sector,unsigned len)1355 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1356 {
1357 bio->bi_iter.bi_sector = sector;
1358 bio->bi_iter.bi_size = to_bytes(len);
1359 }
1360
1361 /*
1362 * Creates a bio that consists of range of complete bvecs.
1363 */
clone_bio(struct dm_target_io * tio,struct bio * bio,sector_t sector,unsigned len)1364 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1365 sector_t sector, unsigned len)
1366 {
1367 struct bio *clone = &tio->clone;
1368 int r;
1369
1370 __bio_clone_fast(clone, bio);
1371
1372 r = bio_crypt_clone(clone, bio, GFP_NOIO);
1373 if (r < 0)
1374 return r;
1375
1376 if (bio_integrity(bio)) {
1377 if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1378 !dm_target_passes_integrity(tio->ti->type))) {
1379 DMWARN("%s: the target %s doesn't support integrity data.",
1380 dm_device_name(tio->io->md),
1381 tio->ti->type->name);
1382 return -EIO;
1383 }
1384
1385 r = bio_integrity_clone(clone, bio, GFP_NOIO);
1386 if (r < 0)
1387 return r;
1388 }
1389
1390 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1391 clone->bi_iter.bi_size = to_bytes(len);
1392
1393 if (bio_integrity(bio))
1394 bio_integrity_trim(clone);
1395
1396 return 0;
1397 }
1398
alloc_multiple_bios(struct bio_list * blist,struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1399 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1400 struct dm_target *ti, unsigned num_bios)
1401 {
1402 struct dm_target_io *tio;
1403 int try;
1404
1405 if (!num_bios)
1406 return;
1407
1408 if (num_bios == 1) {
1409 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1410 bio_list_add(blist, &tio->clone);
1411 return;
1412 }
1413
1414 for (try = 0; try < 2; try++) {
1415 int bio_nr;
1416 struct bio *bio;
1417
1418 if (try)
1419 mutex_lock(&ci->io->md->table_devices_lock);
1420 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1421 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1422 if (!tio)
1423 break;
1424
1425 bio_list_add(blist, &tio->clone);
1426 }
1427 if (try)
1428 mutex_unlock(&ci->io->md->table_devices_lock);
1429 if (bio_nr == num_bios)
1430 return;
1431
1432 while ((bio = bio_list_pop(blist))) {
1433 tio = container_of(bio, struct dm_target_io, clone);
1434 free_tio(tio);
1435 }
1436 }
1437 }
1438
__clone_and_map_simple_bio(struct clone_info * ci,struct dm_target_io * tio,unsigned * len)1439 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1440 struct dm_target_io *tio, unsigned *len)
1441 {
1442 struct bio *clone = &tio->clone;
1443
1444 tio->len_ptr = len;
1445
1446 __bio_clone_fast(clone, ci->bio);
1447 if (len)
1448 bio_setup_sector(clone, ci->sector, *len);
1449
1450 return __map_bio(tio);
1451 }
1452
__send_duplicate_bios(struct clone_info * ci,struct dm_target * ti,unsigned num_bios,unsigned * len)1453 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1454 unsigned num_bios, unsigned *len)
1455 {
1456 struct bio_list blist = BIO_EMPTY_LIST;
1457 struct bio *bio;
1458 struct dm_target_io *tio;
1459
1460 alloc_multiple_bios(&blist, ci, ti, num_bios);
1461
1462 while ((bio = bio_list_pop(&blist))) {
1463 tio = container_of(bio, struct dm_target_io, clone);
1464 (void) __clone_and_map_simple_bio(ci, tio, len);
1465 }
1466 }
1467
__send_empty_flush(struct clone_info * ci)1468 static int __send_empty_flush(struct clone_info *ci)
1469 {
1470 unsigned target_nr = 0;
1471 struct dm_target *ti;
1472 struct bio flush_bio;
1473
1474 /*
1475 * Use an on-stack bio for this, it's safe since we don't
1476 * need to reference it after submit. It's just used as
1477 * the basis for the clone(s).
1478 */
1479 bio_init(&flush_bio, NULL, 0);
1480 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1481 bio_set_dev(&flush_bio, ci->io->md->disk->part0);
1482
1483 ci->bio = &flush_bio;
1484 ci->sector_count = 0;
1485
1486 BUG_ON(bio_has_data(ci->bio));
1487 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1488 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1489
1490 bio_uninit(ci->bio);
1491 return 0;
1492 }
1493
__clone_and_map_data_bio(struct clone_info * ci,struct dm_target * ti,sector_t sector,unsigned * len)1494 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1495 sector_t sector, unsigned *len)
1496 {
1497 struct bio *bio = ci->bio;
1498 struct dm_target_io *tio;
1499 int r;
1500
1501 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1502 tio->len_ptr = len;
1503 r = clone_bio(tio, bio, sector, *len);
1504 if (r < 0) {
1505 free_tio(tio);
1506 return r;
1507 }
1508 (void) __map_bio(tio);
1509
1510 return 0;
1511 }
1512
__send_changing_extent_only(struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1513 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1514 unsigned num_bios)
1515 {
1516 unsigned len;
1517
1518 /*
1519 * Even though the device advertised support for this type of
1520 * request, that does not mean every target supports it, and
1521 * reconfiguration might also have changed that since the
1522 * check was performed.
1523 */
1524 if (!num_bios)
1525 return -EOPNOTSUPP;
1526
1527 len = min_t(sector_t, ci->sector_count,
1528 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1529
1530 __send_duplicate_bios(ci, ti, num_bios, &len);
1531
1532 ci->sector += len;
1533 ci->sector_count -= len;
1534
1535 return 0;
1536 }
1537
is_abnormal_io(struct bio * bio)1538 static bool is_abnormal_io(struct bio *bio)
1539 {
1540 bool r = false;
1541
1542 switch (bio_op(bio)) {
1543 case REQ_OP_DISCARD:
1544 case REQ_OP_SECURE_ERASE:
1545 case REQ_OP_WRITE_SAME:
1546 case REQ_OP_WRITE_ZEROES:
1547 r = true;
1548 break;
1549 }
1550
1551 return r;
1552 }
1553
__process_abnormal_io(struct clone_info * ci,struct dm_target * ti,int * result)1554 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1555 int *result)
1556 {
1557 struct bio *bio = ci->bio;
1558 unsigned num_bios = 0;
1559
1560 switch (bio_op(bio)) {
1561 case REQ_OP_DISCARD:
1562 num_bios = ti->num_discard_bios;
1563 break;
1564 case REQ_OP_SECURE_ERASE:
1565 num_bios = ti->num_secure_erase_bios;
1566 break;
1567 case REQ_OP_WRITE_SAME:
1568 num_bios = ti->num_write_same_bios;
1569 break;
1570 case REQ_OP_WRITE_ZEROES:
1571 num_bios = ti->num_write_zeroes_bios;
1572 break;
1573 default:
1574 return false;
1575 }
1576
1577 *result = __send_changing_extent_only(ci, ti, num_bios);
1578 return true;
1579 }
1580
1581 /*
1582 * Select the correct strategy for processing a non-flush bio.
1583 */
__split_and_process_non_flush(struct clone_info * ci)1584 static int __split_and_process_non_flush(struct clone_info *ci)
1585 {
1586 struct dm_target *ti;
1587 unsigned len;
1588 int r;
1589
1590 ti = dm_table_find_target(ci->map, ci->sector);
1591 if (!ti)
1592 return -EIO;
1593
1594 if (__process_abnormal_io(ci, ti, &r))
1595 return r;
1596
1597 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1598
1599 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1600 if (r < 0)
1601 return r;
1602
1603 ci->sector += len;
1604 ci->sector_count -= len;
1605
1606 return 0;
1607 }
1608
init_clone_info(struct clone_info * ci,struct mapped_device * md,struct dm_table * map,struct bio * bio)1609 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1610 struct dm_table *map, struct bio *bio)
1611 {
1612 ci->map = map;
1613 ci->io = alloc_io(md, bio);
1614 ci->sector = bio->bi_iter.bi_sector;
1615 }
1616
1617 #define __dm_part_stat_sub(part, field, subnd) \
1618 (part_stat_get(part, field) -= (subnd))
1619
1620 /*
1621 * Entry point to split a bio into clones and submit them to the targets.
1622 */
__split_and_process_bio(struct mapped_device * md,struct dm_table * map,struct bio * bio)1623 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1624 struct dm_table *map, struct bio *bio)
1625 {
1626 struct clone_info ci;
1627 blk_qc_t ret = BLK_QC_T_NONE;
1628 int error = 0;
1629
1630 init_clone_info(&ci, md, map, bio);
1631
1632 if (bio->bi_opf & REQ_PREFLUSH) {
1633 error = __send_empty_flush(&ci);
1634 /* dec_pending submits any data associated with flush */
1635 } else if (op_is_zone_mgmt(bio_op(bio))) {
1636 ci.bio = bio;
1637 ci.sector_count = 0;
1638 error = __split_and_process_non_flush(&ci);
1639 } else {
1640 ci.bio = bio;
1641 ci.sector_count = bio_sectors(bio);
1642 error = __split_and_process_non_flush(&ci);
1643 if (ci.sector_count && !error) {
1644 /*
1645 * Remainder must be passed to submit_bio_noacct()
1646 * so that it gets handled *after* bios already submitted
1647 * have been completely processed.
1648 * We take a clone of the original to store in
1649 * ci.io->orig_bio to be used by end_io_acct() and
1650 * for dec_pending to use for completion handling.
1651 */
1652 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1653 GFP_NOIO, &md->queue->bio_split);
1654 ci.io->orig_bio = b;
1655
1656 /*
1657 * Adjust IO stats for each split, otherwise upon queue
1658 * reentry there will be redundant IO accounting.
1659 * NOTE: this is a stop-gap fix, a proper fix involves
1660 * significant refactoring of DM core's bio splitting
1661 * (by eliminating DM's splitting and just using bio_split)
1662 */
1663 part_stat_lock();
1664 __dm_part_stat_sub(dm_disk(md)->part0,
1665 sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1666 part_stat_unlock();
1667
1668 bio_chain(b, bio);
1669 trace_block_split(b, bio->bi_iter.bi_sector);
1670 ret = submit_bio_noacct(bio);
1671 }
1672 }
1673
1674 /* drop the extra reference count */
1675 dec_pending(ci.io, errno_to_blk_status(error));
1676 return ret;
1677 }
1678
dm_submit_bio(struct bio * bio)1679 static blk_qc_t dm_submit_bio(struct bio *bio)
1680 {
1681 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1682 blk_qc_t ret = BLK_QC_T_NONE;
1683 int srcu_idx;
1684 struct dm_table *map;
1685
1686 map = dm_get_live_table(md, &srcu_idx);
1687 if (unlikely(!map)) {
1688 DMERR_LIMIT("%s: mapping table unavailable, erroring io",
1689 dm_device_name(md));
1690 bio_io_error(bio);
1691 goto out;
1692 }
1693
1694 /* If suspended, queue this IO for later */
1695 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1696 if (bio->bi_opf & REQ_NOWAIT)
1697 bio_wouldblock_error(bio);
1698 else if (bio->bi_opf & REQ_RAHEAD)
1699 bio_io_error(bio);
1700 else
1701 queue_io(md, bio);
1702 goto out;
1703 }
1704
1705 /*
1706 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1707 * otherwise associated queue_limits won't be imposed.
1708 */
1709 if (is_abnormal_io(bio))
1710 blk_queue_split(&bio);
1711
1712 ret = __split_and_process_bio(md, map, bio);
1713 out:
1714 dm_put_live_table(md, srcu_idx);
1715 return ret;
1716 }
1717
1718 /*-----------------------------------------------------------------
1719 * An IDR is used to keep track of allocated minor numbers.
1720 *---------------------------------------------------------------*/
free_minor(int minor)1721 static void free_minor(int minor)
1722 {
1723 spin_lock(&_minor_lock);
1724 idr_remove(&_minor_idr, minor);
1725 spin_unlock(&_minor_lock);
1726 }
1727
1728 /*
1729 * See if the device with a specific minor # is free.
1730 */
specific_minor(int minor)1731 static int specific_minor(int minor)
1732 {
1733 int r;
1734
1735 if (minor >= (1 << MINORBITS))
1736 return -EINVAL;
1737
1738 idr_preload(GFP_KERNEL);
1739 spin_lock(&_minor_lock);
1740
1741 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1742
1743 spin_unlock(&_minor_lock);
1744 idr_preload_end();
1745 if (r < 0)
1746 return r == -ENOSPC ? -EBUSY : r;
1747 return 0;
1748 }
1749
next_free_minor(int * minor)1750 static int next_free_minor(int *minor)
1751 {
1752 int r;
1753
1754 idr_preload(GFP_KERNEL);
1755 spin_lock(&_minor_lock);
1756
1757 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1758
1759 spin_unlock(&_minor_lock);
1760 idr_preload_end();
1761 if (r < 0)
1762 return r;
1763 *minor = r;
1764 return 0;
1765 }
1766
1767 static const struct block_device_operations dm_blk_dops;
1768 static const struct block_device_operations dm_rq_blk_dops;
1769 static const struct dax_operations dm_dax_ops;
1770
1771 static void dm_wq_work(struct work_struct *work);
1772
1773 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
dm_queue_destroy_keyslot_manager(struct request_queue * q)1774 static void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1775 {
1776 dm_destroy_keyslot_manager(q->ksm);
1777 }
1778
1779 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1780
dm_queue_destroy_keyslot_manager(struct request_queue * q)1781 static inline void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1782 {
1783 }
1784 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1785
cleanup_mapped_device(struct mapped_device * md)1786 static void cleanup_mapped_device(struct mapped_device *md)
1787 {
1788 if (md->wq)
1789 destroy_workqueue(md->wq);
1790 bioset_exit(&md->bs);
1791 bioset_exit(&md->io_bs);
1792
1793 if (md->dax_dev) {
1794 kill_dax(md->dax_dev);
1795 put_dax(md->dax_dev);
1796 md->dax_dev = NULL;
1797 }
1798
1799 if (md->disk) {
1800 spin_lock(&_minor_lock);
1801 md->disk->private_data = NULL;
1802 spin_unlock(&_minor_lock);
1803 del_gendisk(md->disk);
1804 put_disk(md->disk);
1805 }
1806
1807 if (md->queue) {
1808 dm_queue_destroy_keyslot_manager(md->queue);
1809 blk_cleanup_queue(md->queue);
1810 }
1811
1812 cleanup_srcu_struct(&md->io_barrier);
1813
1814 mutex_destroy(&md->suspend_lock);
1815 mutex_destroy(&md->type_lock);
1816 mutex_destroy(&md->table_devices_lock);
1817 mutex_destroy(&md->swap_bios_lock);
1818
1819 dm_mq_cleanup_mapped_device(md);
1820 }
1821
1822 /*
1823 * Allocate and initialise a blank device with a given minor.
1824 */
alloc_dev(int minor)1825 static struct mapped_device *alloc_dev(int minor)
1826 {
1827 int r, numa_node_id = dm_get_numa_node();
1828 struct mapped_device *md;
1829 void *old_md;
1830
1831 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1832 if (!md) {
1833 DMWARN("unable to allocate device, out of memory.");
1834 return NULL;
1835 }
1836
1837 if (!try_module_get(THIS_MODULE))
1838 goto bad_module_get;
1839
1840 /* get a minor number for the dev */
1841 if (minor == DM_ANY_MINOR)
1842 r = next_free_minor(&minor);
1843 else
1844 r = specific_minor(minor);
1845 if (r < 0)
1846 goto bad_minor;
1847
1848 r = init_srcu_struct(&md->io_barrier);
1849 if (r < 0)
1850 goto bad_io_barrier;
1851
1852 md->numa_node_id = numa_node_id;
1853 md->init_tio_pdu = false;
1854 md->type = DM_TYPE_NONE;
1855 mutex_init(&md->suspend_lock);
1856 mutex_init(&md->type_lock);
1857 mutex_init(&md->table_devices_lock);
1858 spin_lock_init(&md->deferred_lock);
1859 atomic_set(&md->holders, 1);
1860 atomic_set(&md->open_count, 0);
1861 atomic_set(&md->event_nr, 0);
1862 atomic_set(&md->uevent_seq, 0);
1863 INIT_LIST_HEAD(&md->uevent_list);
1864 INIT_LIST_HEAD(&md->table_devices);
1865 spin_lock_init(&md->uevent_lock);
1866
1867 /*
1868 * default to bio-based until DM table is loaded and md->type
1869 * established. If request-based table is loaded: blk-mq will
1870 * override accordingly.
1871 */
1872 md->queue = blk_alloc_queue(numa_node_id);
1873 if (!md->queue)
1874 goto bad;
1875
1876 md->disk = alloc_disk_node(1, md->numa_node_id);
1877 if (!md->disk)
1878 goto bad;
1879
1880 init_waitqueue_head(&md->wait);
1881 INIT_WORK(&md->work, dm_wq_work);
1882 init_waitqueue_head(&md->eventq);
1883 init_completion(&md->kobj_holder.completion);
1884
1885 md->swap_bios = get_swap_bios();
1886 sema_init(&md->swap_bios_semaphore, md->swap_bios);
1887 mutex_init(&md->swap_bios_lock);
1888
1889 md->disk->major = _major;
1890 md->disk->first_minor = minor;
1891 md->disk->fops = &dm_blk_dops;
1892 md->disk->queue = md->queue;
1893 md->disk->private_data = md;
1894 sprintf(md->disk->disk_name, "dm-%d", minor);
1895
1896 if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1897 md->dax_dev = alloc_dax(md, md->disk->disk_name,
1898 &dm_dax_ops, 0);
1899 if (IS_ERR(md->dax_dev))
1900 goto bad;
1901 }
1902
1903 add_disk_no_queue_reg(md->disk);
1904 format_dev_t(md->name, MKDEV(_major, minor));
1905
1906 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1907 if (!md->wq)
1908 goto bad;
1909
1910 dm_stats_init(&md->stats);
1911
1912 /* Populate the mapping, nobody knows we exist yet */
1913 spin_lock(&_minor_lock);
1914 old_md = idr_replace(&_minor_idr, md, minor);
1915 spin_unlock(&_minor_lock);
1916
1917 BUG_ON(old_md != MINOR_ALLOCED);
1918
1919 return md;
1920
1921 bad:
1922 cleanup_mapped_device(md);
1923 bad_io_barrier:
1924 free_minor(minor);
1925 bad_minor:
1926 module_put(THIS_MODULE);
1927 bad_module_get:
1928 kvfree(md);
1929 return NULL;
1930 }
1931
1932 static void unlock_fs(struct mapped_device *md);
1933
free_dev(struct mapped_device * md)1934 static void free_dev(struct mapped_device *md)
1935 {
1936 int minor = MINOR(disk_devt(md->disk));
1937
1938 unlock_fs(md);
1939
1940 cleanup_mapped_device(md);
1941
1942 free_table_devices(&md->table_devices);
1943 dm_stats_cleanup(&md->stats);
1944 free_minor(minor);
1945
1946 module_put(THIS_MODULE);
1947 kvfree(md);
1948 }
1949
__bind_mempools(struct mapped_device * md,struct dm_table * t)1950 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1951 {
1952 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1953 int ret = 0;
1954
1955 if (dm_table_bio_based(t)) {
1956 /*
1957 * The md may already have mempools that need changing.
1958 * If so, reload bioset because front_pad may have changed
1959 * because a different table was loaded.
1960 */
1961 bioset_exit(&md->bs);
1962 bioset_exit(&md->io_bs);
1963
1964 } else if (bioset_initialized(&md->bs)) {
1965 /*
1966 * There's no need to reload with request-based dm
1967 * because the size of front_pad doesn't change.
1968 * Note for future: If you are to reload bioset,
1969 * prep-ed requests in the queue may refer
1970 * to bio from the old bioset, so you must walk
1971 * through the queue to unprep.
1972 */
1973 goto out;
1974 }
1975
1976 BUG_ON(!p ||
1977 bioset_initialized(&md->bs) ||
1978 bioset_initialized(&md->io_bs));
1979
1980 ret = bioset_init_from_src(&md->bs, &p->bs);
1981 if (ret)
1982 goto out;
1983 ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1984 if (ret)
1985 bioset_exit(&md->bs);
1986 out:
1987 /* mempool bind completed, no longer need any mempools in the table */
1988 dm_table_free_md_mempools(t);
1989 return ret;
1990 }
1991
1992 /*
1993 * Bind a table to the device.
1994 */
event_callback(void * context)1995 static void event_callback(void *context)
1996 {
1997 unsigned long flags;
1998 LIST_HEAD(uevents);
1999 struct mapped_device *md = (struct mapped_device *) context;
2000
2001 spin_lock_irqsave(&md->uevent_lock, flags);
2002 list_splice_init(&md->uevent_list, &uevents);
2003 spin_unlock_irqrestore(&md->uevent_lock, flags);
2004
2005 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2006
2007 atomic_inc(&md->event_nr);
2008 wake_up(&md->eventq);
2009 dm_issue_global_event();
2010 }
2011
2012 /*
2013 * Returns old map, which caller must destroy.
2014 */
__bind(struct mapped_device * md,struct dm_table * t,struct queue_limits * limits)2015 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2016 struct queue_limits *limits)
2017 {
2018 struct dm_table *old_map;
2019 struct request_queue *q = md->queue;
2020 bool request_based = dm_table_request_based(t);
2021 sector_t size;
2022 int ret;
2023
2024 lockdep_assert_held(&md->suspend_lock);
2025
2026 size = dm_table_get_size(t);
2027
2028 /*
2029 * Wipe any geometry if the size of the table changed.
2030 */
2031 if (size != dm_get_size(md))
2032 memset(&md->geometry, 0, sizeof(md->geometry));
2033
2034 if (!get_capacity(md->disk))
2035 set_capacity(md->disk, size);
2036 else
2037 set_capacity_and_notify(md->disk, size);
2038
2039 dm_table_event_callback(t, event_callback, md);
2040
2041 /*
2042 * The queue hasn't been stopped yet, if the old table type wasn't
2043 * for request-based during suspension. So stop it to prevent
2044 * I/O mapping before resume.
2045 * This must be done before setting the queue restrictions,
2046 * because request-based dm may be run just after the setting.
2047 */
2048 if (request_based)
2049 dm_stop_queue(q);
2050
2051 if (request_based) {
2052 /*
2053 * Leverage the fact that request-based DM targets are
2054 * immutable singletons - used to optimize dm_mq_queue_rq.
2055 */
2056 md->immutable_target = dm_table_get_immutable_target(t);
2057 }
2058
2059 ret = __bind_mempools(md, t);
2060 if (ret) {
2061 old_map = ERR_PTR(ret);
2062 goto out;
2063 }
2064
2065 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2066 rcu_assign_pointer(md->map, (void *)t);
2067 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2068
2069 dm_table_set_restrictions(t, q, limits);
2070 if (old_map)
2071 dm_sync_table(md);
2072
2073 out:
2074 return old_map;
2075 }
2076
2077 /*
2078 * Returns unbound table for the caller to free.
2079 */
__unbind(struct mapped_device * md)2080 static struct dm_table *__unbind(struct mapped_device *md)
2081 {
2082 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2083
2084 if (!map)
2085 return NULL;
2086
2087 dm_table_event_callback(map, NULL, NULL);
2088 RCU_INIT_POINTER(md->map, NULL);
2089 dm_sync_table(md);
2090
2091 return map;
2092 }
2093
2094 /*
2095 * Constructor for a new device.
2096 */
dm_create(int minor,struct mapped_device ** result)2097 int dm_create(int minor, struct mapped_device **result)
2098 {
2099 int r;
2100 struct mapped_device *md;
2101
2102 md = alloc_dev(minor);
2103 if (!md)
2104 return -ENXIO;
2105
2106 r = dm_sysfs_init(md);
2107 if (r) {
2108 free_dev(md);
2109 return r;
2110 }
2111
2112 *result = md;
2113 return 0;
2114 }
2115
2116 /*
2117 * Functions to manage md->type.
2118 * All are required to hold md->type_lock.
2119 */
dm_lock_md_type(struct mapped_device * md)2120 void dm_lock_md_type(struct mapped_device *md)
2121 {
2122 mutex_lock(&md->type_lock);
2123 }
2124
dm_unlock_md_type(struct mapped_device * md)2125 void dm_unlock_md_type(struct mapped_device *md)
2126 {
2127 mutex_unlock(&md->type_lock);
2128 }
2129
dm_set_md_type(struct mapped_device * md,enum dm_queue_mode type)2130 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2131 {
2132 BUG_ON(!mutex_is_locked(&md->type_lock));
2133 md->type = type;
2134 }
2135
dm_get_md_type(struct mapped_device * md)2136 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2137 {
2138 return md->type;
2139 }
2140
dm_get_immutable_target_type(struct mapped_device * md)2141 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2142 {
2143 return md->immutable_target_type;
2144 }
2145
2146 /*
2147 * The queue_limits are only valid as long as you have a reference
2148 * count on 'md'.
2149 */
dm_get_queue_limits(struct mapped_device * md)2150 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2151 {
2152 BUG_ON(!atomic_read(&md->holders));
2153 return &md->queue->limits;
2154 }
2155 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2156
2157 /*
2158 * Setup the DM device's queue based on md's type
2159 */
dm_setup_md_queue(struct mapped_device * md,struct dm_table * t)2160 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2161 {
2162 int r;
2163 struct queue_limits limits;
2164 enum dm_queue_mode type = dm_get_md_type(md);
2165
2166 switch (type) {
2167 case DM_TYPE_REQUEST_BASED:
2168 md->disk->fops = &dm_rq_blk_dops;
2169 r = dm_mq_init_request_queue(md, t);
2170 if (r) {
2171 DMERR("Cannot initialize queue for request-based dm mapped device");
2172 return r;
2173 }
2174 break;
2175 case DM_TYPE_BIO_BASED:
2176 case DM_TYPE_DAX_BIO_BASED:
2177 break;
2178 case DM_TYPE_NONE:
2179 WARN_ON_ONCE(true);
2180 break;
2181 }
2182
2183 r = dm_calculate_queue_limits(t, &limits);
2184 if (r) {
2185 DMERR("Cannot calculate initial queue limits");
2186 return r;
2187 }
2188 dm_table_set_restrictions(t, md->queue, &limits);
2189 blk_register_queue(md->disk);
2190
2191 return 0;
2192 }
2193
dm_get_md(dev_t dev)2194 struct mapped_device *dm_get_md(dev_t dev)
2195 {
2196 struct mapped_device *md;
2197 unsigned minor = MINOR(dev);
2198
2199 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2200 return NULL;
2201
2202 spin_lock(&_minor_lock);
2203
2204 md = idr_find(&_minor_idr, minor);
2205 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2206 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2207 md = NULL;
2208 goto out;
2209 }
2210 dm_get(md);
2211 out:
2212 spin_unlock(&_minor_lock);
2213
2214 return md;
2215 }
2216 EXPORT_SYMBOL_GPL(dm_get_md);
2217
dm_get_mdptr(struct mapped_device * md)2218 void *dm_get_mdptr(struct mapped_device *md)
2219 {
2220 return md->interface_ptr;
2221 }
2222
dm_set_mdptr(struct mapped_device * md,void * ptr)2223 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2224 {
2225 md->interface_ptr = ptr;
2226 }
2227
dm_get(struct mapped_device * md)2228 void dm_get(struct mapped_device *md)
2229 {
2230 atomic_inc(&md->holders);
2231 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2232 }
2233
dm_hold(struct mapped_device * md)2234 int dm_hold(struct mapped_device *md)
2235 {
2236 spin_lock(&_minor_lock);
2237 if (test_bit(DMF_FREEING, &md->flags)) {
2238 spin_unlock(&_minor_lock);
2239 return -EBUSY;
2240 }
2241 dm_get(md);
2242 spin_unlock(&_minor_lock);
2243 return 0;
2244 }
2245 EXPORT_SYMBOL_GPL(dm_hold);
2246
dm_device_name(struct mapped_device * md)2247 const char *dm_device_name(struct mapped_device *md)
2248 {
2249 return md->name;
2250 }
2251 EXPORT_SYMBOL_GPL(dm_device_name);
2252
__dm_destroy(struct mapped_device * md,bool wait)2253 static void __dm_destroy(struct mapped_device *md, bool wait)
2254 {
2255 struct dm_table *map;
2256 int srcu_idx;
2257
2258 might_sleep();
2259
2260 spin_lock(&_minor_lock);
2261 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2262 set_bit(DMF_FREEING, &md->flags);
2263 spin_unlock(&_minor_lock);
2264
2265 blk_set_queue_dying(md->queue);
2266
2267 /*
2268 * Take suspend_lock so that presuspend and postsuspend methods
2269 * do not race with internal suspend.
2270 */
2271 mutex_lock(&md->suspend_lock);
2272 map = dm_get_live_table(md, &srcu_idx);
2273 if (!dm_suspended_md(md)) {
2274 dm_table_presuspend_targets(map);
2275 set_bit(DMF_SUSPENDED, &md->flags);
2276 set_bit(DMF_POST_SUSPENDING, &md->flags);
2277 dm_table_postsuspend_targets(map);
2278 }
2279 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2280 dm_put_live_table(md, srcu_idx);
2281 mutex_unlock(&md->suspend_lock);
2282
2283 /*
2284 * Rare, but there may be I/O requests still going to complete,
2285 * for example. Wait for all references to disappear.
2286 * No one should increment the reference count of the mapped_device,
2287 * after the mapped_device state becomes DMF_FREEING.
2288 */
2289 if (wait)
2290 while (atomic_read(&md->holders))
2291 msleep(1);
2292 else if (atomic_read(&md->holders))
2293 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2294 dm_device_name(md), atomic_read(&md->holders));
2295
2296 dm_sysfs_exit(md);
2297 dm_table_destroy(__unbind(md));
2298 free_dev(md);
2299 }
2300
dm_destroy(struct mapped_device * md)2301 void dm_destroy(struct mapped_device *md)
2302 {
2303 __dm_destroy(md, true);
2304 }
2305
dm_destroy_immediate(struct mapped_device * md)2306 void dm_destroy_immediate(struct mapped_device *md)
2307 {
2308 __dm_destroy(md, false);
2309 }
2310
dm_put(struct mapped_device * md)2311 void dm_put(struct mapped_device *md)
2312 {
2313 atomic_dec(&md->holders);
2314 }
2315 EXPORT_SYMBOL_GPL(dm_put);
2316
md_in_flight_bios(struct mapped_device * md)2317 static bool md_in_flight_bios(struct mapped_device *md)
2318 {
2319 int cpu;
2320 struct block_device *part = dm_disk(md)->part0;
2321 long sum = 0;
2322
2323 for_each_possible_cpu(cpu) {
2324 sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2325 sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2326 }
2327
2328 return sum != 0;
2329 }
2330
dm_wait_for_bios_completion(struct mapped_device * md,long task_state)2331 static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state)
2332 {
2333 int r = 0;
2334 DEFINE_WAIT(wait);
2335
2336 while (true) {
2337 prepare_to_wait(&md->wait, &wait, task_state);
2338
2339 if (!md_in_flight_bios(md))
2340 break;
2341
2342 if (signal_pending_state(task_state, current)) {
2343 r = -EINTR;
2344 break;
2345 }
2346
2347 io_schedule();
2348 }
2349 finish_wait(&md->wait, &wait);
2350
2351 return r;
2352 }
2353
dm_wait_for_completion(struct mapped_device * md,long task_state)2354 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2355 {
2356 int r = 0;
2357
2358 if (!queue_is_mq(md->queue))
2359 return dm_wait_for_bios_completion(md, task_state);
2360
2361 while (true) {
2362 if (!blk_mq_queue_inflight(md->queue))
2363 break;
2364
2365 if (signal_pending_state(task_state, current)) {
2366 r = -EINTR;
2367 break;
2368 }
2369
2370 msleep(5);
2371 }
2372
2373 return r;
2374 }
2375
2376 /*
2377 * Process the deferred bios
2378 */
dm_wq_work(struct work_struct * work)2379 static void dm_wq_work(struct work_struct *work)
2380 {
2381 struct mapped_device *md = container_of(work, struct mapped_device, work);
2382 struct bio *bio;
2383
2384 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2385 spin_lock_irq(&md->deferred_lock);
2386 bio = bio_list_pop(&md->deferred);
2387 spin_unlock_irq(&md->deferred_lock);
2388
2389 if (!bio)
2390 break;
2391
2392 submit_bio_noacct(bio);
2393 }
2394 }
2395
dm_queue_flush(struct mapped_device * md)2396 static void dm_queue_flush(struct mapped_device *md)
2397 {
2398 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2399 smp_mb__after_atomic();
2400 queue_work(md->wq, &md->work);
2401 }
2402
2403 /*
2404 * Swap in a new table, returning the old one for the caller to destroy.
2405 */
dm_swap_table(struct mapped_device * md,struct dm_table * table)2406 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2407 {
2408 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2409 struct queue_limits limits;
2410 int r;
2411
2412 mutex_lock(&md->suspend_lock);
2413
2414 /* device must be suspended */
2415 if (!dm_suspended_md(md))
2416 goto out;
2417
2418 /*
2419 * If the new table has no data devices, retain the existing limits.
2420 * This helps multipath with queue_if_no_path if all paths disappear,
2421 * then new I/O is queued based on these limits, and then some paths
2422 * reappear.
2423 */
2424 if (dm_table_has_no_data_devices(table)) {
2425 live_map = dm_get_live_table_fast(md);
2426 if (live_map)
2427 limits = md->queue->limits;
2428 dm_put_live_table_fast(md);
2429 }
2430
2431 if (!live_map) {
2432 r = dm_calculate_queue_limits(table, &limits);
2433 if (r) {
2434 map = ERR_PTR(r);
2435 goto out;
2436 }
2437 }
2438
2439 map = __bind(md, table, &limits);
2440 dm_issue_global_event();
2441
2442 out:
2443 mutex_unlock(&md->suspend_lock);
2444 return map;
2445 }
2446
2447 /*
2448 * Functions to lock and unlock any filesystem running on the
2449 * device.
2450 */
lock_fs(struct mapped_device * md)2451 static int lock_fs(struct mapped_device *md)
2452 {
2453 int r;
2454
2455 WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2456
2457 r = freeze_bdev(md->disk->part0);
2458 if (!r)
2459 set_bit(DMF_FROZEN, &md->flags);
2460 return r;
2461 }
2462
unlock_fs(struct mapped_device * md)2463 static void unlock_fs(struct mapped_device *md)
2464 {
2465 if (!test_bit(DMF_FROZEN, &md->flags))
2466 return;
2467 thaw_bdev(md->disk->part0);
2468 clear_bit(DMF_FROZEN, &md->flags);
2469 }
2470
2471 /*
2472 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2473 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2474 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2475 *
2476 * If __dm_suspend returns 0, the device is completely quiescent
2477 * now. There is no request-processing activity. All new requests
2478 * are being added to md->deferred list.
2479 */
__dm_suspend(struct mapped_device * md,struct dm_table * map,unsigned suspend_flags,long task_state,int dmf_suspended_flag)2480 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2481 unsigned suspend_flags, long task_state,
2482 int dmf_suspended_flag)
2483 {
2484 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2485 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2486 int r;
2487
2488 lockdep_assert_held(&md->suspend_lock);
2489
2490 /*
2491 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2492 * This flag is cleared before dm_suspend returns.
2493 */
2494 if (noflush)
2495 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2496 else
2497 DMDEBUG("%s: suspending with flush", dm_device_name(md));
2498
2499 /*
2500 * This gets reverted if there's an error later and the targets
2501 * provide the .presuspend_undo hook.
2502 */
2503 dm_table_presuspend_targets(map);
2504
2505 /*
2506 * Flush I/O to the device.
2507 * Any I/O submitted after lock_fs() may not be flushed.
2508 * noflush takes precedence over do_lockfs.
2509 * (lock_fs() flushes I/Os and waits for them to complete.)
2510 */
2511 if (!noflush && do_lockfs) {
2512 r = lock_fs(md);
2513 if (r) {
2514 dm_table_presuspend_undo_targets(map);
2515 return r;
2516 }
2517 }
2518
2519 /*
2520 * Here we must make sure that no processes are submitting requests
2521 * to target drivers i.e. no one may be executing
2522 * __split_and_process_bio from dm_submit_bio.
2523 *
2524 * To get all processes out of __split_and_process_bio in dm_submit_bio,
2525 * we take the write lock. To prevent any process from reentering
2526 * __split_and_process_bio from dm_submit_bio and quiesce the thread
2527 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2528 * flush_workqueue(md->wq).
2529 */
2530 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2531 if (map)
2532 synchronize_srcu(&md->io_barrier);
2533
2534 /*
2535 * Stop md->queue before flushing md->wq in case request-based
2536 * dm defers requests to md->wq from md->queue.
2537 */
2538 if (dm_request_based(md))
2539 dm_stop_queue(md->queue);
2540
2541 flush_workqueue(md->wq);
2542
2543 /*
2544 * At this point no more requests are entering target request routines.
2545 * We call dm_wait_for_completion to wait for all existing requests
2546 * to finish.
2547 */
2548 r = dm_wait_for_completion(md, task_state);
2549 if (!r)
2550 set_bit(dmf_suspended_flag, &md->flags);
2551
2552 if (noflush)
2553 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2554 if (map)
2555 synchronize_srcu(&md->io_barrier);
2556
2557 /* were we interrupted ? */
2558 if (r < 0) {
2559 dm_queue_flush(md);
2560
2561 if (dm_request_based(md))
2562 dm_start_queue(md->queue);
2563
2564 unlock_fs(md);
2565 dm_table_presuspend_undo_targets(map);
2566 /* pushback list is already flushed, so skip flush */
2567 }
2568
2569 return r;
2570 }
2571
2572 /*
2573 * We need to be able to change a mapping table under a mounted
2574 * filesystem. For example we might want to move some data in
2575 * the background. Before the table can be swapped with
2576 * dm_bind_table, dm_suspend must be called to flush any in
2577 * flight bios and ensure that any further io gets deferred.
2578 */
2579 /*
2580 * Suspend mechanism in request-based dm.
2581 *
2582 * 1. Flush all I/Os by lock_fs() if needed.
2583 * 2. Stop dispatching any I/O by stopping the request_queue.
2584 * 3. Wait for all in-flight I/Os to be completed or requeued.
2585 *
2586 * To abort suspend, start the request_queue.
2587 */
dm_suspend(struct mapped_device * md,unsigned suspend_flags)2588 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2589 {
2590 struct dm_table *map = NULL;
2591 int r = 0;
2592
2593 retry:
2594 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2595
2596 if (dm_suspended_md(md)) {
2597 r = -EINVAL;
2598 goto out_unlock;
2599 }
2600
2601 if (dm_suspended_internally_md(md)) {
2602 /* already internally suspended, wait for internal resume */
2603 mutex_unlock(&md->suspend_lock);
2604 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2605 if (r)
2606 return r;
2607 goto retry;
2608 }
2609
2610 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2611
2612 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2613 if (r)
2614 goto out_unlock;
2615
2616 set_bit(DMF_POST_SUSPENDING, &md->flags);
2617 dm_table_postsuspend_targets(map);
2618 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2619
2620 out_unlock:
2621 mutex_unlock(&md->suspend_lock);
2622 return r;
2623 }
2624
__dm_resume(struct mapped_device * md,struct dm_table * map)2625 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2626 {
2627 if (map) {
2628 int r = dm_table_resume_targets(map);
2629 if (r)
2630 return r;
2631 }
2632
2633 dm_queue_flush(md);
2634
2635 /*
2636 * Flushing deferred I/Os must be done after targets are resumed
2637 * so that mapping of targets can work correctly.
2638 * Request-based dm is queueing the deferred I/Os in its request_queue.
2639 */
2640 if (dm_request_based(md))
2641 dm_start_queue(md->queue);
2642
2643 unlock_fs(md);
2644
2645 return 0;
2646 }
2647
dm_resume(struct mapped_device * md)2648 int dm_resume(struct mapped_device *md)
2649 {
2650 int r;
2651 struct dm_table *map = NULL;
2652
2653 retry:
2654 r = -EINVAL;
2655 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2656
2657 if (!dm_suspended_md(md))
2658 goto out;
2659
2660 if (dm_suspended_internally_md(md)) {
2661 /* already internally suspended, wait for internal resume */
2662 mutex_unlock(&md->suspend_lock);
2663 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2664 if (r)
2665 return r;
2666 goto retry;
2667 }
2668
2669 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2670 if (!map || !dm_table_get_size(map))
2671 goto out;
2672
2673 r = __dm_resume(md, map);
2674 if (r)
2675 goto out;
2676
2677 clear_bit(DMF_SUSPENDED, &md->flags);
2678 out:
2679 mutex_unlock(&md->suspend_lock);
2680
2681 return r;
2682 }
2683
2684 /*
2685 * Internal suspend/resume works like userspace-driven suspend. It waits
2686 * until all bios finish and prevents issuing new bios to the target drivers.
2687 * It may be used only from the kernel.
2688 */
2689
__dm_internal_suspend(struct mapped_device * md,unsigned suspend_flags)2690 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2691 {
2692 struct dm_table *map = NULL;
2693
2694 lockdep_assert_held(&md->suspend_lock);
2695
2696 if (md->internal_suspend_count++)
2697 return; /* nested internal suspend */
2698
2699 if (dm_suspended_md(md)) {
2700 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2701 return; /* nest suspend */
2702 }
2703
2704 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2705
2706 /*
2707 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2708 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2709 * would require changing .presuspend to return an error -- avoid this
2710 * until there is a need for more elaborate variants of internal suspend.
2711 */
2712 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2713 DMF_SUSPENDED_INTERNALLY);
2714
2715 set_bit(DMF_POST_SUSPENDING, &md->flags);
2716 dm_table_postsuspend_targets(map);
2717 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2718 }
2719
__dm_internal_resume(struct mapped_device * md)2720 static void __dm_internal_resume(struct mapped_device *md)
2721 {
2722 BUG_ON(!md->internal_suspend_count);
2723
2724 if (--md->internal_suspend_count)
2725 return; /* resume from nested internal suspend */
2726
2727 if (dm_suspended_md(md))
2728 goto done; /* resume from nested suspend */
2729
2730 /*
2731 * NOTE: existing callers don't need to call dm_table_resume_targets
2732 * (which may fail -- so best to avoid it for now by passing NULL map)
2733 */
2734 (void) __dm_resume(md, NULL);
2735
2736 done:
2737 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2738 smp_mb__after_atomic();
2739 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2740 }
2741
dm_internal_suspend_noflush(struct mapped_device * md)2742 void dm_internal_suspend_noflush(struct mapped_device *md)
2743 {
2744 mutex_lock(&md->suspend_lock);
2745 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2746 mutex_unlock(&md->suspend_lock);
2747 }
2748 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2749
dm_internal_resume(struct mapped_device * md)2750 void dm_internal_resume(struct mapped_device *md)
2751 {
2752 mutex_lock(&md->suspend_lock);
2753 __dm_internal_resume(md);
2754 mutex_unlock(&md->suspend_lock);
2755 }
2756 EXPORT_SYMBOL_GPL(dm_internal_resume);
2757
2758 /*
2759 * Fast variants of internal suspend/resume hold md->suspend_lock,
2760 * which prevents interaction with userspace-driven suspend.
2761 */
2762
dm_internal_suspend_fast(struct mapped_device * md)2763 void dm_internal_suspend_fast(struct mapped_device *md)
2764 {
2765 mutex_lock(&md->suspend_lock);
2766 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2767 return;
2768
2769 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2770 synchronize_srcu(&md->io_barrier);
2771 flush_workqueue(md->wq);
2772 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2773 }
2774 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2775
dm_internal_resume_fast(struct mapped_device * md)2776 void dm_internal_resume_fast(struct mapped_device *md)
2777 {
2778 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2779 goto done;
2780
2781 dm_queue_flush(md);
2782
2783 done:
2784 mutex_unlock(&md->suspend_lock);
2785 }
2786 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2787
2788 /*-----------------------------------------------------------------
2789 * Event notification.
2790 *---------------------------------------------------------------*/
dm_kobject_uevent(struct mapped_device * md,enum kobject_action action,unsigned cookie)2791 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2792 unsigned cookie)
2793 {
2794 int r;
2795 unsigned noio_flag;
2796 char udev_cookie[DM_COOKIE_LENGTH];
2797 char *envp[] = { udev_cookie, NULL };
2798
2799 noio_flag = memalloc_noio_save();
2800
2801 if (!cookie)
2802 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2803 else {
2804 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2805 DM_COOKIE_ENV_VAR_NAME, cookie);
2806 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2807 action, envp);
2808 }
2809
2810 memalloc_noio_restore(noio_flag);
2811
2812 return r;
2813 }
2814
dm_next_uevent_seq(struct mapped_device * md)2815 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2816 {
2817 return atomic_add_return(1, &md->uevent_seq);
2818 }
2819
dm_get_event_nr(struct mapped_device * md)2820 uint32_t dm_get_event_nr(struct mapped_device *md)
2821 {
2822 return atomic_read(&md->event_nr);
2823 }
2824
dm_wait_event(struct mapped_device * md,int event_nr)2825 int dm_wait_event(struct mapped_device *md, int event_nr)
2826 {
2827 return wait_event_interruptible(md->eventq,
2828 (event_nr != atomic_read(&md->event_nr)));
2829 }
2830
dm_uevent_add(struct mapped_device * md,struct list_head * elist)2831 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2832 {
2833 unsigned long flags;
2834
2835 spin_lock_irqsave(&md->uevent_lock, flags);
2836 list_add(elist, &md->uevent_list);
2837 spin_unlock_irqrestore(&md->uevent_lock, flags);
2838 }
2839
2840 /*
2841 * The gendisk is only valid as long as you have a reference
2842 * count on 'md'.
2843 */
dm_disk(struct mapped_device * md)2844 struct gendisk *dm_disk(struct mapped_device *md)
2845 {
2846 return md->disk;
2847 }
2848 EXPORT_SYMBOL_GPL(dm_disk);
2849
dm_kobject(struct mapped_device * md)2850 struct kobject *dm_kobject(struct mapped_device *md)
2851 {
2852 return &md->kobj_holder.kobj;
2853 }
2854
dm_get_from_kobject(struct kobject * kobj)2855 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2856 {
2857 struct mapped_device *md;
2858
2859 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2860
2861 spin_lock(&_minor_lock);
2862 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2863 md = NULL;
2864 goto out;
2865 }
2866 dm_get(md);
2867 out:
2868 spin_unlock(&_minor_lock);
2869
2870 return md;
2871 }
2872
dm_suspended_md(struct mapped_device * md)2873 int dm_suspended_md(struct mapped_device *md)
2874 {
2875 return test_bit(DMF_SUSPENDED, &md->flags);
2876 }
2877
dm_post_suspending_md(struct mapped_device * md)2878 static int dm_post_suspending_md(struct mapped_device *md)
2879 {
2880 return test_bit(DMF_POST_SUSPENDING, &md->flags);
2881 }
2882
dm_suspended_internally_md(struct mapped_device * md)2883 int dm_suspended_internally_md(struct mapped_device *md)
2884 {
2885 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2886 }
2887
dm_test_deferred_remove_flag(struct mapped_device * md)2888 int dm_test_deferred_remove_flag(struct mapped_device *md)
2889 {
2890 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2891 }
2892
dm_suspended(struct dm_target * ti)2893 int dm_suspended(struct dm_target *ti)
2894 {
2895 return dm_suspended_md(ti->table->md);
2896 }
2897 EXPORT_SYMBOL_GPL(dm_suspended);
2898
dm_post_suspending(struct dm_target * ti)2899 int dm_post_suspending(struct dm_target *ti)
2900 {
2901 return dm_post_suspending_md(ti->table->md);
2902 }
2903 EXPORT_SYMBOL_GPL(dm_post_suspending);
2904
dm_noflush_suspending(struct dm_target * ti)2905 int dm_noflush_suspending(struct dm_target *ti)
2906 {
2907 return __noflush_suspending(ti->table->md);
2908 }
2909 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2910
dm_alloc_md_mempools(struct mapped_device * md,enum dm_queue_mode type,unsigned integrity,unsigned per_io_data_size,unsigned min_pool_size)2911 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2912 unsigned integrity, unsigned per_io_data_size,
2913 unsigned min_pool_size)
2914 {
2915 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2916 unsigned int pool_size = 0;
2917 unsigned int front_pad, io_front_pad;
2918 int ret;
2919
2920 if (!pools)
2921 return NULL;
2922
2923 switch (type) {
2924 case DM_TYPE_BIO_BASED:
2925 case DM_TYPE_DAX_BIO_BASED:
2926 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2927 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
2928 io_front_pad = roundup(per_io_data_size, __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
2929 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2930 if (ret)
2931 goto out;
2932 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2933 goto out;
2934 break;
2935 case DM_TYPE_REQUEST_BASED:
2936 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2937 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2938 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2939 break;
2940 default:
2941 BUG();
2942 }
2943
2944 ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2945 if (ret)
2946 goto out;
2947
2948 if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2949 goto out;
2950
2951 return pools;
2952
2953 out:
2954 dm_free_md_mempools(pools);
2955
2956 return NULL;
2957 }
2958
dm_free_md_mempools(struct dm_md_mempools * pools)2959 void dm_free_md_mempools(struct dm_md_mempools *pools)
2960 {
2961 if (!pools)
2962 return;
2963
2964 bioset_exit(&pools->bs);
2965 bioset_exit(&pools->io_bs);
2966
2967 kfree(pools);
2968 }
2969
2970 struct dm_pr {
2971 u64 old_key;
2972 u64 new_key;
2973 u32 flags;
2974 bool fail_early;
2975 };
2976
dm_call_pr(struct block_device * bdev,iterate_devices_callout_fn fn,void * data)2977 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2978 void *data)
2979 {
2980 struct mapped_device *md = bdev->bd_disk->private_data;
2981 struct dm_table *table;
2982 struct dm_target *ti;
2983 int ret = -ENOTTY, srcu_idx;
2984
2985 table = dm_get_live_table(md, &srcu_idx);
2986 if (!table || !dm_table_get_size(table))
2987 goto out;
2988
2989 /* We only support devices that have a single target */
2990 if (dm_table_get_num_targets(table) != 1)
2991 goto out;
2992 ti = dm_table_get_target(table, 0);
2993
2994 ret = -EINVAL;
2995 if (!ti->type->iterate_devices)
2996 goto out;
2997
2998 ret = ti->type->iterate_devices(ti, fn, data);
2999 out:
3000 dm_put_live_table(md, srcu_idx);
3001 return ret;
3002 }
3003
3004 /*
3005 * For register / unregister we need to manually call out to every path.
3006 */
__dm_pr_register(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3007 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3008 sector_t start, sector_t len, void *data)
3009 {
3010 struct dm_pr *pr = data;
3011 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3012
3013 if (!ops || !ops->pr_register)
3014 return -EOPNOTSUPP;
3015 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3016 }
3017
dm_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)3018 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3019 u32 flags)
3020 {
3021 struct dm_pr pr = {
3022 .old_key = old_key,
3023 .new_key = new_key,
3024 .flags = flags,
3025 .fail_early = true,
3026 };
3027 int ret;
3028
3029 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3030 if (ret && new_key) {
3031 /* unregister all paths if we failed to register any path */
3032 pr.old_key = new_key;
3033 pr.new_key = 0;
3034 pr.flags = 0;
3035 pr.fail_early = false;
3036 dm_call_pr(bdev, __dm_pr_register, &pr);
3037 }
3038
3039 return ret;
3040 }
3041
dm_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)3042 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3043 u32 flags)
3044 {
3045 struct mapped_device *md = bdev->bd_disk->private_data;
3046 const struct pr_ops *ops;
3047 int r, srcu_idx;
3048
3049 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3050 if (r < 0)
3051 goto out;
3052
3053 ops = bdev->bd_disk->fops->pr_ops;
3054 if (ops && ops->pr_reserve)
3055 r = ops->pr_reserve(bdev, key, type, flags);
3056 else
3057 r = -EOPNOTSUPP;
3058 out:
3059 dm_unprepare_ioctl(md, srcu_idx);
3060 return r;
3061 }
3062
dm_pr_release(struct block_device * bdev,u64 key,enum pr_type type)3063 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3064 {
3065 struct mapped_device *md = bdev->bd_disk->private_data;
3066 const struct pr_ops *ops;
3067 int r, srcu_idx;
3068
3069 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3070 if (r < 0)
3071 goto out;
3072
3073 ops = bdev->bd_disk->fops->pr_ops;
3074 if (ops && ops->pr_release)
3075 r = ops->pr_release(bdev, key, type);
3076 else
3077 r = -EOPNOTSUPP;
3078 out:
3079 dm_unprepare_ioctl(md, srcu_idx);
3080 return r;
3081 }
3082
dm_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)3083 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3084 enum pr_type type, bool abort)
3085 {
3086 struct mapped_device *md = bdev->bd_disk->private_data;
3087 const struct pr_ops *ops;
3088 int r, srcu_idx;
3089
3090 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3091 if (r < 0)
3092 goto out;
3093
3094 ops = bdev->bd_disk->fops->pr_ops;
3095 if (ops && ops->pr_preempt)
3096 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3097 else
3098 r = -EOPNOTSUPP;
3099 out:
3100 dm_unprepare_ioctl(md, srcu_idx);
3101 return r;
3102 }
3103
dm_pr_clear(struct block_device * bdev,u64 key)3104 static int dm_pr_clear(struct block_device *bdev, u64 key)
3105 {
3106 struct mapped_device *md = bdev->bd_disk->private_data;
3107 const struct pr_ops *ops;
3108 int r, srcu_idx;
3109
3110 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3111 if (r < 0)
3112 goto out;
3113
3114 ops = bdev->bd_disk->fops->pr_ops;
3115 if (ops && ops->pr_clear)
3116 r = ops->pr_clear(bdev, key);
3117 else
3118 r = -EOPNOTSUPP;
3119 out:
3120 dm_unprepare_ioctl(md, srcu_idx);
3121 return r;
3122 }
3123
3124 static const struct pr_ops dm_pr_ops = {
3125 .pr_register = dm_pr_register,
3126 .pr_reserve = dm_pr_reserve,
3127 .pr_release = dm_pr_release,
3128 .pr_preempt = dm_pr_preempt,
3129 .pr_clear = dm_pr_clear,
3130 };
3131
3132 static const struct block_device_operations dm_blk_dops = {
3133 .submit_bio = dm_submit_bio,
3134 .open = dm_blk_open,
3135 .release = dm_blk_close,
3136 .ioctl = dm_blk_ioctl,
3137 .getgeo = dm_blk_getgeo,
3138 .report_zones = dm_blk_report_zones,
3139 .pr_ops = &dm_pr_ops,
3140 .owner = THIS_MODULE
3141 };
3142
3143 static const struct block_device_operations dm_rq_blk_dops = {
3144 .open = dm_blk_open,
3145 .release = dm_blk_close,
3146 .ioctl = dm_blk_ioctl,
3147 .getgeo = dm_blk_getgeo,
3148 .pr_ops = &dm_pr_ops,
3149 .owner = THIS_MODULE
3150 };
3151
3152 static const struct dax_operations dm_dax_ops = {
3153 .direct_access = dm_dax_direct_access,
3154 .dax_supported = dm_dax_supported,
3155 .copy_from_iter = dm_dax_copy_from_iter,
3156 .copy_to_iter = dm_dax_copy_to_iter,
3157 .zero_page_range = dm_dax_zero_page_range,
3158 };
3159
3160 /*
3161 * module hooks
3162 */
3163 module_init(dm_init);
3164 module_exit(dm_exit);
3165
3166 module_param(major, uint, 0);
3167 MODULE_PARM_DESC(major, "The major number of the device mapper");
3168
3169 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3170 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3171
3172 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3173 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3174
3175 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3176 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3177
3178 MODULE_DESCRIPTION(DM_NAME " driver");
3179 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3180 MODULE_LICENSE("GPL");
3181