1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ8795 switch driver
4  *
5  * Copyright (C) 2017 Microchip Technology Inc.
6  *	Tristram Ha <Tristram.Ha@microchip.com>
7  */
8 
9 #include <linux/delay.h>
10 #include <linux/export.h>
11 #include <linux/gpio.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/platform_data/microchip-ksz.h>
15 #include <linux/phy.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_bridge.h>
18 #include <net/dsa.h>
19 #include <net/switchdev.h>
20 
21 #include "ksz_common.h"
22 #include "ksz8795_reg.h"
23 #include "ksz8.h"
24 
25 static const u8 ksz8795_regs[] = {
26 	[REG_IND_CTRL_0]		= 0x6E,
27 	[REG_IND_DATA_8]		= 0x70,
28 	[REG_IND_DATA_CHECK]		= 0x72,
29 	[REG_IND_DATA_HI]		= 0x71,
30 	[REG_IND_DATA_LO]		= 0x75,
31 	[REG_IND_MIB_CHECK]		= 0x74,
32 	[P_FORCE_CTRL]			= 0x0C,
33 	[P_LINK_STATUS]			= 0x0E,
34 	[P_LOCAL_CTRL]			= 0x07,
35 	[P_NEG_RESTART_CTRL]		= 0x0D,
36 	[P_REMOTE_STATUS]		= 0x08,
37 	[P_SPEED_STATUS]		= 0x09,
38 	[S_TAIL_TAG_CTRL]		= 0x0C,
39 };
40 
41 static const u32 ksz8795_masks[] = {
42 	[PORT_802_1P_REMAPPING]		= BIT(7),
43 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
44 	[MIB_COUNTER_OVERFLOW]		= BIT(6),
45 	[MIB_COUNTER_VALID]		= BIT(5),
46 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
47 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
48 	[VLAN_TABLE_VALID]		= BIT(12),
49 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
50 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
51 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
52 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(26),
53 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(24, 20),
54 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
55 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(8),
56 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
57 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
58 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(26, 20),
59 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
60 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
61 };
62 
63 static const u8 ksz8795_shifts[] = {
64 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
65 	[VLAN_TABLE]			= 16,
66 	[STATIC_MAC_FWD_PORTS]		= 16,
67 	[STATIC_MAC_FID]		= 24,
68 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
69 	[DYNAMIC_MAC_ENTRIES]		= 29,
70 	[DYNAMIC_MAC_FID]		= 16,
71 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
72 	[DYNAMIC_MAC_SRC_PORT]		= 24,
73 };
74 
75 static const u8 ksz8863_regs[] = {
76 	[REG_IND_CTRL_0]		= 0x79,
77 	[REG_IND_DATA_8]		= 0x7B,
78 	[REG_IND_DATA_CHECK]		= 0x7B,
79 	[REG_IND_DATA_HI]		= 0x7C,
80 	[REG_IND_DATA_LO]		= 0x80,
81 	[REG_IND_MIB_CHECK]		= 0x80,
82 	[P_FORCE_CTRL]			= 0x0C,
83 	[P_LINK_STATUS]			= 0x0E,
84 	[P_LOCAL_CTRL]			= 0x0C,
85 	[P_NEG_RESTART_CTRL]		= 0x0D,
86 	[P_REMOTE_STATUS]		= 0x0E,
87 	[P_SPEED_STATUS]		= 0x0F,
88 	[S_TAIL_TAG_CTRL]		= 0x03,
89 };
90 
91 static const u32 ksz8863_masks[] = {
92 	[PORT_802_1P_REMAPPING]		= BIT(3),
93 	[SW_TAIL_TAG_ENABLE]		= BIT(6),
94 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
95 	[MIB_COUNTER_VALID]		= BIT(6),
96 	[VLAN_TABLE_FID]		= GENMASK(15, 12),
97 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(18, 16),
98 	[VLAN_TABLE_VALID]		= BIT(19),
99 	[STATIC_MAC_TABLE_VALID]	= BIT(19),
100 	[STATIC_MAC_TABLE_USE_FID]	= BIT(21),
101 	[STATIC_MAC_TABLE_FID]		= GENMASK(29, 26),
102 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(20),
103 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(18, 16),
104 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(5, 0),
105 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
106 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
107 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 28),
108 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(19, 16),
109 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(21, 20),
110 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(23, 22),
111 };
112 
113 static u8 ksz8863_shifts[] = {
114 	[VLAN_TABLE_MEMBERSHIP_S]	= 16,
115 	[STATIC_MAC_FWD_PORTS]		= 16,
116 	[STATIC_MAC_FID]		= 22,
117 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
118 	[DYNAMIC_MAC_ENTRIES]		= 24,
119 	[DYNAMIC_MAC_FID]		= 16,
120 	[DYNAMIC_MAC_TIMESTAMP]		= 24,
121 	[DYNAMIC_MAC_SRC_PORT]		= 20,
122 };
123 
124 struct mib_names {
125 	char string[ETH_GSTRING_LEN];
126 };
127 
128 static const struct mib_names ksz87xx_mib_names[] = {
129 	{ "rx_hi" },
130 	{ "rx_undersize" },
131 	{ "rx_fragments" },
132 	{ "rx_oversize" },
133 	{ "rx_jabbers" },
134 	{ "rx_symbol_err" },
135 	{ "rx_crc_err" },
136 	{ "rx_align_err" },
137 	{ "rx_mac_ctrl" },
138 	{ "rx_pause" },
139 	{ "rx_bcast" },
140 	{ "rx_mcast" },
141 	{ "rx_ucast" },
142 	{ "rx_64_or_less" },
143 	{ "rx_65_127" },
144 	{ "rx_128_255" },
145 	{ "rx_256_511" },
146 	{ "rx_512_1023" },
147 	{ "rx_1024_1522" },
148 	{ "rx_1523_2000" },
149 	{ "rx_2001" },
150 	{ "tx_hi" },
151 	{ "tx_late_col" },
152 	{ "tx_pause" },
153 	{ "tx_bcast" },
154 	{ "tx_mcast" },
155 	{ "tx_ucast" },
156 	{ "tx_deferred" },
157 	{ "tx_total_col" },
158 	{ "tx_exc_col" },
159 	{ "tx_single_col" },
160 	{ "tx_mult_col" },
161 	{ "rx_total" },
162 	{ "tx_total" },
163 	{ "rx_discards" },
164 	{ "tx_discards" },
165 };
166 
167 static const struct mib_names ksz88xx_mib_names[] = {
168 	{ "rx" },
169 	{ "rx_hi" },
170 	{ "rx_undersize" },
171 	{ "rx_fragments" },
172 	{ "rx_oversize" },
173 	{ "rx_jabbers" },
174 	{ "rx_symbol_err" },
175 	{ "rx_crc_err" },
176 	{ "rx_align_err" },
177 	{ "rx_mac_ctrl" },
178 	{ "rx_pause" },
179 	{ "rx_bcast" },
180 	{ "rx_mcast" },
181 	{ "rx_ucast" },
182 	{ "rx_64_or_less" },
183 	{ "rx_65_127" },
184 	{ "rx_128_255" },
185 	{ "rx_256_511" },
186 	{ "rx_512_1023" },
187 	{ "rx_1024_1522" },
188 	{ "tx" },
189 	{ "tx_hi" },
190 	{ "tx_late_col" },
191 	{ "tx_pause" },
192 	{ "tx_bcast" },
193 	{ "tx_mcast" },
194 	{ "tx_ucast" },
195 	{ "tx_deferred" },
196 	{ "tx_total_col" },
197 	{ "tx_exc_col" },
198 	{ "tx_single_col" },
199 	{ "tx_mult_col" },
200 	{ "rx_discards" },
201 	{ "tx_discards" },
202 };
203 
ksz_is_ksz88x3(struct ksz_device * dev)204 static bool ksz_is_ksz88x3(struct ksz_device *dev)
205 {
206 	return dev->chip_id == 0x8830;
207 }
208 
ksz_cfg(struct ksz_device * dev,u32 addr,u8 bits,bool set)209 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
210 {
211 	regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
212 }
213 
ksz_port_cfg(struct ksz_device * dev,int port,int offset,u8 bits,bool set)214 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
215 			 bool set)
216 {
217 	regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
218 			   bits, set ? bits : 0);
219 }
220 
ksz8_reset_switch(struct ksz_device * dev)221 static int ksz8_reset_switch(struct ksz_device *dev)
222 {
223 	if (ksz_is_ksz88x3(dev)) {
224 		/* reset switch */
225 		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
226 			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, true);
227 		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
228 			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, false);
229 	} else {
230 		/* reset switch */
231 		ksz_write8(dev, REG_POWER_MANAGEMENT_1,
232 			   SW_SOFTWARE_POWER_DOWN << SW_POWER_MANAGEMENT_MODE_S);
233 		ksz_write8(dev, REG_POWER_MANAGEMENT_1, 0);
234 	}
235 
236 	return 0;
237 }
238 
ksz8795_set_prio_queue(struct ksz_device * dev,int port,int queue)239 static void ksz8795_set_prio_queue(struct ksz_device *dev, int port, int queue)
240 {
241 	u8 hi, lo;
242 
243 	/* Number of queues can only be 1, 2, or 4. */
244 	switch (queue) {
245 	case 4:
246 	case 3:
247 		queue = PORT_QUEUE_SPLIT_4;
248 		break;
249 	case 2:
250 		queue = PORT_QUEUE_SPLIT_2;
251 		break;
252 	default:
253 		queue = PORT_QUEUE_SPLIT_1;
254 	}
255 	ksz_pread8(dev, port, REG_PORT_CTRL_0, &lo);
256 	ksz_pread8(dev, port, P_DROP_TAG_CTRL, &hi);
257 	lo &= ~PORT_QUEUE_SPLIT_L;
258 	if (queue & PORT_QUEUE_SPLIT_2)
259 		lo |= PORT_QUEUE_SPLIT_L;
260 	hi &= ~PORT_QUEUE_SPLIT_H;
261 	if (queue & PORT_QUEUE_SPLIT_4)
262 		hi |= PORT_QUEUE_SPLIT_H;
263 	ksz_pwrite8(dev, port, REG_PORT_CTRL_0, lo);
264 	ksz_pwrite8(dev, port, P_DROP_TAG_CTRL, hi);
265 
266 	/* Default is port based for egress rate limit. */
267 	if (queue != PORT_QUEUE_SPLIT_1)
268 		ksz_cfg(dev, REG_SW_CTRL_19, SW_OUT_RATE_LIMIT_QUEUE_BASED,
269 			true);
270 }
271 
ksz8_r_mib_cnt(struct ksz_device * dev,int port,u16 addr,u64 * cnt)272 static void ksz8_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
273 {
274 	struct ksz8 *ksz8 = dev->priv;
275 	const u32 *masks;
276 	const u8 *regs;
277 	u16 ctrl_addr;
278 	u32 data;
279 	u8 check;
280 	int loop;
281 
282 	masks = ksz8->masks;
283 	regs = ksz8->regs;
284 
285 	ctrl_addr = addr + dev->reg_mib_cnt * port;
286 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
287 
288 	mutex_lock(&dev->alu_mutex);
289 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
290 
291 	/* It is almost guaranteed to always read the valid bit because of
292 	 * slow SPI speed.
293 	 */
294 	for (loop = 2; loop > 0; loop--) {
295 		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
296 
297 		if (check & masks[MIB_COUNTER_VALID]) {
298 			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
299 			if (check & masks[MIB_COUNTER_OVERFLOW])
300 				*cnt += MIB_COUNTER_VALUE + 1;
301 			*cnt += data & MIB_COUNTER_VALUE;
302 			break;
303 		}
304 	}
305 	mutex_unlock(&dev->alu_mutex);
306 }
307 
ksz8795_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)308 static void ksz8795_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
309 			      u64 *dropped, u64 *cnt)
310 {
311 	struct ksz8 *ksz8 = dev->priv;
312 	const u32 *masks;
313 	const u8 *regs;
314 	u16 ctrl_addr;
315 	u32 data;
316 	u8 check;
317 	int loop;
318 
319 	masks = ksz8->masks;
320 	regs = ksz8->regs;
321 
322 	addr -= dev->reg_mib_cnt;
323 	ctrl_addr = (KSZ8795_MIB_TOTAL_RX_1 - KSZ8795_MIB_TOTAL_RX_0) * port;
324 	ctrl_addr += addr + KSZ8795_MIB_TOTAL_RX_0;
325 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
326 
327 	mutex_lock(&dev->alu_mutex);
328 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
329 
330 	/* It is almost guaranteed to always read the valid bit because of
331 	 * slow SPI speed.
332 	 */
333 	for (loop = 2; loop > 0; loop--) {
334 		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
335 
336 		if (check & masks[MIB_COUNTER_VALID]) {
337 			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
338 			if (addr < 2) {
339 				u64 total;
340 
341 				total = check & MIB_TOTAL_BYTES_H;
342 				total <<= 32;
343 				*cnt += total;
344 				*cnt += data;
345 				if (check & masks[MIB_COUNTER_OVERFLOW]) {
346 					total = MIB_TOTAL_BYTES_H + 1;
347 					total <<= 32;
348 					*cnt += total;
349 				}
350 			} else {
351 				if (check & masks[MIB_COUNTER_OVERFLOW])
352 					*cnt += MIB_PACKET_DROPPED + 1;
353 				*cnt += data & MIB_PACKET_DROPPED;
354 			}
355 			break;
356 		}
357 	}
358 	mutex_unlock(&dev->alu_mutex);
359 }
360 
ksz8863_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)361 static void ksz8863_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
362 			      u64 *dropped, u64 *cnt)
363 {
364 	struct ksz8 *ksz8 = dev->priv;
365 	const u8 *regs = ksz8->regs;
366 	u32 *last = (u32 *)dropped;
367 	u16 ctrl_addr;
368 	u32 data;
369 	u32 cur;
370 
371 	addr -= dev->reg_mib_cnt;
372 	ctrl_addr = addr ? KSZ8863_MIB_PACKET_DROPPED_TX_0 :
373 			   KSZ8863_MIB_PACKET_DROPPED_RX_0;
374 	ctrl_addr += port;
375 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
376 
377 	mutex_lock(&dev->alu_mutex);
378 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
379 	ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
380 	mutex_unlock(&dev->alu_mutex);
381 
382 	data &= MIB_PACKET_DROPPED;
383 	cur = last[addr];
384 	if (data != cur) {
385 		last[addr] = data;
386 		if (data < cur)
387 			data += MIB_PACKET_DROPPED + 1;
388 		data -= cur;
389 		*cnt += data;
390 	}
391 }
392 
ksz8_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)393 static void ksz8_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
394 			   u64 *dropped, u64 *cnt)
395 {
396 	if (ksz_is_ksz88x3(dev))
397 		ksz8863_r_mib_pkt(dev, port, addr, dropped, cnt);
398 	else
399 		ksz8795_r_mib_pkt(dev, port, addr, dropped, cnt);
400 }
401 
ksz8_freeze_mib(struct ksz_device * dev,int port,bool freeze)402 static void ksz8_freeze_mib(struct ksz_device *dev, int port, bool freeze)
403 {
404 	if (ksz_is_ksz88x3(dev))
405 		return;
406 
407 	/* enable the port for flush/freeze function */
408 	if (freeze)
409 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
410 	ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FREEZE, freeze);
411 
412 	/* disable the port after freeze is done */
413 	if (!freeze)
414 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
415 }
416 
ksz8_port_init_cnt(struct ksz_device * dev,int port)417 static void ksz8_port_init_cnt(struct ksz_device *dev, int port)
418 {
419 	struct ksz_port_mib *mib = &dev->ports[port].mib;
420 	u64 *dropped;
421 
422 	if (!ksz_is_ksz88x3(dev)) {
423 		/* flush all enabled port MIB counters */
424 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
425 		ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FLUSH, true);
426 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
427 	}
428 
429 	mib->cnt_ptr = 0;
430 
431 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
432 	while (mib->cnt_ptr < dev->reg_mib_cnt) {
433 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
434 					&mib->counters[mib->cnt_ptr]);
435 		++mib->cnt_ptr;
436 	}
437 
438 	/* last one in storage */
439 	dropped = &mib->counters[dev->mib_cnt];
440 
441 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
442 	while (mib->cnt_ptr < dev->mib_cnt) {
443 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
444 					dropped, &mib->counters[mib->cnt_ptr]);
445 		++mib->cnt_ptr;
446 	}
447 	mib->cnt_ptr = 0;
448 	memset(mib->counters, 0, dev->mib_cnt * sizeof(u64));
449 }
450 
ksz8_r_table(struct ksz_device * dev,int table,u16 addr,u64 * data)451 static void ksz8_r_table(struct ksz_device *dev, int table, u16 addr, u64 *data)
452 {
453 	struct ksz8 *ksz8 = dev->priv;
454 	const u8 *regs = ksz8->regs;
455 	u16 ctrl_addr;
456 
457 	ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr;
458 
459 	mutex_lock(&dev->alu_mutex);
460 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
461 	ksz_read64(dev, regs[REG_IND_DATA_HI], data);
462 	mutex_unlock(&dev->alu_mutex);
463 }
464 
ksz8_w_table(struct ksz_device * dev,int table,u16 addr,u64 data)465 static void ksz8_w_table(struct ksz_device *dev, int table, u16 addr, u64 data)
466 {
467 	struct ksz8 *ksz8 = dev->priv;
468 	const u8 *regs = ksz8->regs;
469 	u16 ctrl_addr;
470 
471 	ctrl_addr = IND_ACC_TABLE(table) | addr;
472 
473 	mutex_lock(&dev->alu_mutex);
474 	ksz_write64(dev, regs[REG_IND_DATA_HI], data);
475 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
476 	mutex_unlock(&dev->alu_mutex);
477 }
478 
ksz8_valid_dyn_entry(struct ksz_device * dev,u8 * data)479 static int ksz8_valid_dyn_entry(struct ksz_device *dev, u8 *data)
480 {
481 	struct ksz8 *ksz8 = dev->priv;
482 	int timeout = 100;
483 	const u32 *masks;
484 	const u8 *regs;
485 
486 	masks = ksz8->masks;
487 	regs = ksz8->regs;
488 
489 	do {
490 		ksz_read8(dev, regs[REG_IND_DATA_CHECK], data);
491 		timeout--;
492 	} while ((*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) && timeout);
493 
494 	/* Entry is not ready for accessing. */
495 	if (*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) {
496 		return -EAGAIN;
497 	/* Entry is ready for accessing. */
498 	} else {
499 		ksz_read8(dev, regs[REG_IND_DATA_8], data);
500 
501 		/* There is no valid entry in the table. */
502 		if (*data & masks[DYNAMIC_MAC_TABLE_MAC_EMPTY])
503 			return -ENXIO;
504 	}
505 	return 0;
506 }
507 
ksz8_r_dyn_mac_table(struct ksz_device * dev,u16 addr,u8 * mac_addr,u8 * fid,u8 * src_port,u8 * timestamp,u16 * entries)508 static int ksz8_r_dyn_mac_table(struct ksz_device *dev, u16 addr,
509 				u8 *mac_addr, u8 *fid, u8 *src_port,
510 				u8 *timestamp, u16 *entries)
511 {
512 	struct ksz8 *ksz8 = dev->priv;
513 	u32 data_hi, data_lo;
514 	const u8 *shifts;
515 	const u32 *masks;
516 	const u8 *regs;
517 	u16 ctrl_addr;
518 	u8 data;
519 	int rc;
520 
521 	shifts = ksz8->shifts;
522 	masks = ksz8->masks;
523 	regs = ksz8->regs;
524 
525 	ctrl_addr = IND_ACC_TABLE(TABLE_DYNAMIC_MAC | TABLE_READ) | addr;
526 
527 	mutex_lock(&dev->alu_mutex);
528 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
529 
530 	rc = ksz8_valid_dyn_entry(dev, &data);
531 	if (rc == -EAGAIN) {
532 		if (addr == 0)
533 			*entries = 0;
534 	} else if (rc == -ENXIO) {
535 		*entries = 0;
536 	/* At least one valid entry in the table. */
537 	} else {
538 		u64 buf = 0;
539 		int cnt;
540 
541 		ksz_read64(dev, regs[REG_IND_DATA_HI], &buf);
542 		data_hi = (u32)(buf >> 32);
543 		data_lo = (u32)buf;
544 
545 		/* Check out how many valid entry in the table. */
546 		cnt = data & masks[DYNAMIC_MAC_TABLE_ENTRIES_H];
547 		cnt <<= shifts[DYNAMIC_MAC_ENTRIES_H];
548 		cnt |= (data_hi & masks[DYNAMIC_MAC_TABLE_ENTRIES]) >>
549 			shifts[DYNAMIC_MAC_ENTRIES];
550 		*entries = cnt + 1;
551 
552 		*fid = (data_hi & masks[DYNAMIC_MAC_TABLE_FID]) >>
553 			shifts[DYNAMIC_MAC_FID];
554 		*src_port = (data_hi & masks[DYNAMIC_MAC_TABLE_SRC_PORT]) >>
555 			shifts[DYNAMIC_MAC_SRC_PORT];
556 		*timestamp = (data_hi & masks[DYNAMIC_MAC_TABLE_TIMESTAMP]) >>
557 			shifts[DYNAMIC_MAC_TIMESTAMP];
558 
559 		mac_addr[5] = (u8)data_lo;
560 		mac_addr[4] = (u8)(data_lo >> 8);
561 		mac_addr[3] = (u8)(data_lo >> 16);
562 		mac_addr[2] = (u8)(data_lo >> 24);
563 
564 		mac_addr[1] = (u8)data_hi;
565 		mac_addr[0] = (u8)(data_hi >> 8);
566 		rc = 0;
567 	}
568 	mutex_unlock(&dev->alu_mutex);
569 
570 	return rc;
571 }
572 
ksz8_r_sta_mac_table(struct ksz_device * dev,u16 addr,struct alu_struct * alu)573 static int ksz8_r_sta_mac_table(struct ksz_device *dev, u16 addr,
574 				struct alu_struct *alu)
575 {
576 	struct ksz8 *ksz8 = dev->priv;
577 	u32 data_hi, data_lo;
578 	const u8 *shifts;
579 	const u32 *masks;
580 	u64 data;
581 
582 	shifts = ksz8->shifts;
583 	masks = ksz8->masks;
584 
585 	ksz8_r_table(dev, TABLE_STATIC_MAC, addr, &data);
586 	data_hi = data >> 32;
587 	data_lo = (u32)data;
588 	if (data_hi & (masks[STATIC_MAC_TABLE_VALID] |
589 			masks[STATIC_MAC_TABLE_OVERRIDE])) {
590 		alu->mac[5] = (u8)data_lo;
591 		alu->mac[4] = (u8)(data_lo >> 8);
592 		alu->mac[3] = (u8)(data_lo >> 16);
593 		alu->mac[2] = (u8)(data_lo >> 24);
594 		alu->mac[1] = (u8)data_hi;
595 		alu->mac[0] = (u8)(data_hi >> 8);
596 		alu->port_forward =
597 			(data_hi & masks[STATIC_MAC_TABLE_FWD_PORTS]) >>
598 				shifts[STATIC_MAC_FWD_PORTS];
599 		alu->is_override =
600 			(data_hi & masks[STATIC_MAC_TABLE_OVERRIDE]) ? 1 : 0;
601 		data_hi >>= 1;
602 		alu->is_static = true;
603 		alu->is_use_fid =
604 			(data_hi & masks[STATIC_MAC_TABLE_USE_FID]) ? 1 : 0;
605 		alu->fid = (data_hi & masks[STATIC_MAC_TABLE_FID]) >>
606 				shifts[STATIC_MAC_FID];
607 		return 0;
608 	}
609 	return -ENXIO;
610 }
611 
ksz8_w_sta_mac_table(struct ksz_device * dev,u16 addr,struct alu_struct * alu)612 static void ksz8_w_sta_mac_table(struct ksz_device *dev, u16 addr,
613 				 struct alu_struct *alu)
614 {
615 	struct ksz8 *ksz8 = dev->priv;
616 	u32 data_hi, data_lo;
617 	const u8 *shifts;
618 	const u32 *masks;
619 	u64 data;
620 
621 	shifts = ksz8->shifts;
622 	masks = ksz8->masks;
623 
624 	data_lo = ((u32)alu->mac[2] << 24) |
625 		((u32)alu->mac[3] << 16) |
626 		((u32)alu->mac[4] << 8) | alu->mac[5];
627 	data_hi = ((u32)alu->mac[0] << 8) | alu->mac[1];
628 	data_hi |= (u32)alu->port_forward << shifts[STATIC_MAC_FWD_PORTS];
629 
630 	if (alu->is_override)
631 		data_hi |= masks[STATIC_MAC_TABLE_OVERRIDE];
632 	if (alu->is_use_fid) {
633 		data_hi |= masks[STATIC_MAC_TABLE_USE_FID];
634 		data_hi |= (u32)alu->fid << shifts[STATIC_MAC_FID];
635 	}
636 	if (alu->is_static)
637 		data_hi |= masks[STATIC_MAC_TABLE_VALID];
638 	else
639 		data_hi &= ~masks[STATIC_MAC_TABLE_OVERRIDE];
640 
641 	data = (u64)data_hi << 32 | data_lo;
642 	ksz8_w_table(dev, TABLE_STATIC_MAC, addr, data);
643 }
644 
ksz8_from_vlan(struct ksz_device * dev,u32 vlan,u8 * fid,u8 * member,u8 * valid)645 static void ksz8_from_vlan(struct ksz_device *dev, u32 vlan, u8 *fid,
646 			   u8 *member, u8 *valid)
647 {
648 	struct ksz8 *ksz8 = dev->priv;
649 	const u8 *shifts;
650 	const u32 *masks;
651 
652 	shifts = ksz8->shifts;
653 	masks = ksz8->masks;
654 
655 	*fid = vlan & masks[VLAN_TABLE_FID];
656 	*member = (vlan & masks[VLAN_TABLE_MEMBERSHIP]) >>
657 			shifts[VLAN_TABLE_MEMBERSHIP_S];
658 	*valid = !!(vlan & masks[VLAN_TABLE_VALID]);
659 }
660 
ksz8_to_vlan(struct ksz_device * dev,u8 fid,u8 member,u8 valid,u16 * vlan)661 static void ksz8_to_vlan(struct ksz_device *dev, u8 fid, u8 member, u8 valid,
662 			 u16 *vlan)
663 {
664 	struct ksz8 *ksz8 = dev->priv;
665 	const u8 *shifts;
666 	const u32 *masks;
667 
668 	shifts = ksz8->shifts;
669 	masks = ksz8->masks;
670 
671 	*vlan = fid;
672 	*vlan |= (u16)member << shifts[VLAN_TABLE_MEMBERSHIP_S];
673 	if (valid)
674 		*vlan |= masks[VLAN_TABLE_VALID];
675 }
676 
ksz8_r_vlan_entries(struct ksz_device * dev,u16 addr)677 static void ksz8_r_vlan_entries(struct ksz_device *dev, u16 addr)
678 {
679 	struct ksz8 *ksz8 = dev->priv;
680 	const u8 *shifts;
681 	u64 data;
682 	int i;
683 
684 	shifts = ksz8->shifts;
685 
686 	ksz8_r_table(dev, TABLE_VLAN, addr, &data);
687 	addr *= dev->phy_port_cnt;
688 	for (i = 0; i < dev->phy_port_cnt; i++) {
689 		dev->vlan_cache[addr + i].table[0] = (u16)data;
690 		data >>= shifts[VLAN_TABLE];
691 	}
692 }
693 
ksz8_r_vlan_table(struct ksz_device * dev,u16 vid,u16 * vlan)694 static void ksz8_r_vlan_table(struct ksz_device *dev, u16 vid, u16 *vlan)
695 {
696 	int index;
697 	u16 *data;
698 	u16 addr;
699 	u64 buf;
700 
701 	data = (u16 *)&buf;
702 	addr = vid / dev->phy_port_cnt;
703 	index = vid & 3;
704 	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
705 	*vlan = data[index];
706 }
707 
ksz8_w_vlan_table(struct ksz_device * dev,u16 vid,u16 vlan)708 static void ksz8_w_vlan_table(struct ksz_device *dev, u16 vid, u16 vlan)
709 {
710 	int index;
711 	u16 *data;
712 	u16 addr;
713 	u64 buf;
714 
715 	data = (u16 *)&buf;
716 	addr = vid / dev->phy_port_cnt;
717 	index = vid & 3;
718 	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
719 	data[index] = vlan;
720 	dev->vlan_cache[vid].table[0] = vlan;
721 	ksz8_w_table(dev, TABLE_VLAN, addr, buf);
722 }
723 
ksz8_r_phy(struct ksz_device * dev,u16 phy,u16 reg,u16 * val)724 static void ksz8_r_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 *val)
725 {
726 	struct ksz8 *ksz8 = dev->priv;
727 	u8 restart, speed, ctrl, link;
728 	const u8 *regs = ksz8->regs;
729 	int processed = true;
730 	u16 data = 0;
731 	u8 p = phy;
732 
733 	switch (reg) {
734 	case PHY_REG_CTRL:
735 		ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
736 		ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
737 		ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
738 		if (restart & PORT_PHY_LOOPBACK)
739 			data |= PHY_LOOPBACK;
740 		if (ctrl & PORT_FORCE_100_MBIT)
741 			data |= PHY_SPEED_100MBIT;
742 		if (ksz_is_ksz88x3(dev)) {
743 			if ((ctrl & PORT_AUTO_NEG_ENABLE))
744 				data |= PHY_AUTO_NEG_ENABLE;
745 		} else {
746 			if (!(ctrl & PORT_AUTO_NEG_DISABLE))
747 				data |= PHY_AUTO_NEG_ENABLE;
748 		}
749 		if (restart & PORT_POWER_DOWN)
750 			data |= PHY_POWER_DOWN;
751 		if (restart & PORT_AUTO_NEG_RESTART)
752 			data |= PHY_AUTO_NEG_RESTART;
753 		if (ctrl & PORT_FORCE_FULL_DUPLEX)
754 			data |= PHY_FULL_DUPLEX;
755 		if (speed & PORT_HP_MDIX)
756 			data |= PHY_HP_MDIX;
757 		if (restart & PORT_FORCE_MDIX)
758 			data |= PHY_FORCE_MDIX;
759 		if (restart & PORT_AUTO_MDIX_DISABLE)
760 			data |= PHY_AUTO_MDIX_DISABLE;
761 		if (restart & PORT_TX_DISABLE)
762 			data |= PHY_TRANSMIT_DISABLE;
763 		if (restart & PORT_LED_OFF)
764 			data |= PHY_LED_DISABLE;
765 		break;
766 	case PHY_REG_STATUS:
767 		ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
768 		data = PHY_100BTX_FD_CAPABLE |
769 		       PHY_100BTX_CAPABLE |
770 		       PHY_10BT_FD_CAPABLE |
771 		       PHY_10BT_CAPABLE |
772 		       PHY_AUTO_NEG_CAPABLE;
773 		if (link & PORT_AUTO_NEG_COMPLETE)
774 			data |= PHY_AUTO_NEG_ACKNOWLEDGE;
775 		if (link & PORT_STAT_LINK_GOOD)
776 			data |= PHY_LINK_STATUS;
777 		break;
778 	case PHY_REG_ID_1:
779 		data = KSZ8795_ID_HI;
780 		break;
781 	case PHY_REG_ID_2:
782 		if (ksz_is_ksz88x3(dev))
783 			data = KSZ8863_ID_LO;
784 		else
785 			data = KSZ8795_ID_LO;
786 		break;
787 	case PHY_REG_AUTO_NEGOTIATION:
788 		ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
789 		data = PHY_AUTO_NEG_802_3;
790 		if (ctrl & PORT_AUTO_NEG_SYM_PAUSE)
791 			data |= PHY_AUTO_NEG_SYM_PAUSE;
792 		if (ctrl & PORT_AUTO_NEG_100BTX_FD)
793 			data |= PHY_AUTO_NEG_100BTX_FD;
794 		if (ctrl & PORT_AUTO_NEG_100BTX)
795 			data |= PHY_AUTO_NEG_100BTX;
796 		if (ctrl & PORT_AUTO_NEG_10BT_FD)
797 			data |= PHY_AUTO_NEG_10BT_FD;
798 		if (ctrl & PORT_AUTO_NEG_10BT)
799 			data |= PHY_AUTO_NEG_10BT;
800 		break;
801 	case PHY_REG_REMOTE_CAPABILITY:
802 		ksz_pread8(dev, p, regs[P_REMOTE_STATUS], &link);
803 		data = PHY_AUTO_NEG_802_3;
804 		if (link & PORT_REMOTE_SYM_PAUSE)
805 			data |= PHY_AUTO_NEG_SYM_PAUSE;
806 		if (link & PORT_REMOTE_100BTX_FD)
807 			data |= PHY_AUTO_NEG_100BTX_FD;
808 		if (link & PORT_REMOTE_100BTX)
809 			data |= PHY_AUTO_NEG_100BTX;
810 		if (link & PORT_REMOTE_10BT_FD)
811 			data |= PHY_AUTO_NEG_10BT_FD;
812 		if (link & PORT_REMOTE_10BT)
813 			data |= PHY_AUTO_NEG_10BT;
814 		if (data & ~PHY_AUTO_NEG_802_3)
815 			data |= PHY_REMOTE_ACKNOWLEDGE_NOT;
816 		break;
817 	default:
818 		processed = false;
819 		break;
820 	}
821 	if (processed)
822 		*val = data;
823 }
824 
ksz8_w_phy(struct ksz_device * dev,u16 phy,u16 reg,u16 val)825 static void ksz8_w_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 val)
826 {
827 	struct ksz8 *ksz8 = dev->priv;
828 	u8 restart, speed, ctrl, data;
829 	const u8 *regs = ksz8->regs;
830 	u8 p = phy;
831 
832 	switch (reg) {
833 	case PHY_REG_CTRL:
834 
835 		/* Do not support PHY reset function. */
836 		if (val & PHY_RESET)
837 			break;
838 		ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
839 		data = speed;
840 		if (val & PHY_HP_MDIX)
841 			data |= PORT_HP_MDIX;
842 		else
843 			data &= ~PORT_HP_MDIX;
844 		if (data != speed)
845 			ksz_pwrite8(dev, p, regs[P_SPEED_STATUS], data);
846 		ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
847 		data = ctrl;
848 		if (ksz_is_ksz88x3(dev)) {
849 			if ((val & PHY_AUTO_NEG_ENABLE))
850 				data |= PORT_AUTO_NEG_ENABLE;
851 			else
852 				data &= ~PORT_AUTO_NEG_ENABLE;
853 		} else {
854 			if (!(val & PHY_AUTO_NEG_ENABLE))
855 				data |= PORT_AUTO_NEG_DISABLE;
856 			else
857 				data &= ~PORT_AUTO_NEG_DISABLE;
858 
859 			/* Fiber port does not support auto-negotiation. */
860 			if (dev->ports[p].fiber)
861 				data |= PORT_AUTO_NEG_DISABLE;
862 		}
863 
864 		if (val & PHY_SPEED_100MBIT)
865 			data |= PORT_FORCE_100_MBIT;
866 		else
867 			data &= ~PORT_FORCE_100_MBIT;
868 		if (val & PHY_FULL_DUPLEX)
869 			data |= PORT_FORCE_FULL_DUPLEX;
870 		else
871 			data &= ~PORT_FORCE_FULL_DUPLEX;
872 		if (data != ctrl)
873 			ksz_pwrite8(dev, p, regs[P_FORCE_CTRL], data);
874 		ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
875 		data = restart;
876 		if (val & PHY_LED_DISABLE)
877 			data |= PORT_LED_OFF;
878 		else
879 			data &= ~PORT_LED_OFF;
880 		if (val & PHY_TRANSMIT_DISABLE)
881 			data |= PORT_TX_DISABLE;
882 		else
883 			data &= ~PORT_TX_DISABLE;
884 		if (val & PHY_AUTO_NEG_RESTART)
885 			data |= PORT_AUTO_NEG_RESTART;
886 		else
887 			data &= ~(PORT_AUTO_NEG_RESTART);
888 		if (val & PHY_POWER_DOWN)
889 			data |= PORT_POWER_DOWN;
890 		else
891 			data &= ~PORT_POWER_DOWN;
892 		if (val & PHY_AUTO_MDIX_DISABLE)
893 			data |= PORT_AUTO_MDIX_DISABLE;
894 		else
895 			data &= ~PORT_AUTO_MDIX_DISABLE;
896 		if (val & PHY_FORCE_MDIX)
897 			data |= PORT_FORCE_MDIX;
898 		else
899 			data &= ~PORT_FORCE_MDIX;
900 		if (val & PHY_LOOPBACK)
901 			data |= PORT_PHY_LOOPBACK;
902 		else
903 			data &= ~PORT_PHY_LOOPBACK;
904 		if (data != restart)
905 			ksz_pwrite8(dev, p, regs[P_NEG_RESTART_CTRL], data);
906 		break;
907 	case PHY_REG_AUTO_NEGOTIATION:
908 		ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
909 		data = ctrl;
910 		data &= ~(PORT_AUTO_NEG_SYM_PAUSE |
911 			  PORT_AUTO_NEG_100BTX_FD |
912 			  PORT_AUTO_NEG_100BTX |
913 			  PORT_AUTO_NEG_10BT_FD |
914 			  PORT_AUTO_NEG_10BT);
915 		if (val & PHY_AUTO_NEG_SYM_PAUSE)
916 			data |= PORT_AUTO_NEG_SYM_PAUSE;
917 		if (val & PHY_AUTO_NEG_100BTX_FD)
918 			data |= PORT_AUTO_NEG_100BTX_FD;
919 		if (val & PHY_AUTO_NEG_100BTX)
920 			data |= PORT_AUTO_NEG_100BTX;
921 		if (val & PHY_AUTO_NEG_10BT_FD)
922 			data |= PORT_AUTO_NEG_10BT_FD;
923 		if (val & PHY_AUTO_NEG_10BT)
924 			data |= PORT_AUTO_NEG_10BT;
925 		if (data != ctrl)
926 			ksz_pwrite8(dev, p, regs[P_LOCAL_CTRL], data);
927 		break;
928 	default:
929 		break;
930 	}
931 }
932 
ksz8_get_tag_protocol(struct dsa_switch * ds,int port,enum dsa_tag_protocol mp)933 static enum dsa_tag_protocol ksz8_get_tag_protocol(struct dsa_switch *ds,
934 						   int port,
935 						   enum dsa_tag_protocol mp)
936 {
937 	struct ksz_device *dev = ds->priv;
938 
939 	/* ksz88x3 uses the same tag schema as KSZ9893 */
940 	return ksz_is_ksz88x3(dev) ?
941 		DSA_TAG_PROTO_KSZ9893 : DSA_TAG_PROTO_KSZ8795;
942 }
943 
ksz8_get_strings(struct dsa_switch * ds,int port,u32 stringset,uint8_t * buf)944 static void ksz8_get_strings(struct dsa_switch *ds, int port,
945 			     u32 stringset, uint8_t *buf)
946 {
947 	struct ksz_device *dev = ds->priv;
948 	int i;
949 
950 	for (i = 0; i < dev->mib_cnt; i++) {
951 		memcpy(buf + i * ETH_GSTRING_LEN,
952 		       dev->mib_names[i].string, ETH_GSTRING_LEN);
953 	}
954 }
955 
ksz8_cfg_port_member(struct ksz_device * dev,int port,u8 member)956 static void ksz8_cfg_port_member(struct ksz_device *dev, int port, u8 member)
957 {
958 	u8 data;
959 
960 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
961 	data &= ~PORT_VLAN_MEMBERSHIP;
962 	data |= (member & dev->port_mask);
963 	ksz_pwrite8(dev, port, P_MIRROR_CTRL, data);
964 	dev->ports[port].member = member;
965 }
966 
ksz8_port_stp_state_set(struct dsa_switch * ds,int port,u8 state)967 static void ksz8_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
968 {
969 	struct ksz_device *dev = ds->priv;
970 	int forward = dev->member;
971 	struct ksz_port *p;
972 	int member = -1;
973 	u8 data;
974 
975 	p = &dev->ports[port];
976 
977 	ksz_pread8(dev, port, P_STP_CTRL, &data);
978 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
979 
980 	switch (state) {
981 	case BR_STATE_DISABLED:
982 		data |= PORT_LEARN_DISABLE;
983 		if (port < dev->phy_port_cnt)
984 			member = 0;
985 		break;
986 	case BR_STATE_LISTENING:
987 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
988 		if (port < dev->phy_port_cnt &&
989 		    p->stp_state == BR_STATE_DISABLED)
990 			member = dev->host_mask | p->vid_member;
991 		break;
992 	case BR_STATE_LEARNING:
993 		data |= PORT_RX_ENABLE;
994 		break;
995 	case BR_STATE_FORWARDING:
996 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
997 
998 		/* This function is also used internally. */
999 		if (port == dev->cpu_port)
1000 			break;
1001 
1002 		/* Port is a member of a bridge. */
1003 		if (dev->br_member & BIT(port)) {
1004 			dev->member |= BIT(port);
1005 			member = dev->member;
1006 		} else {
1007 			member = dev->host_mask | p->vid_member;
1008 		}
1009 		break;
1010 	case BR_STATE_BLOCKING:
1011 		data |= PORT_LEARN_DISABLE;
1012 		if (port < dev->phy_port_cnt &&
1013 		    p->stp_state == BR_STATE_DISABLED)
1014 			member = dev->host_mask | p->vid_member;
1015 		break;
1016 	default:
1017 		dev_err(ds->dev, "invalid STP state: %d\n", state);
1018 		return;
1019 	}
1020 
1021 	ksz_pwrite8(dev, port, P_STP_CTRL, data);
1022 	p->stp_state = state;
1023 	/* Port membership may share register with STP state. */
1024 	if (member >= 0 && member != p->member)
1025 		ksz8_cfg_port_member(dev, port, (u8)member);
1026 
1027 	/* Check if forwarding needs to be updated. */
1028 	if (state != BR_STATE_FORWARDING) {
1029 		if (dev->br_member & BIT(port))
1030 			dev->member &= ~BIT(port);
1031 	}
1032 
1033 	/* When topology has changed the function ksz_update_port_member
1034 	 * should be called to modify port forwarding behavior.
1035 	 */
1036 	if (forward != dev->member)
1037 		ksz_update_port_member(dev, port);
1038 }
1039 
ksz8_flush_dyn_mac_table(struct ksz_device * dev,int port)1040 static void ksz8_flush_dyn_mac_table(struct ksz_device *dev, int port)
1041 {
1042 	u8 learn[DSA_MAX_PORTS];
1043 	int first, index, cnt;
1044 	struct ksz_port *p;
1045 
1046 	if ((uint)port < dev->port_cnt) {
1047 		first = port;
1048 		cnt = port + 1;
1049 	} else {
1050 		/* Flush all ports. */
1051 		first = 0;
1052 		cnt = dev->port_cnt;
1053 	}
1054 	for (index = first; index < cnt; index++) {
1055 		p = &dev->ports[index];
1056 		if (!p->on)
1057 			continue;
1058 		ksz_pread8(dev, index, P_STP_CTRL, &learn[index]);
1059 		if (!(learn[index] & PORT_LEARN_DISABLE))
1060 			ksz_pwrite8(dev, index, P_STP_CTRL,
1061 				    learn[index] | PORT_LEARN_DISABLE);
1062 	}
1063 	ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
1064 	for (index = first; index < cnt; index++) {
1065 		p = &dev->ports[index];
1066 		if (!p->on)
1067 			continue;
1068 		if (!(learn[index] & PORT_LEARN_DISABLE))
1069 			ksz_pwrite8(dev, index, P_STP_CTRL, learn[index]);
1070 	}
1071 }
1072 
ksz8_port_vlan_filtering(struct dsa_switch * ds,int port,bool flag,struct netlink_ext_ack * extack)1073 static int ksz8_port_vlan_filtering(struct dsa_switch *ds, int port, bool flag,
1074 				    struct netlink_ext_ack *extack)
1075 {
1076 	struct ksz_device *dev = ds->priv;
1077 
1078 	if (ksz_is_ksz88x3(dev))
1079 		return -ENOTSUPP;
1080 
1081 	ksz_cfg(dev, S_MIRROR_CTRL, SW_VLAN_ENABLE, flag);
1082 
1083 	return 0;
1084 }
1085 
ksz8_port_vlan_add(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan,struct netlink_ext_ack * extack)1086 static int ksz8_port_vlan_add(struct dsa_switch *ds, int port,
1087 			      const struct switchdev_obj_port_vlan *vlan,
1088 			      struct netlink_ext_ack *extack)
1089 {
1090 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1091 	struct ksz_device *dev = ds->priv;
1092 	u16 data, new_pvid = 0;
1093 	u8 fid, member, valid;
1094 
1095 	if (ksz_is_ksz88x3(dev))
1096 		return -ENOTSUPP;
1097 
1098 	ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, untagged);
1099 
1100 	ksz8_r_vlan_table(dev, vlan->vid, &data);
1101 	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1102 
1103 	/* First time to setup the VLAN entry. */
1104 	if (!valid) {
1105 		/* Need to find a way to map VID to FID. */
1106 		fid = 1;
1107 		valid = 1;
1108 	}
1109 	member |= BIT(port);
1110 
1111 	ksz8_to_vlan(dev, fid, member, valid, &data);
1112 	ksz8_w_vlan_table(dev, vlan->vid, data);
1113 
1114 	/* change PVID */
1115 	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
1116 		new_pvid = vlan->vid;
1117 
1118 	if (new_pvid) {
1119 		u16 vid;
1120 
1121 		ksz_pread16(dev, port, REG_PORT_CTRL_VID, &vid);
1122 		vid &= 0xfff;
1123 		vid |= new_pvid;
1124 		ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, vid);
1125 	}
1126 
1127 	return 0;
1128 }
1129 
ksz8_port_vlan_del(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan)1130 static int ksz8_port_vlan_del(struct dsa_switch *ds, int port,
1131 			      const struct switchdev_obj_port_vlan *vlan)
1132 {
1133 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1134 	struct ksz_device *dev = ds->priv;
1135 	u16 data, pvid, new_pvid = 0;
1136 	u8 fid, member, valid;
1137 
1138 	if (ksz_is_ksz88x3(dev))
1139 		return -ENOTSUPP;
1140 
1141 	ksz_pread16(dev, port, REG_PORT_CTRL_VID, &pvid);
1142 	pvid = pvid & 0xFFF;
1143 
1144 	ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, untagged);
1145 
1146 	ksz8_r_vlan_table(dev, vlan->vid, &data);
1147 	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1148 
1149 	member &= ~BIT(port);
1150 
1151 	/* Invalidate the entry if no more member. */
1152 	if (!member) {
1153 		fid = 0;
1154 		valid = 0;
1155 	}
1156 
1157 	if (pvid == vlan->vid)
1158 		new_pvid = 1;
1159 
1160 	ksz8_to_vlan(dev, fid, member, valid, &data);
1161 	ksz8_w_vlan_table(dev, vlan->vid, data);
1162 
1163 	if (new_pvid != pvid)
1164 		ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, pvid);
1165 
1166 	return 0;
1167 }
1168 
ksz8_port_mirror_add(struct dsa_switch * ds,int port,struct dsa_mall_mirror_tc_entry * mirror,bool ingress)1169 static int ksz8_port_mirror_add(struct dsa_switch *ds, int port,
1170 				struct dsa_mall_mirror_tc_entry *mirror,
1171 				bool ingress)
1172 {
1173 	struct ksz_device *dev = ds->priv;
1174 
1175 	if (ingress) {
1176 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1177 		dev->mirror_rx |= BIT(port);
1178 	} else {
1179 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1180 		dev->mirror_tx |= BIT(port);
1181 	}
1182 
1183 	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
1184 
1185 	/* configure mirror port */
1186 	if (dev->mirror_rx || dev->mirror_tx)
1187 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1188 			     PORT_MIRROR_SNIFFER, true);
1189 
1190 	return 0;
1191 }
1192 
ksz8_port_mirror_del(struct dsa_switch * ds,int port,struct dsa_mall_mirror_tc_entry * mirror)1193 static void ksz8_port_mirror_del(struct dsa_switch *ds, int port,
1194 				 struct dsa_mall_mirror_tc_entry *mirror)
1195 {
1196 	struct ksz_device *dev = ds->priv;
1197 	u8 data;
1198 
1199 	if (mirror->ingress) {
1200 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1201 		dev->mirror_rx &= ~BIT(port);
1202 	} else {
1203 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1204 		dev->mirror_tx &= ~BIT(port);
1205 	}
1206 
1207 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1208 
1209 	if (!dev->mirror_rx && !dev->mirror_tx)
1210 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1211 			     PORT_MIRROR_SNIFFER, false);
1212 }
1213 
ksz8795_cpu_interface_select(struct ksz_device * dev,int port)1214 static void ksz8795_cpu_interface_select(struct ksz_device *dev, int port)
1215 {
1216 	struct ksz_port *p = &dev->ports[port];
1217 	u8 data8;
1218 
1219 	if (!p->interface && dev->compat_interface) {
1220 		dev_warn(dev->dev,
1221 			 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1222 			 "Please update your device tree.\n",
1223 			 port);
1224 		p->interface = dev->compat_interface;
1225 	}
1226 
1227 	/* Configure MII interface for proper network communication. */
1228 	ksz_read8(dev, REG_PORT_5_CTRL_6, &data8);
1229 	data8 &= ~PORT_INTERFACE_TYPE;
1230 	data8 &= ~PORT_GMII_1GPS_MODE;
1231 	switch (p->interface) {
1232 	case PHY_INTERFACE_MODE_MII:
1233 		p->phydev.speed = SPEED_100;
1234 		break;
1235 	case PHY_INTERFACE_MODE_RMII:
1236 		data8 |= PORT_INTERFACE_RMII;
1237 		p->phydev.speed = SPEED_100;
1238 		break;
1239 	case PHY_INTERFACE_MODE_GMII:
1240 		data8 |= PORT_GMII_1GPS_MODE;
1241 		data8 |= PORT_INTERFACE_GMII;
1242 		p->phydev.speed = SPEED_1000;
1243 		break;
1244 	default:
1245 		data8 &= ~PORT_RGMII_ID_IN_ENABLE;
1246 		data8 &= ~PORT_RGMII_ID_OUT_ENABLE;
1247 		if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1248 		    p->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1249 			data8 |= PORT_RGMII_ID_IN_ENABLE;
1250 		if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1251 		    p->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1252 			data8 |= PORT_RGMII_ID_OUT_ENABLE;
1253 		data8 |= PORT_GMII_1GPS_MODE;
1254 		data8 |= PORT_INTERFACE_RGMII;
1255 		p->phydev.speed = SPEED_1000;
1256 		break;
1257 	}
1258 	ksz_write8(dev, REG_PORT_5_CTRL_6, data8);
1259 	p->phydev.duplex = 1;
1260 }
1261 
ksz8_port_setup(struct ksz_device * dev,int port,bool cpu_port)1262 static void ksz8_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1263 {
1264 	struct ksz_port *p = &dev->ports[port];
1265 	struct ksz8 *ksz8 = dev->priv;
1266 	const u32 *masks;
1267 	u8 member;
1268 
1269 	masks = ksz8->masks;
1270 
1271 	/* enable broadcast storm limit */
1272 	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1273 
1274 	if (!ksz_is_ksz88x3(dev))
1275 		ksz8795_set_prio_queue(dev, port, 4);
1276 
1277 	/* disable DiffServ priority */
1278 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_ENABLE, false);
1279 
1280 	/* replace priority */
1281 	ksz_port_cfg(dev, port, P_802_1P_CTRL,
1282 		     masks[PORT_802_1P_REMAPPING], false);
1283 
1284 	/* enable 802.1p priority */
1285 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_ENABLE, true);
1286 
1287 	if (cpu_port) {
1288 		if (!ksz_is_ksz88x3(dev))
1289 			ksz8795_cpu_interface_select(dev, port);
1290 
1291 		member = dev->port_mask;
1292 	} else {
1293 		member = dev->host_mask | p->vid_member;
1294 	}
1295 	ksz8_cfg_port_member(dev, port, member);
1296 }
1297 
ksz8_config_cpu_port(struct dsa_switch * ds)1298 static void ksz8_config_cpu_port(struct dsa_switch *ds)
1299 {
1300 	struct ksz_device *dev = ds->priv;
1301 	struct ksz8 *ksz8 = dev->priv;
1302 	const u8 *regs = ksz8->regs;
1303 	struct ksz_port *p;
1304 	const u32 *masks;
1305 	u8 remote;
1306 	int i;
1307 
1308 	masks = ksz8->masks;
1309 
1310 	/* Switch marks the maximum frame with extra byte as oversize. */
1311 	ksz_cfg(dev, REG_SW_CTRL_2, SW_LEGAL_PACKET_DISABLE, true);
1312 	ksz_cfg(dev, regs[S_TAIL_TAG_CTRL], masks[SW_TAIL_TAG_ENABLE], true);
1313 
1314 	p = &dev->ports[dev->cpu_port];
1315 	p->vid_member = dev->port_mask;
1316 	p->on = 1;
1317 
1318 	ksz8_port_setup(dev, dev->cpu_port, true);
1319 	dev->member = dev->host_mask;
1320 
1321 	for (i = 0; i < dev->phy_port_cnt; i++) {
1322 		p = &dev->ports[i];
1323 
1324 		/* Initialize to non-zero so that ksz_cfg_port_member() will
1325 		 * be called.
1326 		 */
1327 		p->vid_member = BIT(i);
1328 		p->member = dev->port_mask;
1329 		ksz8_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1330 
1331 		/* Last port may be disabled. */
1332 		if (i == dev->phy_port_cnt)
1333 			break;
1334 		p->on = 1;
1335 		p->phy = 1;
1336 	}
1337 	for (i = 0; i < dev->phy_port_cnt; i++) {
1338 		p = &dev->ports[i];
1339 		if (!p->on)
1340 			continue;
1341 		if (!ksz_is_ksz88x3(dev)) {
1342 			ksz_pread8(dev, i, regs[P_REMOTE_STATUS], &remote);
1343 			if (remote & PORT_FIBER_MODE)
1344 				p->fiber = 1;
1345 		}
1346 		if (p->fiber)
1347 			ksz_port_cfg(dev, i, P_STP_CTRL, PORT_FORCE_FLOW_CTRL,
1348 				     true);
1349 		else
1350 			ksz_port_cfg(dev, i, P_STP_CTRL, PORT_FORCE_FLOW_CTRL,
1351 				     false);
1352 	}
1353 }
1354 
ksz8_setup(struct dsa_switch * ds)1355 static int ksz8_setup(struct dsa_switch *ds)
1356 {
1357 	struct ksz_device *dev = ds->priv;
1358 	struct alu_struct alu;
1359 	int i, ret = 0;
1360 
1361 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
1362 				       dev->num_vlans, GFP_KERNEL);
1363 	if (!dev->vlan_cache)
1364 		return -ENOMEM;
1365 
1366 	ret = ksz8_reset_switch(dev);
1367 	if (ret) {
1368 		dev_err(ds->dev, "failed to reset switch\n");
1369 		return ret;
1370 	}
1371 
1372 	ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_FLOW_CTRL, true);
1373 
1374 	/* Enable automatic fast aging when link changed detected. */
1375 	ksz_cfg(dev, S_LINK_AGING_CTRL, SW_LINK_AUTO_AGING, true);
1376 
1377 	/* Enable aggressive back off algorithm in half duplex mode. */
1378 	regmap_update_bits(dev->regmap[0], REG_SW_CTRL_1,
1379 			   SW_AGGR_BACKOFF, SW_AGGR_BACKOFF);
1380 
1381 	/*
1382 	 * Make sure unicast VLAN boundary is set as default and
1383 	 * enable no excessive collision drop.
1384 	 */
1385 	regmap_update_bits(dev->regmap[0], REG_SW_CTRL_2,
1386 			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP,
1387 			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP);
1388 
1389 	ksz8_config_cpu_port(ds);
1390 
1391 	ksz_cfg(dev, REG_SW_CTRL_2, MULTICAST_STORM_DISABLE, true);
1392 
1393 	ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_REPLACE_VID, false);
1394 
1395 	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1396 
1397 	/* set broadcast storm protection 10% rate */
1398 	regmap_update_bits(dev->regmap[1], S_REPLACE_VID_CTRL,
1399 			   BROADCAST_STORM_RATE,
1400 			   (BROADCAST_STORM_VALUE *
1401 			   BROADCAST_STORM_PROT_RATE) / 100);
1402 
1403 	for (i = 0; i < (dev->num_vlans / 4); i++)
1404 		ksz8_r_vlan_entries(dev, i);
1405 
1406 	/* Setup STP address for STP operation. */
1407 	memset(&alu, 0, sizeof(alu));
1408 	ether_addr_copy(alu.mac, eth_stp_addr);
1409 	alu.is_static = true;
1410 	alu.is_override = true;
1411 	alu.port_forward = dev->host_mask;
1412 
1413 	ksz8_w_sta_mac_table(dev, 0, &alu);
1414 
1415 	ksz_init_mib_timer(dev);
1416 
1417 	ds->configure_vlan_while_not_filtering = false;
1418 
1419 	return 0;
1420 }
1421 
1422 static const struct dsa_switch_ops ksz8_switch_ops = {
1423 	.get_tag_protocol	= ksz8_get_tag_protocol,
1424 	.setup			= ksz8_setup,
1425 	.phy_read		= ksz_phy_read16,
1426 	.phy_write		= ksz_phy_write16,
1427 	.phylink_mac_link_down	= ksz_mac_link_down,
1428 	.port_enable		= ksz_enable_port,
1429 	.get_strings		= ksz8_get_strings,
1430 	.get_ethtool_stats	= ksz_get_ethtool_stats,
1431 	.get_sset_count		= ksz_sset_count,
1432 	.port_bridge_join	= ksz_port_bridge_join,
1433 	.port_bridge_leave	= ksz_port_bridge_leave,
1434 	.port_stp_state_set	= ksz8_port_stp_state_set,
1435 	.port_fast_age		= ksz_port_fast_age,
1436 	.port_vlan_filtering	= ksz8_port_vlan_filtering,
1437 	.port_vlan_add		= ksz8_port_vlan_add,
1438 	.port_vlan_del		= ksz8_port_vlan_del,
1439 	.port_fdb_dump		= ksz_port_fdb_dump,
1440 	.port_mdb_add           = ksz_port_mdb_add,
1441 	.port_mdb_del           = ksz_port_mdb_del,
1442 	.port_mirror_add	= ksz8_port_mirror_add,
1443 	.port_mirror_del	= ksz8_port_mirror_del,
1444 };
1445 
ksz8_get_port_addr(int port,int offset)1446 static u32 ksz8_get_port_addr(int port, int offset)
1447 {
1448 	return PORT_CTRL_ADDR(port, offset);
1449 }
1450 
ksz8_switch_detect(struct ksz_device * dev)1451 static int ksz8_switch_detect(struct ksz_device *dev)
1452 {
1453 	u8 id1, id2;
1454 	u16 id16;
1455 	int ret;
1456 
1457 	/* read chip id */
1458 	ret = ksz_read16(dev, REG_CHIP_ID0, &id16);
1459 	if (ret)
1460 		return ret;
1461 
1462 	id1 = id16 >> 8;
1463 	id2 = id16 & SW_CHIP_ID_M;
1464 
1465 	switch (id1) {
1466 	case KSZ87_FAMILY_ID:
1467 		if ((id2 != CHIP_ID_94 && id2 != CHIP_ID_95))
1468 			return -ENODEV;
1469 
1470 		if (id2 == CHIP_ID_95) {
1471 			u8 val;
1472 
1473 			id2 = 0x95;
1474 			ksz_read8(dev, REG_PORT_STATUS_0, &val);
1475 			if (val & PORT_FIBER_MODE)
1476 				id2 = 0x65;
1477 		} else if (id2 == CHIP_ID_94) {
1478 			id2 = 0x94;
1479 		}
1480 		break;
1481 	case KSZ88_FAMILY_ID:
1482 		if (id2 != CHIP_ID_63)
1483 			return -ENODEV;
1484 		break;
1485 	default:
1486 		dev_err(dev->dev, "invalid family id: %d\n", id1);
1487 		return -ENODEV;
1488 	}
1489 	id16 &= ~0xff;
1490 	id16 |= id2;
1491 	dev->chip_id = id16;
1492 
1493 	return 0;
1494 }
1495 
1496 struct ksz_chip_data {
1497 	u16 chip_id;
1498 	const char *dev_name;
1499 	int num_vlans;
1500 	int num_alus;
1501 	int num_statics;
1502 	int cpu_ports;
1503 	int port_cnt;
1504 };
1505 
1506 static const struct ksz_chip_data ksz8_switch_chips[] = {
1507 	{
1508 		.chip_id = 0x8795,
1509 		.dev_name = "KSZ8795",
1510 		.num_vlans = 4096,
1511 		.num_alus = 0,
1512 		.num_statics = 8,
1513 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1514 		.port_cnt = 5,		/* total cpu and user ports */
1515 	},
1516 	{
1517 		/*
1518 		 * WARNING
1519 		 * =======
1520 		 * KSZ8794 is similar to KSZ8795, except the port map
1521 		 * contains a gap between external and CPU ports, the
1522 		 * port map is NOT continuous. The per-port register
1523 		 * map is shifted accordingly too, i.e. registers at
1524 		 * offset 0x40 are NOT used on KSZ8794 and they ARE
1525 		 * used on KSZ8795 for external port 3.
1526 		 *           external  cpu
1527 		 * KSZ8794   0,1,2      4
1528 		 * KSZ8795   0,1,2,3    4
1529 		 * KSZ8765   0,1,2,3    4
1530 		 */
1531 		.chip_id = 0x8794,
1532 		.dev_name = "KSZ8794",
1533 		.num_vlans = 4096,
1534 		.num_alus = 0,
1535 		.num_statics = 8,
1536 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1537 		.port_cnt = 4,		/* total cpu and user ports */
1538 	},
1539 	{
1540 		.chip_id = 0x8765,
1541 		.dev_name = "KSZ8765",
1542 		.num_vlans = 4096,
1543 		.num_alus = 0,
1544 		.num_statics = 8,
1545 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1546 		.port_cnt = 5,		/* total cpu and user ports */
1547 	},
1548 	{
1549 		.chip_id = 0x8830,
1550 		.dev_name = "KSZ8863/KSZ8873",
1551 		.num_vlans = 16,
1552 		.num_alus = 0,
1553 		.num_statics = 8,
1554 		.cpu_ports = 0x4,	/* can be configured as cpu port */
1555 		.port_cnt = 3,
1556 	},
1557 };
1558 
ksz8_switch_init(struct ksz_device * dev)1559 static int ksz8_switch_init(struct ksz_device *dev)
1560 {
1561 	struct ksz8 *ksz8 = dev->priv;
1562 	int i;
1563 
1564 	dev->ds->ops = &ksz8_switch_ops;
1565 
1566 	for (i = 0; i < ARRAY_SIZE(ksz8_switch_chips); i++) {
1567 		const struct ksz_chip_data *chip = &ksz8_switch_chips[i];
1568 
1569 		if (dev->chip_id == chip->chip_id) {
1570 			dev->name = chip->dev_name;
1571 			dev->num_vlans = chip->num_vlans;
1572 			dev->num_alus = chip->num_alus;
1573 			dev->num_statics = chip->num_statics;
1574 			dev->port_cnt = fls(chip->cpu_ports);
1575 			dev->cpu_port = fls(chip->cpu_ports) - 1;
1576 			dev->phy_port_cnt = dev->port_cnt - 1;
1577 			dev->cpu_ports = chip->cpu_ports;
1578 			dev->host_mask = chip->cpu_ports;
1579 			dev->port_mask = (BIT(dev->phy_port_cnt) - 1) |
1580 					 chip->cpu_ports;
1581 			break;
1582 		}
1583 	}
1584 
1585 	/* no switch found */
1586 	if (!dev->cpu_ports)
1587 		return -ENODEV;
1588 
1589 	if (ksz_is_ksz88x3(dev)) {
1590 		ksz8->regs = ksz8863_regs;
1591 		ksz8->masks = ksz8863_masks;
1592 		ksz8->shifts = ksz8863_shifts;
1593 		dev->mib_cnt = ARRAY_SIZE(ksz88xx_mib_names);
1594 		dev->mib_names = ksz88xx_mib_names;
1595 	} else {
1596 		ksz8->regs = ksz8795_regs;
1597 		ksz8->masks = ksz8795_masks;
1598 		ksz8->shifts = ksz8795_shifts;
1599 		dev->mib_cnt = ARRAY_SIZE(ksz87xx_mib_names);
1600 		dev->mib_names = ksz87xx_mib_names;
1601 	}
1602 
1603 	dev->reg_mib_cnt = MIB_COUNTER_NUM;
1604 
1605 	dev->ports = devm_kzalloc(dev->dev,
1606 				  dev->port_cnt * sizeof(struct ksz_port),
1607 				  GFP_KERNEL);
1608 	if (!dev->ports)
1609 		return -ENOMEM;
1610 	for (i = 0; i < dev->port_cnt; i++) {
1611 		mutex_init(&dev->ports[i].mib.cnt_mutex);
1612 		dev->ports[i].mib.counters =
1613 			devm_kzalloc(dev->dev,
1614 				     sizeof(u64) *
1615 				     (dev->mib_cnt + 1),
1616 				     GFP_KERNEL);
1617 		if (!dev->ports[i].mib.counters)
1618 			return -ENOMEM;
1619 	}
1620 
1621 	/* set the real number of ports */
1622 	dev->ds->num_ports = dev->port_cnt;
1623 
1624 	return 0;
1625 }
1626 
ksz8_switch_exit(struct ksz_device * dev)1627 static void ksz8_switch_exit(struct ksz_device *dev)
1628 {
1629 	ksz8_reset_switch(dev);
1630 }
1631 
1632 static const struct ksz_dev_ops ksz8_dev_ops = {
1633 	.get_port_addr = ksz8_get_port_addr,
1634 	.cfg_port_member = ksz8_cfg_port_member,
1635 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
1636 	.port_setup = ksz8_port_setup,
1637 	.r_phy = ksz8_r_phy,
1638 	.w_phy = ksz8_w_phy,
1639 	.r_dyn_mac_table = ksz8_r_dyn_mac_table,
1640 	.r_sta_mac_table = ksz8_r_sta_mac_table,
1641 	.w_sta_mac_table = ksz8_w_sta_mac_table,
1642 	.r_mib_cnt = ksz8_r_mib_cnt,
1643 	.r_mib_pkt = ksz8_r_mib_pkt,
1644 	.freeze_mib = ksz8_freeze_mib,
1645 	.port_init_cnt = ksz8_port_init_cnt,
1646 	.shutdown = ksz8_reset_switch,
1647 	.detect = ksz8_switch_detect,
1648 	.init = ksz8_switch_init,
1649 	.exit = ksz8_switch_exit,
1650 };
1651 
ksz8_switch_register(struct ksz_device * dev)1652 int ksz8_switch_register(struct ksz_device *dev)
1653 {
1654 	return ksz_switch_register(dev, &ksz8_dev_ops);
1655 }
1656 EXPORT_SYMBOL(ksz8_switch_register);
1657 
1658 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@microchip.com>");
1659 MODULE_DESCRIPTION("Microchip KSZ8795 Series Switch DSA Driver");
1660 MODULE_LICENSE("GPL");
1661