1 // SPDX-License-Identifier: GPL-2.0
2
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4 * Copyright (C) 2019-2021 Linaro Ltd.
5 */
6
7 #include <linux/types.h>
8 #include <linux/device.h>
9 #include <linux/slab.h>
10 #include <linux/bitfield.h>
11 #include <linux/if_rmnet.h>
12 #include <linux/dma-direction.h>
13
14 #include "gsi.h"
15 #include "gsi_trans.h"
16 #include "ipa.h"
17 #include "ipa_data.h"
18 #include "ipa_endpoint.h"
19 #include "ipa_cmd.h"
20 #include "ipa_mem.h"
21 #include "ipa_modem.h"
22 #include "ipa_table.h"
23 #include "ipa_gsi.h"
24 #include "ipa_clock.h"
25
26 #define atomic_dec_not_zero(v) atomic_add_unless((v), -1, 0)
27
28 #define IPA_REPLENISH_BATCH 16
29
30 /* RX buffer is 1 page (or a power-of-2 contiguous pages) */
31 #define IPA_RX_BUFFER_SIZE 8192 /* PAGE_SIZE > 4096 wastes a LOT */
32
33 /* The amount of RX buffer space consumed by standard skb overhead */
34 #define IPA_RX_BUFFER_OVERHEAD (PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0))
35
36 /* Where to find the QMAP mux_id for a packet within modem-supplied metadata */
37 #define IPA_ENDPOINT_QMAP_METADATA_MASK 0x000000ff /* host byte order */
38
39 #define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX 3
40 #define IPA_AGGR_TIME_LIMIT 500 /* microseconds */
41
42 /** enum ipa_status_opcode - status element opcode hardware values */
43 enum ipa_status_opcode {
44 IPA_STATUS_OPCODE_PACKET = 0x01,
45 IPA_STATUS_OPCODE_DROPPED_PACKET = 0x04,
46 IPA_STATUS_OPCODE_SUSPENDED_PACKET = 0x08,
47 IPA_STATUS_OPCODE_PACKET_2ND_PASS = 0x40,
48 };
49
50 /** enum ipa_status_exception - status element exception type */
51 enum ipa_status_exception {
52 /* 0 means no exception */
53 IPA_STATUS_EXCEPTION_DEAGGR = 0x01,
54 };
55
56 /* Status element provided by hardware */
57 struct ipa_status {
58 u8 opcode; /* enum ipa_status_opcode */
59 u8 exception; /* enum ipa_status_exception */
60 __le16 mask;
61 __le16 pkt_len;
62 u8 endp_src_idx;
63 u8 endp_dst_idx;
64 __le32 metadata;
65 __le32 flags1;
66 __le64 flags2;
67 __le32 flags3;
68 __le32 flags4;
69 };
70
71 /* Field masks for struct ipa_status structure fields */
72 #define IPA_STATUS_MASK_TAG_VALID_FMASK GENMASK(4, 4)
73 #define IPA_STATUS_SRC_IDX_FMASK GENMASK(4, 0)
74 #define IPA_STATUS_DST_IDX_FMASK GENMASK(4, 0)
75 #define IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK GENMASK(31, 22)
76 #define IPA_STATUS_FLAGS2_TAG_FMASK GENMASK_ULL(63, 16)
77
78 #ifdef IPA_VALIDATE
79
ipa_endpoint_data_valid_one(struct ipa * ipa,u32 count,const struct ipa_gsi_endpoint_data * all_data,const struct ipa_gsi_endpoint_data * data)80 static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count,
81 const struct ipa_gsi_endpoint_data *all_data,
82 const struct ipa_gsi_endpoint_data *data)
83 {
84 const struct ipa_gsi_endpoint_data *other_data;
85 struct device *dev = &ipa->pdev->dev;
86 enum ipa_endpoint_name other_name;
87
88 if (ipa_gsi_endpoint_data_empty(data))
89 return true;
90
91 /* IPA v4.5+ uses checksum offload, not yet supported by RMNet */
92 if (ipa->version >= IPA_VERSION_4_5)
93 if (data->endpoint.config.checksum)
94 return false;
95
96 if (!data->toward_ipa) {
97 if (data->endpoint.filter_support) {
98 dev_err(dev, "filtering not supported for "
99 "RX endpoint %u\n",
100 data->endpoint_id);
101 return false;
102 }
103
104 return true; /* Nothing more to check for RX */
105 }
106
107 if (data->endpoint.config.status_enable) {
108 other_name = data->endpoint.config.tx.status_endpoint;
109 if (other_name >= count) {
110 dev_err(dev, "status endpoint name %u out of range "
111 "for endpoint %u\n",
112 other_name, data->endpoint_id);
113 return false;
114 }
115
116 /* Status endpoint must be defined... */
117 other_data = &all_data[other_name];
118 if (ipa_gsi_endpoint_data_empty(other_data)) {
119 dev_err(dev, "DMA endpoint name %u undefined "
120 "for endpoint %u\n",
121 other_name, data->endpoint_id);
122 return false;
123 }
124
125 /* ...and has to be an RX endpoint... */
126 if (other_data->toward_ipa) {
127 dev_err(dev,
128 "status endpoint for endpoint %u not RX\n",
129 data->endpoint_id);
130 return false;
131 }
132
133 /* ...and if it's to be an AP endpoint... */
134 if (other_data->ee_id == GSI_EE_AP) {
135 /* ...make sure it has status enabled. */
136 if (!other_data->endpoint.config.status_enable) {
137 dev_err(dev,
138 "status not enabled for endpoint %u\n",
139 other_data->endpoint_id);
140 return false;
141 }
142 }
143 }
144
145 if (data->endpoint.config.dma_mode) {
146 other_name = data->endpoint.config.dma_endpoint;
147 if (other_name >= count) {
148 dev_err(dev, "DMA endpoint name %u out of range "
149 "for endpoint %u\n",
150 other_name, data->endpoint_id);
151 return false;
152 }
153
154 other_data = &all_data[other_name];
155 if (ipa_gsi_endpoint_data_empty(other_data)) {
156 dev_err(dev, "DMA endpoint name %u undefined "
157 "for endpoint %u\n",
158 other_name, data->endpoint_id);
159 return false;
160 }
161 }
162
163 return true;
164 }
165
aggr_byte_limit_max(enum ipa_version version)166 static u32 aggr_byte_limit_max(enum ipa_version version)
167 {
168 if (version < IPA_VERSION_4_5)
169 return field_max(aggr_byte_limit_fmask(true));
170
171 return field_max(aggr_byte_limit_fmask(false));
172 }
173
ipa_endpoint_data_valid(struct ipa * ipa,u32 count,const struct ipa_gsi_endpoint_data * data)174 static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count,
175 const struct ipa_gsi_endpoint_data *data)
176 {
177 const struct ipa_gsi_endpoint_data *dp = data;
178 struct device *dev = &ipa->pdev->dev;
179 enum ipa_endpoint_name name;
180 u32 limit;
181
182 if (count > IPA_ENDPOINT_COUNT) {
183 dev_err(dev, "too many endpoints specified (%u > %u)\n",
184 count, IPA_ENDPOINT_COUNT);
185 return false;
186 }
187
188 /* The aggregation byte limit defines the point at which an
189 * aggregation window will close. It is programmed into the
190 * IPA hardware as a number of KB. We don't use "hard byte
191 * limit" aggregation, which means that we need to supply
192 * enough space in a receive buffer to hold a complete MTU
193 * plus normal skb overhead *after* that aggregation byte
194 * limit has been crossed.
195 *
196 * This check ensures we don't define a receive buffer size
197 * that would exceed what we can represent in the field that
198 * is used to program its size.
199 */
200 limit = aggr_byte_limit_max(ipa->version) * SZ_1K;
201 limit += IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
202 if (limit < IPA_RX_BUFFER_SIZE) {
203 dev_err(dev, "buffer size too big for aggregation (%u > %u)\n",
204 IPA_RX_BUFFER_SIZE, limit);
205 return false;
206 }
207
208 /* Make sure needed endpoints have defined data */
209 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) {
210 dev_err(dev, "command TX endpoint not defined\n");
211 return false;
212 }
213 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) {
214 dev_err(dev, "LAN RX endpoint not defined\n");
215 return false;
216 }
217 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) {
218 dev_err(dev, "AP->modem TX endpoint not defined\n");
219 return false;
220 }
221 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) {
222 dev_err(dev, "AP<-modem RX endpoint not defined\n");
223 return false;
224 }
225
226 for (name = 0; name < count; name++, dp++)
227 if (!ipa_endpoint_data_valid_one(ipa, count, data, dp))
228 return false;
229
230 return true;
231 }
232
233 #else /* !IPA_VALIDATE */
234
ipa_endpoint_data_valid(struct ipa * ipa,u32 count,const struct ipa_gsi_endpoint_data * data)235 static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count,
236 const struct ipa_gsi_endpoint_data *data)
237 {
238 const struct ipa_gsi_endpoint_data *dp = data;
239 enum ipa_endpoint_name name;
240
241 if (ipa->version < IPA_VERSION_4_5)
242 return true;
243
244 /* IPA v4.5+ uses checksum offload, not yet supported by RMNet */
245 for (name = 0; name < count; name++, dp++)
246 if (data->endpoint.config.checksum)
247 return false;
248
249 return true;
250 }
251
252 #endif /* !IPA_VALIDATE */
253
254 /* Allocate a transaction to use on a non-command endpoint */
ipa_endpoint_trans_alloc(struct ipa_endpoint * endpoint,u32 tre_count)255 static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint,
256 u32 tre_count)
257 {
258 struct gsi *gsi = &endpoint->ipa->gsi;
259 u32 channel_id = endpoint->channel_id;
260 enum dma_data_direction direction;
261
262 direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
263
264 return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction);
265 }
266
267 /* suspend_delay represents suspend for RX, delay for TX endpoints.
268 * Note that suspend is not supported starting with IPA v4.0.
269 */
270 static bool
ipa_endpoint_init_ctrl(struct ipa_endpoint * endpoint,bool suspend_delay)271 ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay)
272 {
273 u32 offset = IPA_REG_ENDP_INIT_CTRL_N_OFFSET(endpoint->endpoint_id);
274 struct ipa *ipa = endpoint->ipa;
275 bool state;
276 u32 mask;
277 u32 val;
278
279 /* Suspend is not supported for IPA v4.0+. Delay doesn't work
280 * correctly on IPA v4.2.
281 *
282 * if (endpoint->toward_ipa)
283 * assert(ipa->version != IPA_VERSION_4.2);
284 * else
285 * assert(ipa->version < IPA_VERSION_4_0);
286 */
287 mask = endpoint->toward_ipa ? ENDP_DELAY_FMASK : ENDP_SUSPEND_FMASK;
288
289 val = ioread32(ipa->reg_virt + offset);
290 /* Don't bother if it's already in the requested state */
291 state = !!(val & mask);
292 if (suspend_delay != state) {
293 val ^= mask;
294 iowrite32(val, ipa->reg_virt + offset);
295 }
296
297 return state;
298 }
299
300 /* We currently don't care what the previous state was for delay mode */
301 static void
ipa_endpoint_program_delay(struct ipa_endpoint * endpoint,bool enable)302 ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable)
303 {
304 /* assert(endpoint->toward_ipa); */
305
306 /* Delay mode doesn't work properly for IPA v4.2 */
307 if (endpoint->ipa->version != IPA_VERSION_4_2)
308 (void)ipa_endpoint_init_ctrl(endpoint, enable);
309 }
310
ipa_endpoint_aggr_active(struct ipa_endpoint * endpoint)311 static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint)
312 {
313 u32 mask = BIT(endpoint->endpoint_id);
314 struct ipa *ipa = endpoint->ipa;
315 u32 offset;
316 u32 val;
317
318 /* assert(mask & ipa->available); */
319 offset = ipa_reg_state_aggr_active_offset(ipa->version);
320 val = ioread32(ipa->reg_virt + offset);
321
322 return !!(val & mask);
323 }
324
ipa_endpoint_force_close(struct ipa_endpoint * endpoint)325 static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint)
326 {
327 u32 mask = BIT(endpoint->endpoint_id);
328 struct ipa *ipa = endpoint->ipa;
329
330 /* assert(mask & ipa->available); */
331 iowrite32(mask, ipa->reg_virt + IPA_REG_AGGR_FORCE_CLOSE_OFFSET);
332 }
333
334 /**
335 * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt
336 * @endpoint: Endpoint on which to emulate a suspend
337 *
338 * Emulate suspend IPA interrupt to unsuspend an endpoint suspended
339 * with an open aggregation frame. This is to work around a hardware
340 * issue in IPA version 3.5.1 where the suspend interrupt will not be
341 * generated when it should be.
342 */
ipa_endpoint_suspend_aggr(struct ipa_endpoint * endpoint)343 static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint)
344 {
345 struct ipa *ipa = endpoint->ipa;
346
347 if (!endpoint->data->aggregation)
348 return;
349
350 /* Nothing to do if the endpoint doesn't have aggregation open */
351 if (!ipa_endpoint_aggr_active(endpoint))
352 return;
353
354 /* Force close aggregation */
355 ipa_endpoint_force_close(endpoint);
356
357 ipa_interrupt_simulate_suspend(ipa->interrupt);
358 }
359
360 /* Returns previous suspend state (true means suspend was enabled) */
361 static bool
ipa_endpoint_program_suspend(struct ipa_endpoint * endpoint,bool enable)362 ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable)
363 {
364 bool suspended;
365
366 if (endpoint->ipa->version >= IPA_VERSION_4_0)
367 return enable; /* For IPA v4.0+, no change made */
368
369 /* assert(!endpoint->toward_ipa); */
370
371 suspended = ipa_endpoint_init_ctrl(endpoint, enable);
372
373 /* A client suspended with an open aggregation frame will not
374 * generate a SUSPEND IPA interrupt. If enabling suspend, have
375 * ipa_endpoint_suspend_aggr() handle this.
376 */
377 if (enable && !suspended)
378 ipa_endpoint_suspend_aggr(endpoint);
379
380 return suspended;
381 }
382
383 /* Enable or disable delay or suspend mode on all modem endpoints */
ipa_endpoint_modem_pause_all(struct ipa * ipa,bool enable)384 void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable)
385 {
386 u32 endpoint_id;
387
388 /* DELAY mode doesn't work correctly on IPA v4.2 */
389 if (ipa->version == IPA_VERSION_4_2)
390 return;
391
392 for (endpoint_id = 0; endpoint_id < IPA_ENDPOINT_MAX; endpoint_id++) {
393 struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id];
394
395 if (endpoint->ee_id != GSI_EE_MODEM)
396 continue;
397
398 /* Set TX delay mode or RX suspend mode */
399 if (endpoint->toward_ipa)
400 ipa_endpoint_program_delay(endpoint, enable);
401 else
402 (void)ipa_endpoint_program_suspend(endpoint, enable);
403 }
404 }
405
406 /* Reset all modem endpoints to use the default exception endpoint */
ipa_endpoint_modem_exception_reset_all(struct ipa * ipa)407 int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa)
408 {
409 u32 initialized = ipa->initialized;
410 struct gsi_trans *trans;
411 u32 count;
412
413 /* We need one command per modem TX endpoint. We can get an upper
414 * bound on that by assuming all initialized endpoints are modem->IPA.
415 * That won't happen, and we could be more precise, but this is fine
416 * for now. End the transaction with commands to clear the pipeline.
417 */
418 count = hweight32(initialized) + ipa_cmd_pipeline_clear_count();
419 trans = ipa_cmd_trans_alloc(ipa, count);
420 if (!trans) {
421 dev_err(&ipa->pdev->dev,
422 "no transaction to reset modem exception endpoints\n");
423 return -EBUSY;
424 }
425
426 while (initialized) {
427 u32 endpoint_id = __ffs(initialized);
428 struct ipa_endpoint *endpoint;
429 u32 offset;
430
431 initialized ^= BIT(endpoint_id);
432
433 /* We only reset modem TX endpoints */
434 endpoint = &ipa->endpoint[endpoint_id];
435 if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa))
436 continue;
437
438 offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id);
439
440 /* Value written is 0, and all bits are updated. That
441 * means status is disabled on the endpoint, and as a
442 * result all other fields in the register are ignored.
443 */
444 ipa_cmd_register_write_add(trans, offset, 0, ~0, false);
445 }
446
447 ipa_cmd_pipeline_clear_add(trans);
448
449 /* XXX This should have a 1 second timeout */
450 gsi_trans_commit_wait(trans);
451
452 ipa_cmd_pipeline_clear_wait(ipa);
453
454 return 0;
455 }
456
ipa_endpoint_init_cfg(struct ipa_endpoint * endpoint)457 static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint)
458 {
459 u32 offset = IPA_REG_ENDP_INIT_CFG_N_OFFSET(endpoint->endpoint_id);
460 u32 val = 0;
461
462 /* FRAG_OFFLOAD_EN is 0 */
463 if (endpoint->data->checksum) {
464 if (endpoint->toward_ipa) {
465 u32 checksum_offset;
466
467 val |= u32_encode_bits(IPA_CS_OFFLOAD_UL,
468 CS_OFFLOAD_EN_FMASK);
469 /* Checksum header offset is in 4-byte units */
470 checksum_offset = sizeof(struct rmnet_map_header);
471 checksum_offset /= sizeof(u32);
472 val |= u32_encode_bits(checksum_offset,
473 CS_METADATA_HDR_OFFSET_FMASK);
474 } else {
475 val |= u32_encode_bits(IPA_CS_OFFLOAD_DL,
476 CS_OFFLOAD_EN_FMASK);
477 }
478 } else {
479 val |= u32_encode_bits(IPA_CS_OFFLOAD_NONE,
480 CS_OFFLOAD_EN_FMASK);
481 }
482 /* CS_GEN_QMB_MASTER_SEL is 0 */
483
484 iowrite32(val, endpoint->ipa->reg_virt + offset);
485 }
486
ipa_endpoint_init_nat(struct ipa_endpoint * endpoint)487 static void ipa_endpoint_init_nat(struct ipa_endpoint *endpoint)
488 {
489 u32 offset;
490 u32 val;
491
492 if (!endpoint->toward_ipa)
493 return;
494
495 offset = IPA_REG_ENDP_INIT_NAT_N_OFFSET(endpoint->endpoint_id);
496 val = u32_encode_bits(IPA_NAT_BYPASS, NAT_EN_FMASK);
497
498 iowrite32(val, endpoint->ipa->reg_virt + offset);
499 }
500
501 /**
502 * ipa_endpoint_init_hdr() - Initialize HDR endpoint configuration register
503 * @endpoint: Endpoint pointer
504 *
505 * We program QMAP endpoints so each packet received is preceded by a QMAP
506 * header structure. The QMAP header contains a 1-byte mux_id and 2-byte
507 * packet size field, and we have the IPA hardware populate both for each
508 * received packet. The header is configured (in the HDR_EXT register)
509 * to use big endian format.
510 *
511 * The packet size is written into the QMAP header's pkt_len field. That
512 * location is defined here using the HDR_OFST_PKT_SIZE field.
513 *
514 * The mux_id comes from a 4-byte metadata value supplied with each packet
515 * by the modem. It is *not* a QMAP header, but it does contain the mux_id
516 * value that we want, in its low-order byte. A bitmask defined in the
517 * endpoint's METADATA_MASK register defines which byte within the modem
518 * metadata contains the mux_id. And the OFST_METADATA field programmed
519 * here indicates where the extracted byte should be placed within the QMAP
520 * header.
521 */
ipa_endpoint_init_hdr(struct ipa_endpoint * endpoint)522 static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint)
523 {
524 u32 offset = IPA_REG_ENDP_INIT_HDR_N_OFFSET(endpoint->endpoint_id);
525 struct ipa *ipa = endpoint->ipa;
526 u32 val = 0;
527
528 if (endpoint->data->qmap) {
529 size_t header_size = sizeof(struct rmnet_map_header);
530 enum ipa_version version = ipa->version;
531
532 /* We might supply a checksum header after the QMAP header */
533 if (endpoint->toward_ipa && endpoint->data->checksum)
534 header_size += sizeof(struct rmnet_map_ul_csum_header);
535 val |= ipa_header_size_encoded(version, header_size);
536
537 /* Define how to fill fields in a received QMAP header */
538 if (!endpoint->toward_ipa) {
539 u32 offset; /* Field offset within header */
540
541 /* Where IPA will write the metadata value */
542 offset = offsetof(struct rmnet_map_header, mux_id);
543 val |= ipa_metadata_offset_encoded(version, offset);
544
545 /* Where IPA will write the length */
546 offset = offsetof(struct rmnet_map_header, pkt_len);
547 /* Upper bits are stored in HDR_EXT with IPA v4.5 */
548 if (version >= IPA_VERSION_4_5)
549 offset &= field_mask(HDR_OFST_PKT_SIZE_FMASK);
550
551 val |= HDR_OFST_PKT_SIZE_VALID_FMASK;
552 val |= u32_encode_bits(offset, HDR_OFST_PKT_SIZE_FMASK);
553 }
554 /* For QMAP TX, metadata offset is 0 (modem assumes this) */
555 val |= HDR_OFST_METADATA_VALID_FMASK;
556
557 /* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */
558 /* HDR_A5_MUX is 0 */
559 /* HDR_LEN_INC_DEAGG_HDR is 0 */
560 /* HDR_METADATA_REG_VALID is 0 (TX only, version < v4.5) */
561 }
562
563 iowrite32(val, ipa->reg_virt + offset);
564 }
565
ipa_endpoint_init_hdr_ext(struct ipa_endpoint * endpoint)566 static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint)
567 {
568 u32 offset = IPA_REG_ENDP_INIT_HDR_EXT_N_OFFSET(endpoint->endpoint_id);
569 u32 pad_align = endpoint->data->rx.pad_align;
570 struct ipa *ipa = endpoint->ipa;
571 u32 val = 0;
572
573 val |= HDR_ENDIANNESS_FMASK; /* big endian */
574
575 /* A QMAP header contains a 6 bit pad field at offset 0. The RMNet
576 * driver assumes this field is meaningful in packets it receives,
577 * and assumes the header's payload length includes that padding.
578 * The RMNet driver does *not* pad packets it sends, however, so
579 * the pad field (although 0) should be ignored.
580 */
581 if (endpoint->data->qmap && !endpoint->toward_ipa) {
582 val |= HDR_TOTAL_LEN_OR_PAD_VALID_FMASK;
583 /* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */
584 val |= HDR_PAYLOAD_LEN_INC_PADDING_FMASK;
585 /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */
586 }
587
588 /* HDR_PAYLOAD_LEN_INC_PADDING is 0 */
589 if (!endpoint->toward_ipa)
590 val |= u32_encode_bits(pad_align, HDR_PAD_TO_ALIGNMENT_FMASK);
591
592 /* IPA v4.5 adds some most-significant bits to a few fields,
593 * two of which are defined in the HDR (not HDR_EXT) register.
594 */
595 if (ipa->version >= IPA_VERSION_4_5) {
596 /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0, so MSB is 0 */
597 if (endpoint->data->qmap && !endpoint->toward_ipa) {
598 u32 offset;
599
600 offset = offsetof(struct rmnet_map_header, pkt_len);
601 offset >>= hweight32(HDR_OFST_PKT_SIZE_FMASK);
602 val |= u32_encode_bits(offset,
603 HDR_OFST_PKT_SIZE_MSB_FMASK);
604 /* HDR_ADDITIONAL_CONST_LEN is 0 so MSB is 0 */
605 }
606 }
607 iowrite32(val, ipa->reg_virt + offset);
608 }
609
ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint * endpoint)610 static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint)
611 {
612 u32 endpoint_id = endpoint->endpoint_id;
613 u32 val = 0;
614 u32 offset;
615
616 if (endpoint->toward_ipa)
617 return; /* Register not valid for TX endpoints */
618
619 offset = IPA_REG_ENDP_INIT_HDR_METADATA_MASK_N_OFFSET(endpoint_id);
620
621 /* Note that HDR_ENDIANNESS indicates big endian header fields */
622 if (endpoint->data->qmap)
623 val = (__force u32)cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK);
624
625 iowrite32(val, endpoint->ipa->reg_virt + offset);
626 }
627
ipa_endpoint_init_mode(struct ipa_endpoint * endpoint)628 static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint)
629 {
630 u32 offset = IPA_REG_ENDP_INIT_MODE_N_OFFSET(endpoint->endpoint_id);
631 u32 val;
632
633 if (!endpoint->toward_ipa)
634 return; /* Register not valid for RX endpoints */
635
636 if (endpoint->data->dma_mode) {
637 enum ipa_endpoint_name name = endpoint->data->dma_endpoint;
638 u32 dma_endpoint_id;
639
640 dma_endpoint_id = endpoint->ipa->name_map[name]->endpoint_id;
641
642 val = u32_encode_bits(IPA_DMA, MODE_FMASK);
643 val |= u32_encode_bits(dma_endpoint_id, DEST_PIPE_INDEX_FMASK);
644 } else {
645 val = u32_encode_bits(IPA_BASIC, MODE_FMASK);
646 }
647 /* All other bits unspecified (and 0) */
648
649 iowrite32(val, endpoint->ipa->reg_virt + offset);
650 }
651
652 /* Compute the aggregation size value to use for a given buffer size */
ipa_aggr_size_kb(u32 rx_buffer_size)653 static u32 ipa_aggr_size_kb(u32 rx_buffer_size)
654 {
655 /* We don't use "hard byte limit" aggregation, so we define the
656 * aggregation limit such that our buffer has enough space *after*
657 * that limit to receive a full MTU of data, plus overhead.
658 */
659 rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
660
661 return rx_buffer_size / SZ_1K;
662 }
663
664 /* Encoded values for AGGR endpoint register fields */
aggr_byte_limit_encoded(enum ipa_version version,u32 limit)665 static u32 aggr_byte_limit_encoded(enum ipa_version version, u32 limit)
666 {
667 if (version < IPA_VERSION_4_5)
668 return u32_encode_bits(limit, aggr_byte_limit_fmask(true));
669
670 return u32_encode_bits(limit, aggr_byte_limit_fmask(false));
671 }
672
673 /* Encode the aggregation timer limit (microseconds) based on IPA version */
aggr_time_limit_encoded(enum ipa_version version,u32 limit)674 static u32 aggr_time_limit_encoded(enum ipa_version version, u32 limit)
675 {
676 u32 gran_sel;
677 u32 fmask;
678 u32 val;
679
680 if (version < IPA_VERSION_4_5) {
681 /* We set aggregation granularity in ipa_hardware_config() */
682 limit = DIV_ROUND_CLOSEST(limit, IPA_AGGR_GRANULARITY);
683
684 return u32_encode_bits(limit, aggr_time_limit_fmask(true));
685 }
686
687 /* IPA v4.5 expresses the time limit using Qtime. The AP has
688 * pulse generators 0 and 1 available, which were configured
689 * in ipa_qtime_config() to have granularity 100 usec and
690 * 1 msec, respectively. Use pulse generator 0 if possible,
691 * otherwise fall back to pulse generator 1.
692 */
693 fmask = aggr_time_limit_fmask(false);
694 val = DIV_ROUND_CLOSEST(limit, 100);
695 if (val > field_max(fmask)) {
696 /* Have to use pulse generator 1 (millisecond granularity) */
697 gran_sel = AGGR_GRAN_SEL_FMASK;
698 val = DIV_ROUND_CLOSEST(limit, 1000);
699 } else {
700 /* We can use pulse generator 0 (100 usec granularity) */
701 gran_sel = 0;
702 }
703
704 return gran_sel | u32_encode_bits(val, fmask);
705 }
706
aggr_sw_eof_active_encoded(enum ipa_version version,bool enabled)707 static u32 aggr_sw_eof_active_encoded(enum ipa_version version, bool enabled)
708 {
709 u32 val = enabled ? 1 : 0;
710
711 if (version < IPA_VERSION_4_5)
712 return u32_encode_bits(val, aggr_sw_eof_active_fmask(true));
713
714 return u32_encode_bits(val, aggr_sw_eof_active_fmask(false));
715 }
716
ipa_endpoint_init_aggr(struct ipa_endpoint * endpoint)717 static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint)
718 {
719 u32 offset = IPA_REG_ENDP_INIT_AGGR_N_OFFSET(endpoint->endpoint_id);
720 enum ipa_version version = endpoint->ipa->version;
721 u32 val = 0;
722
723 if (endpoint->data->aggregation) {
724 if (!endpoint->toward_ipa) {
725 bool close_eof;
726 u32 limit;
727
728 val |= u32_encode_bits(IPA_ENABLE_AGGR, AGGR_EN_FMASK);
729 val |= u32_encode_bits(IPA_GENERIC, AGGR_TYPE_FMASK);
730
731 limit = ipa_aggr_size_kb(IPA_RX_BUFFER_SIZE);
732 val |= aggr_byte_limit_encoded(version, limit);
733
734 limit = IPA_AGGR_TIME_LIMIT;
735 val |= aggr_time_limit_encoded(version, limit);
736
737 /* AGGR_PKT_LIMIT is 0 (unlimited) */
738
739 close_eof = endpoint->data->rx.aggr_close_eof;
740 val |= aggr_sw_eof_active_encoded(version, close_eof);
741
742 /* AGGR_HARD_BYTE_LIMIT_ENABLE is 0 */
743 } else {
744 val |= u32_encode_bits(IPA_ENABLE_DEAGGR,
745 AGGR_EN_FMASK);
746 val |= u32_encode_bits(IPA_QCMAP, AGGR_TYPE_FMASK);
747 /* other fields ignored */
748 }
749 /* AGGR_FORCE_CLOSE is 0 */
750 /* AGGR_GRAN_SEL is 0 for IPA v4.5 */
751 } else {
752 val |= u32_encode_bits(IPA_BYPASS_AGGR, AGGR_EN_FMASK);
753 /* other fields ignored */
754 }
755
756 iowrite32(val, endpoint->ipa->reg_virt + offset);
757 }
758
759 /* Return the Qtime-based head-of-line blocking timer value that
760 * represents the given number of microseconds. The result
761 * includes both the timer value and the selected timer granularity.
762 */
hol_block_timer_qtime_val(struct ipa * ipa,u32 microseconds)763 static u32 hol_block_timer_qtime_val(struct ipa *ipa, u32 microseconds)
764 {
765 u32 gran_sel;
766 u32 val;
767
768 /* IPA v4.5 expresses time limits using Qtime. The AP has
769 * pulse generators 0 and 1 available, which were configured
770 * in ipa_qtime_config() to have granularity 100 usec and
771 * 1 msec, respectively. Use pulse generator 0 if possible,
772 * otherwise fall back to pulse generator 1.
773 */
774 val = DIV_ROUND_CLOSEST(microseconds, 100);
775 if (val > field_max(TIME_LIMIT_FMASK)) {
776 /* Have to use pulse generator 1 (millisecond granularity) */
777 gran_sel = GRAN_SEL_FMASK;
778 val = DIV_ROUND_CLOSEST(microseconds, 1000);
779 } else {
780 /* We can use pulse generator 0 (100 usec granularity) */
781 gran_sel = 0;
782 }
783
784 return gran_sel | u32_encode_bits(val, TIME_LIMIT_FMASK);
785 }
786
787 /* The head-of-line blocking timer is defined as a tick count. For
788 * IPA version 4.5 the tick count is based on the Qtimer, which is
789 * derived from the 19.2 MHz SoC XO clock. For older IPA versions
790 * each tick represents 128 cycles of the IPA core clock.
791 *
792 * Return the encoded value that should be written to that register
793 * that represents the timeout period provided. For IPA v4.2 this
794 * encodes a base and scale value, while for earlier versions the
795 * value is a simple tick count.
796 */
hol_block_timer_val(struct ipa * ipa,u32 microseconds)797 static u32 hol_block_timer_val(struct ipa *ipa, u32 microseconds)
798 {
799 u32 width;
800 u32 scale;
801 u64 ticks;
802 u64 rate;
803 u32 high;
804 u32 val;
805
806 if (!microseconds)
807 return 0; /* Nothing to compute if timer period is 0 */
808
809 if (ipa->version >= IPA_VERSION_4_5)
810 return hol_block_timer_qtime_val(ipa, microseconds);
811
812 /* Use 64 bit arithmetic to avoid overflow... */
813 rate = ipa_clock_rate(ipa);
814 ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC);
815 /* ...but we still need to fit into a 32-bit register */
816 WARN_ON(ticks > U32_MAX);
817
818 /* IPA v3.5.1 through v4.1 just record the tick count */
819 if (ipa->version < IPA_VERSION_4_2)
820 return (u32)ticks;
821
822 /* For IPA v4.2, the tick count is represented by base and
823 * scale fields within the 32-bit timer register, where:
824 * ticks = base << scale;
825 * The best precision is achieved when the base value is as
826 * large as possible. Find the highest set bit in the tick
827 * count, and extract the number of bits in the base field
828 * such that high bit is included.
829 */
830 high = fls(ticks); /* 1..32 */
831 width = HWEIGHT32(BASE_VALUE_FMASK);
832 scale = high > width ? high - width : 0;
833 if (scale) {
834 /* If we're scaling, round up to get a closer result */
835 ticks += 1 << (scale - 1);
836 /* High bit was set, so rounding might have affected it */
837 if (fls(ticks) != high)
838 scale++;
839 }
840
841 val = u32_encode_bits(scale, SCALE_FMASK);
842 val |= u32_encode_bits(ticks >> scale, BASE_VALUE_FMASK);
843
844 return val;
845 }
846
847 /* If microseconds is 0, timeout is immediate */
ipa_endpoint_init_hol_block_timer(struct ipa_endpoint * endpoint,u32 microseconds)848 static void ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint,
849 u32 microseconds)
850 {
851 u32 endpoint_id = endpoint->endpoint_id;
852 struct ipa *ipa = endpoint->ipa;
853 u32 offset;
854 u32 val;
855
856 offset = IPA_REG_ENDP_INIT_HOL_BLOCK_TIMER_N_OFFSET(endpoint_id);
857 val = hol_block_timer_val(ipa, microseconds);
858 iowrite32(val, ipa->reg_virt + offset);
859 }
860
861 static void
ipa_endpoint_init_hol_block_enable(struct ipa_endpoint * endpoint,bool enable)862 ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint, bool enable)
863 {
864 u32 endpoint_id = endpoint->endpoint_id;
865 u32 offset;
866 u32 val;
867
868 val = enable ? HOL_BLOCK_EN_FMASK : 0;
869 offset = IPA_REG_ENDP_INIT_HOL_BLOCK_EN_N_OFFSET(endpoint_id);
870 iowrite32(val, endpoint->ipa->reg_virt + offset);
871 }
872
ipa_endpoint_modem_hol_block_clear_all(struct ipa * ipa)873 void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa)
874 {
875 u32 i;
876
877 for (i = 0; i < IPA_ENDPOINT_MAX; i++) {
878 struct ipa_endpoint *endpoint = &ipa->endpoint[i];
879
880 if (endpoint->toward_ipa || endpoint->ee_id != GSI_EE_MODEM)
881 continue;
882
883 ipa_endpoint_init_hol_block_timer(endpoint, 0);
884 ipa_endpoint_init_hol_block_enable(endpoint, true);
885 }
886 }
887
ipa_endpoint_init_deaggr(struct ipa_endpoint * endpoint)888 static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint)
889 {
890 u32 offset = IPA_REG_ENDP_INIT_DEAGGR_N_OFFSET(endpoint->endpoint_id);
891 u32 val = 0;
892
893 if (!endpoint->toward_ipa)
894 return; /* Register not valid for RX endpoints */
895
896 /* DEAGGR_HDR_LEN is 0 */
897 /* PACKET_OFFSET_VALID is 0 */
898 /* PACKET_OFFSET_LOCATION is ignored (not valid) */
899 /* MAX_PACKET_LEN is 0 (not enforced) */
900
901 iowrite32(val, endpoint->ipa->reg_virt + offset);
902 }
903
ipa_endpoint_init_rsrc_grp(struct ipa_endpoint * endpoint)904 static void ipa_endpoint_init_rsrc_grp(struct ipa_endpoint *endpoint)
905 {
906 u32 offset = IPA_REG_ENDP_INIT_RSRC_GRP_N_OFFSET(endpoint->endpoint_id);
907 struct ipa *ipa = endpoint->ipa;
908 u32 val;
909
910 val = rsrc_grp_encoded(ipa->version, endpoint->data->resource_group);
911 iowrite32(val, ipa->reg_virt + offset);
912 }
913
ipa_endpoint_init_seq(struct ipa_endpoint * endpoint)914 static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint)
915 {
916 u32 offset = IPA_REG_ENDP_INIT_SEQ_N_OFFSET(endpoint->endpoint_id);
917 u32 val = 0;
918
919 if (!endpoint->toward_ipa)
920 return; /* Register not valid for RX endpoints */
921
922 /* Low-order byte configures primary packet processing */
923 val |= u32_encode_bits(endpoint->data->tx.seq_type, SEQ_TYPE_FMASK);
924
925 /* Second byte configures replicated packet processing */
926 val |= u32_encode_bits(endpoint->data->tx.seq_rep_type,
927 SEQ_REP_TYPE_FMASK);
928
929 iowrite32(val, endpoint->ipa->reg_virt + offset);
930 }
931
932 /**
933 * ipa_endpoint_skb_tx() - Transmit a socket buffer
934 * @endpoint: Endpoint pointer
935 * @skb: Socket buffer to send
936 *
937 * Returns: 0 if successful, or a negative error code
938 */
ipa_endpoint_skb_tx(struct ipa_endpoint * endpoint,struct sk_buff * skb)939 int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb)
940 {
941 struct gsi_trans *trans;
942 u32 nr_frags;
943 int ret;
944
945 /* Make sure source endpoint's TLV FIFO has enough entries to
946 * hold the linear portion of the skb and all its fragments.
947 * If not, see if we can linearize it before giving up.
948 */
949 nr_frags = skb_shinfo(skb)->nr_frags;
950 if (1 + nr_frags > endpoint->trans_tre_max) {
951 if (skb_linearize(skb))
952 return -E2BIG;
953 nr_frags = 0;
954 }
955
956 trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags);
957 if (!trans)
958 return -EBUSY;
959
960 ret = gsi_trans_skb_add(trans, skb);
961 if (ret)
962 goto err_trans_free;
963 trans->data = skb; /* transaction owns skb now */
964
965 gsi_trans_commit(trans, !netdev_xmit_more());
966
967 return 0;
968
969 err_trans_free:
970 gsi_trans_free(trans);
971
972 return -ENOMEM;
973 }
974
ipa_endpoint_status(struct ipa_endpoint * endpoint)975 static void ipa_endpoint_status(struct ipa_endpoint *endpoint)
976 {
977 u32 endpoint_id = endpoint->endpoint_id;
978 struct ipa *ipa = endpoint->ipa;
979 u32 val = 0;
980 u32 offset;
981
982 offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id);
983
984 if (endpoint->data->status_enable) {
985 val |= STATUS_EN_FMASK;
986 if (endpoint->toward_ipa) {
987 enum ipa_endpoint_name name;
988 u32 status_endpoint_id;
989
990 name = endpoint->data->tx.status_endpoint;
991 status_endpoint_id = ipa->name_map[name]->endpoint_id;
992
993 val |= u32_encode_bits(status_endpoint_id,
994 STATUS_ENDP_FMASK);
995 }
996 /* STATUS_LOCATION is 0, meaning status element precedes
997 * packet (not present for IPA v4.5)
998 */
999 /* STATUS_PKT_SUPPRESS_FMASK is 0 (not present for v3.5.1) */
1000 }
1001
1002 iowrite32(val, ipa->reg_virt + offset);
1003 }
1004
ipa_endpoint_replenish_one(struct ipa_endpoint * endpoint)1005 static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint)
1006 {
1007 struct gsi_trans *trans;
1008 bool doorbell = false;
1009 struct page *page;
1010 u32 offset;
1011 u32 len;
1012 int ret;
1013
1014 page = dev_alloc_pages(get_order(IPA_RX_BUFFER_SIZE));
1015 if (!page)
1016 return -ENOMEM;
1017
1018 trans = ipa_endpoint_trans_alloc(endpoint, 1);
1019 if (!trans)
1020 goto err_free_pages;
1021
1022 /* Offset the buffer to make space for skb headroom */
1023 offset = NET_SKB_PAD;
1024 len = IPA_RX_BUFFER_SIZE - offset;
1025
1026 ret = gsi_trans_page_add(trans, page, len, offset);
1027 if (ret)
1028 goto err_trans_free;
1029 trans->data = page; /* transaction owns page now */
1030
1031 if (++endpoint->replenish_ready == IPA_REPLENISH_BATCH) {
1032 doorbell = true;
1033 endpoint->replenish_ready = 0;
1034 }
1035
1036 gsi_trans_commit(trans, doorbell);
1037
1038 return 0;
1039
1040 err_trans_free:
1041 gsi_trans_free(trans);
1042 err_free_pages:
1043 __free_pages(page, get_order(IPA_RX_BUFFER_SIZE));
1044
1045 return -ENOMEM;
1046 }
1047
1048 /**
1049 * ipa_endpoint_replenish() - Replenish endpoint receive buffers
1050 * @endpoint: Endpoint to be replenished
1051 * @add_one: Whether this is replacing a just-consumed buffer
1052 *
1053 * The IPA hardware can hold a fixed number of receive buffers for an RX
1054 * endpoint, based on the number of entries in the underlying channel ring
1055 * buffer. If an endpoint's "backlog" is non-zero, it indicates how many
1056 * more receive buffers can be supplied to the hardware. Replenishing for
1057 * an endpoint can be disabled, in which case requests to replenish a
1058 * buffer are "saved", and transferred to the backlog once it is re-enabled
1059 * again.
1060 */
ipa_endpoint_replenish(struct ipa_endpoint * endpoint,bool add_one)1061 static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint, bool add_one)
1062 {
1063 struct gsi *gsi;
1064 u32 backlog;
1065
1066 if (!endpoint->replenish_enabled) {
1067 if (add_one)
1068 atomic_inc(&endpoint->replenish_saved);
1069 return;
1070 }
1071
1072 while (atomic_dec_not_zero(&endpoint->replenish_backlog))
1073 if (ipa_endpoint_replenish_one(endpoint))
1074 goto try_again_later;
1075 if (add_one)
1076 atomic_inc(&endpoint->replenish_backlog);
1077
1078 return;
1079
1080 try_again_later:
1081 /* The last one didn't succeed, so fix the backlog */
1082 backlog = atomic_inc_return(&endpoint->replenish_backlog);
1083
1084 if (add_one)
1085 atomic_inc(&endpoint->replenish_backlog);
1086
1087 /* Whenever a receive buffer transaction completes we'll try to
1088 * replenish again. It's unlikely, but if we fail to supply even
1089 * one buffer, nothing will trigger another replenish attempt.
1090 * Receive buffer transactions use one TRE, so schedule work to
1091 * try replenishing again if our backlog is *all* available TREs.
1092 */
1093 gsi = &endpoint->ipa->gsi;
1094 if (backlog == gsi_channel_tre_max(gsi, endpoint->channel_id))
1095 schedule_delayed_work(&endpoint->replenish_work,
1096 msecs_to_jiffies(1));
1097 }
1098
ipa_endpoint_replenish_enable(struct ipa_endpoint * endpoint)1099 static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint)
1100 {
1101 struct gsi *gsi = &endpoint->ipa->gsi;
1102 u32 max_backlog;
1103 u32 saved;
1104
1105 endpoint->replenish_enabled = true;
1106 while ((saved = atomic_xchg(&endpoint->replenish_saved, 0)))
1107 atomic_add(saved, &endpoint->replenish_backlog);
1108
1109 /* Start replenishing if hardware currently has no buffers */
1110 max_backlog = gsi_channel_tre_max(gsi, endpoint->channel_id);
1111 if (atomic_read(&endpoint->replenish_backlog) == max_backlog)
1112 ipa_endpoint_replenish(endpoint, false);
1113 }
1114
ipa_endpoint_replenish_disable(struct ipa_endpoint * endpoint)1115 static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint)
1116 {
1117 u32 backlog;
1118
1119 endpoint->replenish_enabled = false;
1120 while ((backlog = atomic_xchg(&endpoint->replenish_backlog, 0)))
1121 atomic_add(backlog, &endpoint->replenish_saved);
1122 }
1123
ipa_endpoint_replenish_work(struct work_struct * work)1124 static void ipa_endpoint_replenish_work(struct work_struct *work)
1125 {
1126 struct delayed_work *dwork = to_delayed_work(work);
1127 struct ipa_endpoint *endpoint;
1128
1129 endpoint = container_of(dwork, struct ipa_endpoint, replenish_work);
1130
1131 ipa_endpoint_replenish(endpoint, false);
1132 }
1133
ipa_endpoint_skb_copy(struct ipa_endpoint * endpoint,void * data,u32 len,u32 extra)1134 static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint,
1135 void *data, u32 len, u32 extra)
1136 {
1137 struct sk_buff *skb;
1138
1139 skb = __dev_alloc_skb(len, GFP_ATOMIC);
1140 if (skb) {
1141 skb_put(skb, len);
1142 memcpy(skb->data, data, len);
1143 skb->truesize += extra;
1144 }
1145
1146 /* Now receive it, or drop it if there's no netdev */
1147 if (endpoint->netdev)
1148 ipa_modem_skb_rx(endpoint->netdev, skb);
1149 else if (skb)
1150 dev_kfree_skb_any(skb);
1151 }
1152
ipa_endpoint_skb_build(struct ipa_endpoint * endpoint,struct page * page,u32 len)1153 static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint,
1154 struct page *page, u32 len)
1155 {
1156 struct sk_buff *skb;
1157
1158 /* Nothing to do if there's no netdev */
1159 if (!endpoint->netdev)
1160 return false;
1161
1162 /* assert(len <= SKB_WITH_OVERHEAD(IPA_RX_BUFFER_SIZE-NET_SKB_PAD)); */
1163 skb = build_skb(page_address(page), IPA_RX_BUFFER_SIZE);
1164 if (skb) {
1165 /* Reserve the headroom and account for the data */
1166 skb_reserve(skb, NET_SKB_PAD);
1167 skb_put(skb, len);
1168 }
1169
1170 /* Receive the buffer (or record drop if unable to build it) */
1171 ipa_modem_skb_rx(endpoint->netdev, skb);
1172
1173 return skb != NULL;
1174 }
1175
1176 /* The format of a packet status element is the same for several status
1177 * types (opcodes). Other types aren't currently supported.
1178 */
ipa_status_format_packet(enum ipa_status_opcode opcode)1179 static bool ipa_status_format_packet(enum ipa_status_opcode opcode)
1180 {
1181 switch (opcode) {
1182 case IPA_STATUS_OPCODE_PACKET:
1183 case IPA_STATUS_OPCODE_DROPPED_PACKET:
1184 case IPA_STATUS_OPCODE_SUSPENDED_PACKET:
1185 case IPA_STATUS_OPCODE_PACKET_2ND_PASS:
1186 return true;
1187 default:
1188 return false;
1189 }
1190 }
1191
ipa_endpoint_status_skip(struct ipa_endpoint * endpoint,const struct ipa_status * status)1192 static bool ipa_endpoint_status_skip(struct ipa_endpoint *endpoint,
1193 const struct ipa_status *status)
1194 {
1195 u32 endpoint_id;
1196
1197 if (!ipa_status_format_packet(status->opcode))
1198 return true;
1199 if (!status->pkt_len)
1200 return true;
1201 endpoint_id = u8_get_bits(status->endp_dst_idx,
1202 IPA_STATUS_DST_IDX_FMASK);
1203 if (endpoint_id != endpoint->endpoint_id)
1204 return true;
1205
1206 return false; /* Don't skip this packet, process it */
1207 }
1208
ipa_endpoint_status_tag(struct ipa_endpoint * endpoint,const struct ipa_status * status)1209 static bool ipa_endpoint_status_tag(struct ipa_endpoint *endpoint,
1210 const struct ipa_status *status)
1211 {
1212 struct ipa_endpoint *command_endpoint;
1213 struct ipa *ipa = endpoint->ipa;
1214 u32 endpoint_id;
1215
1216 if (!le16_get_bits(status->mask, IPA_STATUS_MASK_TAG_VALID_FMASK))
1217 return false; /* No valid tag */
1218
1219 /* The status contains a valid tag. We know the packet was sent to
1220 * this endpoint (already verified by ipa_endpoint_status_skip()).
1221 * If the packet came from the AP->command TX endpoint we know
1222 * this packet was sent as part of the pipeline clear process.
1223 */
1224 endpoint_id = u8_get_bits(status->endp_src_idx,
1225 IPA_STATUS_SRC_IDX_FMASK);
1226 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
1227 if (endpoint_id == command_endpoint->endpoint_id) {
1228 complete(&ipa->completion);
1229 } else {
1230 dev_err(&ipa->pdev->dev,
1231 "unexpected tagged packet from endpoint %u\n",
1232 endpoint_id);
1233 }
1234
1235 return true;
1236 }
1237
1238 /* Return whether the status indicates the packet should be dropped */
ipa_endpoint_status_drop(struct ipa_endpoint * endpoint,const struct ipa_status * status)1239 static bool ipa_endpoint_status_drop(struct ipa_endpoint *endpoint,
1240 const struct ipa_status *status)
1241 {
1242 u32 val;
1243
1244 /* If the status indicates a tagged transfer, we'll drop the packet */
1245 if (ipa_endpoint_status_tag(endpoint, status))
1246 return true;
1247
1248 /* Deaggregation exceptions we drop; all other types we consume */
1249 if (status->exception)
1250 return status->exception == IPA_STATUS_EXCEPTION_DEAGGR;
1251
1252 /* Drop the packet if it fails to match a routing rule; otherwise no */
1253 val = le32_get_bits(status->flags1, IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
1254
1255 return val == field_max(IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
1256 }
1257
ipa_endpoint_status_parse(struct ipa_endpoint * endpoint,struct page * page,u32 total_len)1258 static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint,
1259 struct page *page, u32 total_len)
1260 {
1261 void *data = page_address(page) + NET_SKB_PAD;
1262 u32 unused = IPA_RX_BUFFER_SIZE - total_len;
1263 u32 resid = total_len;
1264
1265 while (resid) {
1266 const struct ipa_status *status = data;
1267 u32 align;
1268 u32 len;
1269
1270 if (resid < sizeof(*status)) {
1271 dev_err(&endpoint->ipa->pdev->dev,
1272 "short message (%u bytes < %zu byte status)\n",
1273 resid, sizeof(*status));
1274 break;
1275 }
1276
1277 /* Skip over status packets that lack packet data */
1278 if (ipa_endpoint_status_skip(endpoint, status)) {
1279 data += sizeof(*status);
1280 resid -= sizeof(*status);
1281 continue;
1282 }
1283
1284 /* Compute the amount of buffer space consumed by the packet,
1285 * including the status element. If the hardware is configured
1286 * to pad packet data to an aligned boundary, account for that.
1287 * And if checksum offload is enabled a trailer containing
1288 * computed checksum information will be appended.
1289 */
1290 align = endpoint->data->rx.pad_align ? : 1;
1291 len = le16_to_cpu(status->pkt_len);
1292 len = sizeof(*status) + ALIGN(len, align);
1293 if (endpoint->data->checksum)
1294 len += sizeof(struct rmnet_map_dl_csum_trailer);
1295
1296 if (!ipa_endpoint_status_drop(endpoint, status)) {
1297 void *data2;
1298 u32 extra;
1299 u32 len2;
1300
1301 /* Client receives only packet data (no status) */
1302 data2 = data + sizeof(*status);
1303 len2 = le16_to_cpu(status->pkt_len);
1304
1305 /* Have the true size reflect the extra unused space in
1306 * the original receive buffer. Distribute the "cost"
1307 * proportionately across all aggregated packets in the
1308 * buffer.
1309 */
1310 extra = DIV_ROUND_CLOSEST(unused * len, total_len);
1311 ipa_endpoint_skb_copy(endpoint, data2, len2, extra);
1312 }
1313
1314 /* Consume status and the full packet it describes */
1315 data += len;
1316 resid -= len;
1317 }
1318 }
1319
1320 /* Complete a TX transaction, command or from ipa_endpoint_skb_tx() */
ipa_endpoint_tx_complete(struct ipa_endpoint * endpoint,struct gsi_trans * trans)1321 static void ipa_endpoint_tx_complete(struct ipa_endpoint *endpoint,
1322 struct gsi_trans *trans)
1323 {
1324 }
1325
1326 /* Complete transaction initiated in ipa_endpoint_replenish_one() */
ipa_endpoint_rx_complete(struct ipa_endpoint * endpoint,struct gsi_trans * trans)1327 static void ipa_endpoint_rx_complete(struct ipa_endpoint *endpoint,
1328 struct gsi_trans *trans)
1329 {
1330 struct page *page;
1331
1332 ipa_endpoint_replenish(endpoint, true);
1333
1334 if (trans->cancelled)
1335 return;
1336
1337 /* Parse or build a socket buffer using the actual received length */
1338 page = trans->data;
1339 if (endpoint->data->status_enable)
1340 ipa_endpoint_status_parse(endpoint, page, trans->len);
1341 else if (ipa_endpoint_skb_build(endpoint, page, trans->len))
1342 trans->data = NULL; /* Pages have been consumed */
1343 }
1344
ipa_endpoint_trans_complete(struct ipa_endpoint * endpoint,struct gsi_trans * trans)1345 void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint,
1346 struct gsi_trans *trans)
1347 {
1348 if (endpoint->toward_ipa)
1349 ipa_endpoint_tx_complete(endpoint, trans);
1350 else
1351 ipa_endpoint_rx_complete(endpoint, trans);
1352 }
1353
ipa_endpoint_trans_release(struct ipa_endpoint * endpoint,struct gsi_trans * trans)1354 void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint,
1355 struct gsi_trans *trans)
1356 {
1357 if (endpoint->toward_ipa) {
1358 struct ipa *ipa = endpoint->ipa;
1359
1360 /* Nothing to do for command transactions */
1361 if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) {
1362 struct sk_buff *skb = trans->data;
1363
1364 if (skb)
1365 dev_kfree_skb_any(skb);
1366 }
1367 } else {
1368 struct page *page = trans->data;
1369
1370 if (page)
1371 __free_pages(page, get_order(IPA_RX_BUFFER_SIZE));
1372 }
1373 }
1374
ipa_endpoint_default_route_set(struct ipa * ipa,u32 endpoint_id)1375 void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id)
1376 {
1377 u32 val;
1378
1379 /* ROUTE_DIS is 0 */
1380 val = u32_encode_bits(endpoint_id, ROUTE_DEF_PIPE_FMASK);
1381 val |= ROUTE_DEF_HDR_TABLE_FMASK;
1382 val |= u32_encode_bits(0, ROUTE_DEF_HDR_OFST_FMASK);
1383 val |= u32_encode_bits(endpoint_id, ROUTE_FRAG_DEF_PIPE_FMASK);
1384 val |= ROUTE_DEF_RETAIN_HDR_FMASK;
1385
1386 iowrite32(val, ipa->reg_virt + IPA_REG_ROUTE_OFFSET);
1387 }
1388
ipa_endpoint_default_route_clear(struct ipa * ipa)1389 void ipa_endpoint_default_route_clear(struct ipa *ipa)
1390 {
1391 ipa_endpoint_default_route_set(ipa, 0);
1392 }
1393
1394 /**
1395 * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active
1396 * @endpoint: Endpoint to be reset
1397 *
1398 * If aggregation is active on an RX endpoint when a reset is performed
1399 * on its underlying GSI channel, a special sequence of actions must be
1400 * taken to ensure the IPA pipeline is properly cleared.
1401 *
1402 * Return: 0 if successful, or a negative error code
1403 */
ipa_endpoint_reset_rx_aggr(struct ipa_endpoint * endpoint)1404 static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint)
1405 {
1406 struct device *dev = &endpoint->ipa->pdev->dev;
1407 struct ipa *ipa = endpoint->ipa;
1408 struct gsi *gsi = &ipa->gsi;
1409 bool suspended = false;
1410 dma_addr_t addr;
1411 u32 retries;
1412 u32 len = 1;
1413 void *virt;
1414 int ret;
1415
1416 virt = kzalloc(len, GFP_KERNEL);
1417 if (!virt)
1418 return -ENOMEM;
1419
1420 addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE);
1421 if (dma_mapping_error(dev, addr)) {
1422 ret = -ENOMEM;
1423 goto out_kfree;
1424 }
1425
1426 /* Force close aggregation before issuing the reset */
1427 ipa_endpoint_force_close(endpoint);
1428
1429 /* Reset and reconfigure the channel with the doorbell engine
1430 * disabled. Then poll until we know aggregation is no longer
1431 * active. We'll re-enable the doorbell (if appropriate) when
1432 * we reset again below.
1433 */
1434 gsi_channel_reset(gsi, endpoint->channel_id, false);
1435
1436 /* Make sure the channel isn't suspended */
1437 suspended = ipa_endpoint_program_suspend(endpoint, false);
1438
1439 /* Start channel and do a 1 byte read */
1440 ret = gsi_channel_start(gsi, endpoint->channel_id);
1441 if (ret)
1442 goto out_suspend_again;
1443
1444 ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr);
1445 if (ret)
1446 goto err_endpoint_stop;
1447
1448 /* Wait for aggregation to be closed on the channel */
1449 retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX;
1450 do {
1451 if (!ipa_endpoint_aggr_active(endpoint))
1452 break;
1453 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
1454 } while (retries--);
1455
1456 /* Check one last time */
1457 if (ipa_endpoint_aggr_active(endpoint))
1458 dev_err(dev, "endpoint %u still active during reset\n",
1459 endpoint->endpoint_id);
1460
1461 gsi_trans_read_byte_done(gsi, endpoint->channel_id);
1462
1463 ret = gsi_channel_stop(gsi, endpoint->channel_id);
1464 if (ret)
1465 goto out_suspend_again;
1466
1467 /* Finally, reset and reconfigure the channel again (re-enabling
1468 * the doorbell engine if appropriate). Sleep for 1 millisecond to
1469 * complete the channel reset sequence. Finish by suspending the
1470 * channel again (if necessary).
1471 */
1472 gsi_channel_reset(gsi, endpoint->channel_id, true);
1473
1474 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
1475
1476 goto out_suspend_again;
1477
1478 err_endpoint_stop:
1479 (void)gsi_channel_stop(gsi, endpoint->channel_id);
1480 out_suspend_again:
1481 if (suspended)
1482 (void)ipa_endpoint_program_suspend(endpoint, true);
1483 dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE);
1484 out_kfree:
1485 kfree(virt);
1486
1487 return ret;
1488 }
1489
ipa_endpoint_reset(struct ipa_endpoint * endpoint)1490 static void ipa_endpoint_reset(struct ipa_endpoint *endpoint)
1491 {
1492 u32 channel_id = endpoint->channel_id;
1493 struct ipa *ipa = endpoint->ipa;
1494 bool special;
1495 int ret = 0;
1496
1497 /* On IPA v3.5.1, if an RX endpoint is reset while aggregation
1498 * is active, we need to handle things specially to recover.
1499 * All other cases just need to reset the underlying GSI channel.
1500 */
1501 special = ipa->version < IPA_VERSION_4_0 && !endpoint->toward_ipa &&
1502 endpoint->data->aggregation;
1503 if (special && ipa_endpoint_aggr_active(endpoint))
1504 ret = ipa_endpoint_reset_rx_aggr(endpoint);
1505 else
1506 gsi_channel_reset(&ipa->gsi, channel_id, true);
1507
1508 if (ret)
1509 dev_err(&ipa->pdev->dev,
1510 "error %d resetting channel %u for endpoint %u\n",
1511 ret, endpoint->channel_id, endpoint->endpoint_id);
1512 }
1513
ipa_endpoint_program(struct ipa_endpoint * endpoint)1514 static void ipa_endpoint_program(struct ipa_endpoint *endpoint)
1515 {
1516 if (endpoint->toward_ipa)
1517 ipa_endpoint_program_delay(endpoint, false);
1518 else
1519 (void)ipa_endpoint_program_suspend(endpoint, false);
1520 ipa_endpoint_init_cfg(endpoint);
1521 ipa_endpoint_init_nat(endpoint);
1522 ipa_endpoint_init_hdr(endpoint);
1523 ipa_endpoint_init_hdr_ext(endpoint);
1524 ipa_endpoint_init_hdr_metadata_mask(endpoint);
1525 ipa_endpoint_init_mode(endpoint);
1526 ipa_endpoint_init_aggr(endpoint);
1527 ipa_endpoint_init_deaggr(endpoint);
1528 ipa_endpoint_init_rsrc_grp(endpoint);
1529 ipa_endpoint_init_seq(endpoint);
1530 ipa_endpoint_status(endpoint);
1531 }
1532
ipa_endpoint_enable_one(struct ipa_endpoint * endpoint)1533 int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint)
1534 {
1535 struct ipa *ipa = endpoint->ipa;
1536 struct gsi *gsi = &ipa->gsi;
1537 int ret;
1538
1539 ret = gsi_channel_start(gsi, endpoint->channel_id);
1540 if (ret) {
1541 dev_err(&ipa->pdev->dev,
1542 "error %d starting %cX channel %u for endpoint %u\n",
1543 ret, endpoint->toward_ipa ? 'T' : 'R',
1544 endpoint->channel_id, endpoint->endpoint_id);
1545 return ret;
1546 }
1547
1548 if (!endpoint->toward_ipa) {
1549 ipa_interrupt_suspend_enable(ipa->interrupt,
1550 endpoint->endpoint_id);
1551 ipa_endpoint_replenish_enable(endpoint);
1552 }
1553
1554 ipa->enabled |= BIT(endpoint->endpoint_id);
1555
1556 return 0;
1557 }
1558
ipa_endpoint_disable_one(struct ipa_endpoint * endpoint)1559 void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint)
1560 {
1561 u32 mask = BIT(endpoint->endpoint_id);
1562 struct ipa *ipa = endpoint->ipa;
1563 struct gsi *gsi = &ipa->gsi;
1564 int ret;
1565
1566 if (!(ipa->enabled & mask))
1567 return;
1568
1569 ipa->enabled ^= mask;
1570
1571 if (!endpoint->toward_ipa) {
1572 ipa_endpoint_replenish_disable(endpoint);
1573 ipa_interrupt_suspend_disable(ipa->interrupt,
1574 endpoint->endpoint_id);
1575 }
1576
1577 /* Note that if stop fails, the channel's state is not well-defined */
1578 ret = gsi_channel_stop(gsi, endpoint->channel_id);
1579 if (ret)
1580 dev_err(&ipa->pdev->dev,
1581 "error %d attempting to stop endpoint %u\n", ret,
1582 endpoint->endpoint_id);
1583 }
1584
ipa_endpoint_suspend_one(struct ipa_endpoint * endpoint)1585 void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint)
1586 {
1587 struct device *dev = &endpoint->ipa->pdev->dev;
1588 struct gsi *gsi = &endpoint->ipa->gsi;
1589 bool stop_channel;
1590 int ret;
1591
1592 if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id)))
1593 return;
1594
1595 if (!endpoint->toward_ipa) {
1596 ipa_endpoint_replenish_disable(endpoint);
1597 (void)ipa_endpoint_program_suspend(endpoint, true);
1598 }
1599
1600 /* Starting with IPA v4.0, endpoints are suspended by stopping the
1601 * underlying GSI channel rather than using endpoint suspend mode.
1602 */
1603 stop_channel = endpoint->ipa->version >= IPA_VERSION_4_0;
1604 ret = gsi_channel_suspend(gsi, endpoint->channel_id, stop_channel);
1605 if (ret)
1606 dev_err(dev, "error %d suspending channel %u\n", ret,
1607 endpoint->channel_id);
1608 }
1609
ipa_endpoint_resume_one(struct ipa_endpoint * endpoint)1610 void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint)
1611 {
1612 struct device *dev = &endpoint->ipa->pdev->dev;
1613 struct gsi *gsi = &endpoint->ipa->gsi;
1614 bool start_channel;
1615 int ret;
1616
1617 if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id)))
1618 return;
1619
1620 if (!endpoint->toward_ipa)
1621 (void)ipa_endpoint_program_suspend(endpoint, false);
1622
1623 /* Starting with IPA v4.0, the underlying GSI channel must be
1624 * restarted for resume.
1625 */
1626 start_channel = endpoint->ipa->version >= IPA_VERSION_4_0;
1627 ret = gsi_channel_resume(gsi, endpoint->channel_id, start_channel);
1628 if (ret)
1629 dev_err(dev, "error %d resuming channel %u\n", ret,
1630 endpoint->channel_id);
1631 else if (!endpoint->toward_ipa)
1632 ipa_endpoint_replenish_enable(endpoint);
1633 }
1634
ipa_endpoint_suspend(struct ipa * ipa)1635 void ipa_endpoint_suspend(struct ipa *ipa)
1636 {
1637 if (!ipa->setup_complete)
1638 return;
1639
1640 if (ipa->modem_netdev)
1641 ipa_modem_suspend(ipa->modem_netdev);
1642
1643 ipa_cmd_pipeline_clear(ipa);
1644
1645 ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1646 ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1647 }
1648
ipa_endpoint_resume(struct ipa * ipa)1649 void ipa_endpoint_resume(struct ipa *ipa)
1650 {
1651 if (!ipa->setup_complete)
1652 return;
1653
1654 ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1655 ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1656
1657 if (ipa->modem_netdev)
1658 ipa_modem_resume(ipa->modem_netdev);
1659 }
1660
ipa_endpoint_setup_one(struct ipa_endpoint * endpoint)1661 static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint)
1662 {
1663 struct gsi *gsi = &endpoint->ipa->gsi;
1664 u32 channel_id = endpoint->channel_id;
1665
1666 /* Only AP endpoints get set up */
1667 if (endpoint->ee_id != GSI_EE_AP)
1668 return;
1669
1670 endpoint->trans_tre_max = gsi_channel_trans_tre_max(gsi, channel_id);
1671 if (!endpoint->toward_ipa) {
1672 /* RX transactions require a single TRE, so the maximum
1673 * backlog is the same as the maximum outstanding TREs.
1674 */
1675 endpoint->replenish_enabled = false;
1676 atomic_set(&endpoint->replenish_saved,
1677 gsi_channel_tre_max(gsi, endpoint->channel_id));
1678 atomic_set(&endpoint->replenish_backlog, 0);
1679 INIT_DELAYED_WORK(&endpoint->replenish_work,
1680 ipa_endpoint_replenish_work);
1681 }
1682
1683 ipa_endpoint_program(endpoint);
1684
1685 endpoint->ipa->set_up |= BIT(endpoint->endpoint_id);
1686 }
1687
ipa_endpoint_teardown_one(struct ipa_endpoint * endpoint)1688 static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint)
1689 {
1690 endpoint->ipa->set_up &= ~BIT(endpoint->endpoint_id);
1691
1692 if (!endpoint->toward_ipa)
1693 cancel_delayed_work_sync(&endpoint->replenish_work);
1694
1695 ipa_endpoint_reset(endpoint);
1696 }
1697
ipa_endpoint_setup(struct ipa * ipa)1698 void ipa_endpoint_setup(struct ipa *ipa)
1699 {
1700 u32 initialized = ipa->initialized;
1701
1702 ipa->set_up = 0;
1703 while (initialized) {
1704 u32 endpoint_id = __ffs(initialized);
1705
1706 initialized ^= BIT(endpoint_id);
1707
1708 ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]);
1709 }
1710 }
1711
ipa_endpoint_teardown(struct ipa * ipa)1712 void ipa_endpoint_teardown(struct ipa *ipa)
1713 {
1714 u32 set_up = ipa->set_up;
1715
1716 while (set_up) {
1717 u32 endpoint_id = __fls(set_up);
1718
1719 set_up ^= BIT(endpoint_id);
1720
1721 ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]);
1722 }
1723 ipa->set_up = 0;
1724 }
1725
ipa_endpoint_config(struct ipa * ipa)1726 int ipa_endpoint_config(struct ipa *ipa)
1727 {
1728 struct device *dev = &ipa->pdev->dev;
1729 u32 initialized;
1730 u32 rx_base;
1731 u32 rx_mask;
1732 u32 tx_mask;
1733 int ret = 0;
1734 u32 max;
1735 u32 val;
1736
1737 /* Find out about the endpoints supplied by the hardware, and ensure
1738 * the highest one doesn't exceed the number we support.
1739 */
1740 val = ioread32(ipa->reg_virt + IPA_REG_FLAVOR_0_OFFSET);
1741
1742 /* Our RX is an IPA producer */
1743 rx_base = u32_get_bits(val, IPA_PROD_LOWEST_FMASK);
1744 max = rx_base + u32_get_bits(val, IPA_MAX_PROD_PIPES_FMASK);
1745 if (max > IPA_ENDPOINT_MAX) {
1746 dev_err(dev, "too many endpoints (%u > %u)\n",
1747 max, IPA_ENDPOINT_MAX);
1748 return -EINVAL;
1749 }
1750 rx_mask = GENMASK(max - 1, rx_base);
1751
1752 /* Our TX is an IPA consumer */
1753 max = u32_get_bits(val, IPA_MAX_CONS_PIPES_FMASK);
1754 tx_mask = GENMASK(max - 1, 0);
1755
1756 ipa->available = rx_mask | tx_mask;
1757
1758 /* Check for initialized endpoints not supported by the hardware */
1759 if (ipa->initialized & ~ipa->available) {
1760 dev_err(dev, "unavailable endpoint id(s) 0x%08x\n",
1761 ipa->initialized & ~ipa->available);
1762 ret = -EINVAL; /* Report other errors too */
1763 }
1764
1765 initialized = ipa->initialized;
1766 while (initialized) {
1767 u32 endpoint_id = __ffs(initialized);
1768 struct ipa_endpoint *endpoint;
1769
1770 initialized ^= BIT(endpoint_id);
1771
1772 /* Make sure it's pointing in the right direction */
1773 endpoint = &ipa->endpoint[endpoint_id];
1774 if ((endpoint_id < rx_base) != endpoint->toward_ipa) {
1775 dev_err(dev, "endpoint id %u wrong direction\n",
1776 endpoint_id);
1777 ret = -EINVAL;
1778 }
1779 }
1780
1781 return ret;
1782 }
1783
ipa_endpoint_deconfig(struct ipa * ipa)1784 void ipa_endpoint_deconfig(struct ipa *ipa)
1785 {
1786 ipa->available = 0; /* Nothing more to do */
1787 }
1788
ipa_endpoint_init_one(struct ipa * ipa,enum ipa_endpoint_name name,const struct ipa_gsi_endpoint_data * data)1789 static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name,
1790 const struct ipa_gsi_endpoint_data *data)
1791 {
1792 struct ipa_endpoint *endpoint;
1793
1794 endpoint = &ipa->endpoint[data->endpoint_id];
1795
1796 if (data->ee_id == GSI_EE_AP)
1797 ipa->channel_map[data->channel_id] = endpoint;
1798 ipa->name_map[name] = endpoint;
1799
1800 endpoint->ipa = ipa;
1801 endpoint->ee_id = data->ee_id;
1802 endpoint->channel_id = data->channel_id;
1803 endpoint->endpoint_id = data->endpoint_id;
1804 endpoint->toward_ipa = data->toward_ipa;
1805 endpoint->data = &data->endpoint.config;
1806
1807 ipa->initialized |= BIT(endpoint->endpoint_id);
1808 }
1809
ipa_endpoint_exit_one(struct ipa_endpoint * endpoint)1810 static void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint)
1811 {
1812 endpoint->ipa->initialized &= ~BIT(endpoint->endpoint_id);
1813
1814 memset(endpoint, 0, sizeof(*endpoint));
1815 }
1816
ipa_endpoint_exit(struct ipa * ipa)1817 void ipa_endpoint_exit(struct ipa *ipa)
1818 {
1819 u32 initialized = ipa->initialized;
1820
1821 while (initialized) {
1822 u32 endpoint_id = __fls(initialized);
1823
1824 initialized ^= BIT(endpoint_id);
1825
1826 ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]);
1827 }
1828 memset(ipa->name_map, 0, sizeof(ipa->name_map));
1829 memset(ipa->channel_map, 0, sizeof(ipa->channel_map));
1830 }
1831
1832 /* Returns a bitmask of endpoints that support filtering, or 0 on error */
ipa_endpoint_init(struct ipa * ipa,u32 count,const struct ipa_gsi_endpoint_data * data)1833 u32 ipa_endpoint_init(struct ipa *ipa, u32 count,
1834 const struct ipa_gsi_endpoint_data *data)
1835 {
1836 enum ipa_endpoint_name name;
1837 u32 filter_map;
1838
1839 if (!ipa_endpoint_data_valid(ipa, count, data))
1840 return 0; /* Error */
1841
1842 ipa->initialized = 0;
1843
1844 filter_map = 0;
1845 for (name = 0; name < count; name++, data++) {
1846 if (ipa_gsi_endpoint_data_empty(data))
1847 continue; /* Skip over empty slots */
1848
1849 ipa_endpoint_init_one(ipa, name, data);
1850
1851 if (data->endpoint.filter_support)
1852 filter_map |= BIT(data->endpoint_id);
1853 }
1854
1855 if (!ipa_filter_map_valid(ipa, filter_map))
1856 goto err_endpoint_exit;
1857
1858 return filter_map; /* Non-zero bitmask */
1859
1860 err_endpoint_exit:
1861 ipa_endpoint_exit(ipa);
1862
1863 return 0; /* Error */
1864 }
1865