1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (c) 2014-2017 Qualcomm Atheros, Inc.
4  */
5 
6 #include <linux/types.h>
7 #include <linux/bitops.h>
8 #include <linux/bitfield.h>
9 #include "core.h"
10 #include "hw.h"
11 #include "hif.h"
12 #include "wmi-ops.h"
13 #include "bmi.h"
14 
15 const struct ath10k_hw_regs qca988x_regs = {
16 	.rtc_soc_base_address		= 0x00004000,
17 	.rtc_wmac_base_address		= 0x00005000,
18 	.soc_core_base_address		= 0x00009000,
19 	.wlan_mac_base_address		= 0x00020000,
20 	.ce_wrapper_base_address	= 0x00057000,
21 	.ce0_base_address		= 0x00057400,
22 	.ce1_base_address		= 0x00057800,
23 	.ce2_base_address		= 0x00057c00,
24 	.ce3_base_address		= 0x00058000,
25 	.ce4_base_address		= 0x00058400,
26 	.ce5_base_address		= 0x00058800,
27 	.ce6_base_address		= 0x00058c00,
28 	.ce7_base_address		= 0x00059000,
29 	.soc_reset_control_si0_rst_mask	= 0x00000001,
30 	.soc_reset_control_ce_rst_mask	= 0x00040000,
31 	.soc_chip_id_address		= 0x000000ec,
32 	.scratch_3_address		= 0x00000030,
33 	.fw_indicator_address		= 0x00009030,
34 	.pcie_local_base_address	= 0x00080000,
35 	.ce_wrap_intr_sum_host_msi_lsb	= 0x00000008,
36 	.ce_wrap_intr_sum_host_msi_mask	= 0x0000ff00,
37 	.pcie_intr_fw_mask		= 0x00000400,
38 	.pcie_intr_ce_mask_all		= 0x0007f800,
39 	.pcie_intr_clr_address		= 0x00000014,
40 };
41 
42 const struct ath10k_hw_regs qca6174_regs = {
43 	.rtc_soc_base_address			= 0x00000800,
44 	.rtc_wmac_base_address			= 0x00001000,
45 	.soc_core_base_address			= 0x0003a000,
46 	.wlan_mac_base_address			= 0x00010000,
47 	.ce_wrapper_base_address		= 0x00034000,
48 	.ce0_base_address			= 0x00034400,
49 	.ce1_base_address			= 0x00034800,
50 	.ce2_base_address			= 0x00034c00,
51 	.ce3_base_address			= 0x00035000,
52 	.ce4_base_address			= 0x00035400,
53 	.ce5_base_address			= 0x00035800,
54 	.ce6_base_address			= 0x00035c00,
55 	.ce7_base_address			= 0x00036000,
56 	.soc_reset_control_si0_rst_mask		= 0x00000000,
57 	.soc_reset_control_ce_rst_mask		= 0x00000001,
58 	.soc_chip_id_address			= 0x000000f0,
59 	.scratch_3_address			= 0x00000028,
60 	.fw_indicator_address			= 0x0003a028,
61 	.pcie_local_base_address		= 0x00080000,
62 	.ce_wrap_intr_sum_host_msi_lsb		= 0x00000008,
63 	.ce_wrap_intr_sum_host_msi_mask		= 0x0000ff00,
64 	.pcie_intr_fw_mask			= 0x00000400,
65 	.pcie_intr_ce_mask_all			= 0x0007f800,
66 	.pcie_intr_clr_address			= 0x00000014,
67 	.cpu_pll_init_address			= 0x00404020,
68 	.cpu_speed_address			= 0x00404024,
69 	.core_clk_div_address			= 0x00404028,
70 };
71 
72 const struct ath10k_hw_regs qca99x0_regs = {
73 	.rtc_soc_base_address			= 0x00080000,
74 	.rtc_wmac_base_address			= 0x00000000,
75 	.soc_core_base_address			= 0x00082000,
76 	.wlan_mac_base_address			= 0x00030000,
77 	.ce_wrapper_base_address		= 0x0004d000,
78 	.ce0_base_address			= 0x0004a000,
79 	.ce1_base_address			= 0x0004a400,
80 	.ce2_base_address			= 0x0004a800,
81 	.ce3_base_address			= 0x0004ac00,
82 	.ce4_base_address			= 0x0004b000,
83 	.ce5_base_address			= 0x0004b400,
84 	.ce6_base_address			= 0x0004b800,
85 	.ce7_base_address			= 0x0004bc00,
86 	/* Note: qca99x0 supports upto 12 Copy Engines. Other than address of
87 	 * CE0 and CE1 no other copy engine is directly referred in the code.
88 	 * It is not really necessary to assign address for newly supported
89 	 * CEs in this address table.
90 	 *	Copy Engine		Address
91 	 *	CE8			0x0004c000
92 	 *	CE9			0x0004c400
93 	 *	CE10			0x0004c800
94 	 *	CE11			0x0004cc00
95 	 */
96 	.soc_reset_control_si0_rst_mask		= 0x00000001,
97 	.soc_reset_control_ce_rst_mask		= 0x00000100,
98 	.soc_chip_id_address			= 0x000000ec,
99 	.scratch_3_address			= 0x00040050,
100 	.fw_indicator_address			= 0x00040050,
101 	.pcie_local_base_address		= 0x00000000,
102 	.ce_wrap_intr_sum_host_msi_lsb		= 0x0000000c,
103 	.ce_wrap_intr_sum_host_msi_mask		= 0x00fff000,
104 	.pcie_intr_fw_mask			= 0x00100000,
105 	.pcie_intr_ce_mask_all			= 0x000fff00,
106 	.pcie_intr_clr_address			= 0x00000010,
107 };
108 
109 const struct ath10k_hw_regs qca4019_regs = {
110 	.rtc_soc_base_address                   = 0x00080000,
111 	.soc_core_base_address                  = 0x00082000,
112 	.wlan_mac_base_address                  = 0x00030000,
113 	.ce_wrapper_base_address                = 0x0004d000,
114 	.ce0_base_address                       = 0x0004a000,
115 	.ce1_base_address                       = 0x0004a400,
116 	.ce2_base_address                       = 0x0004a800,
117 	.ce3_base_address                       = 0x0004ac00,
118 	.ce4_base_address                       = 0x0004b000,
119 	.ce5_base_address                       = 0x0004b400,
120 	.ce6_base_address                       = 0x0004b800,
121 	.ce7_base_address                       = 0x0004bc00,
122 	/* qca4019 supports upto 12 copy engines. Since base address
123 	 * of ce8 to ce11 are not directly referred in the code,
124 	 * no need have them in separate members in this table.
125 	 *      Copy Engine             Address
126 	 *      CE8                     0x0004c000
127 	 *      CE9                     0x0004c400
128 	 *      CE10                    0x0004c800
129 	 *      CE11                    0x0004cc00
130 	 */
131 	.soc_reset_control_si0_rst_mask         = 0x00000001,
132 	.soc_reset_control_ce_rst_mask          = 0x00000100,
133 	.soc_chip_id_address                    = 0x000000ec,
134 	.fw_indicator_address                   = 0x0004f00c,
135 	.ce_wrap_intr_sum_host_msi_lsb          = 0x0000000c,
136 	.ce_wrap_intr_sum_host_msi_mask         = 0x00fff000,
137 	.pcie_intr_fw_mask                      = 0x00100000,
138 	.pcie_intr_ce_mask_all                  = 0x000fff00,
139 	.pcie_intr_clr_address                  = 0x00000010,
140 };
141 
142 const struct ath10k_hw_values qca988x_values = {
143 	.rtc_state_val_on		= 3,
144 	.ce_count			= 8,
145 	.msi_assign_ce_max		= 7,
146 	.num_target_ce_config_wlan	= 7,
147 	.ce_desc_meta_data_mask		= 0xFFFC,
148 	.ce_desc_meta_data_lsb		= 2,
149 };
150 
151 const struct ath10k_hw_values qca6174_values = {
152 	.rtc_state_val_on		= 3,
153 	.ce_count			= 8,
154 	.msi_assign_ce_max		= 7,
155 	.num_target_ce_config_wlan	= 7,
156 	.ce_desc_meta_data_mask		= 0xFFFC,
157 	.ce_desc_meta_data_lsb		= 2,
158 	.rfkill_pin			= 16,
159 	.rfkill_cfg			= 0,
160 	.rfkill_on_level		= 1,
161 };
162 
163 const struct ath10k_hw_values qca99x0_values = {
164 	.rtc_state_val_on		= 7,
165 	.ce_count			= 12,
166 	.msi_assign_ce_max		= 12,
167 	.num_target_ce_config_wlan	= 10,
168 	.ce_desc_meta_data_mask		= 0xFFF0,
169 	.ce_desc_meta_data_lsb		= 4,
170 };
171 
172 const struct ath10k_hw_values qca9888_values = {
173 	.rtc_state_val_on		= 3,
174 	.ce_count			= 12,
175 	.msi_assign_ce_max		= 12,
176 	.num_target_ce_config_wlan	= 10,
177 	.ce_desc_meta_data_mask		= 0xFFF0,
178 	.ce_desc_meta_data_lsb		= 4,
179 };
180 
181 const struct ath10k_hw_values qca4019_values = {
182 	.ce_count                       = 12,
183 	.num_target_ce_config_wlan      = 10,
184 	.ce_desc_meta_data_mask         = 0xFFF0,
185 	.ce_desc_meta_data_lsb          = 4,
186 };
187 
188 const struct ath10k_hw_regs wcn3990_regs = {
189 	.rtc_soc_base_address			= 0x00000000,
190 	.rtc_wmac_base_address			= 0x00000000,
191 	.soc_core_base_address			= 0x00000000,
192 	.ce_wrapper_base_address		= 0x0024C000,
193 	.ce0_base_address			= 0x00240000,
194 	.ce1_base_address			= 0x00241000,
195 	.ce2_base_address			= 0x00242000,
196 	.ce3_base_address			= 0x00243000,
197 	.ce4_base_address			= 0x00244000,
198 	.ce5_base_address			= 0x00245000,
199 	.ce6_base_address			= 0x00246000,
200 	.ce7_base_address			= 0x00247000,
201 	.ce8_base_address			= 0x00248000,
202 	.ce9_base_address			= 0x00249000,
203 	.ce10_base_address			= 0x0024A000,
204 	.ce11_base_address			= 0x0024B000,
205 	.soc_chip_id_address			= 0x000000f0,
206 	.soc_reset_control_si0_rst_mask		= 0x00000001,
207 	.soc_reset_control_ce_rst_mask		= 0x00000100,
208 	.ce_wrap_intr_sum_host_msi_lsb		= 0x0000000c,
209 	.ce_wrap_intr_sum_host_msi_mask		= 0x00fff000,
210 	.pcie_intr_fw_mask			= 0x00100000,
211 };
212 
213 static struct ath10k_hw_ce_regs_addr_map wcn3990_src_ring = {
214 	.msb	= 0x00000010,
215 	.lsb	= 0x00000010,
216 	.mask	= GENMASK(17, 17),
217 };
218 
219 static struct ath10k_hw_ce_regs_addr_map wcn3990_dst_ring = {
220 	.msb	= 0x00000012,
221 	.lsb	= 0x00000012,
222 	.mask	= GENMASK(18, 18),
223 };
224 
225 static struct ath10k_hw_ce_regs_addr_map wcn3990_dmax = {
226 	.msb	= 0x00000000,
227 	.lsb	= 0x00000000,
228 	.mask	= GENMASK(15, 0),
229 };
230 
231 static struct ath10k_hw_ce_ctrl1 wcn3990_ctrl1 = {
232 	.addr		= 0x00000018,
233 	.src_ring	= &wcn3990_src_ring,
234 	.dst_ring	= &wcn3990_dst_ring,
235 	.dmax		= &wcn3990_dmax,
236 };
237 
238 static struct ath10k_hw_ce_regs_addr_map wcn3990_host_ie_cc = {
239 	.mask	= GENMASK(0, 0),
240 };
241 
242 static struct ath10k_hw_ce_host_ie wcn3990_host_ie = {
243 	.copy_complete	= &wcn3990_host_ie_cc,
244 };
245 
246 static struct ath10k_hw_ce_host_wm_regs wcn3990_wm_reg = {
247 	.dstr_lmask	= 0x00000010,
248 	.dstr_hmask	= 0x00000008,
249 	.srcr_lmask	= 0x00000004,
250 	.srcr_hmask	= 0x00000002,
251 	.cc_mask	= 0x00000001,
252 	.wm_mask	= 0x0000001E,
253 	.addr		= 0x00000030,
254 };
255 
256 static struct ath10k_hw_ce_misc_regs wcn3990_misc_reg = {
257 	.axi_err	= 0x00000100,
258 	.dstr_add_err	= 0x00000200,
259 	.srcr_len_err	= 0x00000100,
260 	.dstr_mlen_vio	= 0x00000080,
261 	.dstr_overflow	= 0x00000040,
262 	.srcr_overflow	= 0x00000020,
263 	.err_mask	= 0x000003E0,
264 	.addr		= 0x00000038,
265 };
266 
267 static struct ath10k_hw_ce_regs_addr_map wcn3990_src_wm_low = {
268 	.msb	= 0x00000000,
269 	.lsb	= 0x00000010,
270 	.mask	= GENMASK(31, 16),
271 };
272 
273 static struct ath10k_hw_ce_regs_addr_map wcn3990_src_wm_high = {
274 	.msb	= 0x0000000f,
275 	.lsb	= 0x00000000,
276 	.mask	= GENMASK(15, 0),
277 };
278 
279 static struct ath10k_hw_ce_dst_src_wm_regs wcn3990_wm_src_ring = {
280 	.addr		= 0x0000004c,
281 	.low_rst	= 0x00000000,
282 	.high_rst	= 0x00000000,
283 	.wm_low		= &wcn3990_src_wm_low,
284 	.wm_high	= &wcn3990_src_wm_high,
285 };
286 
287 static struct ath10k_hw_ce_regs_addr_map wcn3990_dst_wm_low = {
288 	.lsb	= 0x00000010,
289 	.mask	= GENMASK(31, 16),
290 };
291 
292 static struct ath10k_hw_ce_regs_addr_map wcn3990_dst_wm_high = {
293 	.msb	= 0x0000000f,
294 	.lsb	= 0x00000000,
295 	.mask	= GENMASK(15, 0),
296 };
297 
298 static struct ath10k_hw_ce_dst_src_wm_regs wcn3990_wm_dst_ring = {
299 	.addr		= 0x00000050,
300 	.low_rst	= 0x00000000,
301 	.high_rst	= 0x00000000,
302 	.wm_low		= &wcn3990_dst_wm_low,
303 	.wm_high	= &wcn3990_dst_wm_high,
304 };
305 
306 static struct ath10k_hw_ce_ctrl1_upd wcn3990_ctrl1_upd = {
307 	.shift = 19,
308 	.mask = 0x00080000,
309 	.enable = 0x00000000,
310 };
311 
312 const struct ath10k_hw_ce_regs wcn3990_ce_regs = {
313 	.sr_base_addr_lo	= 0x00000000,
314 	.sr_base_addr_hi	= 0x00000004,
315 	.sr_size_addr		= 0x00000008,
316 	.dr_base_addr_lo	= 0x0000000c,
317 	.dr_base_addr_hi	= 0x00000010,
318 	.dr_size_addr		= 0x00000014,
319 	.misc_ie_addr		= 0x00000034,
320 	.sr_wr_index_addr	= 0x0000003c,
321 	.dst_wr_index_addr	= 0x00000040,
322 	.current_srri_addr	= 0x00000044,
323 	.current_drri_addr	= 0x00000048,
324 	.ce_rri_low		= 0x0024C004,
325 	.ce_rri_high		= 0x0024C008,
326 	.host_ie_addr		= 0x0000002c,
327 	.ctrl1_regs		= &wcn3990_ctrl1,
328 	.host_ie		= &wcn3990_host_ie,
329 	.wm_regs		= &wcn3990_wm_reg,
330 	.misc_regs		= &wcn3990_misc_reg,
331 	.wm_srcr		= &wcn3990_wm_src_ring,
332 	.wm_dstr		= &wcn3990_wm_dst_ring,
333 	.upd			= &wcn3990_ctrl1_upd,
334 };
335 
336 const struct ath10k_hw_values wcn3990_values = {
337 	.rtc_state_val_on		= 5,
338 	.ce_count			= 12,
339 	.msi_assign_ce_max		= 12,
340 	.num_target_ce_config_wlan	= 12,
341 	.ce_desc_meta_data_mask		= 0xFFF0,
342 	.ce_desc_meta_data_lsb		= 4,
343 };
344 
345 static struct ath10k_hw_ce_regs_addr_map qcax_src_ring = {
346 	.msb	= 0x00000010,
347 	.lsb	= 0x00000010,
348 	.mask	= GENMASK(16, 16),
349 };
350 
351 static struct ath10k_hw_ce_regs_addr_map qcax_dst_ring = {
352 	.msb	= 0x00000011,
353 	.lsb	= 0x00000011,
354 	.mask	= GENMASK(17, 17),
355 };
356 
357 static struct ath10k_hw_ce_regs_addr_map qcax_dmax = {
358 	.msb	= 0x0000000f,
359 	.lsb	= 0x00000000,
360 	.mask	= GENMASK(15, 0),
361 };
362 
363 static struct ath10k_hw_ce_ctrl1 qcax_ctrl1 = {
364 	.addr		= 0x00000010,
365 	.hw_mask	= 0x0007ffff,
366 	.sw_mask	= 0x0007ffff,
367 	.hw_wr_mask	= 0x00000000,
368 	.sw_wr_mask	= 0x0007ffff,
369 	.reset_mask	= 0xffffffff,
370 	.reset		= 0x00000080,
371 	.src_ring	= &qcax_src_ring,
372 	.dst_ring	= &qcax_dst_ring,
373 	.dmax		= &qcax_dmax,
374 };
375 
376 static struct ath10k_hw_ce_regs_addr_map qcax_cmd_halt_status = {
377 	.msb	= 0x00000003,
378 	.lsb	= 0x00000003,
379 	.mask	= GENMASK(3, 3),
380 };
381 
382 static struct ath10k_hw_ce_cmd_halt qcax_cmd_halt = {
383 	.msb		= 0x00000000,
384 	.mask		= GENMASK(0, 0),
385 	.status_reset	= 0x00000000,
386 	.status		= &qcax_cmd_halt_status,
387 };
388 
389 static struct ath10k_hw_ce_regs_addr_map qcax_host_ie_cc = {
390 	.msb	= 0x00000000,
391 	.lsb	= 0x00000000,
392 	.mask	= GENMASK(0, 0),
393 };
394 
395 static struct ath10k_hw_ce_host_ie qcax_host_ie = {
396 	.copy_complete_reset	= 0x00000000,
397 	.copy_complete		= &qcax_host_ie_cc,
398 };
399 
400 static struct ath10k_hw_ce_host_wm_regs qcax_wm_reg = {
401 	.dstr_lmask	= 0x00000010,
402 	.dstr_hmask	= 0x00000008,
403 	.srcr_lmask	= 0x00000004,
404 	.srcr_hmask	= 0x00000002,
405 	.cc_mask	= 0x00000001,
406 	.wm_mask	= 0x0000001E,
407 	.addr		= 0x00000030,
408 };
409 
410 static struct ath10k_hw_ce_misc_regs qcax_misc_reg = {
411 	.axi_err	= 0x00000400,
412 	.dstr_add_err	= 0x00000200,
413 	.srcr_len_err	= 0x00000100,
414 	.dstr_mlen_vio	= 0x00000080,
415 	.dstr_overflow	= 0x00000040,
416 	.srcr_overflow	= 0x00000020,
417 	.err_mask	= 0x000007E0,
418 	.addr		= 0x00000038,
419 };
420 
421 static struct ath10k_hw_ce_regs_addr_map qcax_src_wm_low = {
422 	.msb    = 0x0000001f,
423 	.lsb	= 0x00000010,
424 	.mask	= GENMASK(31, 16),
425 };
426 
427 static struct ath10k_hw_ce_regs_addr_map qcax_src_wm_high = {
428 	.msb	= 0x0000000f,
429 	.lsb	= 0x00000000,
430 	.mask	= GENMASK(15, 0),
431 };
432 
433 static struct ath10k_hw_ce_dst_src_wm_regs qcax_wm_src_ring = {
434 	.addr		= 0x0000004c,
435 	.low_rst	= 0x00000000,
436 	.high_rst	= 0x00000000,
437 	.wm_low		= &qcax_src_wm_low,
438 	.wm_high        = &qcax_src_wm_high,
439 };
440 
441 static struct ath10k_hw_ce_regs_addr_map qcax_dst_wm_low = {
442 	.lsb	= 0x00000010,
443 	.mask	= GENMASK(31, 16),
444 };
445 
446 static struct ath10k_hw_ce_regs_addr_map qcax_dst_wm_high = {
447 	.msb	= 0x0000000f,
448 	.lsb	= 0x00000000,
449 	.mask	= GENMASK(15, 0),
450 };
451 
452 static struct ath10k_hw_ce_dst_src_wm_regs qcax_wm_dst_ring = {
453 	.addr		= 0x00000050,
454 	.low_rst	= 0x00000000,
455 	.high_rst	= 0x00000000,
456 	.wm_low		= &qcax_dst_wm_low,
457 	.wm_high	= &qcax_dst_wm_high,
458 };
459 
460 const struct ath10k_hw_ce_regs qcax_ce_regs = {
461 	.sr_base_addr_lo	= 0x00000000,
462 	.sr_size_addr		= 0x00000004,
463 	.dr_base_addr_lo	= 0x00000008,
464 	.dr_size_addr		= 0x0000000c,
465 	.ce_cmd_addr		= 0x00000018,
466 	.misc_ie_addr		= 0x00000034,
467 	.sr_wr_index_addr	= 0x0000003c,
468 	.dst_wr_index_addr	= 0x00000040,
469 	.current_srri_addr	= 0x00000044,
470 	.current_drri_addr	= 0x00000048,
471 	.host_ie_addr		= 0x0000002c,
472 	.ctrl1_regs		= &qcax_ctrl1,
473 	.cmd_halt		= &qcax_cmd_halt,
474 	.host_ie		= &qcax_host_ie,
475 	.wm_regs		= &qcax_wm_reg,
476 	.misc_regs		= &qcax_misc_reg,
477 	.wm_srcr		= &qcax_wm_src_ring,
478 	.wm_dstr                = &qcax_wm_dst_ring,
479 };
480 
481 const struct ath10k_hw_clk_params qca6174_clk[ATH10K_HW_REFCLK_COUNT] = {
482 	{
483 		.refclk = 48000000,
484 		.div = 0xe,
485 		.rnfrac = 0x2aaa8,
486 		.settle_time = 2400,
487 		.refdiv = 0,
488 		.outdiv = 1,
489 	},
490 	{
491 		.refclk = 19200000,
492 		.div = 0x24,
493 		.rnfrac = 0x2aaa8,
494 		.settle_time = 960,
495 		.refdiv = 0,
496 		.outdiv = 1,
497 	},
498 	{
499 		.refclk = 24000000,
500 		.div = 0x1d,
501 		.rnfrac = 0x15551,
502 		.settle_time = 1200,
503 		.refdiv = 0,
504 		.outdiv = 1,
505 	},
506 	{
507 		.refclk = 26000000,
508 		.div = 0x1b,
509 		.rnfrac = 0x4ec4,
510 		.settle_time = 1300,
511 		.refdiv = 0,
512 		.outdiv = 1,
513 	},
514 	{
515 		.refclk = 37400000,
516 		.div = 0x12,
517 		.rnfrac = 0x34b49,
518 		.settle_time = 1870,
519 		.refdiv = 0,
520 		.outdiv = 1,
521 	},
522 	{
523 		.refclk = 38400000,
524 		.div = 0x12,
525 		.rnfrac = 0x15551,
526 		.settle_time = 1920,
527 		.refdiv = 0,
528 		.outdiv = 1,
529 	},
530 	{
531 		.refclk = 40000000,
532 		.div = 0x12,
533 		.rnfrac = 0x26665,
534 		.settle_time = 2000,
535 		.refdiv = 0,
536 		.outdiv = 1,
537 	},
538 	{
539 		.refclk = 52000000,
540 		.div = 0x1b,
541 		.rnfrac = 0x4ec4,
542 		.settle_time = 2600,
543 		.refdiv = 0,
544 		.outdiv = 1,
545 	},
546 };
547 
ath10k_hw_fill_survey_time(struct ath10k * ar,struct survey_info * survey,u32 cc,u32 rcc,u32 cc_prev,u32 rcc_prev)548 void ath10k_hw_fill_survey_time(struct ath10k *ar, struct survey_info *survey,
549 				u32 cc, u32 rcc, u32 cc_prev, u32 rcc_prev)
550 {
551 	u32 cc_fix = 0;
552 	u32 rcc_fix = 0;
553 	enum ath10k_hw_cc_wraparound_type wraparound_type;
554 
555 	survey->filled |= SURVEY_INFO_TIME |
556 			  SURVEY_INFO_TIME_BUSY;
557 
558 	wraparound_type = ar->hw_params.cc_wraparound_type;
559 
560 	if (cc < cc_prev || rcc < rcc_prev) {
561 		switch (wraparound_type) {
562 		case ATH10K_HW_CC_WRAP_SHIFTED_ALL:
563 			if (cc < cc_prev) {
564 				cc_fix = 0x7fffffff;
565 				survey->filled &= ~SURVEY_INFO_TIME_BUSY;
566 			}
567 			break;
568 		case ATH10K_HW_CC_WRAP_SHIFTED_EACH:
569 			if (cc < cc_prev)
570 				cc_fix = 0x7fffffff;
571 
572 			if (rcc < rcc_prev)
573 				rcc_fix = 0x7fffffff;
574 			break;
575 		case ATH10K_HW_CC_WRAP_DISABLED:
576 			break;
577 		}
578 	}
579 
580 	cc -= cc_prev - cc_fix;
581 	rcc -= rcc_prev - rcc_fix;
582 
583 	survey->time = CCNT_TO_MSEC(ar, cc);
584 	survey->time_busy = CCNT_TO_MSEC(ar, rcc);
585 }
586 
587 /* The firmware does not support setting the coverage class. Instead this
588  * function monitors and modifies the corresponding MAC registers.
589  */
ath10k_hw_qca988x_set_coverage_class(struct ath10k * ar,s16 value)590 static void ath10k_hw_qca988x_set_coverage_class(struct ath10k *ar,
591 						 s16 value)
592 {
593 	u32 slottime_reg;
594 	u32 slottime;
595 	u32 timeout_reg;
596 	u32 ack_timeout;
597 	u32 cts_timeout;
598 	u32 phyclk_reg;
599 	u32 phyclk;
600 	u64 fw_dbglog_mask;
601 	u32 fw_dbglog_level;
602 
603 	mutex_lock(&ar->conf_mutex);
604 
605 	/* Only modify registers if the core is started. */
606 	if ((ar->state != ATH10K_STATE_ON) &&
607 	    (ar->state != ATH10K_STATE_RESTARTED)) {
608 		spin_lock_bh(&ar->data_lock);
609 		/* Store config value for when radio boots up */
610 		ar->fw_coverage.coverage_class = value;
611 		spin_unlock_bh(&ar->data_lock);
612 		goto unlock;
613 	}
614 
615 	/* Retrieve the current values of the two registers that need to be
616 	 * adjusted.
617 	 */
618 	slottime_reg = ath10k_hif_read32(ar, WLAN_MAC_BASE_ADDRESS +
619 					     WAVE1_PCU_GBL_IFS_SLOT);
620 	timeout_reg = ath10k_hif_read32(ar, WLAN_MAC_BASE_ADDRESS +
621 					    WAVE1_PCU_ACK_CTS_TIMEOUT);
622 	phyclk_reg = ath10k_hif_read32(ar, WLAN_MAC_BASE_ADDRESS +
623 					   WAVE1_PHYCLK);
624 	phyclk = MS(phyclk_reg, WAVE1_PHYCLK_USEC) + 1;
625 
626 	if (value < 0)
627 		value = ar->fw_coverage.coverage_class;
628 
629 	/* Break out if the coverage class and registers have the expected
630 	 * value.
631 	 */
632 	if (value == ar->fw_coverage.coverage_class &&
633 	    slottime_reg == ar->fw_coverage.reg_slottime_conf &&
634 	    timeout_reg == ar->fw_coverage.reg_ack_cts_timeout_conf &&
635 	    phyclk_reg == ar->fw_coverage.reg_phyclk)
636 		goto unlock;
637 
638 	/* Store new initial register values from the firmware. */
639 	if (slottime_reg != ar->fw_coverage.reg_slottime_conf)
640 		ar->fw_coverage.reg_slottime_orig = slottime_reg;
641 	if (timeout_reg != ar->fw_coverage.reg_ack_cts_timeout_conf)
642 		ar->fw_coverage.reg_ack_cts_timeout_orig = timeout_reg;
643 	ar->fw_coverage.reg_phyclk = phyclk_reg;
644 
645 	/* Calculate new value based on the (original) firmware calculation. */
646 	slottime_reg = ar->fw_coverage.reg_slottime_orig;
647 	timeout_reg = ar->fw_coverage.reg_ack_cts_timeout_orig;
648 
649 	/* Do some sanity checks on the slottime register. */
650 	if (slottime_reg % phyclk) {
651 		ath10k_warn(ar,
652 			    "failed to set coverage class: expected integer microsecond value in register\n");
653 
654 		goto store_regs;
655 	}
656 
657 	slottime = MS(slottime_reg, WAVE1_PCU_GBL_IFS_SLOT);
658 	slottime = slottime / phyclk;
659 	if (slottime != 9 && slottime != 20) {
660 		ath10k_warn(ar,
661 			    "failed to set coverage class: expected slot time of 9 or 20us in HW register. It is %uus.\n",
662 			    slottime);
663 
664 		goto store_regs;
665 	}
666 
667 	/* Recalculate the register values by adding the additional propagation
668 	 * delay (3us per coverage class).
669 	 */
670 
671 	slottime = MS(slottime_reg, WAVE1_PCU_GBL_IFS_SLOT);
672 	slottime += value * 3 * phyclk;
673 	slottime = min_t(u32, slottime, WAVE1_PCU_GBL_IFS_SLOT_MAX);
674 	slottime = SM(slottime, WAVE1_PCU_GBL_IFS_SLOT);
675 	slottime_reg = (slottime_reg & ~WAVE1_PCU_GBL_IFS_SLOT_MASK) | slottime;
676 
677 	/* Update ack timeout (lower halfword). */
678 	ack_timeout = MS(timeout_reg, WAVE1_PCU_ACK_CTS_TIMEOUT_ACK);
679 	ack_timeout += 3 * value * phyclk;
680 	ack_timeout = min_t(u32, ack_timeout, WAVE1_PCU_ACK_CTS_TIMEOUT_MAX);
681 	ack_timeout = SM(ack_timeout, WAVE1_PCU_ACK_CTS_TIMEOUT_ACK);
682 
683 	/* Update cts timeout (upper halfword). */
684 	cts_timeout = MS(timeout_reg, WAVE1_PCU_ACK_CTS_TIMEOUT_CTS);
685 	cts_timeout += 3 * value * phyclk;
686 	cts_timeout = min_t(u32, cts_timeout, WAVE1_PCU_ACK_CTS_TIMEOUT_MAX);
687 	cts_timeout = SM(cts_timeout, WAVE1_PCU_ACK_CTS_TIMEOUT_CTS);
688 
689 	timeout_reg = ack_timeout | cts_timeout;
690 
691 	ath10k_hif_write32(ar,
692 			   WLAN_MAC_BASE_ADDRESS + WAVE1_PCU_GBL_IFS_SLOT,
693 			   slottime_reg);
694 	ath10k_hif_write32(ar,
695 			   WLAN_MAC_BASE_ADDRESS + WAVE1_PCU_ACK_CTS_TIMEOUT,
696 			   timeout_reg);
697 
698 	/* Ensure we have a debug level of WARN set for the case that the
699 	 * coverage class is larger than 0. This is important as we need to
700 	 * set the registers again if the firmware does an internal reset and
701 	 * this way we will be notified of the event.
702 	 */
703 	fw_dbglog_mask = ath10k_debug_get_fw_dbglog_mask(ar);
704 	fw_dbglog_level = ath10k_debug_get_fw_dbglog_level(ar);
705 
706 	if (value > 0) {
707 		if (fw_dbglog_level > ATH10K_DBGLOG_LEVEL_WARN)
708 			fw_dbglog_level = ATH10K_DBGLOG_LEVEL_WARN;
709 		fw_dbglog_mask = ~0;
710 	}
711 
712 	ath10k_wmi_dbglog_cfg(ar, fw_dbglog_mask, fw_dbglog_level);
713 
714 store_regs:
715 	/* After an error we will not retry setting the coverage class. */
716 	spin_lock_bh(&ar->data_lock);
717 	ar->fw_coverage.coverage_class = value;
718 	spin_unlock_bh(&ar->data_lock);
719 
720 	ar->fw_coverage.reg_slottime_conf = slottime_reg;
721 	ar->fw_coverage.reg_ack_cts_timeout_conf = timeout_reg;
722 
723 unlock:
724 	mutex_unlock(&ar->conf_mutex);
725 }
726 
727 /**
728  * ath10k_hw_qca6174_enable_pll_clock() - enable the qca6174 hw pll clock
729  * @ar: the ath10k blob
730  *
731  * This function is very hardware specific, the clock initialization
732  * steps is very sensitive and could lead to unknown crash, so they
733  * should be done in sequence.
734  *
735  * *** Be aware if you planned to refactor them. ***
736  *
737  * Return: 0 if successfully enable the pll, otherwise EINVAL
738  */
ath10k_hw_qca6174_enable_pll_clock(struct ath10k * ar)739 static int ath10k_hw_qca6174_enable_pll_clock(struct ath10k *ar)
740 {
741 	int ret, wait_limit;
742 	u32 clk_div_addr, pll_init_addr, speed_addr;
743 	u32 addr, reg_val, mem_val;
744 	struct ath10k_hw_params *hw;
745 	const struct ath10k_hw_clk_params *hw_clk;
746 
747 	hw = &ar->hw_params;
748 
749 	if (ar->regs->core_clk_div_address == 0 ||
750 	    ar->regs->cpu_pll_init_address == 0 ||
751 	    ar->regs->cpu_speed_address == 0)
752 		return -EINVAL;
753 
754 	clk_div_addr = ar->regs->core_clk_div_address;
755 	pll_init_addr = ar->regs->cpu_pll_init_address;
756 	speed_addr = ar->regs->cpu_speed_address;
757 
758 	/* Read efuse register to find out the right hw clock configuration */
759 	addr = (RTC_SOC_BASE_ADDRESS | EFUSE_OFFSET);
760 	ret = ath10k_bmi_read_soc_reg(ar, addr, &reg_val);
761 	if (ret)
762 		return -EINVAL;
763 
764 	/* sanitize if the hw refclk index is out of the boundary */
765 	if (MS(reg_val, EFUSE_XTAL_SEL) > ATH10K_HW_REFCLK_COUNT)
766 		return -EINVAL;
767 
768 	hw_clk = &hw->hw_clk[MS(reg_val, EFUSE_XTAL_SEL)];
769 
770 	/* Set the rnfrac and outdiv params to bb_pll register */
771 	addr = (RTC_SOC_BASE_ADDRESS | BB_PLL_CONFIG_OFFSET);
772 	ret = ath10k_bmi_read_soc_reg(ar, addr, &reg_val);
773 	if (ret)
774 		return -EINVAL;
775 
776 	reg_val &= ~(BB_PLL_CONFIG_FRAC_MASK | BB_PLL_CONFIG_OUTDIV_MASK);
777 	reg_val |= (SM(hw_clk->rnfrac, BB_PLL_CONFIG_FRAC) |
778 		    SM(hw_clk->outdiv, BB_PLL_CONFIG_OUTDIV));
779 	ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val);
780 	if (ret)
781 		return -EINVAL;
782 
783 	/* Set the correct settle time value to pll_settle register */
784 	addr = (RTC_WMAC_BASE_ADDRESS | WLAN_PLL_SETTLE_OFFSET);
785 	ret = ath10k_bmi_read_soc_reg(ar, addr, &reg_val);
786 	if (ret)
787 		return -EINVAL;
788 
789 	reg_val &= ~WLAN_PLL_SETTLE_TIME_MASK;
790 	reg_val |= SM(hw_clk->settle_time, WLAN_PLL_SETTLE_TIME);
791 	ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val);
792 	if (ret)
793 		return -EINVAL;
794 
795 	/* Set the clock_ctrl div to core_clk_ctrl register */
796 	addr = (RTC_SOC_BASE_ADDRESS | SOC_CORE_CLK_CTRL_OFFSET);
797 	ret = ath10k_bmi_read_soc_reg(ar, addr, &reg_val);
798 	if (ret)
799 		return -EINVAL;
800 
801 	reg_val &= ~SOC_CORE_CLK_CTRL_DIV_MASK;
802 	reg_val |= SM(1, SOC_CORE_CLK_CTRL_DIV);
803 	ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val);
804 	if (ret)
805 		return -EINVAL;
806 
807 	/* Set the clock_div register */
808 	mem_val = 1;
809 	ret = ath10k_bmi_write_memory(ar, clk_div_addr, &mem_val,
810 				      sizeof(mem_val));
811 	if (ret)
812 		return -EINVAL;
813 
814 	/* Configure the pll_control register */
815 	addr = (RTC_WMAC_BASE_ADDRESS | WLAN_PLL_CONTROL_OFFSET);
816 	ret = ath10k_bmi_read_soc_reg(ar, addr, &reg_val);
817 	if (ret)
818 		return -EINVAL;
819 
820 	reg_val |= (SM(hw_clk->refdiv, WLAN_PLL_CONTROL_REFDIV) |
821 		    SM(hw_clk->div, WLAN_PLL_CONTROL_DIV) |
822 		    SM(1, WLAN_PLL_CONTROL_NOPWD));
823 	ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val);
824 	if (ret)
825 		return -EINVAL;
826 
827 	/* busy wait (max 1s) the rtc_sync status register indicate ready */
828 	wait_limit = 100000;
829 	addr = (RTC_WMAC_BASE_ADDRESS | RTC_SYNC_STATUS_OFFSET);
830 	do {
831 		ret = ath10k_bmi_read_soc_reg(ar, addr, &reg_val);
832 		if (ret)
833 			return -EINVAL;
834 
835 		if (!MS(reg_val, RTC_SYNC_STATUS_PLL_CHANGING))
836 			break;
837 
838 		wait_limit--;
839 		udelay(10);
840 
841 	} while (wait_limit > 0);
842 
843 	if (MS(reg_val, RTC_SYNC_STATUS_PLL_CHANGING))
844 		return -EINVAL;
845 
846 	/* Unset the pll_bypass in pll_control register */
847 	addr = (RTC_WMAC_BASE_ADDRESS | WLAN_PLL_CONTROL_OFFSET);
848 	ret = ath10k_bmi_read_soc_reg(ar, addr, &reg_val);
849 	if (ret)
850 		return -EINVAL;
851 
852 	reg_val &= ~WLAN_PLL_CONTROL_BYPASS_MASK;
853 	reg_val |= SM(0, WLAN_PLL_CONTROL_BYPASS);
854 	ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val);
855 	if (ret)
856 		return -EINVAL;
857 
858 	/* busy wait (max 1s) the rtc_sync status register indicate ready */
859 	wait_limit = 100000;
860 	addr = (RTC_WMAC_BASE_ADDRESS | RTC_SYNC_STATUS_OFFSET);
861 	do {
862 		ret = ath10k_bmi_read_soc_reg(ar, addr, &reg_val);
863 		if (ret)
864 			return -EINVAL;
865 
866 		if (!MS(reg_val, RTC_SYNC_STATUS_PLL_CHANGING))
867 			break;
868 
869 		wait_limit--;
870 		udelay(10);
871 
872 	} while (wait_limit > 0);
873 
874 	if (MS(reg_val, RTC_SYNC_STATUS_PLL_CHANGING))
875 		return -EINVAL;
876 
877 	/* Enable the hardware cpu clock register */
878 	addr = (RTC_SOC_BASE_ADDRESS | SOC_CPU_CLOCK_OFFSET);
879 	ret = ath10k_bmi_read_soc_reg(ar, addr, &reg_val);
880 	if (ret)
881 		return -EINVAL;
882 
883 	reg_val &= ~SOC_CPU_CLOCK_STANDARD_MASK;
884 	reg_val |= SM(1, SOC_CPU_CLOCK_STANDARD);
885 	ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val);
886 	if (ret)
887 		return -EINVAL;
888 
889 	/* unset the nopwd from pll_control register */
890 	addr = (RTC_WMAC_BASE_ADDRESS | WLAN_PLL_CONTROL_OFFSET);
891 	ret = ath10k_bmi_read_soc_reg(ar, addr, &reg_val);
892 	if (ret)
893 		return -EINVAL;
894 
895 	reg_val &= ~WLAN_PLL_CONTROL_NOPWD_MASK;
896 	ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val);
897 	if (ret)
898 		return -EINVAL;
899 
900 	/* enable the pll_init register */
901 	mem_val = 1;
902 	ret = ath10k_bmi_write_memory(ar, pll_init_addr, &mem_val,
903 				      sizeof(mem_val));
904 	if (ret)
905 		return -EINVAL;
906 
907 	/* set the target clock frequency to speed register */
908 	ret = ath10k_bmi_write_memory(ar, speed_addr, &hw->target_cpu_freq,
909 				      sizeof(hw->target_cpu_freq));
910 	if (ret)
911 		return -EINVAL;
912 
913 	return 0;
914 }
915 
916 /* Program CPU_ADDR_MSB to allow different memory
917  * region access.
918  */
ath10k_hw_map_target_mem(struct ath10k * ar,u32 msb)919 static void ath10k_hw_map_target_mem(struct ath10k *ar, u32 msb)
920 {
921 	u32 address = SOC_CORE_BASE_ADDRESS + FW_RAM_CONFIG_ADDRESS;
922 
923 	ath10k_hif_write32(ar, address, msb);
924 }
925 
926 /* 1. Write to memory region of target, such as IRAM adn DRAM.
927  * 2. Target address( 0 ~ 00100000 & 0x00400000~0x00500000)
928  *    can be written directly. See ath10k_pci_targ_cpu_to_ce_addr() too.
929  * 3. In order to access the region other than the above,
930  *    we need to set the value of register CPU_ADDR_MSB.
931  * 4. Target memory access space is limited to 1M size. If the size is larger
932  *    than 1M, need to split it and program CPU_ADDR_MSB accordingly.
933  */
ath10k_hw_diag_segment_msb_download(struct ath10k * ar,const void * buffer,u32 address,u32 length)934 static int ath10k_hw_diag_segment_msb_download(struct ath10k *ar,
935 					       const void *buffer,
936 					       u32 address,
937 					       u32 length)
938 {
939 	u32 addr = address & REGION_ACCESS_SIZE_MASK;
940 	int ret, remain_size, size;
941 	const u8 *buf;
942 
943 	ath10k_hw_map_target_mem(ar, CPU_ADDR_MSB_REGION_VAL(address));
944 
945 	if (addr + length > REGION_ACCESS_SIZE_LIMIT) {
946 		size = REGION_ACCESS_SIZE_LIMIT - addr;
947 		remain_size = length - size;
948 
949 		ret = ath10k_hif_diag_write(ar, address, buffer, size);
950 		if (ret) {
951 			ath10k_warn(ar,
952 				    "failed to download the first %d bytes segment to address:0x%x: %d\n",
953 				    size, address, ret);
954 			goto done;
955 		}
956 
957 		/* Change msb to the next memory region*/
958 		ath10k_hw_map_target_mem(ar,
959 					 CPU_ADDR_MSB_REGION_VAL(address) + 1);
960 		buf = buffer +  size;
961 		ret = ath10k_hif_diag_write(ar,
962 					    address & ~REGION_ACCESS_SIZE_MASK,
963 					    buf, remain_size);
964 		if (ret) {
965 			ath10k_warn(ar,
966 				    "failed to download the second %d bytes segment to address:0x%x: %d\n",
967 				    remain_size,
968 				    address & ~REGION_ACCESS_SIZE_MASK,
969 				    ret);
970 			goto done;
971 		}
972 	} else {
973 		ret = ath10k_hif_diag_write(ar, address, buffer, length);
974 		if (ret) {
975 			ath10k_warn(ar,
976 				    "failed to download the only %d bytes segment to address:0x%x: %d\n",
977 				    length, address, ret);
978 			goto done;
979 		}
980 	}
981 
982 done:
983 	/* Change msb to DRAM */
984 	ath10k_hw_map_target_mem(ar,
985 				 CPU_ADDR_MSB_REGION_VAL(DRAM_BASE_ADDRESS));
986 	return ret;
987 }
988 
ath10k_hw_diag_segment_download(struct ath10k * ar,const void * buffer,u32 address,u32 length)989 static int ath10k_hw_diag_segment_download(struct ath10k *ar,
990 					   const void *buffer,
991 					   u32 address,
992 					   u32 length)
993 {
994 	if (address >= DRAM_BASE_ADDRESS + REGION_ACCESS_SIZE_LIMIT)
995 		/* Needs to change MSB for memory write */
996 		return ath10k_hw_diag_segment_msb_download(ar, buffer,
997 							   address, length);
998 	else
999 		return ath10k_hif_diag_write(ar, address, buffer, length);
1000 }
1001 
ath10k_hw_diag_fast_download(struct ath10k * ar,u32 address,const void * buffer,u32 length)1002 int ath10k_hw_diag_fast_download(struct ath10k *ar,
1003 				 u32 address,
1004 				 const void *buffer,
1005 				 u32 length)
1006 {
1007 	const u8 *buf = buffer;
1008 	bool sgmt_end = false;
1009 	u32 base_addr = 0;
1010 	u32 base_len = 0;
1011 	u32 left = 0;
1012 	struct bmi_segmented_file_header *hdr;
1013 	struct bmi_segmented_metadata *metadata;
1014 	int ret = 0;
1015 
1016 	if (length < sizeof(*hdr))
1017 		return -EINVAL;
1018 
1019 	/* check firmware header. If it has no correct magic number
1020 	 * or it's compressed, returns error.
1021 	 */
1022 	hdr = (struct bmi_segmented_file_header *)buf;
1023 	if (__le32_to_cpu(hdr->magic_num) != BMI_SGMTFILE_MAGIC_NUM) {
1024 		ath10k_dbg(ar, ATH10K_DBG_BOOT,
1025 			   "Not a supported firmware, magic_num:0x%x\n",
1026 			   hdr->magic_num);
1027 		return -EINVAL;
1028 	}
1029 
1030 	if (hdr->file_flags != 0) {
1031 		ath10k_dbg(ar, ATH10K_DBG_BOOT,
1032 			   "Not a supported firmware, file_flags:0x%x\n",
1033 			   hdr->file_flags);
1034 		return -EINVAL;
1035 	}
1036 
1037 	metadata = (struct bmi_segmented_metadata *)hdr->data;
1038 	left = length - sizeof(*hdr);
1039 
1040 	while (left > 0) {
1041 		if (left < sizeof(*metadata)) {
1042 			ath10k_warn(ar, "firmware segment is truncated: %d\n",
1043 				    left);
1044 			ret = -EINVAL;
1045 			break;
1046 		}
1047 		base_addr = __le32_to_cpu(metadata->addr);
1048 		base_len = __le32_to_cpu(metadata->length);
1049 		buf = metadata->data;
1050 		left -= sizeof(*metadata);
1051 
1052 		switch (base_len) {
1053 		case BMI_SGMTFILE_BEGINADDR:
1054 			/* base_addr is the start address to run */
1055 			ret = ath10k_bmi_set_start(ar, base_addr);
1056 			base_len = 0;
1057 			break;
1058 		case BMI_SGMTFILE_DONE:
1059 			/* no more segment */
1060 			base_len = 0;
1061 			sgmt_end = true;
1062 			ret = 0;
1063 			break;
1064 		case BMI_SGMTFILE_BDDATA:
1065 		case BMI_SGMTFILE_EXEC:
1066 			ath10k_warn(ar,
1067 				    "firmware has unsupported segment:%d\n",
1068 				    base_len);
1069 			ret = -EINVAL;
1070 			break;
1071 		default:
1072 			if (base_len > left) {
1073 				/* sanity check */
1074 				ath10k_warn(ar,
1075 					    "firmware has invalid segment length, %d > %d\n",
1076 					    base_len, left);
1077 				ret = -EINVAL;
1078 				break;
1079 			}
1080 
1081 			ret = ath10k_hw_diag_segment_download(ar,
1082 							      buf,
1083 							      base_addr,
1084 							      base_len);
1085 
1086 			if (ret)
1087 				ath10k_warn(ar,
1088 					    "failed to download firmware via diag interface:%d\n",
1089 					    ret);
1090 			break;
1091 		}
1092 
1093 		if (ret || sgmt_end)
1094 			break;
1095 
1096 		metadata = (struct bmi_segmented_metadata *)(buf + base_len);
1097 		left -= base_len;
1098 	}
1099 
1100 	if (ret == 0)
1101 		ath10k_dbg(ar, ATH10K_DBG_BOOT,
1102 			   "boot firmware fast diag download successfully.\n");
1103 	return ret;
1104 }
1105 
ath10k_htt_tx_rssi_enable(struct htt_resp * resp)1106 static int ath10k_htt_tx_rssi_enable(struct htt_resp *resp)
1107 {
1108 	return (resp->data_tx_completion.flags2 & HTT_TX_CMPL_FLAG_DATA_RSSI);
1109 }
1110 
ath10k_htt_tx_rssi_enable_wcn3990(struct htt_resp * resp)1111 static int ath10k_htt_tx_rssi_enable_wcn3990(struct htt_resp *resp)
1112 {
1113 	return (resp->data_tx_completion.flags2 &
1114 		HTT_TX_DATA_RSSI_ENABLE_WCN3990);
1115 }
1116 
ath10k_get_htt_tx_data_rssi_pad(struct htt_resp * resp)1117 static int ath10k_get_htt_tx_data_rssi_pad(struct htt_resp *resp)
1118 {
1119 	struct htt_data_tx_completion_ext extd;
1120 	int pad_bytes = 0;
1121 
1122 	if (resp->data_tx_completion.flags2 & HTT_TX_DATA_APPEND_RETRIES)
1123 		pad_bytes += sizeof(extd.a_retries) /
1124 			     sizeof(extd.msdus_rssi[0]);
1125 
1126 	if (resp->data_tx_completion.flags2 & HTT_TX_DATA_APPEND_TIMESTAMP)
1127 		pad_bytes += sizeof(extd.t_stamp) / sizeof(extd.msdus_rssi[0]);
1128 
1129 	return pad_bytes;
1130 }
1131 
1132 const struct ath10k_hw_ops qca988x_ops = {
1133 	.set_coverage_class = ath10k_hw_qca988x_set_coverage_class,
1134 	.is_rssi_enable = ath10k_htt_tx_rssi_enable,
1135 };
1136 
ath10k_qca99x0_rx_desc_get_l3_pad_bytes(struct htt_rx_desc * rxd)1137 static int ath10k_qca99x0_rx_desc_get_l3_pad_bytes(struct htt_rx_desc *rxd)
1138 {
1139 	return MS(__le32_to_cpu(rxd->msdu_end.qca99x0.info1),
1140 		  RX_MSDU_END_INFO1_L3_HDR_PAD);
1141 }
1142 
ath10k_qca99x0_rx_desc_msdu_limit_error(struct htt_rx_desc * rxd)1143 static bool ath10k_qca99x0_rx_desc_msdu_limit_error(struct htt_rx_desc *rxd)
1144 {
1145 	return !!(rxd->msdu_end.common.info0 &
1146 		  __cpu_to_le32(RX_MSDU_END_INFO0_MSDU_LIMIT_ERR));
1147 }
1148 
1149 const struct ath10k_hw_ops qca99x0_ops = {
1150 	.rx_desc_get_l3_pad_bytes = ath10k_qca99x0_rx_desc_get_l3_pad_bytes,
1151 	.rx_desc_get_msdu_limit_error = ath10k_qca99x0_rx_desc_msdu_limit_error,
1152 	.is_rssi_enable = ath10k_htt_tx_rssi_enable,
1153 };
1154 
1155 const struct ath10k_hw_ops qca6174_ops = {
1156 	.set_coverage_class = ath10k_hw_qca988x_set_coverage_class,
1157 	.enable_pll_clk = ath10k_hw_qca6174_enable_pll_clock,
1158 	.is_rssi_enable = ath10k_htt_tx_rssi_enable,
1159 };
1160 
1161 const struct ath10k_hw_ops qca6174_sdio_ops = {
1162 	.enable_pll_clk = ath10k_hw_qca6174_enable_pll_clock,
1163 };
1164 
1165 const struct ath10k_hw_ops wcn3990_ops = {
1166 	.tx_data_rssi_pad_bytes = ath10k_get_htt_tx_data_rssi_pad,
1167 	.is_rssi_enable = ath10k_htt_tx_rssi_enable_wcn3990,
1168 };
1169