1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/cpudl.c
4  *
5  *  Global CPU deadline management
6  *
7  *  Author: Juri Lelli <j.lelli@sssup.it>
8  */
9 #include "sched.h"
10 
parent(int i)11 static inline int parent(int i)
12 {
13 	return (i - 1) >> 1;
14 }
15 
left_child(int i)16 static inline int left_child(int i)
17 {
18 	return (i << 1) + 1;
19 }
20 
right_child(int i)21 static inline int right_child(int i)
22 {
23 	return (i << 1) + 2;
24 }
25 
cpudl_heapify_down(struct cpudl * cp,int idx)26 static void cpudl_heapify_down(struct cpudl *cp, int idx)
27 {
28 	int l, r, largest;
29 
30 	int orig_cpu = cp->elements[idx].cpu;
31 	u64 orig_dl = cp->elements[idx].dl;
32 
33 	if (left_child(idx) >= cp->size)
34 		return;
35 
36 	/* adapted from lib/prio_heap.c */
37 	while (1) {
38 		u64 largest_dl;
39 
40 		l = left_child(idx);
41 		r = right_child(idx);
42 		largest = idx;
43 		largest_dl = orig_dl;
44 
45 		if ((l < cp->size) && dl_time_before(orig_dl,
46 						cp->elements[l].dl)) {
47 			largest = l;
48 			largest_dl = cp->elements[l].dl;
49 		}
50 		if ((r < cp->size) && dl_time_before(largest_dl,
51 						cp->elements[r].dl))
52 			largest = r;
53 
54 		if (largest == idx)
55 			break;
56 
57 		/* pull largest child onto idx */
58 		cp->elements[idx].cpu = cp->elements[largest].cpu;
59 		cp->elements[idx].dl = cp->elements[largest].dl;
60 		cp->elements[cp->elements[idx].cpu].idx = idx;
61 		idx = largest;
62 	}
63 	/* actual push down of saved original values orig_* */
64 	cp->elements[idx].cpu = orig_cpu;
65 	cp->elements[idx].dl = orig_dl;
66 	cp->elements[cp->elements[idx].cpu].idx = idx;
67 }
68 
cpudl_heapify_up(struct cpudl * cp,int idx)69 static void cpudl_heapify_up(struct cpudl *cp, int idx)
70 {
71 	int p;
72 
73 	int orig_cpu = cp->elements[idx].cpu;
74 	u64 orig_dl = cp->elements[idx].dl;
75 
76 	if (idx == 0)
77 		return;
78 
79 	do {
80 		p = parent(idx);
81 		if (dl_time_before(orig_dl, cp->elements[p].dl))
82 			break;
83 		/* pull parent onto idx */
84 		cp->elements[idx].cpu = cp->elements[p].cpu;
85 		cp->elements[idx].dl = cp->elements[p].dl;
86 		cp->elements[cp->elements[idx].cpu].idx = idx;
87 		idx = p;
88 	} while (idx != 0);
89 	/* actual push up of saved original values orig_* */
90 	cp->elements[idx].cpu = orig_cpu;
91 	cp->elements[idx].dl = orig_dl;
92 	cp->elements[cp->elements[idx].cpu].idx = idx;
93 }
94 
cpudl_heapify(struct cpudl * cp,int idx)95 static void cpudl_heapify(struct cpudl *cp, int idx)
96 {
97 	if (idx > 0 && dl_time_before(cp->elements[parent(idx)].dl,
98 				cp->elements[idx].dl))
99 		cpudl_heapify_up(cp, idx);
100 	else
101 		cpudl_heapify_down(cp, idx);
102 }
103 
cpudl_maximum(struct cpudl * cp)104 static inline int cpudl_maximum(struct cpudl *cp)
105 {
106 	return cp->elements[0].cpu;
107 }
108 
109 /*
110  * cpudl_find - find the best (later-dl) CPU in the system
111  * @cp: the cpudl max-heap context
112  * @p: the task
113  * @later_mask: a mask to fill in with the selected CPUs (or NULL)
114  *
115  * Returns: int - CPUs were found
116  */
cpudl_find(struct cpudl * cp,struct task_struct * p,struct cpumask * later_mask)117 int cpudl_find(struct cpudl *cp, struct task_struct *p,
118 	       struct cpumask *later_mask)
119 {
120 	const struct sched_dl_entity *dl_se = &p->dl;
121 
122 	if (later_mask &&
123 	    cpumask_and(later_mask, cp->free_cpus, &p->cpus_mask)) {
124 		unsigned long cap, max_cap = 0;
125 		int cpu, max_cpu = -1;
126 
127 		if (!static_branch_unlikely(&sched_asym_cpucapacity))
128 			return 1;
129 
130 		/* Ensure the capacity of the CPUs fits the task. */
131 		for_each_cpu(cpu, later_mask) {
132 			if (!dl_task_fits_capacity(p, cpu)) {
133 				cpumask_clear_cpu(cpu, later_mask);
134 
135 				cap = capacity_orig_of(cpu);
136 
137 				if (cap > max_cap ||
138 				    (cpu == task_cpu(p) && cap == max_cap)) {
139 					max_cap = cap;
140 					max_cpu = cpu;
141 				}
142 			}
143 		}
144 
145 		if (cpumask_empty(later_mask))
146 			cpumask_set_cpu(max_cpu, later_mask);
147 
148 		return 1;
149 	} else {
150 		int best_cpu = cpudl_maximum(cp);
151 
152 		WARN_ON(best_cpu != -1 && !cpu_present(best_cpu));
153 
154 		if (cpumask_test_cpu(best_cpu, &p->cpus_mask) &&
155 		    dl_time_before(dl_se->deadline, cp->elements[0].dl)) {
156 			if (later_mask)
157 				cpumask_set_cpu(best_cpu, later_mask);
158 
159 			return 1;
160 		}
161 	}
162 	return 0;
163 }
164 
165 /*
166  * cpudl_clear - remove a CPU from the cpudl max-heap
167  * @cp: the cpudl max-heap context
168  * @cpu: the target CPU
169  *
170  * Notes: assumes cpu_rq(cpu)->lock is locked
171  *
172  * Returns: (void)
173  */
cpudl_clear(struct cpudl * cp,int cpu)174 void cpudl_clear(struct cpudl *cp, int cpu)
175 {
176 	int old_idx, new_cpu;
177 	unsigned long flags;
178 
179 	WARN_ON(!cpu_present(cpu));
180 
181 	raw_spin_lock_irqsave(&cp->lock, flags);
182 
183 	old_idx = cp->elements[cpu].idx;
184 	if (old_idx == IDX_INVALID) {
185 		/*
186 		 * Nothing to remove if old_idx was invalid.
187 		 * This could happen if a rq_offline_dl is
188 		 * called for a CPU without -dl tasks running.
189 		 */
190 	} else {
191 		new_cpu = cp->elements[cp->size - 1].cpu;
192 		cp->elements[old_idx].dl = cp->elements[cp->size - 1].dl;
193 		cp->elements[old_idx].cpu = new_cpu;
194 		cp->size--;
195 		cp->elements[new_cpu].idx = old_idx;
196 		cp->elements[cpu].idx = IDX_INVALID;
197 		cpudl_heapify(cp, old_idx);
198 
199 		cpumask_set_cpu(cpu, cp->free_cpus);
200 	}
201 	raw_spin_unlock_irqrestore(&cp->lock, flags);
202 }
203 
204 /*
205  * cpudl_set - update the cpudl max-heap
206  * @cp: the cpudl max-heap context
207  * @cpu: the target CPU
208  * @dl: the new earliest deadline for this CPU
209  *
210  * Notes: assumes cpu_rq(cpu)->lock is locked
211  *
212  * Returns: (void)
213  */
cpudl_set(struct cpudl * cp,int cpu,u64 dl)214 void cpudl_set(struct cpudl *cp, int cpu, u64 dl)
215 {
216 	int old_idx;
217 	unsigned long flags;
218 
219 	WARN_ON(!cpu_present(cpu));
220 
221 	raw_spin_lock_irqsave(&cp->lock, flags);
222 
223 	old_idx = cp->elements[cpu].idx;
224 	if (old_idx == IDX_INVALID) {
225 		int new_idx = cp->size++;
226 
227 		cp->elements[new_idx].dl = dl;
228 		cp->elements[new_idx].cpu = cpu;
229 		cp->elements[cpu].idx = new_idx;
230 		cpudl_heapify_up(cp, new_idx);
231 		cpumask_clear_cpu(cpu, cp->free_cpus);
232 	} else {
233 		cp->elements[old_idx].dl = dl;
234 		cpudl_heapify(cp, old_idx);
235 	}
236 
237 	raw_spin_unlock_irqrestore(&cp->lock, flags);
238 }
239 
240 /*
241  * cpudl_set_freecpu - Set the cpudl.free_cpus
242  * @cp: the cpudl max-heap context
243  * @cpu: rd attached CPU
244  */
cpudl_set_freecpu(struct cpudl * cp,int cpu)245 void cpudl_set_freecpu(struct cpudl *cp, int cpu)
246 {
247 	cpumask_set_cpu(cpu, cp->free_cpus);
248 }
249 
250 /*
251  * cpudl_clear_freecpu - Clear the cpudl.free_cpus
252  * @cp: the cpudl max-heap context
253  * @cpu: rd attached CPU
254  */
cpudl_clear_freecpu(struct cpudl * cp,int cpu)255 void cpudl_clear_freecpu(struct cpudl *cp, int cpu)
256 {
257 	cpumask_clear_cpu(cpu, cp->free_cpus);
258 }
259 
260 /*
261  * cpudl_init - initialize the cpudl structure
262  * @cp: the cpudl max-heap context
263  */
cpudl_init(struct cpudl * cp)264 int cpudl_init(struct cpudl *cp)
265 {
266 	int i;
267 
268 	raw_spin_lock_init(&cp->lock);
269 	cp->size = 0;
270 
271 	cp->elements = kcalloc(nr_cpu_ids,
272 			       sizeof(struct cpudl_item),
273 			       GFP_KERNEL);
274 	if (!cp->elements)
275 		return -ENOMEM;
276 
277 	if (!zalloc_cpumask_var(&cp->free_cpus, GFP_KERNEL)) {
278 		kfree(cp->elements);
279 		return -ENOMEM;
280 	}
281 
282 	for_each_possible_cpu(i)
283 		cp->elements[i].idx = IDX_INVALID;
284 
285 	return 0;
286 }
287 
288 /*
289  * cpudl_cleanup - clean up the cpudl structure
290  * @cp: the cpudl max-heap context
291  */
cpudl_cleanup(struct cpudl * cp)292 void cpudl_cleanup(struct cpudl *cp)
293 {
294 	free_cpumask_var(cp->free_cpus);
295 	kfree(cp->elements);
296 }
297