1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/static_key.h>
137 #include <linux/hashtable.h>
138 #include <linux/vmalloc.h>
139 #include <linux/if_macvlan.h>
140 #include <linux/errqueue.h>
141 #include <linux/hrtimer.h>
142 #include <linux/netfilter_ingress.h>
143 #include <linux/crash_dump.h>
144 #include <linux/sctp.h>
145 #include <net/udp_tunnel.h>
146 #include <linux/net_namespace.h>
147 #include <linux/indirect_call_wrapper.h>
148 #include <net/devlink.h>
149 #include <linux/pm_runtime.h>
150 #include <linux/prandom.h>
151
152 #include "net-sysfs.h"
153
154 #define MAX_GRO_SKBS 8
155
156 /* This should be increased if a protocol with a bigger head is added. */
157 #define GRO_MAX_HEAD (MAX_HEADER + 128)
158
159 static DEFINE_SPINLOCK(ptype_lock);
160 static DEFINE_SPINLOCK(offload_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly; /* Taps */
163 static struct list_head offload_base __read_mostly;
164
165 static int netif_rx_internal(struct sk_buff *skb);
166 static int call_netdevice_notifiers_info(unsigned long val,
167 struct netdev_notifier_info *info);
168 static int call_netdevice_notifiers_extack(unsigned long val,
169 struct net_device *dev,
170 struct netlink_ext_ack *extack);
171 static struct napi_struct *napi_by_id(unsigned int napi_id);
172
173 /*
174 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
175 * semaphore.
176 *
177 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
178 *
179 * Writers must hold the rtnl semaphore while they loop through the
180 * dev_base_head list, and hold dev_base_lock for writing when they do the
181 * actual updates. This allows pure readers to access the list even
182 * while a writer is preparing to update it.
183 *
184 * To put it another way, dev_base_lock is held for writing only to
185 * protect against pure readers; the rtnl semaphore provides the
186 * protection against other writers.
187 *
188 * See, for example usages, register_netdevice() and
189 * unregister_netdevice(), which must be called with the rtnl
190 * semaphore held.
191 */
192 DEFINE_RWLOCK(dev_base_lock);
193 EXPORT_SYMBOL(dev_base_lock);
194
195 static DEFINE_MUTEX(ifalias_mutex);
196
197 /* protects napi_hash addition/deletion and napi_gen_id */
198 static DEFINE_SPINLOCK(napi_hash_lock);
199
200 static unsigned int napi_gen_id = NR_CPUS;
201 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
202
203 static DECLARE_RWSEM(devnet_rename_sem);
204
dev_base_seq_inc(struct net * net)205 static inline void dev_base_seq_inc(struct net *net)
206 {
207 while (++net->dev_base_seq == 0)
208 ;
209 }
210
dev_name_hash(struct net * net,const char * name)211 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
212 {
213 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
214
215 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
216 }
217
dev_index_hash(struct net * net,int ifindex)218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
219 {
220 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
221 }
222
rps_lock(struct softnet_data * sd)223 static inline void rps_lock(struct softnet_data *sd)
224 {
225 #ifdef CONFIG_RPS
226 spin_lock(&sd->input_pkt_queue.lock);
227 #endif
228 }
229
rps_unlock(struct softnet_data * sd)230 static inline void rps_unlock(struct softnet_data *sd)
231 {
232 #ifdef CONFIG_RPS
233 spin_unlock(&sd->input_pkt_queue.lock);
234 #endif
235 }
236
netdev_name_node_alloc(struct net_device * dev,const char * name)237 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
238 const char *name)
239 {
240 struct netdev_name_node *name_node;
241
242 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
243 if (!name_node)
244 return NULL;
245 INIT_HLIST_NODE(&name_node->hlist);
246 name_node->dev = dev;
247 name_node->name = name;
248 return name_node;
249 }
250
251 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)252 netdev_name_node_head_alloc(struct net_device *dev)
253 {
254 struct netdev_name_node *name_node;
255
256 name_node = netdev_name_node_alloc(dev, dev->name);
257 if (!name_node)
258 return NULL;
259 INIT_LIST_HEAD(&name_node->list);
260 return name_node;
261 }
262
netdev_name_node_free(struct netdev_name_node * name_node)263 static void netdev_name_node_free(struct netdev_name_node *name_node)
264 {
265 kfree(name_node);
266 }
267
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)268 static void netdev_name_node_add(struct net *net,
269 struct netdev_name_node *name_node)
270 {
271 hlist_add_head_rcu(&name_node->hlist,
272 dev_name_hash(net, name_node->name));
273 }
274
netdev_name_node_del(struct netdev_name_node * name_node)275 static void netdev_name_node_del(struct netdev_name_node *name_node)
276 {
277 hlist_del_rcu(&name_node->hlist);
278 }
279
netdev_name_node_lookup(struct net * net,const char * name)280 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
281 const char *name)
282 {
283 struct hlist_head *head = dev_name_hash(net, name);
284 struct netdev_name_node *name_node;
285
286 hlist_for_each_entry(name_node, head, hlist)
287 if (!strcmp(name_node->name, name))
288 return name_node;
289 return NULL;
290 }
291
netdev_name_node_lookup_rcu(struct net * net,const char * name)292 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
293 const char *name)
294 {
295 struct hlist_head *head = dev_name_hash(net, name);
296 struct netdev_name_node *name_node;
297
298 hlist_for_each_entry_rcu(name_node, head, hlist)
299 if (!strcmp(name_node->name, name))
300 return name_node;
301 return NULL;
302 }
303
netdev_name_node_alt_create(struct net_device * dev,const char * name)304 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
305 {
306 struct netdev_name_node *name_node;
307 struct net *net = dev_net(dev);
308
309 name_node = netdev_name_node_lookup(net, name);
310 if (name_node)
311 return -EEXIST;
312 name_node = netdev_name_node_alloc(dev, name);
313 if (!name_node)
314 return -ENOMEM;
315 netdev_name_node_add(net, name_node);
316 /* The node that holds dev->name acts as a head of per-device list. */
317 list_add_tail(&name_node->list, &dev->name_node->list);
318
319 return 0;
320 }
321 EXPORT_SYMBOL(netdev_name_node_alt_create);
322
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)323 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
324 {
325 list_del(&name_node->list);
326 netdev_name_node_del(name_node);
327 kfree(name_node->name);
328 netdev_name_node_free(name_node);
329 }
330
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)331 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
332 {
333 struct netdev_name_node *name_node;
334 struct net *net = dev_net(dev);
335
336 name_node = netdev_name_node_lookup(net, name);
337 if (!name_node)
338 return -ENOENT;
339 /* lookup might have found our primary name or a name belonging
340 * to another device.
341 */
342 if (name_node == dev->name_node || name_node->dev != dev)
343 return -EINVAL;
344
345 __netdev_name_node_alt_destroy(name_node);
346
347 return 0;
348 }
349 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
350
netdev_name_node_alt_flush(struct net_device * dev)351 static void netdev_name_node_alt_flush(struct net_device *dev)
352 {
353 struct netdev_name_node *name_node, *tmp;
354
355 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
356 __netdev_name_node_alt_destroy(name_node);
357 }
358
359 /* Device list insertion */
list_netdevice(struct net_device * dev)360 static void list_netdevice(struct net_device *dev)
361 {
362 struct net *net = dev_net(dev);
363
364 ASSERT_RTNL();
365
366 write_lock_bh(&dev_base_lock);
367 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
368 netdev_name_node_add(net, dev->name_node);
369 hlist_add_head_rcu(&dev->index_hlist,
370 dev_index_hash(net, dev->ifindex));
371 write_unlock_bh(&dev_base_lock);
372
373 dev_base_seq_inc(net);
374 }
375
376 /* Device list removal
377 * caller must respect a RCU grace period before freeing/reusing dev
378 */
unlist_netdevice(struct net_device * dev)379 static void unlist_netdevice(struct net_device *dev)
380 {
381 ASSERT_RTNL();
382
383 /* Unlink dev from the device chain */
384 write_lock_bh(&dev_base_lock);
385 list_del_rcu(&dev->dev_list);
386 netdev_name_node_del(dev->name_node);
387 hlist_del_rcu(&dev->index_hlist);
388 write_unlock_bh(&dev_base_lock);
389
390 dev_base_seq_inc(dev_net(dev));
391 }
392
393 /*
394 * Our notifier list
395 */
396
397 static RAW_NOTIFIER_HEAD(netdev_chain);
398
399 /*
400 * Device drivers call our routines to queue packets here. We empty the
401 * queue in the local softnet handler.
402 */
403
404 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
405 EXPORT_PER_CPU_SYMBOL(softnet_data);
406
407 #ifdef CONFIG_LOCKDEP
408 /*
409 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
410 * according to dev->type
411 */
412 static const unsigned short netdev_lock_type[] = {
413 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
414 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
415 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
416 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
417 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
418 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
419 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
420 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
421 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
422 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
423 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
424 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
425 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
426 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
427 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
428
429 static const char *const netdev_lock_name[] = {
430 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
431 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
432 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
433 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
434 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
435 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
436 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
437 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
438 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
439 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
440 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
441 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
442 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
443 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
444 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
445
446 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
447 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
448
netdev_lock_pos(unsigned short dev_type)449 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
450 {
451 int i;
452
453 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
454 if (netdev_lock_type[i] == dev_type)
455 return i;
456 /* the last key is used by default */
457 return ARRAY_SIZE(netdev_lock_type) - 1;
458 }
459
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)460 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
461 unsigned short dev_type)
462 {
463 int i;
464
465 i = netdev_lock_pos(dev_type);
466 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
467 netdev_lock_name[i]);
468 }
469
netdev_set_addr_lockdep_class(struct net_device * dev)470 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
471 {
472 int i;
473
474 i = netdev_lock_pos(dev->type);
475 lockdep_set_class_and_name(&dev->addr_list_lock,
476 &netdev_addr_lock_key[i],
477 netdev_lock_name[i]);
478 }
479 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)480 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
481 unsigned short dev_type)
482 {
483 }
484
netdev_set_addr_lockdep_class(struct net_device * dev)485 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
486 {
487 }
488 #endif
489
490 /*******************************************************************************
491 *
492 * Protocol management and registration routines
493 *
494 *******************************************************************************/
495
496
497 /*
498 * Add a protocol ID to the list. Now that the input handler is
499 * smarter we can dispense with all the messy stuff that used to be
500 * here.
501 *
502 * BEWARE!!! Protocol handlers, mangling input packets,
503 * MUST BE last in hash buckets and checking protocol handlers
504 * MUST start from promiscuous ptype_all chain in net_bh.
505 * It is true now, do not change it.
506 * Explanation follows: if protocol handler, mangling packet, will
507 * be the first on list, it is not able to sense, that packet
508 * is cloned and should be copied-on-write, so that it will
509 * change it and subsequent readers will get broken packet.
510 * --ANK (980803)
511 */
512
ptype_head(const struct packet_type * pt)513 static inline struct list_head *ptype_head(const struct packet_type *pt)
514 {
515 if (pt->type == htons(ETH_P_ALL))
516 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
517 else
518 return pt->dev ? &pt->dev->ptype_specific :
519 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
520 }
521
522 /**
523 * dev_add_pack - add packet handler
524 * @pt: packet type declaration
525 *
526 * Add a protocol handler to the networking stack. The passed &packet_type
527 * is linked into kernel lists and may not be freed until it has been
528 * removed from the kernel lists.
529 *
530 * This call does not sleep therefore it can not
531 * guarantee all CPU's that are in middle of receiving packets
532 * will see the new packet type (until the next received packet).
533 */
534
dev_add_pack(struct packet_type * pt)535 void dev_add_pack(struct packet_type *pt)
536 {
537 struct list_head *head = ptype_head(pt);
538
539 spin_lock(&ptype_lock);
540 list_add_rcu(&pt->list, head);
541 spin_unlock(&ptype_lock);
542 }
543 EXPORT_SYMBOL(dev_add_pack);
544
545 /**
546 * __dev_remove_pack - remove packet handler
547 * @pt: packet type declaration
548 *
549 * Remove a protocol handler that was previously added to the kernel
550 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
551 * from the kernel lists and can be freed or reused once this function
552 * returns.
553 *
554 * The packet type might still be in use by receivers
555 * and must not be freed until after all the CPU's have gone
556 * through a quiescent state.
557 */
__dev_remove_pack(struct packet_type * pt)558 void __dev_remove_pack(struct packet_type *pt)
559 {
560 struct list_head *head = ptype_head(pt);
561 struct packet_type *pt1;
562
563 spin_lock(&ptype_lock);
564
565 list_for_each_entry(pt1, head, list) {
566 if (pt == pt1) {
567 list_del_rcu(&pt->list);
568 goto out;
569 }
570 }
571
572 pr_warn("dev_remove_pack: %p not found\n", pt);
573 out:
574 spin_unlock(&ptype_lock);
575 }
576 EXPORT_SYMBOL(__dev_remove_pack);
577
578 /**
579 * dev_remove_pack - remove packet handler
580 * @pt: packet type declaration
581 *
582 * Remove a protocol handler that was previously added to the kernel
583 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
584 * from the kernel lists and can be freed or reused once this function
585 * returns.
586 *
587 * This call sleeps to guarantee that no CPU is looking at the packet
588 * type after return.
589 */
dev_remove_pack(struct packet_type * pt)590 void dev_remove_pack(struct packet_type *pt)
591 {
592 __dev_remove_pack(pt);
593
594 synchronize_net();
595 }
596 EXPORT_SYMBOL(dev_remove_pack);
597
598
599 /**
600 * dev_add_offload - register offload handlers
601 * @po: protocol offload declaration
602 *
603 * Add protocol offload handlers to the networking stack. The passed
604 * &proto_offload is linked into kernel lists and may not be freed until
605 * it has been removed from the kernel lists.
606 *
607 * This call does not sleep therefore it can not
608 * guarantee all CPU's that are in middle of receiving packets
609 * will see the new offload handlers (until the next received packet).
610 */
dev_add_offload(struct packet_offload * po)611 void dev_add_offload(struct packet_offload *po)
612 {
613 struct packet_offload *elem;
614
615 spin_lock(&offload_lock);
616 list_for_each_entry(elem, &offload_base, list) {
617 if (po->priority < elem->priority)
618 break;
619 }
620 list_add_rcu(&po->list, elem->list.prev);
621 spin_unlock(&offload_lock);
622 }
623 EXPORT_SYMBOL(dev_add_offload);
624
625 /**
626 * __dev_remove_offload - remove offload handler
627 * @po: packet offload declaration
628 *
629 * Remove a protocol offload handler that was previously added to the
630 * kernel offload handlers by dev_add_offload(). The passed &offload_type
631 * is removed from the kernel lists and can be freed or reused once this
632 * function returns.
633 *
634 * The packet type might still be in use by receivers
635 * and must not be freed until after all the CPU's have gone
636 * through a quiescent state.
637 */
__dev_remove_offload(struct packet_offload * po)638 static void __dev_remove_offload(struct packet_offload *po)
639 {
640 struct list_head *head = &offload_base;
641 struct packet_offload *po1;
642
643 spin_lock(&offload_lock);
644
645 list_for_each_entry(po1, head, list) {
646 if (po == po1) {
647 list_del_rcu(&po->list);
648 goto out;
649 }
650 }
651
652 pr_warn("dev_remove_offload: %p not found\n", po);
653 out:
654 spin_unlock(&offload_lock);
655 }
656
657 /**
658 * dev_remove_offload - remove packet offload handler
659 * @po: packet offload declaration
660 *
661 * Remove a packet offload handler that was previously added to the kernel
662 * offload handlers by dev_add_offload(). The passed &offload_type is
663 * removed from the kernel lists and can be freed or reused once this
664 * function returns.
665 *
666 * This call sleeps to guarantee that no CPU is looking at the packet
667 * type after return.
668 */
dev_remove_offload(struct packet_offload * po)669 void dev_remove_offload(struct packet_offload *po)
670 {
671 __dev_remove_offload(po);
672
673 synchronize_net();
674 }
675 EXPORT_SYMBOL(dev_remove_offload);
676
677 /******************************************************************************
678 *
679 * Device Boot-time Settings Routines
680 *
681 ******************************************************************************/
682
683 /* Boot time configuration table */
684 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
685
686 /**
687 * netdev_boot_setup_add - add new setup entry
688 * @name: name of the device
689 * @map: configured settings for the device
690 *
691 * Adds new setup entry to the dev_boot_setup list. The function
692 * returns 0 on error and 1 on success. This is a generic routine to
693 * all netdevices.
694 */
netdev_boot_setup_add(char * name,struct ifmap * map)695 static int netdev_boot_setup_add(char *name, struct ifmap *map)
696 {
697 struct netdev_boot_setup *s;
698 int i;
699
700 s = dev_boot_setup;
701 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
702 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
703 memset(s[i].name, 0, sizeof(s[i].name));
704 strlcpy(s[i].name, name, IFNAMSIZ);
705 memcpy(&s[i].map, map, sizeof(s[i].map));
706 break;
707 }
708 }
709
710 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
711 }
712
713 /**
714 * netdev_boot_setup_check - check boot time settings
715 * @dev: the netdevice
716 *
717 * Check boot time settings for the device.
718 * The found settings are set for the device to be used
719 * later in the device probing.
720 * Returns 0 if no settings found, 1 if they are.
721 */
netdev_boot_setup_check(struct net_device * dev)722 int netdev_boot_setup_check(struct net_device *dev)
723 {
724 struct netdev_boot_setup *s = dev_boot_setup;
725 int i;
726
727 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
728 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
729 !strcmp(dev->name, s[i].name)) {
730 dev->irq = s[i].map.irq;
731 dev->base_addr = s[i].map.base_addr;
732 dev->mem_start = s[i].map.mem_start;
733 dev->mem_end = s[i].map.mem_end;
734 return 1;
735 }
736 }
737 return 0;
738 }
739 EXPORT_SYMBOL(netdev_boot_setup_check);
740
741
742 /**
743 * netdev_boot_base - get address from boot time settings
744 * @prefix: prefix for network device
745 * @unit: id for network device
746 *
747 * Check boot time settings for the base address of device.
748 * The found settings are set for the device to be used
749 * later in the device probing.
750 * Returns 0 if no settings found.
751 */
netdev_boot_base(const char * prefix,int unit)752 unsigned long netdev_boot_base(const char *prefix, int unit)
753 {
754 const struct netdev_boot_setup *s = dev_boot_setup;
755 char name[IFNAMSIZ];
756 int i;
757
758 sprintf(name, "%s%d", prefix, unit);
759
760 /*
761 * If device already registered then return base of 1
762 * to indicate not to probe for this interface
763 */
764 if (__dev_get_by_name(&init_net, name))
765 return 1;
766
767 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
768 if (!strcmp(name, s[i].name))
769 return s[i].map.base_addr;
770 return 0;
771 }
772
773 /*
774 * Saves at boot time configured settings for any netdevice.
775 */
netdev_boot_setup(char * str)776 int __init netdev_boot_setup(char *str)
777 {
778 int ints[5];
779 struct ifmap map;
780
781 str = get_options(str, ARRAY_SIZE(ints), ints);
782 if (!str || !*str)
783 return 0;
784
785 /* Save settings */
786 memset(&map, 0, sizeof(map));
787 if (ints[0] > 0)
788 map.irq = ints[1];
789 if (ints[0] > 1)
790 map.base_addr = ints[2];
791 if (ints[0] > 2)
792 map.mem_start = ints[3];
793 if (ints[0] > 3)
794 map.mem_end = ints[4];
795
796 /* Add new entry to the list */
797 return netdev_boot_setup_add(str, &map);
798 }
799
800 __setup("netdev=", netdev_boot_setup);
801
802 /*******************************************************************************
803 *
804 * Device Interface Subroutines
805 *
806 *******************************************************************************/
807
808 /**
809 * dev_get_iflink - get 'iflink' value of a interface
810 * @dev: targeted interface
811 *
812 * Indicates the ifindex the interface is linked to.
813 * Physical interfaces have the same 'ifindex' and 'iflink' values.
814 */
815
dev_get_iflink(const struct net_device * dev)816 int dev_get_iflink(const struct net_device *dev)
817 {
818 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
819 return dev->netdev_ops->ndo_get_iflink(dev);
820
821 return dev->ifindex;
822 }
823 EXPORT_SYMBOL(dev_get_iflink);
824
825 /**
826 * dev_fill_metadata_dst - Retrieve tunnel egress information.
827 * @dev: targeted interface
828 * @skb: The packet.
829 *
830 * For better visibility of tunnel traffic OVS needs to retrieve
831 * egress tunnel information for a packet. Following API allows
832 * user to get this info.
833 */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)834 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
835 {
836 struct ip_tunnel_info *info;
837
838 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
839 return -EINVAL;
840
841 info = skb_tunnel_info_unclone(skb);
842 if (!info)
843 return -ENOMEM;
844 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
845 return -EINVAL;
846
847 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
848 }
849 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
850
dev_fwd_path(struct net_device_path_stack * stack)851 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
852 {
853 int k = stack->num_paths++;
854
855 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
856 return NULL;
857
858 return &stack->path[k];
859 }
860
dev_fill_forward_path(const struct net_device * dev,const u8 * daddr,struct net_device_path_stack * stack)861 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
862 struct net_device_path_stack *stack)
863 {
864 const struct net_device *last_dev;
865 struct net_device_path_ctx ctx = {
866 .dev = dev,
867 .daddr = daddr,
868 };
869 struct net_device_path *path;
870 int ret = 0;
871
872 stack->num_paths = 0;
873 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
874 last_dev = ctx.dev;
875 path = dev_fwd_path(stack);
876 if (!path)
877 return -1;
878
879 memset(path, 0, sizeof(struct net_device_path));
880 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
881 if (ret < 0)
882 return -1;
883
884 if (WARN_ON_ONCE(last_dev == ctx.dev))
885 return -1;
886 }
887 path = dev_fwd_path(stack);
888 if (!path)
889 return -1;
890 path->type = DEV_PATH_ETHERNET;
891 path->dev = ctx.dev;
892
893 return ret;
894 }
895 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
896
897 /**
898 * __dev_get_by_name - find a device by its name
899 * @net: the applicable net namespace
900 * @name: name to find
901 *
902 * Find an interface by name. Must be called under RTNL semaphore
903 * or @dev_base_lock. If the name is found a pointer to the device
904 * is returned. If the name is not found then %NULL is returned. The
905 * reference counters are not incremented so the caller must be
906 * careful with locks.
907 */
908
__dev_get_by_name(struct net * net,const char * name)909 struct net_device *__dev_get_by_name(struct net *net, const char *name)
910 {
911 struct netdev_name_node *node_name;
912
913 node_name = netdev_name_node_lookup(net, name);
914 return node_name ? node_name->dev : NULL;
915 }
916 EXPORT_SYMBOL(__dev_get_by_name);
917
918 /**
919 * dev_get_by_name_rcu - find a device by its name
920 * @net: the applicable net namespace
921 * @name: name to find
922 *
923 * Find an interface by name.
924 * If the name is found a pointer to the device is returned.
925 * If the name is not found then %NULL is returned.
926 * The reference counters are not incremented so the caller must be
927 * careful with locks. The caller must hold RCU lock.
928 */
929
dev_get_by_name_rcu(struct net * net,const char * name)930 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
931 {
932 struct netdev_name_node *node_name;
933
934 node_name = netdev_name_node_lookup_rcu(net, name);
935 return node_name ? node_name->dev : NULL;
936 }
937 EXPORT_SYMBOL(dev_get_by_name_rcu);
938
939 /**
940 * dev_get_by_name - find a device by its name
941 * @net: the applicable net namespace
942 * @name: name to find
943 *
944 * Find an interface by name. This can be called from any
945 * context and does its own locking. The returned handle has
946 * the usage count incremented and the caller must use dev_put() to
947 * release it when it is no longer needed. %NULL is returned if no
948 * matching device is found.
949 */
950
dev_get_by_name(struct net * net,const char * name)951 struct net_device *dev_get_by_name(struct net *net, const char *name)
952 {
953 struct net_device *dev;
954
955 rcu_read_lock();
956 dev = dev_get_by_name_rcu(net, name);
957 if (dev)
958 dev_hold(dev);
959 rcu_read_unlock();
960 return dev;
961 }
962 EXPORT_SYMBOL(dev_get_by_name);
963
964 /**
965 * __dev_get_by_index - find a device by its ifindex
966 * @net: the applicable net namespace
967 * @ifindex: index of device
968 *
969 * Search for an interface by index. Returns %NULL if the device
970 * is not found or a pointer to the device. The device has not
971 * had its reference counter increased so the caller must be careful
972 * about locking. The caller must hold either the RTNL semaphore
973 * or @dev_base_lock.
974 */
975
__dev_get_by_index(struct net * net,int ifindex)976 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
977 {
978 struct net_device *dev;
979 struct hlist_head *head = dev_index_hash(net, ifindex);
980
981 hlist_for_each_entry(dev, head, index_hlist)
982 if (dev->ifindex == ifindex)
983 return dev;
984
985 return NULL;
986 }
987 EXPORT_SYMBOL(__dev_get_by_index);
988
989 /**
990 * dev_get_by_index_rcu - find a device by its ifindex
991 * @net: the applicable net namespace
992 * @ifindex: index of device
993 *
994 * Search for an interface by index. Returns %NULL if the device
995 * is not found or a pointer to the device. The device has not
996 * had its reference counter increased so the caller must be careful
997 * about locking. The caller must hold RCU lock.
998 */
999
dev_get_by_index_rcu(struct net * net,int ifindex)1000 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
1001 {
1002 struct net_device *dev;
1003 struct hlist_head *head = dev_index_hash(net, ifindex);
1004
1005 hlist_for_each_entry_rcu(dev, head, index_hlist)
1006 if (dev->ifindex == ifindex)
1007 return dev;
1008
1009 return NULL;
1010 }
1011 EXPORT_SYMBOL(dev_get_by_index_rcu);
1012
1013
1014 /**
1015 * dev_get_by_index - find a device by its ifindex
1016 * @net: the applicable net namespace
1017 * @ifindex: index of device
1018 *
1019 * Search for an interface by index. Returns NULL if the device
1020 * is not found or a pointer to the device. The device returned has
1021 * had a reference added and the pointer is safe until the user calls
1022 * dev_put to indicate they have finished with it.
1023 */
1024
dev_get_by_index(struct net * net,int ifindex)1025 struct net_device *dev_get_by_index(struct net *net, int ifindex)
1026 {
1027 struct net_device *dev;
1028
1029 rcu_read_lock();
1030 dev = dev_get_by_index_rcu(net, ifindex);
1031 if (dev)
1032 dev_hold(dev);
1033 rcu_read_unlock();
1034 return dev;
1035 }
1036 EXPORT_SYMBOL(dev_get_by_index);
1037
1038 /**
1039 * dev_get_by_napi_id - find a device by napi_id
1040 * @napi_id: ID of the NAPI struct
1041 *
1042 * Search for an interface by NAPI ID. Returns %NULL if the device
1043 * is not found or a pointer to the device. The device has not had
1044 * its reference counter increased so the caller must be careful
1045 * about locking. The caller must hold RCU lock.
1046 */
1047
dev_get_by_napi_id(unsigned int napi_id)1048 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1049 {
1050 struct napi_struct *napi;
1051
1052 WARN_ON_ONCE(!rcu_read_lock_held());
1053
1054 if (napi_id < MIN_NAPI_ID)
1055 return NULL;
1056
1057 napi = napi_by_id(napi_id);
1058
1059 return napi ? napi->dev : NULL;
1060 }
1061 EXPORT_SYMBOL(dev_get_by_napi_id);
1062
1063 /**
1064 * netdev_get_name - get a netdevice name, knowing its ifindex.
1065 * @net: network namespace
1066 * @name: a pointer to the buffer where the name will be stored.
1067 * @ifindex: the ifindex of the interface to get the name from.
1068 */
netdev_get_name(struct net * net,char * name,int ifindex)1069 int netdev_get_name(struct net *net, char *name, int ifindex)
1070 {
1071 struct net_device *dev;
1072 int ret;
1073
1074 down_read(&devnet_rename_sem);
1075 rcu_read_lock();
1076
1077 dev = dev_get_by_index_rcu(net, ifindex);
1078 if (!dev) {
1079 ret = -ENODEV;
1080 goto out;
1081 }
1082
1083 strcpy(name, dev->name);
1084
1085 ret = 0;
1086 out:
1087 rcu_read_unlock();
1088 up_read(&devnet_rename_sem);
1089 return ret;
1090 }
1091
1092 /**
1093 * dev_getbyhwaddr_rcu - find a device by its hardware address
1094 * @net: the applicable net namespace
1095 * @type: media type of device
1096 * @ha: hardware address
1097 *
1098 * Search for an interface by MAC address. Returns NULL if the device
1099 * is not found or a pointer to the device.
1100 * The caller must hold RCU or RTNL.
1101 * The returned device has not had its ref count increased
1102 * and the caller must therefore be careful about locking
1103 *
1104 */
1105
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)1106 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1107 const char *ha)
1108 {
1109 struct net_device *dev;
1110
1111 for_each_netdev_rcu(net, dev)
1112 if (dev->type == type &&
1113 !memcmp(dev->dev_addr, ha, dev->addr_len))
1114 return dev;
1115
1116 return NULL;
1117 }
1118 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1119
dev_getfirstbyhwtype(struct net * net,unsigned short type)1120 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1121 {
1122 struct net_device *dev, *ret = NULL;
1123
1124 rcu_read_lock();
1125 for_each_netdev_rcu(net, dev)
1126 if (dev->type == type) {
1127 dev_hold(dev);
1128 ret = dev;
1129 break;
1130 }
1131 rcu_read_unlock();
1132 return ret;
1133 }
1134 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1135
1136 /**
1137 * __dev_get_by_flags - find any device with given flags
1138 * @net: the applicable net namespace
1139 * @if_flags: IFF_* values
1140 * @mask: bitmask of bits in if_flags to check
1141 *
1142 * Search for any interface with the given flags. Returns NULL if a device
1143 * is not found or a pointer to the device. Must be called inside
1144 * rtnl_lock(), and result refcount is unchanged.
1145 */
1146
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)1147 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1148 unsigned short mask)
1149 {
1150 struct net_device *dev, *ret;
1151
1152 ASSERT_RTNL();
1153
1154 ret = NULL;
1155 for_each_netdev(net, dev) {
1156 if (((dev->flags ^ if_flags) & mask) == 0) {
1157 ret = dev;
1158 break;
1159 }
1160 }
1161 return ret;
1162 }
1163 EXPORT_SYMBOL(__dev_get_by_flags);
1164
1165 /**
1166 * dev_valid_name - check if name is okay for network device
1167 * @name: name string
1168 *
1169 * Network device names need to be valid file names to
1170 * allow sysfs to work. We also disallow any kind of
1171 * whitespace.
1172 */
dev_valid_name(const char * name)1173 bool dev_valid_name(const char *name)
1174 {
1175 if (*name == '\0')
1176 return false;
1177 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1178 return false;
1179 if (!strcmp(name, ".") || !strcmp(name, ".."))
1180 return false;
1181
1182 while (*name) {
1183 if (*name == '/' || *name == ':' || isspace(*name))
1184 return false;
1185 name++;
1186 }
1187 return true;
1188 }
1189 EXPORT_SYMBOL(dev_valid_name);
1190
1191 /**
1192 * __dev_alloc_name - allocate a name for a device
1193 * @net: network namespace to allocate the device name in
1194 * @name: name format string
1195 * @buf: scratch buffer and result name string
1196 *
1197 * Passed a format string - eg "lt%d" it will try and find a suitable
1198 * id. It scans list of devices to build up a free map, then chooses
1199 * the first empty slot. The caller must hold the dev_base or rtnl lock
1200 * while allocating the name and adding the device in order to avoid
1201 * duplicates.
1202 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1203 * Returns the number of the unit assigned or a negative errno code.
1204 */
1205
__dev_alloc_name(struct net * net,const char * name,char * buf)1206 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1207 {
1208 int i = 0;
1209 const char *p;
1210 const int max_netdevices = 8*PAGE_SIZE;
1211 unsigned long *inuse;
1212 struct net_device *d;
1213
1214 if (!dev_valid_name(name))
1215 return -EINVAL;
1216
1217 p = strchr(name, '%');
1218 if (p) {
1219 /*
1220 * Verify the string as this thing may have come from
1221 * the user. There must be either one "%d" and no other "%"
1222 * characters.
1223 */
1224 if (p[1] != 'd' || strchr(p + 2, '%'))
1225 return -EINVAL;
1226
1227 /* Use one page as a bit array of possible slots */
1228 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1229 if (!inuse)
1230 return -ENOMEM;
1231
1232 for_each_netdev(net, d) {
1233 struct netdev_name_node *name_node;
1234 list_for_each_entry(name_node, &d->name_node->list, list) {
1235 if (!sscanf(name_node->name, name, &i))
1236 continue;
1237 if (i < 0 || i >= max_netdevices)
1238 continue;
1239
1240 /* avoid cases where sscanf is not exact inverse of printf */
1241 snprintf(buf, IFNAMSIZ, name, i);
1242 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1243 set_bit(i, inuse);
1244 }
1245 if (!sscanf(d->name, name, &i))
1246 continue;
1247 if (i < 0 || i >= max_netdevices)
1248 continue;
1249
1250 /* avoid cases where sscanf is not exact inverse of printf */
1251 snprintf(buf, IFNAMSIZ, name, i);
1252 if (!strncmp(buf, d->name, IFNAMSIZ))
1253 set_bit(i, inuse);
1254 }
1255
1256 i = find_first_zero_bit(inuse, max_netdevices);
1257 free_page((unsigned long) inuse);
1258 }
1259
1260 snprintf(buf, IFNAMSIZ, name, i);
1261 if (!__dev_get_by_name(net, buf))
1262 return i;
1263
1264 /* It is possible to run out of possible slots
1265 * when the name is long and there isn't enough space left
1266 * for the digits, or if all bits are used.
1267 */
1268 return -ENFILE;
1269 }
1270
dev_alloc_name_ns(struct net * net,struct net_device * dev,const char * name)1271 static int dev_alloc_name_ns(struct net *net,
1272 struct net_device *dev,
1273 const char *name)
1274 {
1275 char buf[IFNAMSIZ];
1276 int ret;
1277
1278 BUG_ON(!net);
1279 ret = __dev_alloc_name(net, name, buf);
1280 if (ret >= 0)
1281 strlcpy(dev->name, buf, IFNAMSIZ);
1282 return ret;
1283 }
1284
1285 /**
1286 * dev_alloc_name - allocate a name for a device
1287 * @dev: device
1288 * @name: name format string
1289 *
1290 * Passed a format string - eg "lt%d" it will try and find a suitable
1291 * id. It scans list of devices to build up a free map, then chooses
1292 * the first empty slot. The caller must hold the dev_base or rtnl lock
1293 * while allocating the name and adding the device in order to avoid
1294 * duplicates.
1295 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1296 * Returns the number of the unit assigned or a negative errno code.
1297 */
1298
dev_alloc_name(struct net_device * dev,const char * name)1299 int dev_alloc_name(struct net_device *dev, const char *name)
1300 {
1301 return dev_alloc_name_ns(dev_net(dev), dev, name);
1302 }
1303 EXPORT_SYMBOL(dev_alloc_name);
1304
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1305 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1306 const char *name)
1307 {
1308 BUG_ON(!net);
1309
1310 if (!dev_valid_name(name))
1311 return -EINVAL;
1312
1313 if (strchr(name, '%'))
1314 return dev_alloc_name_ns(net, dev, name);
1315 else if (__dev_get_by_name(net, name))
1316 return -EEXIST;
1317 else if (dev->name != name)
1318 strlcpy(dev->name, name, IFNAMSIZ);
1319
1320 return 0;
1321 }
1322
1323 /**
1324 * dev_change_name - change name of a device
1325 * @dev: device
1326 * @newname: name (or format string) must be at least IFNAMSIZ
1327 *
1328 * Change name of a device, can pass format strings "eth%d".
1329 * for wildcarding.
1330 */
dev_change_name(struct net_device * dev,const char * newname)1331 int dev_change_name(struct net_device *dev, const char *newname)
1332 {
1333 unsigned char old_assign_type;
1334 char oldname[IFNAMSIZ];
1335 int err = 0;
1336 int ret;
1337 struct net *net;
1338
1339 ASSERT_RTNL();
1340 BUG_ON(!dev_net(dev));
1341
1342 net = dev_net(dev);
1343
1344 /* Some auto-enslaved devices e.g. failover slaves are
1345 * special, as userspace might rename the device after
1346 * the interface had been brought up and running since
1347 * the point kernel initiated auto-enslavement. Allow
1348 * live name change even when these slave devices are
1349 * up and running.
1350 *
1351 * Typically, users of these auto-enslaving devices
1352 * don't actually care about slave name change, as
1353 * they are supposed to operate on master interface
1354 * directly.
1355 */
1356 if (dev->flags & IFF_UP &&
1357 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1358 return -EBUSY;
1359
1360 down_write(&devnet_rename_sem);
1361
1362 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1363 up_write(&devnet_rename_sem);
1364 return 0;
1365 }
1366
1367 memcpy(oldname, dev->name, IFNAMSIZ);
1368
1369 err = dev_get_valid_name(net, dev, newname);
1370 if (err < 0) {
1371 up_write(&devnet_rename_sem);
1372 return err;
1373 }
1374
1375 if (oldname[0] && !strchr(oldname, '%'))
1376 netdev_info(dev, "renamed from %s\n", oldname);
1377
1378 old_assign_type = dev->name_assign_type;
1379 dev->name_assign_type = NET_NAME_RENAMED;
1380
1381 rollback:
1382 ret = device_rename(&dev->dev, dev->name);
1383 if (ret) {
1384 memcpy(dev->name, oldname, IFNAMSIZ);
1385 dev->name_assign_type = old_assign_type;
1386 up_write(&devnet_rename_sem);
1387 return ret;
1388 }
1389
1390 up_write(&devnet_rename_sem);
1391
1392 netdev_adjacent_rename_links(dev, oldname);
1393
1394 write_lock_bh(&dev_base_lock);
1395 netdev_name_node_del(dev->name_node);
1396 write_unlock_bh(&dev_base_lock);
1397
1398 synchronize_rcu();
1399
1400 write_lock_bh(&dev_base_lock);
1401 netdev_name_node_add(net, dev->name_node);
1402 write_unlock_bh(&dev_base_lock);
1403
1404 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1405 ret = notifier_to_errno(ret);
1406
1407 if (ret) {
1408 /* err >= 0 after dev_alloc_name() or stores the first errno */
1409 if (err >= 0) {
1410 err = ret;
1411 down_write(&devnet_rename_sem);
1412 memcpy(dev->name, oldname, IFNAMSIZ);
1413 memcpy(oldname, newname, IFNAMSIZ);
1414 dev->name_assign_type = old_assign_type;
1415 old_assign_type = NET_NAME_RENAMED;
1416 goto rollback;
1417 } else {
1418 pr_err("%s: name change rollback failed: %d\n",
1419 dev->name, ret);
1420 }
1421 }
1422
1423 return err;
1424 }
1425
1426 /**
1427 * dev_set_alias - change ifalias of a device
1428 * @dev: device
1429 * @alias: name up to IFALIASZ
1430 * @len: limit of bytes to copy from info
1431 *
1432 * Set ifalias for a device,
1433 */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)1434 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1435 {
1436 struct dev_ifalias *new_alias = NULL;
1437
1438 if (len >= IFALIASZ)
1439 return -EINVAL;
1440
1441 if (len) {
1442 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1443 if (!new_alias)
1444 return -ENOMEM;
1445
1446 memcpy(new_alias->ifalias, alias, len);
1447 new_alias->ifalias[len] = 0;
1448 }
1449
1450 mutex_lock(&ifalias_mutex);
1451 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1452 mutex_is_locked(&ifalias_mutex));
1453 mutex_unlock(&ifalias_mutex);
1454
1455 if (new_alias)
1456 kfree_rcu(new_alias, rcuhead);
1457
1458 return len;
1459 }
1460 EXPORT_SYMBOL(dev_set_alias);
1461
1462 /**
1463 * dev_get_alias - get ifalias of a device
1464 * @dev: device
1465 * @name: buffer to store name of ifalias
1466 * @len: size of buffer
1467 *
1468 * get ifalias for a device. Caller must make sure dev cannot go
1469 * away, e.g. rcu read lock or own a reference count to device.
1470 */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1471 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1472 {
1473 const struct dev_ifalias *alias;
1474 int ret = 0;
1475
1476 rcu_read_lock();
1477 alias = rcu_dereference(dev->ifalias);
1478 if (alias)
1479 ret = snprintf(name, len, "%s", alias->ifalias);
1480 rcu_read_unlock();
1481
1482 return ret;
1483 }
1484
1485 /**
1486 * netdev_features_change - device changes features
1487 * @dev: device to cause notification
1488 *
1489 * Called to indicate a device has changed features.
1490 */
netdev_features_change(struct net_device * dev)1491 void netdev_features_change(struct net_device *dev)
1492 {
1493 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1494 }
1495 EXPORT_SYMBOL(netdev_features_change);
1496
1497 /**
1498 * netdev_state_change - device changes state
1499 * @dev: device to cause notification
1500 *
1501 * Called to indicate a device has changed state. This function calls
1502 * the notifier chains for netdev_chain and sends a NEWLINK message
1503 * to the routing socket.
1504 */
netdev_state_change(struct net_device * dev)1505 void netdev_state_change(struct net_device *dev)
1506 {
1507 if (dev->flags & IFF_UP) {
1508 struct netdev_notifier_change_info change_info = {
1509 .info.dev = dev,
1510 };
1511
1512 call_netdevice_notifiers_info(NETDEV_CHANGE,
1513 &change_info.info);
1514 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1515 }
1516 }
1517 EXPORT_SYMBOL(netdev_state_change);
1518
1519 /**
1520 * __netdev_notify_peers - notify network peers about existence of @dev,
1521 * to be called when rtnl lock is already held.
1522 * @dev: network device
1523 *
1524 * Generate traffic such that interested network peers are aware of
1525 * @dev, such as by generating a gratuitous ARP. This may be used when
1526 * a device wants to inform the rest of the network about some sort of
1527 * reconfiguration such as a failover event or virtual machine
1528 * migration.
1529 */
__netdev_notify_peers(struct net_device * dev)1530 void __netdev_notify_peers(struct net_device *dev)
1531 {
1532 ASSERT_RTNL();
1533 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1534 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1535 }
1536 EXPORT_SYMBOL(__netdev_notify_peers);
1537
1538 /**
1539 * netdev_notify_peers - notify network peers about existence of @dev
1540 * @dev: network device
1541 *
1542 * Generate traffic such that interested network peers are aware of
1543 * @dev, such as by generating a gratuitous ARP. This may be used when
1544 * a device wants to inform the rest of the network about some sort of
1545 * reconfiguration such as a failover event or virtual machine
1546 * migration.
1547 */
netdev_notify_peers(struct net_device * dev)1548 void netdev_notify_peers(struct net_device *dev)
1549 {
1550 rtnl_lock();
1551 __netdev_notify_peers(dev);
1552 rtnl_unlock();
1553 }
1554 EXPORT_SYMBOL(netdev_notify_peers);
1555
1556 static int napi_threaded_poll(void *data);
1557
napi_kthread_create(struct napi_struct * n)1558 static int napi_kthread_create(struct napi_struct *n)
1559 {
1560 int err = 0;
1561
1562 /* Create and wake up the kthread once to put it in
1563 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1564 * warning and work with loadavg.
1565 */
1566 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1567 n->dev->name, n->napi_id);
1568 if (IS_ERR(n->thread)) {
1569 err = PTR_ERR(n->thread);
1570 pr_err("kthread_run failed with err %d\n", err);
1571 n->thread = NULL;
1572 }
1573
1574 return err;
1575 }
1576
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1577 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1578 {
1579 const struct net_device_ops *ops = dev->netdev_ops;
1580 int ret;
1581
1582 ASSERT_RTNL();
1583
1584 if (!netif_device_present(dev)) {
1585 /* may be detached because parent is runtime-suspended */
1586 if (dev->dev.parent)
1587 pm_runtime_resume(dev->dev.parent);
1588 if (!netif_device_present(dev))
1589 return -ENODEV;
1590 }
1591
1592 /* Block netpoll from trying to do any rx path servicing.
1593 * If we don't do this there is a chance ndo_poll_controller
1594 * or ndo_poll may be running while we open the device
1595 */
1596 netpoll_poll_disable(dev);
1597
1598 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1599 ret = notifier_to_errno(ret);
1600 if (ret)
1601 return ret;
1602
1603 set_bit(__LINK_STATE_START, &dev->state);
1604
1605 if (ops->ndo_validate_addr)
1606 ret = ops->ndo_validate_addr(dev);
1607
1608 if (!ret && ops->ndo_open)
1609 ret = ops->ndo_open(dev);
1610
1611 netpoll_poll_enable(dev);
1612
1613 if (ret)
1614 clear_bit(__LINK_STATE_START, &dev->state);
1615 else {
1616 dev->flags |= IFF_UP;
1617 dev_set_rx_mode(dev);
1618 dev_activate(dev);
1619 add_device_randomness(dev->dev_addr, dev->addr_len);
1620 }
1621
1622 return ret;
1623 }
1624
1625 /**
1626 * dev_open - prepare an interface for use.
1627 * @dev: device to open
1628 * @extack: netlink extended ack
1629 *
1630 * Takes a device from down to up state. The device's private open
1631 * function is invoked and then the multicast lists are loaded. Finally
1632 * the device is moved into the up state and a %NETDEV_UP message is
1633 * sent to the netdev notifier chain.
1634 *
1635 * Calling this function on an active interface is a nop. On a failure
1636 * a negative errno code is returned.
1637 */
dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1638 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1639 {
1640 int ret;
1641
1642 if (dev->flags & IFF_UP)
1643 return 0;
1644
1645 ret = __dev_open(dev, extack);
1646 if (ret < 0)
1647 return ret;
1648
1649 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1650 call_netdevice_notifiers(NETDEV_UP, dev);
1651
1652 return ret;
1653 }
1654 EXPORT_SYMBOL(dev_open);
1655
__dev_close_many(struct list_head * head)1656 static void __dev_close_many(struct list_head *head)
1657 {
1658 struct net_device *dev;
1659
1660 ASSERT_RTNL();
1661 might_sleep();
1662
1663 list_for_each_entry(dev, head, close_list) {
1664 /* Temporarily disable netpoll until the interface is down */
1665 netpoll_poll_disable(dev);
1666
1667 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1668
1669 clear_bit(__LINK_STATE_START, &dev->state);
1670
1671 /* Synchronize to scheduled poll. We cannot touch poll list, it
1672 * can be even on different cpu. So just clear netif_running().
1673 *
1674 * dev->stop() will invoke napi_disable() on all of it's
1675 * napi_struct instances on this device.
1676 */
1677 smp_mb__after_atomic(); /* Commit netif_running(). */
1678 }
1679
1680 dev_deactivate_many(head);
1681
1682 list_for_each_entry(dev, head, close_list) {
1683 const struct net_device_ops *ops = dev->netdev_ops;
1684
1685 /*
1686 * Call the device specific close. This cannot fail.
1687 * Only if device is UP
1688 *
1689 * We allow it to be called even after a DETACH hot-plug
1690 * event.
1691 */
1692 if (ops->ndo_stop)
1693 ops->ndo_stop(dev);
1694
1695 dev->flags &= ~IFF_UP;
1696 netpoll_poll_enable(dev);
1697 }
1698 }
1699
__dev_close(struct net_device * dev)1700 static void __dev_close(struct net_device *dev)
1701 {
1702 LIST_HEAD(single);
1703
1704 list_add(&dev->close_list, &single);
1705 __dev_close_many(&single);
1706 list_del(&single);
1707 }
1708
dev_close_many(struct list_head * head,bool unlink)1709 void dev_close_many(struct list_head *head, bool unlink)
1710 {
1711 struct net_device *dev, *tmp;
1712
1713 /* Remove the devices that don't need to be closed */
1714 list_for_each_entry_safe(dev, tmp, head, close_list)
1715 if (!(dev->flags & IFF_UP))
1716 list_del_init(&dev->close_list);
1717
1718 __dev_close_many(head);
1719
1720 list_for_each_entry_safe(dev, tmp, head, close_list) {
1721 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1722 call_netdevice_notifiers(NETDEV_DOWN, dev);
1723 if (unlink)
1724 list_del_init(&dev->close_list);
1725 }
1726 }
1727 EXPORT_SYMBOL(dev_close_many);
1728
1729 /**
1730 * dev_close - shutdown an interface.
1731 * @dev: device to shutdown
1732 *
1733 * This function moves an active device into down state. A
1734 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1735 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1736 * chain.
1737 */
dev_close(struct net_device * dev)1738 void dev_close(struct net_device *dev)
1739 {
1740 if (dev->flags & IFF_UP) {
1741 LIST_HEAD(single);
1742
1743 list_add(&dev->close_list, &single);
1744 dev_close_many(&single, true);
1745 list_del(&single);
1746 }
1747 }
1748 EXPORT_SYMBOL(dev_close);
1749
1750
1751 /**
1752 * dev_disable_lro - disable Large Receive Offload on a device
1753 * @dev: device
1754 *
1755 * Disable Large Receive Offload (LRO) on a net device. Must be
1756 * called under RTNL. This is needed if received packets may be
1757 * forwarded to another interface.
1758 */
dev_disable_lro(struct net_device * dev)1759 void dev_disable_lro(struct net_device *dev)
1760 {
1761 struct net_device *lower_dev;
1762 struct list_head *iter;
1763
1764 dev->wanted_features &= ~NETIF_F_LRO;
1765 netdev_update_features(dev);
1766
1767 if (unlikely(dev->features & NETIF_F_LRO))
1768 netdev_WARN(dev, "failed to disable LRO!\n");
1769
1770 netdev_for_each_lower_dev(dev, lower_dev, iter)
1771 dev_disable_lro(lower_dev);
1772 }
1773 EXPORT_SYMBOL(dev_disable_lro);
1774
1775 /**
1776 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1777 * @dev: device
1778 *
1779 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1780 * called under RTNL. This is needed if Generic XDP is installed on
1781 * the device.
1782 */
dev_disable_gro_hw(struct net_device * dev)1783 static void dev_disable_gro_hw(struct net_device *dev)
1784 {
1785 dev->wanted_features &= ~NETIF_F_GRO_HW;
1786 netdev_update_features(dev);
1787
1788 if (unlikely(dev->features & NETIF_F_GRO_HW))
1789 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1790 }
1791
netdev_cmd_to_name(enum netdev_cmd cmd)1792 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1793 {
1794 #define N(val) \
1795 case NETDEV_##val: \
1796 return "NETDEV_" __stringify(val);
1797 switch (cmd) {
1798 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1799 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1800 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1801 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1802 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1803 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1804 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1805 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1806 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1807 N(PRE_CHANGEADDR)
1808 }
1809 #undef N
1810 return "UNKNOWN_NETDEV_EVENT";
1811 }
1812 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1813
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1814 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1815 struct net_device *dev)
1816 {
1817 struct netdev_notifier_info info = {
1818 .dev = dev,
1819 };
1820
1821 return nb->notifier_call(nb, val, &info);
1822 }
1823
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1824 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1825 struct net_device *dev)
1826 {
1827 int err;
1828
1829 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1830 err = notifier_to_errno(err);
1831 if (err)
1832 return err;
1833
1834 if (!(dev->flags & IFF_UP))
1835 return 0;
1836
1837 call_netdevice_notifier(nb, NETDEV_UP, dev);
1838 return 0;
1839 }
1840
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1841 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1842 struct net_device *dev)
1843 {
1844 if (dev->flags & IFF_UP) {
1845 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1846 dev);
1847 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1848 }
1849 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1850 }
1851
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1852 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1853 struct net *net)
1854 {
1855 struct net_device *dev;
1856 int err;
1857
1858 for_each_netdev(net, dev) {
1859 err = call_netdevice_register_notifiers(nb, dev);
1860 if (err)
1861 goto rollback;
1862 }
1863 return 0;
1864
1865 rollback:
1866 for_each_netdev_continue_reverse(net, dev)
1867 call_netdevice_unregister_notifiers(nb, dev);
1868 return err;
1869 }
1870
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1871 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1872 struct net *net)
1873 {
1874 struct net_device *dev;
1875
1876 for_each_netdev(net, dev)
1877 call_netdevice_unregister_notifiers(nb, dev);
1878 }
1879
1880 static int dev_boot_phase = 1;
1881
1882 /**
1883 * register_netdevice_notifier - register a network notifier block
1884 * @nb: notifier
1885 *
1886 * Register a notifier to be called when network device events occur.
1887 * The notifier passed is linked into the kernel structures and must
1888 * not be reused until it has been unregistered. A negative errno code
1889 * is returned on a failure.
1890 *
1891 * When registered all registration and up events are replayed
1892 * to the new notifier to allow device to have a race free
1893 * view of the network device list.
1894 */
1895
register_netdevice_notifier(struct notifier_block * nb)1896 int register_netdevice_notifier(struct notifier_block *nb)
1897 {
1898 struct net *net;
1899 int err;
1900
1901 /* Close race with setup_net() and cleanup_net() */
1902 down_write(&pernet_ops_rwsem);
1903 rtnl_lock();
1904 err = raw_notifier_chain_register(&netdev_chain, nb);
1905 if (err)
1906 goto unlock;
1907 if (dev_boot_phase)
1908 goto unlock;
1909 for_each_net(net) {
1910 err = call_netdevice_register_net_notifiers(nb, net);
1911 if (err)
1912 goto rollback;
1913 }
1914
1915 unlock:
1916 rtnl_unlock();
1917 up_write(&pernet_ops_rwsem);
1918 return err;
1919
1920 rollback:
1921 for_each_net_continue_reverse(net)
1922 call_netdevice_unregister_net_notifiers(nb, net);
1923
1924 raw_notifier_chain_unregister(&netdev_chain, nb);
1925 goto unlock;
1926 }
1927 EXPORT_SYMBOL(register_netdevice_notifier);
1928
1929 /**
1930 * unregister_netdevice_notifier - unregister a network notifier block
1931 * @nb: notifier
1932 *
1933 * Unregister a notifier previously registered by
1934 * register_netdevice_notifier(). The notifier is unlinked into the
1935 * kernel structures and may then be reused. A negative errno code
1936 * is returned on a failure.
1937 *
1938 * After unregistering unregister and down device events are synthesized
1939 * for all devices on the device list to the removed notifier to remove
1940 * the need for special case cleanup code.
1941 */
1942
unregister_netdevice_notifier(struct notifier_block * nb)1943 int unregister_netdevice_notifier(struct notifier_block *nb)
1944 {
1945 struct net *net;
1946 int err;
1947
1948 /* Close race with setup_net() and cleanup_net() */
1949 down_write(&pernet_ops_rwsem);
1950 rtnl_lock();
1951 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1952 if (err)
1953 goto unlock;
1954
1955 for_each_net(net)
1956 call_netdevice_unregister_net_notifiers(nb, net);
1957
1958 unlock:
1959 rtnl_unlock();
1960 up_write(&pernet_ops_rwsem);
1961 return err;
1962 }
1963 EXPORT_SYMBOL(unregister_netdevice_notifier);
1964
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)1965 static int __register_netdevice_notifier_net(struct net *net,
1966 struct notifier_block *nb,
1967 bool ignore_call_fail)
1968 {
1969 int err;
1970
1971 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1972 if (err)
1973 return err;
1974 if (dev_boot_phase)
1975 return 0;
1976
1977 err = call_netdevice_register_net_notifiers(nb, net);
1978 if (err && !ignore_call_fail)
1979 goto chain_unregister;
1980
1981 return 0;
1982
1983 chain_unregister:
1984 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1985 return err;
1986 }
1987
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1988 static int __unregister_netdevice_notifier_net(struct net *net,
1989 struct notifier_block *nb)
1990 {
1991 int err;
1992
1993 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1994 if (err)
1995 return err;
1996
1997 call_netdevice_unregister_net_notifiers(nb, net);
1998 return 0;
1999 }
2000
2001 /**
2002 * register_netdevice_notifier_net - register a per-netns network notifier block
2003 * @net: network namespace
2004 * @nb: notifier
2005 *
2006 * Register a notifier to be called when network device events occur.
2007 * The notifier passed is linked into the kernel structures and must
2008 * not be reused until it has been unregistered. A negative errno code
2009 * is returned on a failure.
2010 *
2011 * When registered all registration and up events are replayed
2012 * to the new notifier to allow device to have a race free
2013 * view of the network device list.
2014 */
2015
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2016 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2017 {
2018 int err;
2019
2020 rtnl_lock();
2021 err = __register_netdevice_notifier_net(net, nb, false);
2022 rtnl_unlock();
2023 return err;
2024 }
2025 EXPORT_SYMBOL(register_netdevice_notifier_net);
2026
2027 /**
2028 * unregister_netdevice_notifier_net - unregister a per-netns
2029 * network notifier block
2030 * @net: network namespace
2031 * @nb: notifier
2032 *
2033 * Unregister a notifier previously registered by
2034 * register_netdevice_notifier(). The notifier is unlinked into the
2035 * kernel structures and may then be reused. A negative errno code
2036 * is returned on a failure.
2037 *
2038 * After unregistering unregister and down device events are synthesized
2039 * for all devices on the device list to the removed notifier to remove
2040 * the need for special case cleanup code.
2041 */
2042
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2043 int unregister_netdevice_notifier_net(struct net *net,
2044 struct notifier_block *nb)
2045 {
2046 int err;
2047
2048 rtnl_lock();
2049 err = __unregister_netdevice_notifier_net(net, nb);
2050 rtnl_unlock();
2051 return err;
2052 }
2053 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2054
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2055 int register_netdevice_notifier_dev_net(struct net_device *dev,
2056 struct notifier_block *nb,
2057 struct netdev_net_notifier *nn)
2058 {
2059 int err;
2060
2061 rtnl_lock();
2062 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2063 if (!err) {
2064 nn->nb = nb;
2065 list_add(&nn->list, &dev->net_notifier_list);
2066 }
2067 rtnl_unlock();
2068 return err;
2069 }
2070 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2071
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2072 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2073 struct notifier_block *nb,
2074 struct netdev_net_notifier *nn)
2075 {
2076 int err;
2077
2078 rtnl_lock();
2079 list_del(&nn->list);
2080 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2081 rtnl_unlock();
2082 return err;
2083 }
2084 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2085
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)2086 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2087 struct net *net)
2088 {
2089 struct netdev_net_notifier *nn;
2090
2091 list_for_each_entry(nn, &dev->net_notifier_list, list) {
2092 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2093 __register_netdevice_notifier_net(net, nn->nb, true);
2094 }
2095 }
2096
2097 /**
2098 * call_netdevice_notifiers_info - call all network notifier blocks
2099 * @val: value passed unmodified to notifier function
2100 * @info: notifier information data
2101 *
2102 * Call all network notifier blocks. Parameters and return value
2103 * are as for raw_notifier_call_chain().
2104 */
2105
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)2106 static int call_netdevice_notifiers_info(unsigned long val,
2107 struct netdev_notifier_info *info)
2108 {
2109 struct net *net = dev_net(info->dev);
2110 int ret;
2111
2112 ASSERT_RTNL();
2113
2114 /* Run per-netns notifier block chain first, then run the global one.
2115 * Hopefully, one day, the global one is going to be removed after
2116 * all notifier block registrators get converted to be per-netns.
2117 */
2118 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2119 if (ret & NOTIFY_STOP_MASK)
2120 return ret;
2121 return raw_notifier_call_chain(&netdev_chain, val, info);
2122 }
2123
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2124 static int call_netdevice_notifiers_extack(unsigned long val,
2125 struct net_device *dev,
2126 struct netlink_ext_ack *extack)
2127 {
2128 struct netdev_notifier_info info = {
2129 .dev = dev,
2130 .extack = extack,
2131 };
2132
2133 return call_netdevice_notifiers_info(val, &info);
2134 }
2135
2136 /**
2137 * call_netdevice_notifiers - call all network notifier blocks
2138 * @val: value passed unmodified to notifier function
2139 * @dev: net_device pointer passed unmodified to notifier function
2140 *
2141 * Call all network notifier blocks. Parameters and return value
2142 * are as for raw_notifier_call_chain().
2143 */
2144
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2145 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2146 {
2147 return call_netdevice_notifiers_extack(val, dev, NULL);
2148 }
2149 EXPORT_SYMBOL(call_netdevice_notifiers);
2150
2151 /**
2152 * call_netdevice_notifiers_mtu - call all network notifier blocks
2153 * @val: value passed unmodified to notifier function
2154 * @dev: net_device pointer passed unmodified to notifier function
2155 * @arg: additional u32 argument passed to the notifier function
2156 *
2157 * Call all network notifier blocks. Parameters and return value
2158 * are as for raw_notifier_call_chain().
2159 */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2160 static int call_netdevice_notifiers_mtu(unsigned long val,
2161 struct net_device *dev, u32 arg)
2162 {
2163 struct netdev_notifier_info_ext info = {
2164 .info.dev = dev,
2165 .ext.mtu = arg,
2166 };
2167
2168 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2169
2170 return call_netdevice_notifiers_info(val, &info.info);
2171 }
2172
2173 #ifdef CONFIG_NET_INGRESS
2174 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2175
net_inc_ingress_queue(void)2176 void net_inc_ingress_queue(void)
2177 {
2178 static_branch_inc(&ingress_needed_key);
2179 }
2180 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2181
net_dec_ingress_queue(void)2182 void net_dec_ingress_queue(void)
2183 {
2184 static_branch_dec(&ingress_needed_key);
2185 }
2186 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2187 #endif
2188
2189 #ifdef CONFIG_NET_EGRESS
2190 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2191
net_inc_egress_queue(void)2192 void net_inc_egress_queue(void)
2193 {
2194 static_branch_inc(&egress_needed_key);
2195 }
2196 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2197
net_dec_egress_queue(void)2198 void net_dec_egress_queue(void)
2199 {
2200 static_branch_dec(&egress_needed_key);
2201 }
2202 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2203 #endif
2204
2205 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2206 #ifdef CONFIG_JUMP_LABEL
2207 static atomic_t netstamp_needed_deferred;
2208 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2209 static void netstamp_clear(struct work_struct *work)
2210 {
2211 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2212 int wanted;
2213
2214 wanted = atomic_add_return(deferred, &netstamp_wanted);
2215 if (wanted > 0)
2216 static_branch_enable(&netstamp_needed_key);
2217 else
2218 static_branch_disable(&netstamp_needed_key);
2219 }
2220 static DECLARE_WORK(netstamp_work, netstamp_clear);
2221 #endif
2222
net_enable_timestamp(void)2223 void net_enable_timestamp(void)
2224 {
2225 #ifdef CONFIG_JUMP_LABEL
2226 int wanted;
2227
2228 while (1) {
2229 wanted = atomic_read(&netstamp_wanted);
2230 if (wanted <= 0)
2231 break;
2232 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2233 return;
2234 }
2235 atomic_inc(&netstamp_needed_deferred);
2236 schedule_work(&netstamp_work);
2237 #else
2238 static_branch_inc(&netstamp_needed_key);
2239 #endif
2240 }
2241 EXPORT_SYMBOL(net_enable_timestamp);
2242
net_disable_timestamp(void)2243 void net_disable_timestamp(void)
2244 {
2245 #ifdef CONFIG_JUMP_LABEL
2246 int wanted;
2247
2248 while (1) {
2249 wanted = atomic_read(&netstamp_wanted);
2250 if (wanted <= 1)
2251 break;
2252 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2253 return;
2254 }
2255 atomic_dec(&netstamp_needed_deferred);
2256 schedule_work(&netstamp_work);
2257 #else
2258 static_branch_dec(&netstamp_needed_key);
2259 #endif
2260 }
2261 EXPORT_SYMBOL(net_disable_timestamp);
2262
net_timestamp_set(struct sk_buff * skb)2263 static inline void net_timestamp_set(struct sk_buff *skb)
2264 {
2265 skb->tstamp = 0;
2266 if (static_branch_unlikely(&netstamp_needed_key))
2267 __net_timestamp(skb);
2268 }
2269
2270 #define net_timestamp_check(COND, SKB) \
2271 if (static_branch_unlikely(&netstamp_needed_key)) { \
2272 if ((COND) && !(SKB)->tstamp) \
2273 __net_timestamp(SKB); \
2274 } \
2275
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2276 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2277 {
2278 return __is_skb_forwardable(dev, skb, true);
2279 }
2280 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2281
__dev_forward_skb2(struct net_device * dev,struct sk_buff * skb,bool check_mtu)2282 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2283 bool check_mtu)
2284 {
2285 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2286
2287 if (likely(!ret)) {
2288 skb->protocol = eth_type_trans(skb, dev);
2289 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2290 }
2291
2292 return ret;
2293 }
2294
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2295 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2296 {
2297 return __dev_forward_skb2(dev, skb, true);
2298 }
2299 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2300
2301 /**
2302 * dev_forward_skb - loopback an skb to another netif
2303 *
2304 * @dev: destination network device
2305 * @skb: buffer to forward
2306 *
2307 * return values:
2308 * NET_RX_SUCCESS (no congestion)
2309 * NET_RX_DROP (packet was dropped, but freed)
2310 *
2311 * dev_forward_skb can be used for injecting an skb from the
2312 * start_xmit function of one device into the receive queue
2313 * of another device.
2314 *
2315 * The receiving device may be in another namespace, so
2316 * we have to clear all information in the skb that could
2317 * impact namespace isolation.
2318 */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2319 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2320 {
2321 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2322 }
2323 EXPORT_SYMBOL_GPL(dev_forward_skb);
2324
dev_forward_skb_nomtu(struct net_device * dev,struct sk_buff * skb)2325 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2326 {
2327 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2328 }
2329
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2330 static inline int deliver_skb(struct sk_buff *skb,
2331 struct packet_type *pt_prev,
2332 struct net_device *orig_dev)
2333 {
2334 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2335 return -ENOMEM;
2336 refcount_inc(&skb->users);
2337 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2338 }
2339
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2340 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2341 struct packet_type **pt,
2342 struct net_device *orig_dev,
2343 __be16 type,
2344 struct list_head *ptype_list)
2345 {
2346 struct packet_type *ptype, *pt_prev = *pt;
2347
2348 list_for_each_entry_rcu(ptype, ptype_list, list) {
2349 if (ptype->type != type)
2350 continue;
2351 if (pt_prev)
2352 deliver_skb(skb, pt_prev, orig_dev);
2353 pt_prev = ptype;
2354 }
2355 *pt = pt_prev;
2356 }
2357
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2358 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2359 {
2360 if (!ptype->af_packet_priv || !skb->sk)
2361 return false;
2362
2363 if (ptype->id_match)
2364 return ptype->id_match(ptype, skb->sk);
2365 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2366 return true;
2367
2368 return false;
2369 }
2370
2371 /**
2372 * dev_nit_active - return true if any network interface taps are in use
2373 *
2374 * @dev: network device to check for the presence of taps
2375 */
dev_nit_active(struct net_device * dev)2376 bool dev_nit_active(struct net_device *dev)
2377 {
2378 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2379 }
2380 EXPORT_SYMBOL_GPL(dev_nit_active);
2381
2382 /*
2383 * Support routine. Sends outgoing frames to any network
2384 * taps currently in use.
2385 */
2386
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2387 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2388 {
2389 struct packet_type *ptype;
2390 struct sk_buff *skb2 = NULL;
2391 struct packet_type *pt_prev = NULL;
2392 struct list_head *ptype_list = &ptype_all;
2393
2394 rcu_read_lock();
2395 again:
2396 list_for_each_entry_rcu(ptype, ptype_list, list) {
2397 if (ptype->ignore_outgoing)
2398 continue;
2399
2400 /* Never send packets back to the socket
2401 * they originated from - MvS (miquels@drinkel.ow.org)
2402 */
2403 if (skb_loop_sk(ptype, skb))
2404 continue;
2405
2406 if (pt_prev) {
2407 deliver_skb(skb2, pt_prev, skb->dev);
2408 pt_prev = ptype;
2409 continue;
2410 }
2411
2412 /* need to clone skb, done only once */
2413 skb2 = skb_clone(skb, GFP_ATOMIC);
2414 if (!skb2)
2415 goto out_unlock;
2416
2417 net_timestamp_set(skb2);
2418
2419 /* skb->nh should be correctly
2420 * set by sender, so that the second statement is
2421 * just protection against buggy protocols.
2422 */
2423 skb_reset_mac_header(skb2);
2424
2425 if (skb_network_header(skb2) < skb2->data ||
2426 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2427 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2428 ntohs(skb2->protocol),
2429 dev->name);
2430 skb_reset_network_header(skb2);
2431 }
2432
2433 skb2->transport_header = skb2->network_header;
2434 skb2->pkt_type = PACKET_OUTGOING;
2435 pt_prev = ptype;
2436 }
2437
2438 if (ptype_list == &ptype_all) {
2439 ptype_list = &dev->ptype_all;
2440 goto again;
2441 }
2442 out_unlock:
2443 if (pt_prev) {
2444 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2445 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2446 else
2447 kfree_skb(skb2);
2448 }
2449 rcu_read_unlock();
2450 }
2451 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2452
2453 /**
2454 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2455 * @dev: Network device
2456 * @txq: number of queues available
2457 *
2458 * If real_num_tx_queues is changed the tc mappings may no longer be
2459 * valid. To resolve this verify the tc mapping remains valid and if
2460 * not NULL the mapping. With no priorities mapping to this
2461 * offset/count pair it will no longer be used. In the worst case TC0
2462 * is invalid nothing can be done so disable priority mappings. If is
2463 * expected that drivers will fix this mapping if they can before
2464 * calling netif_set_real_num_tx_queues.
2465 */
netif_setup_tc(struct net_device * dev,unsigned int txq)2466 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2467 {
2468 int i;
2469 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2470
2471 /* If TC0 is invalidated disable TC mapping */
2472 if (tc->offset + tc->count > txq) {
2473 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2474 dev->num_tc = 0;
2475 return;
2476 }
2477
2478 /* Invalidated prio to tc mappings set to TC0 */
2479 for (i = 1; i < TC_BITMASK + 1; i++) {
2480 int q = netdev_get_prio_tc_map(dev, i);
2481
2482 tc = &dev->tc_to_txq[q];
2483 if (tc->offset + tc->count > txq) {
2484 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2485 i, q);
2486 netdev_set_prio_tc_map(dev, i, 0);
2487 }
2488 }
2489 }
2490
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2491 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2492 {
2493 if (dev->num_tc) {
2494 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2495 int i;
2496
2497 /* walk through the TCs and see if it falls into any of them */
2498 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2499 if ((txq - tc->offset) < tc->count)
2500 return i;
2501 }
2502
2503 /* didn't find it, just return -1 to indicate no match */
2504 return -1;
2505 }
2506
2507 return 0;
2508 }
2509 EXPORT_SYMBOL(netdev_txq_to_tc);
2510
2511 #ifdef CONFIG_XPS
2512 static struct static_key xps_needed __read_mostly;
2513 static struct static_key xps_rxqs_needed __read_mostly;
2514 static DEFINE_MUTEX(xps_map_mutex);
2515 #define xmap_dereference(P) \
2516 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2517
remove_xps_queue(struct xps_dev_maps * dev_maps,struct xps_dev_maps * old_maps,int tci,u16 index)2518 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2519 struct xps_dev_maps *old_maps, int tci, u16 index)
2520 {
2521 struct xps_map *map = NULL;
2522 int pos;
2523
2524 if (dev_maps)
2525 map = xmap_dereference(dev_maps->attr_map[tci]);
2526 if (!map)
2527 return false;
2528
2529 for (pos = map->len; pos--;) {
2530 if (map->queues[pos] != index)
2531 continue;
2532
2533 if (map->len > 1) {
2534 map->queues[pos] = map->queues[--map->len];
2535 break;
2536 }
2537
2538 if (old_maps)
2539 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2540 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2541 kfree_rcu(map, rcu);
2542 return false;
2543 }
2544
2545 return true;
2546 }
2547
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2548 static bool remove_xps_queue_cpu(struct net_device *dev,
2549 struct xps_dev_maps *dev_maps,
2550 int cpu, u16 offset, u16 count)
2551 {
2552 int num_tc = dev_maps->num_tc;
2553 bool active = false;
2554 int tci;
2555
2556 for (tci = cpu * num_tc; num_tc--; tci++) {
2557 int i, j;
2558
2559 for (i = count, j = offset; i--; j++) {
2560 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2561 break;
2562 }
2563
2564 active |= i < 0;
2565 }
2566
2567 return active;
2568 }
2569
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,enum xps_map_type type)2570 static void reset_xps_maps(struct net_device *dev,
2571 struct xps_dev_maps *dev_maps,
2572 enum xps_map_type type)
2573 {
2574 static_key_slow_dec_cpuslocked(&xps_needed);
2575 if (type == XPS_RXQS)
2576 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2577
2578 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2579
2580 kfree_rcu(dev_maps, rcu);
2581 }
2582
clean_xps_maps(struct net_device * dev,enum xps_map_type type,u16 offset,u16 count)2583 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2584 u16 offset, u16 count)
2585 {
2586 struct xps_dev_maps *dev_maps;
2587 bool active = false;
2588 int i, j;
2589
2590 dev_maps = xmap_dereference(dev->xps_maps[type]);
2591 if (!dev_maps)
2592 return;
2593
2594 for (j = 0; j < dev_maps->nr_ids; j++)
2595 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2596 if (!active)
2597 reset_xps_maps(dev, dev_maps, type);
2598
2599 if (type == XPS_CPUS) {
2600 for (i = offset + (count - 1); count--; i--)
2601 netdev_queue_numa_node_write(
2602 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2603 }
2604 }
2605
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2606 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2607 u16 count)
2608 {
2609 if (!static_key_false(&xps_needed))
2610 return;
2611
2612 cpus_read_lock();
2613 mutex_lock(&xps_map_mutex);
2614
2615 if (static_key_false(&xps_rxqs_needed))
2616 clean_xps_maps(dev, XPS_RXQS, offset, count);
2617
2618 clean_xps_maps(dev, XPS_CPUS, offset, count);
2619
2620 mutex_unlock(&xps_map_mutex);
2621 cpus_read_unlock();
2622 }
2623
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2624 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2625 {
2626 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2627 }
2628
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2629 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2630 u16 index, bool is_rxqs_map)
2631 {
2632 struct xps_map *new_map;
2633 int alloc_len = XPS_MIN_MAP_ALLOC;
2634 int i, pos;
2635
2636 for (pos = 0; map && pos < map->len; pos++) {
2637 if (map->queues[pos] != index)
2638 continue;
2639 return map;
2640 }
2641
2642 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2643 if (map) {
2644 if (pos < map->alloc_len)
2645 return map;
2646
2647 alloc_len = map->alloc_len * 2;
2648 }
2649
2650 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2651 * map
2652 */
2653 if (is_rxqs_map)
2654 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2655 else
2656 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2657 cpu_to_node(attr_index));
2658 if (!new_map)
2659 return NULL;
2660
2661 for (i = 0; i < pos; i++)
2662 new_map->queues[i] = map->queues[i];
2663 new_map->alloc_len = alloc_len;
2664 new_map->len = pos;
2665
2666 return new_map;
2667 }
2668
2669 /* Copy xps maps at a given index */
xps_copy_dev_maps(struct xps_dev_maps * dev_maps,struct xps_dev_maps * new_dev_maps,int index,int tc,bool skip_tc)2670 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2671 struct xps_dev_maps *new_dev_maps, int index,
2672 int tc, bool skip_tc)
2673 {
2674 int i, tci = index * dev_maps->num_tc;
2675 struct xps_map *map;
2676
2677 /* copy maps belonging to foreign traffic classes */
2678 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2679 if (i == tc && skip_tc)
2680 continue;
2681
2682 /* fill in the new device map from the old device map */
2683 map = xmap_dereference(dev_maps->attr_map[tci]);
2684 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2685 }
2686 }
2687
2688 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)2689 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2690 u16 index, enum xps_map_type type)
2691 {
2692 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2693 const unsigned long *online_mask = NULL;
2694 bool active = false, copy = false;
2695 int i, j, tci, numa_node_id = -2;
2696 int maps_sz, num_tc = 1, tc = 0;
2697 struct xps_map *map, *new_map;
2698 unsigned int nr_ids;
2699
2700 if (dev->num_tc) {
2701 /* Do not allow XPS on subordinate device directly */
2702 num_tc = dev->num_tc;
2703 if (num_tc < 0)
2704 return -EINVAL;
2705
2706 /* If queue belongs to subordinate dev use its map */
2707 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2708
2709 tc = netdev_txq_to_tc(dev, index);
2710 if (tc < 0)
2711 return -EINVAL;
2712 }
2713
2714 mutex_lock(&xps_map_mutex);
2715
2716 dev_maps = xmap_dereference(dev->xps_maps[type]);
2717 if (type == XPS_RXQS) {
2718 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2719 nr_ids = dev->num_rx_queues;
2720 } else {
2721 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2722 if (num_possible_cpus() > 1)
2723 online_mask = cpumask_bits(cpu_online_mask);
2724 nr_ids = nr_cpu_ids;
2725 }
2726
2727 if (maps_sz < L1_CACHE_BYTES)
2728 maps_sz = L1_CACHE_BYTES;
2729
2730 /* The old dev_maps could be larger or smaller than the one we're
2731 * setting up now, as dev->num_tc or nr_ids could have been updated in
2732 * between. We could try to be smart, but let's be safe instead and only
2733 * copy foreign traffic classes if the two map sizes match.
2734 */
2735 if (dev_maps &&
2736 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2737 copy = true;
2738
2739 /* allocate memory for queue storage */
2740 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2741 j < nr_ids;) {
2742 if (!new_dev_maps) {
2743 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2744 if (!new_dev_maps) {
2745 mutex_unlock(&xps_map_mutex);
2746 return -ENOMEM;
2747 }
2748
2749 new_dev_maps->nr_ids = nr_ids;
2750 new_dev_maps->num_tc = num_tc;
2751 }
2752
2753 tci = j * num_tc + tc;
2754 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2755
2756 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2757 if (!map)
2758 goto error;
2759
2760 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2761 }
2762
2763 if (!new_dev_maps)
2764 goto out_no_new_maps;
2765
2766 if (!dev_maps) {
2767 /* Increment static keys at most once per type */
2768 static_key_slow_inc_cpuslocked(&xps_needed);
2769 if (type == XPS_RXQS)
2770 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2771 }
2772
2773 for (j = 0; j < nr_ids; j++) {
2774 bool skip_tc = false;
2775
2776 tci = j * num_tc + tc;
2777 if (netif_attr_test_mask(j, mask, nr_ids) &&
2778 netif_attr_test_online(j, online_mask, nr_ids)) {
2779 /* add tx-queue to CPU/rx-queue maps */
2780 int pos = 0;
2781
2782 skip_tc = true;
2783
2784 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2785 while ((pos < map->len) && (map->queues[pos] != index))
2786 pos++;
2787
2788 if (pos == map->len)
2789 map->queues[map->len++] = index;
2790 #ifdef CONFIG_NUMA
2791 if (type == XPS_CPUS) {
2792 if (numa_node_id == -2)
2793 numa_node_id = cpu_to_node(j);
2794 else if (numa_node_id != cpu_to_node(j))
2795 numa_node_id = -1;
2796 }
2797 #endif
2798 }
2799
2800 if (copy)
2801 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2802 skip_tc);
2803 }
2804
2805 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2806
2807 /* Cleanup old maps */
2808 if (!dev_maps)
2809 goto out_no_old_maps;
2810
2811 for (j = 0; j < dev_maps->nr_ids; j++) {
2812 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2813 map = xmap_dereference(dev_maps->attr_map[tci]);
2814 if (!map)
2815 continue;
2816
2817 if (copy) {
2818 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2819 if (map == new_map)
2820 continue;
2821 }
2822
2823 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2824 kfree_rcu(map, rcu);
2825 }
2826 }
2827
2828 old_dev_maps = dev_maps;
2829
2830 out_no_old_maps:
2831 dev_maps = new_dev_maps;
2832 active = true;
2833
2834 out_no_new_maps:
2835 if (type == XPS_CPUS)
2836 /* update Tx queue numa node */
2837 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2838 (numa_node_id >= 0) ?
2839 numa_node_id : NUMA_NO_NODE);
2840
2841 if (!dev_maps)
2842 goto out_no_maps;
2843
2844 /* removes tx-queue from unused CPUs/rx-queues */
2845 for (j = 0; j < dev_maps->nr_ids; j++) {
2846 tci = j * dev_maps->num_tc;
2847
2848 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2849 if (i == tc &&
2850 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2851 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2852 continue;
2853
2854 active |= remove_xps_queue(dev_maps,
2855 copy ? old_dev_maps : NULL,
2856 tci, index);
2857 }
2858 }
2859
2860 if (old_dev_maps)
2861 kfree_rcu(old_dev_maps, rcu);
2862
2863 /* free map if not active */
2864 if (!active)
2865 reset_xps_maps(dev, dev_maps, type);
2866
2867 out_no_maps:
2868 mutex_unlock(&xps_map_mutex);
2869
2870 return 0;
2871 error:
2872 /* remove any maps that we added */
2873 for (j = 0; j < nr_ids; j++) {
2874 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2875 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2876 map = copy ?
2877 xmap_dereference(dev_maps->attr_map[tci]) :
2878 NULL;
2879 if (new_map && new_map != map)
2880 kfree(new_map);
2881 }
2882 }
2883
2884 mutex_unlock(&xps_map_mutex);
2885
2886 kfree(new_dev_maps);
2887 return -ENOMEM;
2888 }
2889 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2890
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2891 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2892 u16 index)
2893 {
2894 int ret;
2895
2896 cpus_read_lock();
2897 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2898 cpus_read_unlock();
2899
2900 return ret;
2901 }
2902 EXPORT_SYMBOL(netif_set_xps_queue);
2903
2904 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)2905 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2906 {
2907 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2908
2909 /* Unbind any subordinate channels */
2910 while (txq-- != &dev->_tx[0]) {
2911 if (txq->sb_dev)
2912 netdev_unbind_sb_channel(dev, txq->sb_dev);
2913 }
2914 }
2915
netdev_reset_tc(struct net_device * dev)2916 void netdev_reset_tc(struct net_device *dev)
2917 {
2918 #ifdef CONFIG_XPS
2919 netif_reset_xps_queues_gt(dev, 0);
2920 #endif
2921 netdev_unbind_all_sb_channels(dev);
2922
2923 /* Reset TC configuration of device */
2924 dev->num_tc = 0;
2925 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2926 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2927 }
2928 EXPORT_SYMBOL(netdev_reset_tc);
2929
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)2930 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2931 {
2932 if (tc >= dev->num_tc)
2933 return -EINVAL;
2934
2935 #ifdef CONFIG_XPS
2936 netif_reset_xps_queues(dev, offset, count);
2937 #endif
2938 dev->tc_to_txq[tc].count = count;
2939 dev->tc_to_txq[tc].offset = offset;
2940 return 0;
2941 }
2942 EXPORT_SYMBOL(netdev_set_tc_queue);
2943
netdev_set_num_tc(struct net_device * dev,u8 num_tc)2944 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2945 {
2946 if (num_tc > TC_MAX_QUEUE)
2947 return -EINVAL;
2948
2949 #ifdef CONFIG_XPS
2950 netif_reset_xps_queues_gt(dev, 0);
2951 #endif
2952 netdev_unbind_all_sb_channels(dev);
2953
2954 dev->num_tc = num_tc;
2955 return 0;
2956 }
2957 EXPORT_SYMBOL(netdev_set_num_tc);
2958
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)2959 void netdev_unbind_sb_channel(struct net_device *dev,
2960 struct net_device *sb_dev)
2961 {
2962 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2963
2964 #ifdef CONFIG_XPS
2965 netif_reset_xps_queues_gt(sb_dev, 0);
2966 #endif
2967 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2968 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2969
2970 while (txq-- != &dev->_tx[0]) {
2971 if (txq->sb_dev == sb_dev)
2972 txq->sb_dev = NULL;
2973 }
2974 }
2975 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2976
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)2977 int netdev_bind_sb_channel_queue(struct net_device *dev,
2978 struct net_device *sb_dev,
2979 u8 tc, u16 count, u16 offset)
2980 {
2981 /* Make certain the sb_dev and dev are already configured */
2982 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2983 return -EINVAL;
2984
2985 /* We cannot hand out queues we don't have */
2986 if ((offset + count) > dev->real_num_tx_queues)
2987 return -EINVAL;
2988
2989 /* Record the mapping */
2990 sb_dev->tc_to_txq[tc].count = count;
2991 sb_dev->tc_to_txq[tc].offset = offset;
2992
2993 /* Provide a way for Tx queue to find the tc_to_txq map or
2994 * XPS map for itself.
2995 */
2996 while (count--)
2997 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2998
2999 return 0;
3000 }
3001 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3002
netdev_set_sb_channel(struct net_device * dev,u16 channel)3003 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3004 {
3005 /* Do not use a multiqueue device to represent a subordinate channel */
3006 if (netif_is_multiqueue(dev))
3007 return -ENODEV;
3008
3009 /* We allow channels 1 - 32767 to be used for subordinate channels.
3010 * Channel 0 is meant to be "native" mode and used only to represent
3011 * the main root device. We allow writing 0 to reset the device back
3012 * to normal mode after being used as a subordinate channel.
3013 */
3014 if (channel > S16_MAX)
3015 return -EINVAL;
3016
3017 dev->num_tc = -channel;
3018
3019 return 0;
3020 }
3021 EXPORT_SYMBOL(netdev_set_sb_channel);
3022
3023 /*
3024 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3025 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3026 */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)3027 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3028 {
3029 bool disabling;
3030 int rc;
3031
3032 disabling = txq < dev->real_num_tx_queues;
3033
3034 if (txq < 1 || txq > dev->num_tx_queues)
3035 return -EINVAL;
3036
3037 if (dev->reg_state == NETREG_REGISTERED ||
3038 dev->reg_state == NETREG_UNREGISTERING) {
3039 ASSERT_RTNL();
3040
3041 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3042 txq);
3043 if (rc)
3044 return rc;
3045
3046 if (dev->num_tc)
3047 netif_setup_tc(dev, txq);
3048
3049 dev->real_num_tx_queues = txq;
3050
3051 if (disabling) {
3052 synchronize_net();
3053 qdisc_reset_all_tx_gt(dev, txq);
3054 #ifdef CONFIG_XPS
3055 netif_reset_xps_queues_gt(dev, txq);
3056 #endif
3057 }
3058 } else {
3059 dev->real_num_tx_queues = txq;
3060 }
3061
3062 return 0;
3063 }
3064 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3065
3066 #ifdef CONFIG_SYSFS
3067 /**
3068 * netif_set_real_num_rx_queues - set actual number of RX queues used
3069 * @dev: Network device
3070 * @rxq: Actual number of RX queues
3071 *
3072 * This must be called either with the rtnl_lock held or before
3073 * registration of the net device. Returns 0 on success, or a
3074 * negative error code. If called before registration, it always
3075 * succeeds.
3076 */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)3077 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3078 {
3079 int rc;
3080
3081 if (rxq < 1 || rxq > dev->num_rx_queues)
3082 return -EINVAL;
3083
3084 if (dev->reg_state == NETREG_REGISTERED) {
3085 ASSERT_RTNL();
3086
3087 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3088 rxq);
3089 if (rc)
3090 return rc;
3091 }
3092
3093 dev->real_num_rx_queues = rxq;
3094 return 0;
3095 }
3096 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3097 #endif
3098
3099 /**
3100 * netif_get_num_default_rss_queues - default number of RSS queues
3101 *
3102 * This routine should set an upper limit on the number of RSS queues
3103 * used by default by multiqueue devices.
3104 */
netif_get_num_default_rss_queues(void)3105 int netif_get_num_default_rss_queues(void)
3106 {
3107 return is_kdump_kernel() ?
3108 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3109 }
3110 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3111
__netif_reschedule(struct Qdisc * q)3112 static void __netif_reschedule(struct Qdisc *q)
3113 {
3114 struct softnet_data *sd;
3115 unsigned long flags;
3116
3117 local_irq_save(flags);
3118 sd = this_cpu_ptr(&softnet_data);
3119 q->next_sched = NULL;
3120 *sd->output_queue_tailp = q;
3121 sd->output_queue_tailp = &q->next_sched;
3122 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3123 local_irq_restore(flags);
3124 }
3125
__netif_schedule(struct Qdisc * q)3126 void __netif_schedule(struct Qdisc *q)
3127 {
3128 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3129 __netif_reschedule(q);
3130 }
3131 EXPORT_SYMBOL(__netif_schedule);
3132
3133 struct dev_kfree_skb_cb {
3134 enum skb_free_reason reason;
3135 };
3136
get_kfree_skb_cb(const struct sk_buff * skb)3137 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3138 {
3139 return (struct dev_kfree_skb_cb *)skb->cb;
3140 }
3141
netif_schedule_queue(struct netdev_queue * txq)3142 void netif_schedule_queue(struct netdev_queue *txq)
3143 {
3144 rcu_read_lock();
3145 if (!netif_xmit_stopped(txq)) {
3146 struct Qdisc *q = rcu_dereference(txq->qdisc);
3147
3148 __netif_schedule(q);
3149 }
3150 rcu_read_unlock();
3151 }
3152 EXPORT_SYMBOL(netif_schedule_queue);
3153
netif_tx_wake_queue(struct netdev_queue * dev_queue)3154 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3155 {
3156 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3157 struct Qdisc *q;
3158
3159 rcu_read_lock();
3160 q = rcu_dereference(dev_queue->qdisc);
3161 __netif_schedule(q);
3162 rcu_read_unlock();
3163 }
3164 }
3165 EXPORT_SYMBOL(netif_tx_wake_queue);
3166
__dev_kfree_skb_irq(struct sk_buff * skb,enum skb_free_reason reason)3167 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3168 {
3169 unsigned long flags;
3170
3171 if (unlikely(!skb))
3172 return;
3173
3174 if (likely(refcount_read(&skb->users) == 1)) {
3175 smp_rmb();
3176 refcount_set(&skb->users, 0);
3177 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3178 return;
3179 }
3180 get_kfree_skb_cb(skb)->reason = reason;
3181 local_irq_save(flags);
3182 skb->next = __this_cpu_read(softnet_data.completion_queue);
3183 __this_cpu_write(softnet_data.completion_queue, skb);
3184 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3185 local_irq_restore(flags);
3186 }
3187 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3188
__dev_kfree_skb_any(struct sk_buff * skb,enum skb_free_reason reason)3189 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3190 {
3191 if (in_irq() || irqs_disabled())
3192 __dev_kfree_skb_irq(skb, reason);
3193 else
3194 dev_kfree_skb(skb);
3195 }
3196 EXPORT_SYMBOL(__dev_kfree_skb_any);
3197
3198
3199 /**
3200 * netif_device_detach - mark device as removed
3201 * @dev: network device
3202 *
3203 * Mark device as removed from system and therefore no longer available.
3204 */
netif_device_detach(struct net_device * dev)3205 void netif_device_detach(struct net_device *dev)
3206 {
3207 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3208 netif_running(dev)) {
3209 netif_tx_stop_all_queues(dev);
3210 }
3211 }
3212 EXPORT_SYMBOL(netif_device_detach);
3213
3214 /**
3215 * netif_device_attach - mark device as attached
3216 * @dev: network device
3217 *
3218 * Mark device as attached from system and restart if needed.
3219 */
netif_device_attach(struct net_device * dev)3220 void netif_device_attach(struct net_device *dev)
3221 {
3222 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3223 netif_running(dev)) {
3224 netif_tx_wake_all_queues(dev);
3225 __netdev_watchdog_up(dev);
3226 }
3227 }
3228 EXPORT_SYMBOL(netif_device_attach);
3229
3230 /*
3231 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3232 * to be used as a distribution range.
3233 */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3234 static u16 skb_tx_hash(const struct net_device *dev,
3235 const struct net_device *sb_dev,
3236 struct sk_buff *skb)
3237 {
3238 u32 hash;
3239 u16 qoffset = 0;
3240 u16 qcount = dev->real_num_tx_queues;
3241
3242 if (dev->num_tc) {
3243 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3244
3245 qoffset = sb_dev->tc_to_txq[tc].offset;
3246 qcount = sb_dev->tc_to_txq[tc].count;
3247 }
3248
3249 if (skb_rx_queue_recorded(skb)) {
3250 hash = skb_get_rx_queue(skb);
3251 if (hash >= qoffset)
3252 hash -= qoffset;
3253 while (unlikely(hash >= qcount))
3254 hash -= qcount;
3255 return hash + qoffset;
3256 }
3257
3258 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3259 }
3260
skb_warn_bad_offload(const struct sk_buff * skb)3261 static void skb_warn_bad_offload(const struct sk_buff *skb)
3262 {
3263 static const netdev_features_t null_features;
3264 struct net_device *dev = skb->dev;
3265 const char *name = "";
3266
3267 if (!net_ratelimit())
3268 return;
3269
3270 if (dev) {
3271 if (dev->dev.parent)
3272 name = dev_driver_string(dev->dev.parent);
3273 else
3274 name = netdev_name(dev);
3275 }
3276 skb_dump(KERN_WARNING, skb, false);
3277 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3278 name, dev ? &dev->features : &null_features,
3279 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3280 }
3281
3282 /*
3283 * Invalidate hardware checksum when packet is to be mangled, and
3284 * complete checksum manually on outgoing path.
3285 */
skb_checksum_help(struct sk_buff * skb)3286 int skb_checksum_help(struct sk_buff *skb)
3287 {
3288 __wsum csum;
3289 int ret = 0, offset;
3290
3291 if (skb->ip_summed == CHECKSUM_COMPLETE)
3292 goto out_set_summed;
3293
3294 if (unlikely(skb_is_gso(skb))) {
3295 skb_warn_bad_offload(skb);
3296 return -EINVAL;
3297 }
3298
3299 /* Before computing a checksum, we should make sure no frag could
3300 * be modified by an external entity : checksum could be wrong.
3301 */
3302 if (skb_has_shared_frag(skb)) {
3303 ret = __skb_linearize(skb);
3304 if (ret)
3305 goto out;
3306 }
3307
3308 offset = skb_checksum_start_offset(skb);
3309 BUG_ON(offset >= skb_headlen(skb));
3310 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3311
3312 offset += skb->csum_offset;
3313 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3314
3315 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3316 if (ret)
3317 goto out;
3318
3319 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3320 out_set_summed:
3321 skb->ip_summed = CHECKSUM_NONE;
3322 out:
3323 return ret;
3324 }
3325 EXPORT_SYMBOL(skb_checksum_help);
3326
skb_crc32c_csum_help(struct sk_buff * skb)3327 int skb_crc32c_csum_help(struct sk_buff *skb)
3328 {
3329 __le32 crc32c_csum;
3330 int ret = 0, offset, start;
3331
3332 if (skb->ip_summed != CHECKSUM_PARTIAL)
3333 goto out;
3334
3335 if (unlikely(skb_is_gso(skb)))
3336 goto out;
3337
3338 /* Before computing a checksum, we should make sure no frag could
3339 * be modified by an external entity : checksum could be wrong.
3340 */
3341 if (unlikely(skb_has_shared_frag(skb))) {
3342 ret = __skb_linearize(skb);
3343 if (ret)
3344 goto out;
3345 }
3346 start = skb_checksum_start_offset(skb);
3347 offset = start + offsetof(struct sctphdr, checksum);
3348 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3349 ret = -EINVAL;
3350 goto out;
3351 }
3352
3353 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3354 if (ret)
3355 goto out;
3356
3357 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3358 skb->len - start, ~(__u32)0,
3359 crc32c_csum_stub));
3360 *(__le32 *)(skb->data + offset) = crc32c_csum;
3361 skb->ip_summed = CHECKSUM_NONE;
3362 skb->csum_not_inet = 0;
3363 out:
3364 return ret;
3365 }
3366
skb_network_protocol(struct sk_buff * skb,int * depth)3367 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3368 {
3369 __be16 type = skb->protocol;
3370
3371 /* Tunnel gso handlers can set protocol to ethernet. */
3372 if (type == htons(ETH_P_TEB)) {
3373 struct ethhdr *eth;
3374
3375 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3376 return 0;
3377
3378 eth = (struct ethhdr *)skb->data;
3379 type = eth->h_proto;
3380 }
3381
3382 return __vlan_get_protocol(skb, type, depth);
3383 }
3384
3385 /**
3386 * skb_mac_gso_segment - mac layer segmentation handler.
3387 * @skb: buffer to segment
3388 * @features: features for the output path (see dev->features)
3389 */
skb_mac_gso_segment(struct sk_buff * skb,netdev_features_t features)3390 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3391 netdev_features_t features)
3392 {
3393 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3394 struct packet_offload *ptype;
3395 int vlan_depth = skb->mac_len;
3396 __be16 type = skb_network_protocol(skb, &vlan_depth);
3397
3398 if (unlikely(!type))
3399 return ERR_PTR(-EINVAL);
3400
3401 __skb_pull(skb, vlan_depth);
3402
3403 rcu_read_lock();
3404 list_for_each_entry_rcu(ptype, &offload_base, list) {
3405 if (ptype->type == type && ptype->callbacks.gso_segment) {
3406 segs = ptype->callbacks.gso_segment(skb, features);
3407 break;
3408 }
3409 }
3410 rcu_read_unlock();
3411
3412 __skb_push(skb, skb->data - skb_mac_header(skb));
3413
3414 return segs;
3415 }
3416 EXPORT_SYMBOL(skb_mac_gso_segment);
3417
3418
3419 /* openvswitch calls this on rx path, so we need a different check.
3420 */
skb_needs_check(struct sk_buff * skb,bool tx_path)3421 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3422 {
3423 if (tx_path)
3424 return skb->ip_summed != CHECKSUM_PARTIAL &&
3425 skb->ip_summed != CHECKSUM_UNNECESSARY;
3426
3427 return skb->ip_summed == CHECKSUM_NONE;
3428 }
3429
3430 /**
3431 * __skb_gso_segment - Perform segmentation on skb.
3432 * @skb: buffer to segment
3433 * @features: features for the output path (see dev->features)
3434 * @tx_path: whether it is called in TX path
3435 *
3436 * This function segments the given skb and returns a list of segments.
3437 *
3438 * It may return NULL if the skb requires no segmentation. This is
3439 * only possible when GSO is used for verifying header integrity.
3440 *
3441 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3442 */
__skb_gso_segment(struct sk_buff * skb,netdev_features_t features,bool tx_path)3443 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3444 netdev_features_t features, bool tx_path)
3445 {
3446 struct sk_buff *segs;
3447
3448 if (unlikely(skb_needs_check(skb, tx_path))) {
3449 int err;
3450
3451 /* We're going to init ->check field in TCP or UDP header */
3452 err = skb_cow_head(skb, 0);
3453 if (err < 0)
3454 return ERR_PTR(err);
3455 }
3456
3457 /* Only report GSO partial support if it will enable us to
3458 * support segmentation on this frame without needing additional
3459 * work.
3460 */
3461 if (features & NETIF_F_GSO_PARTIAL) {
3462 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3463 struct net_device *dev = skb->dev;
3464
3465 partial_features |= dev->features & dev->gso_partial_features;
3466 if (!skb_gso_ok(skb, features | partial_features))
3467 features &= ~NETIF_F_GSO_PARTIAL;
3468 }
3469
3470 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3471 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3472
3473 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3474 SKB_GSO_CB(skb)->encap_level = 0;
3475
3476 skb_reset_mac_header(skb);
3477 skb_reset_mac_len(skb);
3478
3479 segs = skb_mac_gso_segment(skb, features);
3480
3481 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3482 skb_warn_bad_offload(skb);
3483
3484 return segs;
3485 }
3486 EXPORT_SYMBOL(__skb_gso_segment);
3487
3488 /* Take action when hardware reception checksum errors are detected. */
3489 #ifdef CONFIG_BUG
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3490 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3491 {
3492 if (net_ratelimit()) {
3493 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3494 skb_dump(KERN_ERR, skb, true);
3495 dump_stack();
3496 }
3497 }
3498 EXPORT_SYMBOL(netdev_rx_csum_fault);
3499 #endif
3500
3501 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3502 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3503 {
3504 #ifdef CONFIG_HIGHMEM
3505 int i;
3506
3507 if (!(dev->features & NETIF_F_HIGHDMA)) {
3508 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3509 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3510
3511 if (PageHighMem(skb_frag_page(frag)))
3512 return 1;
3513 }
3514 }
3515 #endif
3516 return 0;
3517 }
3518
3519 /* If MPLS offload request, verify we are testing hardware MPLS features
3520 * instead of standard features for the netdev.
3521 */
3522 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3523 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3524 netdev_features_t features,
3525 __be16 type)
3526 {
3527 if (eth_p_mpls(type))
3528 features &= skb->dev->mpls_features;
3529
3530 return features;
3531 }
3532 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3533 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3534 netdev_features_t features,
3535 __be16 type)
3536 {
3537 return features;
3538 }
3539 #endif
3540
harmonize_features(struct sk_buff * skb,netdev_features_t features)3541 static netdev_features_t harmonize_features(struct sk_buff *skb,
3542 netdev_features_t features)
3543 {
3544 __be16 type;
3545
3546 type = skb_network_protocol(skb, NULL);
3547 features = net_mpls_features(skb, features, type);
3548
3549 if (skb->ip_summed != CHECKSUM_NONE &&
3550 !can_checksum_protocol(features, type)) {
3551 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3552 }
3553 if (illegal_highdma(skb->dev, skb))
3554 features &= ~NETIF_F_SG;
3555
3556 return features;
3557 }
3558
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3559 netdev_features_t passthru_features_check(struct sk_buff *skb,
3560 struct net_device *dev,
3561 netdev_features_t features)
3562 {
3563 return features;
3564 }
3565 EXPORT_SYMBOL(passthru_features_check);
3566
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3567 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3568 struct net_device *dev,
3569 netdev_features_t features)
3570 {
3571 return vlan_features_check(skb, features);
3572 }
3573
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3574 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3575 struct net_device *dev,
3576 netdev_features_t features)
3577 {
3578 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3579
3580 if (gso_segs > dev->gso_max_segs)
3581 return features & ~NETIF_F_GSO_MASK;
3582
3583 if (!skb_shinfo(skb)->gso_type) {
3584 skb_warn_bad_offload(skb);
3585 return features & ~NETIF_F_GSO_MASK;
3586 }
3587
3588 /* Support for GSO partial features requires software
3589 * intervention before we can actually process the packets
3590 * so we need to strip support for any partial features now
3591 * and we can pull them back in after we have partially
3592 * segmented the frame.
3593 */
3594 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3595 features &= ~dev->gso_partial_features;
3596
3597 /* Make sure to clear the IPv4 ID mangling feature if the
3598 * IPv4 header has the potential to be fragmented.
3599 */
3600 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3601 struct iphdr *iph = skb->encapsulation ?
3602 inner_ip_hdr(skb) : ip_hdr(skb);
3603
3604 if (!(iph->frag_off & htons(IP_DF)))
3605 features &= ~NETIF_F_TSO_MANGLEID;
3606 }
3607
3608 return features;
3609 }
3610
netif_skb_features(struct sk_buff * skb)3611 netdev_features_t netif_skb_features(struct sk_buff *skb)
3612 {
3613 struct net_device *dev = skb->dev;
3614 netdev_features_t features = dev->features;
3615
3616 if (skb_is_gso(skb))
3617 features = gso_features_check(skb, dev, features);
3618
3619 /* If encapsulation offload request, verify we are testing
3620 * hardware encapsulation features instead of standard
3621 * features for the netdev
3622 */
3623 if (skb->encapsulation)
3624 features &= dev->hw_enc_features;
3625
3626 if (skb_vlan_tagged(skb))
3627 features = netdev_intersect_features(features,
3628 dev->vlan_features |
3629 NETIF_F_HW_VLAN_CTAG_TX |
3630 NETIF_F_HW_VLAN_STAG_TX);
3631
3632 if (dev->netdev_ops->ndo_features_check)
3633 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3634 features);
3635 else
3636 features &= dflt_features_check(skb, dev, features);
3637
3638 return harmonize_features(skb, features);
3639 }
3640 EXPORT_SYMBOL(netif_skb_features);
3641
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3642 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3643 struct netdev_queue *txq, bool more)
3644 {
3645 unsigned int len;
3646 int rc;
3647
3648 if (dev_nit_active(dev))
3649 dev_queue_xmit_nit(skb, dev);
3650
3651 len = skb->len;
3652 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3653 trace_net_dev_start_xmit(skb, dev);
3654 rc = netdev_start_xmit(skb, dev, txq, more);
3655 trace_net_dev_xmit(skb, rc, dev, len);
3656
3657 return rc;
3658 }
3659
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3660 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3661 struct netdev_queue *txq, int *ret)
3662 {
3663 struct sk_buff *skb = first;
3664 int rc = NETDEV_TX_OK;
3665
3666 while (skb) {
3667 struct sk_buff *next = skb->next;
3668
3669 skb_mark_not_on_list(skb);
3670 rc = xmit_one(skb, dev, txq, next != NULL);
3671 if (unlikely(!dev_xmit_complete(rc))) {
3672 skb->next = next;
3673 goto out;
3674 }
3675
3676 skb = next;
3677 if (netif_tx_queue_stopped(txq) && skb) {
3678 rc = NETDEV_TX_BUSY;
3679 break;
3680 }
3681 }
3682
3683 out:
3684 *ret = rc;
3685 return skb;
3686 }
3687
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3688 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3689 netdev_features_t features)
3690 {
3691 if (skb_vlan_tag_present(skb) &&
3692 !vlan_hw_offload_capable(features, skb->vlan_proto))
3693 skb = __vlan_hwaccel_push_inside(skb);
3694 return skb;
3695 }
3696
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3697 int skb_csum_hwoffload_help(struct sk_buff *skb,
3698 const netdev_features_t features)
3699 {
3700 if (unlikely(skb_csum_is_sctp(skb)))
3701 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3702 skb_crc32c_csum_help(skb);
3703
3704 if (features & NETIF_F_HW_CSUM)
3705 return 0;
3706
3707 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3708 switch (skb->csum_offset) {
3709 case offsetof(struct tcphdr, check):
3710 case offsetof(struct udphdr, check):
3711 return 0;
3712 }
3713 }
3714
3715 return skb_checksum_help(skb);
3716 }
3717 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3718
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3719 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3720 {
3721 netdev_features_t features;
3722
3723 features = netif_skb_features(skb);
3724 skb = validate_xmit_vlan(skb, features);
3725 if (unlikely(!skb))
3726 goto out_null;
3727
3728 skb = sk_validate_xmit_skb(skb, dev);
3729 if (unlikely(!skb))
3730 goto out_null;
3731
3732 if (netif_needs_gso(skb, features)) {
3733 struct sk_buff *segs;
3734
3735 segs = skb_gso_segment(skb, features);
3736 if (IS_ERR(segs)) {
3737 goto out_kfree_skb;
3738 } else if (segs) {
3739 consume_skb(skb);
3740 skb = segs;
3741 }
3742 } else {
3743 if (skb_needs_linearize(skb, features) &&
3744 __skb_linearize(skb))
3745 goto out_kfree_skb;
3746
3747 /* If packet is not checksummed and device does not
3748 * support checksumming for this protocol, complete
3749 * checksumming here.
3750 */
3751 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3752 if (skb->encapsulation)
3753 skb_set_inner_transport_header(skb,
3754 skb_checksum_start_offset(skb));
3755 else
3756 skb_set_transport_header(skb,
3757 skb_checksum_start_offset(skb));
3758 if (skb_csum_hwoffload_help(skb, features))
3759 goto out_kfree_skb;
3760 }
3761 }
3762
3763 skb = validate_xmit_xfrm(skb, features, again);
3764
3765 return skb;
3766
3767 out_kfree_skb:
3768 kfree_skb(skb);
3769 out_null:
3770 atomic_long_inc(&dev->tx_dropped);
3771 return NULL;
3772 }
3773
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3774 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3775 {
3776 struct sk_buff *next, *head = NULL, *tail;
3777
3778 for (; skb != NULL; skb = next) {
3779 next = skb->next;
3780 skb_mark_not_on_list(skb);
3781
3782 /* in case skb wont be segmented, point to itself */
3783 skb->prev = skb;
3784
3785 skb = validate_xmit_skb(skb, dev, again);
3786 if (!skb)
3787 continue;
3788
3789 if (!head)
3790 head = skb;
3791 else
3792 tail->next = skb;
3793 /* If skb was segmented, skb->prev points to
3794 * the last segment. If not, it still contains skb.
3795 */
3796 tail = skb->prev;
3797 }
3798 return head;
3799 }
3800 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3801
qdisc_pkt_len_init(struct sk_buff * skb)3802 static void qdisc_pkt_len_init(struct sk_buff *skb)
3803 {
3804 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3805
3806 qdisc_skb_cb(skb)->pkt_len = skb->len;
3807
3808 /* To get more precise estimation of bytes sent on wire,
3809 * we add to pkt_len the headers size of all segments
3810 */
3811 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3812 unsigned int hdr_len;
3813 u16 gso_segs = shinfo->gso_segs;
3814
3815 /* mac layer + network layer */
3816 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3817
3818 /* + transport layer */
3819 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3820 const struct tcphdr *th;
3821 struct tcphdr _tcphdr;
3822
3823 th = skb_header_pointer(skb, skb_transport_offset(skb),
3824 sizeof(_tcphdr), &_tcphdr);
3825 if (likely(th))
3826 hdr_len += __tcp_hdrlen(th);
3827 } else {
3828 struct udphdr _udphdr;
3829
3830 if (skb_header_pointer(skb, skb_transport_offset(skb),
3831 sizeof(_udphdr), &_udphdr))
3832 hdr_len += sizeof(struct udphdr);
3833 }
3834
3835 if (shinfo->gso_type & SKB_GSO_DODGY)
3836 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3837 shinfo->gso_size);
3838
3839 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3840 }
3841 }
3842
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)3843 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3844 struct net_device *dev,
3845 struct netdev_queue *txq)
3846 {
3847 spinlock_t *root_lock = qdisc_lock(q);
3848 struct sk_buff *to_free = NULL;
3849 bool contended;
3850 int rc;
3851
3852 qdisc_calculate_pkt_len(skb, q);
3853
3854 if (q->flags & TCQ_F_NOLOCK) {
3855 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3856 qdisc_run(q);
3857
3858 if (unlikely(to_free))
3859 kfree_skb_list(to_free);
3860 return rc;
3861 }
3862
3863 /*
3864 * Heuristic to force contended enqueues to serialize on a
3865 * separate lock before trying to get qdisc main lock.
3866 * This permits qdisc->running owner to get the lock more
3867 * often and dequeue packets faster.
3868 */
3869 contended = qdisc_is_running(q);
3870 if (unlikely(contended))
3871 spin_lock(&q->busylock);
3872
3873 spin_lock(root_lock);
3874 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3875 __qdisc_drop(skb, &to_free);
3876 rc = NET_XMIT_DROP;
3877 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3878 qdisc_run_begin(q)) {
3879 /*
3880 * This is a work-conserving queue; there are no old skbs
3881 * waiting to be sent out; and the qdisc is not running -
3882 * xmit the skb directly.
3883 */
3884
3885 qdisc_bstats_update(q, skb);
3886
3887 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3888 if (unlikely(contended)) {
3889 spin_unlock(&q->busylock);
3890 contended = false;
3891 }
3892 __qdisc_run(q);
3893 }
3894
3895 qdisc_run_end(q);
3896 rc = NET_XMIT_SUCCESS;
3897 } else {
3898 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3899 if (qdisc_run_begin(q)) {
3900 if (unlikely(contended)) {
3901 spin_unlock(&q->busylock);
3902 contended = false;
3903 }
3904 __qdisc_run(q);
3905 qdisc_run_end(q);
3906 }
3907 }
3908 spin_unlock(root_lock);
3909 if (unlikely(to_free))
3910 kfree_skb_list(to_free);
3911 if (unlikely(contended))
3912 spin_unlock(&q->busylock);
3913 return rc;
3914 }
3915
3916 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)3917 static void skb_update_prio(struct sk_buff *skb)
3918 {
3919 const struct netprio_map *map;
3920 const struct sock *sk;
3921 unsigned int prioidx;
3922
3923 if (skb->priority)
3924 return;
3925 map = rcu_dereference_bh(skb->dev->priomap);
3926 if (!map)
3927 return;
3928 sk = skb_to_full_sk(skb);
3929 if (!sk)
3930 return;
3931
3932 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3933
3934 if (prioidx < map->priomap_len)
3935 skb->priority = map->priomap[prioidx];
3936 }
3937 #else
3938 #define skb_update_prio(skb)
3939 #endif
3940
3941 /**
3942 * dev_loopback_xmit - loop back @skb
3943 * @net: network namespace this loopback is happening in
3944 * @sk: sk needed to be a netfilter okfn
3945 * @skb: buffer to transmit
3946 */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)3947 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3948 {
3949 skb_reset_mac_header(skb);
3950 __skb_pull(skb, skb_network_offset(skb));
3951 skb->pkt_type = PACKET_LOOPBACK;
3952 skb->ip_summed = CHECKSUM_UNNECESSARY;
3953 WARN_ON(!skb_dst(skb));
3954 skb_dst_force(skb);
3955 netif_rx_ni(skb);
3956 return 0;
3957 }
3958 EXPORT_SYMBOL(dev_loopback_xmit);
3959
3960 #ifdef CONFIG_NET_EGRESS
3961 static struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)3962 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3963 {
3964 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3965 struct tcf_result cl_res;
3966
3967 if (!miniq)
3968 return skb;
3969
3970 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3971 qdisc_skb_cb(skb)->mru = 0;
3972 qdisc_skb_cb(skb)->post_ct = false;
3973 mini_qdisc_bstats_cpu_update(miniq, skb);
3974
3975 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3976 case TC_ACT_OK:
3977 case TC_ACT_RECLASSIFY:
3978 skb->tc_index = TC_H_MIN(cl_res.classid);
3979 break;
3980 case TC_ACT_SHOT:
3981 mini_qdisc_qstats_cpu_drop(miniq);
3982 *ret = NET_XMIT_DROP;
3983 kfree_skb(skb);
3984 return NULL;
3985 case TC_ACT_STOLEN:
3986 case TC_ACT_QUEUED:
3987 case TC_ACT_TRAP:
3988 *ret = NET_XMIT_SUCCESS;
3989 consume_skb(skb);
3990 return NULL;
3991 case TC_ACT_REDIRECT:
3992 /* No need to push/pop skb's mac_header here on egress! */
3993 skb_do_redirect(skb);
3994 *ret = NET_XMIT_SUCCESS;
3995 return NULL;
3996 default:
3997 break;
3998 }
3999
4000 return skb;
4001 }
4002 #endif /* CONFIG_NET_EGRESS */
4003
4004 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)4005 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4006 struct xps_dev_maps *dev_maps, unsigned int tci)
4007 {
4008 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4009 struct xps_map *map;
4010 int queue_index = -1;
4011
4012 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4013 return queue_index;
4014
4015 tci *= dev_maps->num_tc;
4016 tci += tc;
4017
4018 map = rcu_dereference(dev_maps->attr_map[tci]);
4019 if (map) {
4020 if (map->len == 1)
4021 queue_index = map->queues[0];
4022 else
4023 queue_index = map->queues[reciprocal_scale(
4024 skb_get_hash(skb), map->len)];
4025 if (unlikely(queue_index >= dev->real_num_tx_queues))
4026 queue_index = -1;
4027 }
4028 return queue_index;
4029 }
4030 #endif
4031
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)4032 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4033 struct sk_buff *skb)
4034 {
4035 #ifdef CONFIG_XPS
4036 struct xps_dev_maps *dev_maps;
4037 struct sock *sk = skb->sk;
4038 int queue_index = -1;
4039
4040 if (!static_key_false(&xps_needed))
4041 return -1;
4042
4043 rcu_read_lock();
4044 if (!static_key_false(&xps_rxqs_needed))
4045 goto get_cpus_map;
4046
4047 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4048 if (dev_maps) {
4049 int tci = sk_rx_queue_get(sk);
4050
4051 if (tci >= 0)
4052 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4053 tci);
4054 }
4055
4056 get_cpus_map:
4057 if (queue_index < 0) {
4058 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4059 if (dev_maps) {
4060 unsigned int tci = skb->sender_cpu - 1;
4061
4062 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4063 tci);
4064 }
4065 }
4066 rcu_read_unlock();
4067
4068 return queue_index;
4069 #else
4070 return -1;
4071 #endif
4072 }
4073
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4074 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4075 struct net_device *sb_dev)
4076 {
4077 return 0;
4078 }
4079 EXPORT_SYMBOL(dev_pick_tx_zero);
4080
dev_pick_tx_cpu_id(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4081 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4082 struct net_device *sb_dev)
4083 {
4084 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4085 }
4086 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4087
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4088 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4089 struct net_device *sb_dev)
4090 {
4091 struct sock *sk = skb->sk;
4092 int queue_index = sk_tx_queue_get(sk);
4093
4094 sb_dev = sb_dev ? : dev;
4095
4096 if (queue_index < 0 || skb->ooo_okay ||
4097 queue_index >= dev->real_num_tx_queues) {
4098 int new_index = get_xps_queue(dev, sb_dev, skb);
4099
4100 if (new_index < 0)
4101 new_index = skb_tx_hash(dev, sb_dev, skb);
4102
4103 if (queue_index != new_index && sk &&
4104 sk_fullsock(sk) &&
4105 rcu_access_pointer(sk->sk_dst_cache))
4106 sk_tx_queue_set(sk, new_index);
4107
4108 queue_index = new_index;
4109 }
4110
4111 return queue_index;
4112 }
4113 EXPORT_SYMBOL(netdev_pick_tx);
4114
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4115 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4116 struct sk_buff *skb,
4117 struct net_device *sb_dev)
4118 {
4119 int queue_index = 0;
4120
4121 #ifdef CONFIG_XPS
4122 u32 sender_cpu = skb->sender_cpu - 1;
4123
4124 if (sender_cpu >= (u32)NR_CPUS)
4125 skb->sender_cpu = raw_smp_processor_id() + 1;
4126 #endif
4127
4128 if (dev->real_num_tx_queues != 1) {
4129 const struct net_device_ops *ops = dev->netdev_ops;
4130
4131 if (ops->ndo_select_queue)
4132 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4133 else
4134 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4135
4136 queue_index = netdev_cap_txqueue(dev, queue_index);
4137 }
4138
4139 skb_set_queue_mapping(skb, queue_index);
4140 return netdev_get_tx_queue(dev, queue_index);
4141 }
4142
4143 /**
4144 * __dev_queue_xmit - transmit a buffer
4145 * @skb: buffer to transmit
4146 * @sb_dev: suboordinate device used for L2 forwarding offload
4147 *
4148 * Queue a buffer for transmission to a network device. The caller must
4149 * have set the device and priority and built the buffer before calling
4150 * this function. The function can be called from an interrupt.
4151 *
4152 * A negative errno code is returned on a failure. A success does not
4153 * guarantee the frame will be transmitted as it may be dropped due
4154 * to congestion or traffic shaping.
4155 *
4156 * -----------------------------------------------------------------------------------
4157 * I notice this method can also return errors from the queue disciplines,
4158 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4159 * be positive.
4160 *
4161 * Regardless of the return value, the skb is consumed, so it is currently
4162 * difficult to retry a send to this method. (You can bump the ref count
4163 * before sending to hold a reference for retry if you are careful.)
4164 *
4165 * When calling this method, interrupts MUST be enabled. This is because
4166 * the BH enable code must have IRQs enabled so that it will not deadlock.
4167 * --BLG
4168 */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4169 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4170 {
4171 struct net_device *dev = skb->dev;
4172 struct netdev_queue *txq;
4173 struct Qdisc *q;
4174 int rc = -ENOMEM;
4175 bool again = false;
4176
4177 skb_reset_mac_header(skb);
4178
4179 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4180 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4181
4182 /* Disable soft irqs for various locks below. Also
4183 * stops preemption for RCU.
4184 */
4185 rcu_read_lock_bh();
4186
4187 skb_update_prio(skb);
4188
4189 qdisc_pkt_len_init(skb);
4190 #ifdef CONFIG_NET_CLS_ACT
4191 skb->tc_at_ingress = 0;
4192 # ifdef CONFIG_NET_EGRESS
4193 if (static_branch_unlikely(&egress_needed_key)) {
4194 skb = sch_handle_egress(skb, &rc, dev);
4195 if (!skb)
4196 goto out;
4197 }
4198 # endif
4199 #endif
4200 /* If device/qdisc don't need skb->dst, release it right now while
4201 * its hot in this cpu cache.
4202 */
4203 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4204 skb_dst_drop(skb);
4205 else
4206 skb_dst_force(skb);
4207
4208 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4209 q = rcu_dereference_bh(txq->qdisc);
4210
4211 trace_net_dev_queue(skb);
4212 if (q->enqueue) {
4213 rc = __dev_xmit_skb(skb, q, dev, txq);
4214 goto out;
4215 }
4216
4217 /* The device has no queue. Common case for software devices:
4218 * loopback, all the sorts of tunnels...
4219
4220 * Really, it is unlikely that netif_tx_lock protection is necessary
4221 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4222 * counters.)
4223 * However, it is possible, that they rely on protection
4224 * made by us here.
4225
4226 * Check this and shot the lock. It is not prone from deadlocks.
4227 *Either shot noqueue qdisc, it is even simpler 8)
4228 */
4229 if (dev->flags & IFF_UP) {
4230 int cpu = smp_processor_id(); /* ok because BHs are off */
4231
4232 if (txq->xmit_lock_owner != cpu) {
4233 if (dev_xmit_recursion())
4234 goto recursion_alert;
4235
4236 skb = validate_xmit_skb(skb, dev, &again);
4237 if (!skb)
4238 goto out;
4239
4240 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4241 HARD_TX_LOCK(dev, txq, cpu);
4242
4243 if (!netif_xmit_stopped(txq)) {
4244 dev_xmit_recursion_inc();
4245 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4246 dev_xmit_recursion_dec();
4247 if (dev_xmit_complete(rc)) {
4248 HARD_TX_UNLOCK(dev, txq);
4249 goto out;
4250 }
4251 }
4252 HARD_TX_UNLOCK(dev, txq);
4253 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4254 dev->name);
4255 } else {
4256 /* Recursion is detected! It is possible,
4257 * unfortunately
4258 */
4259 recursion_alert:
4260 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4261 dev->name);
4262 }
4263 }
4264
4265 rc = -ENETDOWN;
4266 rcu_read_unlock_bh();
4267
4268 atomic_long_inc(&dev->tx_dropped);
4269 kfree_skb_list(skb);
4270 return rc;
4271 out:
4272 rcu_read_unlock_bh();
4273 return rc;
4274 }
4275
dev_queue_xmit(struct sk_buff * skb)4276 int dev_queue_xmit(struct sk_buff *skb)
4277 {
4278 return __dev_queue_xmit(skb, NULL);
4279 }
4280 EXPORT_SYMBOL(dev_queue_xmit);
4281
dev_queue_xmit_accel(struct sk_buff * skb,struct net_device * sb_dev)4282 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4283 {
4284 return __dev_queue_xmit(skb, sb_dev);
4285 }
4286 EXPORT_SYMBOL(dev_queue_xmit_accel);
4287
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4288 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4289 {
4290 struct net_device *dev = skb->dev;
4291 struct sk_buff *orig_skb = skb;
4292 struct netdev_queue *txq;
4293 int ret = NETDEV_TX_BUSY;
4294 bool again = false;
4295
4296 if (unlikely(!netif_running(dev) ||
4297 !netif_carrier_ok(dev)))
4298 goto drop;
4299
4300 skb = validate_xmit_skb_list(skb, dev, &again);
4301 if (skb != orig_skb)
4302 goto drop;
4303
4304 skb_set_queue_mapping(skb, queue_id);
4305 txq = skb_get_tx_queue(dev, skb);
4306 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4307
4308 local_bh_disable();
4309
4310 dev_xmit_recursion_inc();
4311 HARD_TX_LOCK(dev, txq, smp_processor_id());
4312 if (!netif_xmit_frozen_or_drv_stopped(txq))
4313 ret = netdev_start_xmit(skb, dev, txq, false);
4314 HARD_TX_UNLOCK(dev, txq);
4315 dev_xmit_recursion_dec();
4316
4317 local_bh_enable();
4318 return ret;
4319 drop:
4320 atomic_long_inc(&dev->tx_dropped);
4321 kfree_skb_list(skb);
4322 return NET_XMIT_DROP;
4323 }
4324 EXPORT_SYMBOL(__dev_direct_xmit);
4325
4326 /*************************************************************************
4327 * Receiver routines
4328 *************************************************************************/
4329
4330 int netdev_max_backlog __read_mostly = 1000;
4331 EXPORT_SYMBOL(netdev_max_backlog);
4332
4333 int netdev_tstamp_prequeue __read_mostly = 1;
4334 int netdev_budget __read_mostly = 300;
4335 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4336 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4337 int weight_p __read_mostly = 64; /* old backlog weight */
4338 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4339 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4340 int dev_rx_weight __read_mostly = 64;
4341 int dev_tx_weight __read_mostly = 64;
4342 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4343 int gro_normal_batch __read_mostly = 8;
4344
4345 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4346 static inline void ____napi_schedule(struct softnet_data *sd,
4347 struct napi_struct *napi)
4348 {
4349 struct task_struct *thread;
4350
4351 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4352 /* Paired with smp_mb__before_atomic() in
4353 * napi_enable()/dev_set_threaded().
4354 * Use READ_ONCE() to guarantee a complete
4355 * read on napi->thread. Only call
4356 * wake_up_process() when it's not NULL.
4357 */
4358 thread = READ_ONCE(napi->thread);
4359 if (thread) {
4360 /* Avoid doing set_bit() if the thread is in
4361 * INTERRUPTIBLE state, cause napi_thread_wait()
4362 * makes sure to proceed with napi polling
4363 * if the thread is explicitly woken from here.
4364 */
4365 if (READ_ONCE(thread->state) != TASK_INTERRUPTIBLE)
4366 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4367 wake_up_process(thread);
4368 return;
4369 }
4370 }
4371
4372 list_add_tail(&napi->poll_list, &sd->poll_list);
4373 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4374 }
4375
4376 #ifdef CONFIG_RPS
4377
4378 /* One global table that all flow-based protocols share. */
4379 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4380 EXPORT_SYMBOL(rps_sock_flow_table);
4381 u32 rps_cpu_mask __read_mostly;
4382 EXPORT_SYMBOL(rps_cpu_mask);
4383
4384 struct static_key_false rps_needed __read_mostly;
4385 EXPORT_SYMBOL(rps_needed);
4386 struct static_key_false rfs_needed __read_mostly;
4387 EXPORT_SYMBOL(rfs_needed);
4388
4389 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)4390 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4391 struct rps_dev_flow *rflow, u16 next_cpu)
4392 {
4393 if (next_cpu < nr_cpu_ids) {
4394 #ifdef CONFIG_RFS_ACCEL
4395 struct netdev_rx_queue *rxqueue;
4396 struct rps_dev_flow_table *flow_table;
4397 struct rps_dev_flow *old_rflow;
4398 u32 flow_id;
4399 u16 rxq_index;
4400 int rc;
4401
4402 /* Should we steer this flow to a different hardware queue? */
4403 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4404 !(dev->features & NETIF_F_NTUPLE))
4405 goto out;
4406 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4407 if (rxq_index == skb_get_rx_queue(skb))
4408 goto out;
4409
4410 rxqueue = dev->_rx + rxq_index;
4411 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4412 if (!flow_table)
4413 goto out;
4414 flow_id = skb_get_hash(skb) & flow_table->mask;
4415 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4416 rxq_index, flow_id);
4417 if (rc < 0)
4418 goto out;
4419 old_rflow = rflow;
4420 rflow = &flow_table->flows[flow_id];
4421 rflow->filter = rc;
4422 if (old_rflow->filter == rflow->filter)
4423 old_rflow->filter = RPS_NO_FILTER;
4424 out:
4425 #endif
4426 rflow->last_qtail =
4427 per_cpu(softnet_data, next_cpu).input_queue_head;
4428 }
4429
4430 rflow->cpu = next_cpu;
4431 return rflow;
4432 }
4433
4434 /*
4435 * get_rps_cpu is called from netif_receive_skb and returns the target
4436 * CPU from the RPS map of the receiving queue for a given skb.
4437 * rcu_read_lock must be held on entry.
4438 */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4439 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4440 struct rps_dev_flow **rflowp)
4441 {
4442 const struct rps_sock_flow_table *sock_flow_table;
4443 struct netdev_rx_queue *rxqueue = dev->_rx;
4444 struct rps_dev_flow_table *flow_table;
4445 struct rps_map *map;
4446 int cpu = -1;
4447 u32 tcpu;
4448 u32 hash;
4449
4450 if (skb_rx_queue_recorded(skb)) {
4451 u16 index = skb_get_rx_queue(skb);
4452
4453 if (unlikely(index >= dev->real_num_rx_queues)) {
4454 WARN_ONCE(dev->real_num_rx_queues > 1,
4455 "%s received packet on queue %u, but number "
4456 "of RX queues is %u\n",
4457 dev->name, index, dev->real_num_rx_queues);
4458 goto done;
4459 }
4460 rxqueue += index;
4461 }
4462
4463 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4464
4465 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4466 map = rcu_dereference(rxqueue->rps_map);
4467 if (!flow_table && !map)
4468 goto done;
4469
4470 skb_reset_network_header(skb);
4471 hash = skb_get_hash(skb);
4472 if (!hash)
4473 goto done;
4474
4475 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4476 if (flow_table && sock_flow_table) {
4477 struct rps_dev_flow *rflow;
4478 u32 next_cpu;
4479 u32 ident;
4480
4481 /* First check into global flow table if there is a match */
4482 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4483 if ((ident ^ hash) & ~rps_cpu_mask)
4484 goto try_rps;
4485
4486 next_cpu = ident & rps_cpu_mask;
4487
4488 /* OK, now we know there is a match,
4489 * we can look at the local (per receive queue) flow table
4490 */
4491 rflow = &flow_table->flows[hash & flow_table->mask];
4492 tcpu = rflow->cpu;
4493
4494 /*
4495 * If the desired CPU (where last recvmsg was done) is
4496 * different from current CPU (one in the rx-queue flow
4497 * table entry), switch if one of the following holds:
4498 * - Current CPU is unset (>= nr_cpu_ids).
4499 * - Current CPU is offline.
4500 * - The current CPU's queue tail has advanced beyond the
4501 * last packet that was enqueued using this table entry.
4502 * This guarantees that all previous packets for the flow
4503 * have been dequeued, thus preserving in order delivery.
4504 */
4505 if (unlikely(tcpu != next_cpu) &&
4506 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4507 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4508 rflow->last_qtail)) >= 0)) {
4509 tcpu = next_cpu;
4510 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4511 }
4512
4513 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4514 *rflowp = rflow;
4515 cpu = tcpu;
4516 goto done;
4517 }
4518 }
4519
4520 try_rps:
4521
4522 if (map) {
4523 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4524 if (cpu_online(tcpu)) {
4525 cpu = tcpu;
4526 goto done;
4527 }
4528 }
4529
4530 done:
4531 return cpu;
4532 }
4533
4534 #ifdef CONFIG_RFS_ACCEL
4535
4536 /**
4537 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4538 * @dev: Device on which the filter was set
4539 * @rxq_index: RX queue index
4540 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4541 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4542 *
4543 * Drivers that implement ndo_rx_flow_steer() should periodically call
4544 * this function for each installed filter and remove the filters for
4545 * which it returns %true.
4546 */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)4547 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4548 u32 flow_id, u16 filter_id)
4549 {
4550 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4551 struct rps_dev_flow_table *flow_table;
4552 struct rps_dev_flow *rflow;
4553 bool expire = true;
4554 unsigned int cpu;
4555
4556 rcu_read_lock();
4557 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4558 if (flow_table && flow_id <= flow_table->mask) {
4559 rflow = &flow_table->flows[flow_id];
4560 cpu = READ_ONCE(rflow->cpu);
4561 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4562 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4563 rflow->last_qtail) <
4564 (int)(10 * flow_table->mask)))
4565 expire = false;
4566 }
4567 rcu_read_unlock();
4568 return expire;
4569 }
4570 EXPORT_SYMBOL(rps_may_expire_flow);
4571
4572 #endif /* CONFIG_RFS_ACCEL */
4573
4574 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)4575 static void rps_trigger_softirq(void *data)
4576 {
4577 struct softnet_data *sd = data;
4578
4579 ____napi_schedule(sd, &sd->backlog);
4580 sd->received_rps++;
4581 }
4582
4583 #endif /* CONFIG_RPS */
4584
4585 /*
4586 * Check if this softnet_data structure is another cpu one
4587 * If yes, queue it to our IPI list and return 1
4588 * If no, return 0
4589 */
rps_ipi_queued(struct softnet_data * sd)4590 static int rps_ipi_queued(struct softnet_data *sd)
4591 {
4592 #ifdef CONFIG_RPS
4593 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4594
4595 if (sd != mysd) {
4596 sd->rps_ipi_next = mysd->rps_ipi_list;
4597 mysd->rps_ipi_list = sd;
4598
4599 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4600 return 1;
4601 }
4602 #endif /* CONFIG_RPS */
4603 return 0;
4604 }
4605
4606 #ifdef CONFIG_NET_FLOW_LIMIT
4607 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4608 #endif
4609
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)4610 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4611 {
4612 #ifdef CONFIG_NET_FLOW_LIMIT
4613 struct sd_flow_limit *fl;
4614 struct softnet_data *sd;
4615 unsigned int old_flow, new_flow;
4616
4617 if (qlen < (netdev_max_backlog >> 1))
4618 return false;
4619
4620 sd = this_cpu_ptr(&softnet_data);
4621
4622 rcu_read_lock();
4623 fl = rcu_dereference(sd->flow_limit);
4624 if (fl) {
4625 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4626 old_flow = fl->history[fl->history_head];
4627 fl->history[fl->history_head] = new_flow;
4628
4629 fl->history_head++;
4630 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4631
4632 if (likely(fl->buckets[old_flow]))
4633 fl->buckets[old_flow]--;
4634
4635 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4636 fl->count++;
4637 rcu_read_unlock();
4638 return true;
4639 }
4640 }
4641 rcu_read_unlock();
4642 #endif
4643 return false;
4644 }
4645
4646 /*
4647 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4648 * queue (may be a remote CPU queue).
4649 */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)4650 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4651 unsigned int *qtail)
4652 {
4653 struct softnet_data *sd;
4654 unsigned long flags;
4655 unsigned int qlen;
4656
4657 sd = &per_cpu(softnet_data, cpu);
4658
4659 local_irq_save(flags);
4660
4661 rps_lock(sd);
4662 if (!netif_running(skb->dev))
4663 goto drop;
4664 qlen = skb_queue_len(&sd->input_pkt_queue);
4665 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4666 if (qlen) {
4667 enqueue:
4668 __skb_queue_tail(&sd->input_pkt_queue, skb);
4669 input_queue_tail_incr_save(sd, qtail);
4670 rps_unlock(sd);
4671 local_irq_restore(flags);
4672 return NET_RX_SUCCESS;
4673 }
4674
4675 /* Schedule NAPI for backlog device
4676 * We can use non atomic operation since we own the queue lock
4677 */
4678 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4679 if (!rps_ipi_queued(sd))
4680 ____napi_schedule(sd, &sd->backlog);
4681 }
4682 goto enqueue;
4683 }
4684
4685 drop:
4686 sd->dropped++;
4687 rps_unlock(sd);
4688
4689 local_irq_restore(flags);
4690
4691 atomic_long_inc(&skb->dev->rx_dropped);
4692 kfree_skb(skb);
4693 return NET_RX_DROP;
4694 }
4695
netif_get_rxqueue(struct sk_buff * skb)4696 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4697 {
4698 struct net_device *dev = skb->dev;
4699 struct netdev_rx_queue *rxqueue;
4700
4701 rxqueue = dev->_rx;
4702
4703 if (skb_rx_queue_recorded(skb)) {
4704 u16 index = skb_get_rx_queue(skb);
4705
4706 if (unlikely(index >= dev->real_num_rx_queues)) {
4707 WARN_ONCE(dev->real_num_rx_queues > 1,
4708 "%s received packet on queue %u, but number "
4709 "of RX queues is %u\n",
4710 dev->name, index, dev->real_num_rx_queues);
4711
4712 return rxqueue; /* Return first rxqueue */
4713 }
4714 rxqueue += index;
4715 }
4716 return rxqueue;
4717 }
4718
netif_receive_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4719 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4720 struct xdp_buff *xdp,
4721 struct bpf_prog *xdp_prog)
4722 {
4723 void *orig_data, *orig_data_end, *hard_start;
4724 struct netdev_rx_queue *rxqueue;
4725 u32 metalen, act = XDP_DROP;
4726 bool orig_bcast, orig_host;
4727 u32 mac_len, frame_sz;
4728 __be16 orig_eth_type;
4729 struct ethhdr *eth;
4730 int off;
4731
4732 /* Reinjected packets coming from act_mirred or similar should
4733 * not get XDP generic processing.
4734 */
4735 if (skb_is_redirected(skb))
4736 return XDP_PASS;
4737
4738 /* XDP packets must be linear and must have sufficient headroom
4739 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4740 * native XDP provides, thus we need to do it here as well.
4741 */
4742 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4743 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4744 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4745 int troom = skb->tail + skb->data_len - skb->end;
4746
4747 /* In case we have to go down the path and also linearize,
4748 * then lets do the pskb_expand_head() work just once here.
4749 */
4750 if (pskb_expand_head(skb,
4751 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4752 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4753 goto do_drop;
4754 if (skb_linearize(skb))
4755 goto do_drop;
4756 }
4757
4758 /* The XDP program wants to see the packet starting at the MAC
4759 * header.
4760 */
4761 mac_len = skb->data - skb_mac_header(skb);
4762 hard_start = skb->data - skb_headroom(skb);
4763
4764 /* SKB "head" area always have tailroom for skb_shared_info */
4765 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4766 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4767
4768 rxqueue = netif_get_rxqueue(skb);
4769 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4770 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4771 skb_headlen(skb) + mac_len, true);
4772
4773 orig_data_end = xdp->data_end;
4774 orig_data = xdp->data;
4775 eth = (struct ethhdr *)xdp->data;
4776 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4777 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4778 orig_eth_type = eth->h_proto;
4779
4780 act = bpf_prog_run_xdp(xdp_prog, xdp);
4781
4782 /* check if bpf_xdp_adjust_head was used */
4783 off = xdp->data - orig_data;
4784 if (off) {
4785 if (off > 0)
4786 __skb_pull(skb, off);
4787 else if (off < 0)
4788 __skb_push(skb, -off);
4789
4790 skb->mac_header += off;
4791 skb_reset_network_header(skb);
4792 }
4793
4794 /* check if bpf_xdp_adjust_tail was used */
4795 off = xdp->data_end - orig_data_end;
4796 if (off != 0) {
4797 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4798 skb->len += off; /* positive on grow, negative on shrink */
4799 }
4800
4801 /* check if XDP changed eth hdr such SKB needs update */
4802 eth = (struct ethhdr *)xdp->data;
4803 if ((orig_eth_type != eth->h_proto) ||
4804 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4805 skb->dev->dev_addr)) ||
4806 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4807 __skb_push(skb, ETH_HLEN);
4808 skb->pkt_type = PACKET_HOST;
4809 skb->protocol = eth_type_trans(skb, skb->dev);
4810 }
4811
4812 switch (act) {
4813 case XDP_REDIRECT:
4814 case XDP_TX:
4815 __skb_push(skb, mac_len);
4816 break;
4817 case XDP_PASS:
4818 metalen = xdp->data - xdp->data_meta;
4819 if (metalen)
4820 skb_metadata_set(skb, metalen);
4821 break;
4822 default:
4823 bpf_warn_invalid_xdp_action(act);
4824 fallthrough;
4825 case XDP_ABORTED:
4826 trace_xdp_exception(skb->dev, xdp_prog, act);
4827 fallthrough;
4828 case XDP_DROP:
4829 do_drop:
4830 kfree_skb(skb);
4831 break;
4832 }
4833
4834 return act;
4835 }
4836
4837 /* When doing generic XDP we have to bypass the qdisc layer and the
4838 * network taps in order to match in-driver-XDP behavior.
4839 */
generic_xdp_tx(struct sk_buff * skb,struct bpf_prog * xdp_prog)4840 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4841 {
4842 struct net_device *dev = skb->dev;
4843 struct netdev_queue *txq;
4844 bool free_skb = true;
4845 int cpu, rc;
4846
4847 txq = netdev_core_pick_tx(dev, skb, NULL);
4848 cpu = smp_processor_id();
4849 HARD_TX_LOCK(dev, txq, cpu);
4850 if (!netif_xmit_stopped(txq)) {
4851 rc = netdev_start_xmit(skb, dev, txq, 0);
4852 if (dev_xmit_complete(rc))
4853 free_skb = false;
4854 }
4855 HARD_TX_UNLOCK(dev, txq);
4856 if (free_skb) {
4857 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4858 kfree_skb(skb);
4859 }
4860 }
4861
4862 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4863
do_xdp_generic(struct bpf_prog * xdp_prog,struct sk_buff * skb)4864 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4865 {
4866 if (xdp_prog) {
4867 struct xdp_buff xdp;
4868 u32 act;
4869 int err;
4870
4871 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4872 if (act != XDP_PASS) {
4873 switch (act) {
4874 case XDP_REDIRECT:
4875 err = xdp_do_generic_redirect(skb->dev, skb,
4876 &xdp, xdp_prog);
4877 if (err)
4878 goto out_redir;
4879 break;
4880 case XDP_TX:
4881 generic_xdp_tx(skb, xdp_prog);
4882 break;
4883 }
4884 return XDP_DROP;
4885 }
4886 }
4887 return XDP_PASS;
4888 out_redir:
4889 kfree_skb(skb);
4890 return XDP_DROP;
4891 }
4892 EXPORT_SYMBOL_GPL(do_xdp_generic);
4893
netif_rx_internal(struct sk_buff * skb)4894 static int netif_rx_internal(struct sk_buff *skb)
4895 {
4896 int ret;
4897
4898 net_timestamp_check(netdev_tstamp_prequeue, skb);
4899
4900 trace_netif_rx(skb);
4901
4902 #ifdef CONFIG_RPS
4903 if (static_branch_unlikely(&rps_needed)) {
4904 struct rps_dev_flow voidflow, *rflow = &voidflow;
4905 int cpu;
4906
4907 preempt_disable();
4908 rcu_read_lock();
4909
4910 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4911 if (cpu < 0)
4912 cpu = smp_processor_id();
4913
4914 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4915
4916 rcu_read_unlock();
4917 preempt_enable();
4918 } else
4919 #endif
4920 {
4921 unsigned int qtail;
4922
4923 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4924 put_cpu();
4925 }
4926 return ret;
4927 }
4928
4929 /**
4930 * netif_rx - post buffer to the network code
4931 * @skb: buffer to post
4932 *
4933 * This function receives a packet from a device driver and queues it for
4934 * the upper (protocol) levels to process. It always succeeds. The buffer
4935 * may be dropped during processing for congestion control or by the
4936 * protocol layers.
4937 *
4938 * return values:
4939 * NET_RX_SUCCESS (no congestion)
4940 * NET_RX_DROP (packet was dropped)
4941 *
4942 */
4943
netif_rx(struct sk_buff * skb)4944 int netif_rx(struct sk_buff *skb)
4945 {
4946 int ret;
4947
4948 trace_netif_rx_entry(skb);
4949
4950 ret = netif_rx_internal(skb);
4951 trace_netif_rx_exit(ret);
4952
4953 return ret;
4954 }
4955 EXPORT_SYMBOL(netif_rx);
4956
netif_rx_ni(struct sk_buff * skb)4957 int netif_rx_ni(struct sk_buff *skb)
4958 {
4959 int err;
4960
4961 trace_netif_rx_ni_entry(skb);
4962
4963 preempt_disable();
4964 err = netif_rx_internal(skb);
4965 if (local_softirq_pending())
4966 do_softirq();
4967 preempt_enable();
4968 trace_netif_rx_ni_exit(err);
4969
4970 return err;
4971 }
4972 EXPORT_SYMBOL(netif_rx_ni);
4973
netif_rx_any_context(struct sk_buff * skb)4974 int netif_rx_any_context(struct sk_buff *skb)
4975 {
4976 /*
4977 * If invoked from contexts which do not invoke bottom half
4978 * processing either at return from interrupt or when softrqs are
4979 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4980 * directly.
4981 */
4982 if (in_interrupt())
4983 return netif_rx(skb);
4984 else
4985 return netif_rx_ni(skb);
4986 }
4987 EXPORT_SYMBOL(netif_rx_any_context);
4988
net_tx_action(struct softirq_action * h)4989 static __latent_entropy void net_tx_action(struct softirq_action *h)
4990 {
4991 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4992
4993 if (sd->completion_queue) {
4994 struct sk_buff *clist;
4995
4996 local_irq_disable();
4997 clist = sd->completion_queue;
4998 sd->completion_queue = NULL;
4999 local_irq_enable();
5000
5001 while (clist) {
5002 struct sk_buff *skb = clist;
5003
5004 clist = clist->next;
5005
5006 WARN_ON(refcount_read(&skb->users));
5007 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5008 trace_consume_skb(skb);
5009 else
5010 trace_kfree_skb(skb, net_tx_action);
5011
5012 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5013 __kfree_skb(skb);
5014 else
5015 __kfree_skb_defer(skb);
5016 }
5017 }
5018
5019 if (sd->output_queue) {
5020 struct Qdisc *head;
5021
5022 local_irq_disable();
5023 head = sd->output_queue;
5024 sd->output_queue = NULL;
5025 sd->output_queue_tailp = &sd->output_queue;
5026 local_irq_enable();
5027
5028 while (head) {
5029 struct Qdisc *q = head;
5030 spinlock_t *root_lock = NULL;
5031
5032 head = head->next_sched;
5033
5034 if (!(q->flags & TCQ_F_NOLOCK)) {
5035 root_lock = qdisc_lock(q);
5036 spin_lock(root_lock);
5037 }
5038 /* We need to make sure head->next_sched is read
5039 * before clearing __QDISC_STATE_SCHED
5040 */
5041 smp_mb__before_atomic();
5042 clear_bit(__QDISC_STATE_SCHED, &q->state);
5043 qdisc_run(q);
5044 if (root_lock)
5045 spin_unlock(root_lock);
5046 }
5047 }
5048
5049 xfrm_dev_backlog(sd);
5050 }
5051
5052 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5053 /* This hook is defined here for ATM LANE */
5054 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5055 unsigned char *addr) __read_mostly;
5056 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5057 #endif
5058
5059 static inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)5060 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5061 struct net_device *orig_dev, bool *another)
5062 {
5063 #ifdef CONFIG_NET_CLS_ACT
5064 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5065 struct tcf_result cl_res;
5066
5067 /* If there's at least one ingress present somewhere (so
5068 * we get here via enabled static key), remaining devices
5069 * that are not configured with an ingress qdisc will bail
5070 * out here.
5071 */
5072 if (!miniq)
5073 return skb;
5074
5075 if (*pt_prev) {
5076 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5077 *pt_prev = NULL;
5078 }
5079
5080 qdisc_skb_cb(skb)->pkt_len = skb->len;
5081 qdisc_skb_cb(skb)->mru = 0;
5082 qdisc_skb_cb(skb)->post_ct = false;
5083 skb->tc_at_ingress = 1;
5084 mini_qdisc_bstats_cpu_update(miniq, skb);
5085
5086 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5087 &cl_res, false)) {
5088 case TC_ACT_OK:
5089 case TC_ACT_RECLASSIFY:
5090 skb->tc_index = TC_H_MIN(cl_res.classid);
5091 break;
5092 case TC_ACT_SHOT:
5093 mini_qdisc_qstats_cpu_drop(miniq);
5094 kfree_skb(skb);
5095 return NULL;
5096 case TC_ACT_STOLEN:
5097 case TC_ACT_QUEUED:
5098 case TC_ACT_TRAP:
5099 consume_skb(skb);
5100 return NULL;
5101 case TC_ACT_REDIRECT:
5102 /* skb_mac_header check was done by cls/act_bpf, so
5103 * we can safely push the L2 header back before
5104 * redirecting to another netdev
5105 */
5106 __skb_push(skb, skb->mac_len);
5107 if (skb_do_redirect(skb) == -EAGAIN) {
5108 __skb_pull(skb, skb->mac_len);
5109 *another = true;
5110 break;
5111 }
5112 return NULL;
5113 case TC_ACT_CONSUMED:
5114 return NULL;
5115 default:
5116 break;
5117 }
5118 #endif /* CONFIG_NET_CLS_ACT */
5119 return skb;
5120 }
5121
5122 /**
5123 * netdev_is_rx_handler_busy - check if receive handler is registered
5124 * @dev: device to check
5125 *
5126 * Check if a receive handler is already registered for a given device.
5127 * Return true if there one.
5128 *
5129 * The caller must hold the rtnl_mutex.
5130 */
netdev_is_rx_handler_busy(struct net_device * dev)5131 bool netdev_is_rx_handler_busy(struct net_device *dev)
5132 {
5133 ASSERT_RTNL();
5134 return dev && rtnl_dereference(dev->rx_handler);
5135 }
5136 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5137
5138 /**
5139 * netdev_rx_handler_register - register receive handler
5140 * @dev: device to register a handler for
5141 * @rx_handler: receive handler to register
5142 * @rx_handler_data: data pointer that is used by rx handler
5143 *
5144 * Register a receive handler for a device. This handler will then be
5145 * called from __netif_receive_skb. A negative errno code is returned
5146 * on a failure.
5147 *
5148 * The caller must hold the rtnl_mutex.
5149 *
5150 * For a general description of rx_handler, see enum rx_handler_result.
5151 */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5152 int netdev_rx_handler_register(struct net_device *dev,
5153 rx_handler_func_t *rx_handler,
5154 void *rx_handler_data)
5155 {
5156 if (netdev_is_rx_handler_busy(dev))
5157 return -EBUSY;
5158
5159 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5160 return -EINVAL;
5161
5162 /* Note: rx_handler_data must be set before rx_handler */
5163 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5164 rcu_assign_pointer(dev->rx_handler, rx_handler);
5165
5166 return 0;
5167 }
5168 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5169
5170 /**
5171 * netdev_rx_handler_unregister - unregister receive handler
5172 * @dev: device to unregister a handler from
5173 *
5174 * Unregister a receive handler from a device.
5175 *
5176 * The caller must hold the rtnl_mutex.
5177 */
netdev_rx_handler_unregister(struct net_device * dev)5178 void netdev_rx_handler_unregister(struct net_device *dev)
5179 {
5180
5181 ASSERT_RTNL();
5182 RCU_INIT_POINTER(dev->rx_handler, NULL);
5183 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5184 * section has a guarantee to see a non NULL rx_handler_data
5185 * as well.
5186 */
5187 synchronize_net();
5188 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5189 }
5190 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5191
5192 /*
5193 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5194 * the special handling of PFMEMALLOC skbs.
5195 */
skb_pfmemalloc_protocol(struct sk_buff * skb)5196 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5197 {
5198 switch (skb->protocol) {
5199 case htons(ETH_P_ARP):
5200 case htons(ETH_P_IP):
5201 case htons(ETH_P_IPV6):
5202 case htons(ETH_P_8021Q):
5203 case htons(ETH_P_8021AD):
5204 return true;
5205 default:
5206 return false;
5207 }
5208 }
5209
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5210 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5211 int *ret, struct net_device *orig_dev)
5212 {
5213 if (nf_hook_ingress_active(skb)) {
5214 int ingress_retval;
5215
5216 if (*pt_prev) {
5217 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5218 *pt_prev = NULL;
5219 }
5220
5221 rcu_read_lock();
5222 ingress_retval = nf_hook_ingress(skb);
5223 rcu_read_unlock();
5224 return ingress_retval;
5225 }
5226 return 0;
5227 }
5228
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5229 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5230 struct packet_type **ppt_prev)
5231 {
5232 struct packet_type *ptype, *pt_prev;
5233 rx_handler_func_t *rx_handler;
5234 struct sk_buff *skb = *pskb;
5235 struct net_device *orig_dev;
5236 bool deliver_exact = false;
5237 int ret = NET_RX_DROP;
5238 __be16 type;
5239
5240 net_timestamp_check(!netdev_tstamp_prequeue, skb);
5241
5242 trace_netif_receive_skb(skb);
5243
5244 orig_dev = skb->dev;
5245
5246 skb_reset_network_header(skb);
5247 if (!skb_transport_header_was_set(skb))
5248 skb_reset_transport_header(skb);
5249 skb_reset_mac_len(skb);
5250
5251 pt_prev = NULL;
5252
5253 another_round:
5254 skb->skb_iif = skb->dev->ifindex;
5255
5256 __this_cpu_inc(softnet_data.processed);
5257
5258 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5259 int ret2;
5260
5261 preempt_disable();
5262 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5263 preempt_enable();
5264
5265 if (ret2 != XDP_PASS) {
5266 ret = NET_RX_DROP;
5267 goto out;
5268 }
5269 skb_reset_mac_len(skb);
5270 }
5271
5272 if (eth_type_vlan(skb->protocol)) {
5273 skb = skb_vlan_untag(skb);
5274 if (unlikely(!skb))
5275 goto out;
5276 }
5277
5278 if (skb_skip_tc_classify(skb))
5279 goto skip_classify;
5280
5281 if (pfmemalloc)
5282 goto skip_taps;
5283
5284 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5285 if (pt_prev)
5286 ret = deliver_skb(skb, pt_prev, orig_dev);
5287 pt_prev = ptype;
5288 }
5289
5290 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5291 if (pt_prev)
5292 ret = deliver_skb(skb, pt_prev, orig_dev);
5293 pt_prev = ptype;
5294 }
5295
5296 skip_taps:
5297 #ifdef CONFIG_NET_INGRESS
5298 if (static_branch_unlikely(&ingress_needed_key)) {
5299 bool another = false;
5300
5301 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5302 &another);
5303 if (another)
5304 goto another_round;
5305 if (!skb)
5306 goto out;
5307
5308 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5309 goto out;
5310 }
5311 #endif
5312 skb_reset_redirect(skb);
5313 skip_classify:
5314 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5315 goto drop;
5316
5317 if (skb_vlan_tag_present(skb)) {
5318 if (pt_prev) {
5319 ret = deliver_skb(skb, pt_prev, orig_dev);
5320 pt_prev = NULL;
5321 }
5322 if (vlan_do_receive(&skb))
5323 goto another_round;
5324 else if (unlikely(!skb))
5325 goto out;
5326 }
5327
5328 rx_handler = rcu_dereference(skb->dev->rx_handler);
5329 if (rx_handler) {
5330 if (pt_prev) {
5331 ret = deliver_skb(skb, pt_prev, orig_dev);
5332 pt_prev = NULL;
5333 }
5334 switch (rx_handler(&skb)) {
5335 case RX_HANDLER_CONSUMED:
5336 ret = NET_RX_SUCCESS;
5337 goto out;
5338 case RX_HANDLER_ANOTHER:
5339 goto another_round;
5340 case RX_HANDLER_EXACT:
5341 deliver_exact = true;
5342 break;
5343 case RX_HANDLER_PASS:
5344 break;
5345 default:
5346 BUG();
5347 }
5348 }
5349
5350 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5351 check_vlan_id:
5352 if (skb_vlan_tag_get_id(skb)) {
5353 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5354 * find vlan device.
5355 */
5356 skb->pkt_type = PACKET_OTHERHOST;
5357 } else if (eth_type_vlan(skb->protocol)) {
5358 /* Outer header is 802.1P with vlan 0, inner header is
5359 * 802.1Q or 802.1AD and vlan_do_receive() above could
5360 * not find vlan dev for vlan id 0.
5361 */
5362 __vlan_hwaccel_clear_tag(skb);
5363 skb = skb_vlan_untag(skb);
5364 if (unlikely(!skb))
5365 goto out;
5366 if (vlan_do_receive(&skb))
5367 /* After stripping off 802.1P header with vlan 0
5368 * vlan dev is found for inner header.
5369 */
5370 goto another_round;
5371 else if (unlikely(!skb))
5372 goto out;
5373 else
5374 /* We have stripped outer 802.1P vlan 0 header.
5375 * But could not find vlan dev.
5376 * check again for vlan id to set OTHERHOST.
5377 */
5378 goto check_vlan_id;
5379 }
5380 /* Note: we might in the future use prio bits
5381 * and set skb->priority like in vlan_do_receive()
5382 * For the time being, just ignore Priority Code Point
5383 */
5384 __vlan_hwaccel_clear_tag(skb);
5385 }
5386
5387 type = skb->protocol;
5388
5389 /* deliver only exact match when indicated */
5390 if (likely(!deliver_exact)) {
5391 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5392 &ptype_base[ntohs(type) &
5393 PTYPE_HASH_MASK]);
5394 }
5395
5396 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5397 &orig_dev->ptype_specific);
5398
5399 if (unlikely(skb->dev != orig_dev)) {
5400 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5401 &skb->dev->ptype_specific);
5402 }
5403
5404 if (pt_prev) {
5405 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5406 goto drop;
5407 *ppt_prev = pt_prev;
5408 } else {
5409 drop:
5410 if (!deliver_exact)
5411 atomic_long_inc(&skb->dev->rx_dropped);
5412 else
5413 atomic_long_inc(&skb->dev->rx_nohandler);
5414 kfree_skb(skb);
5415 /* Jamal, now you will not able to escape explaining
5416 * me how you were going to use this. :-)
5417 */
5418 ret = NET_RX_DROP;
5419 }
5420
5421 out:
5422 /* The invariant here is that if *ppt_prev is not NULL
5423 * then skb should also be non-NULL.
5424 *
5425 * Apparently *ppt_prev assignment above holds this invariant due to
5426 * skb dereferencing near it.
5427 */
5428 *pskb = skb;
5429 return ret;
5430 }
5431
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)5432 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5433 {
5434 struct net_device *orig_dev = skb->dev;
5435 struct packet_type *pt_prev = NULL;
5436 int ret;
5437
5438 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5439 if (pt_prev)
5440 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5441 skb->dev, pt_prev, orig_dev);
5442 return ret;
5443 }
5444
5445 /**
5446 * netif_receive_skb_core - special purpose version of netif_receive_skb
5447 * @skb: buffer to process
5448 *
5449 * More direct receive version of netif_receive_skb(). It should
5450 * only be used by callers that have a need to skip RPS and Generic XDP.
5451 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5452 *
5453 * This function may only be called from softirq context and interrupts
5454 * should be enabled.
5455 *
5456 * Return values (usually ignored):
5457 * NET_RX_SUCCESS: no congestion
5458 * NET_RX_DROP: packet was dropped
5459 */
netif_receive_skb_core(struct sk_buff * skb)5460 int netif_receive_skb_core(struct sk_buff *skb)
5461 {
5462 int ret;
5463
5464 rcu_read_lock();
5465 ret = __netif_receive_skb_one_core(skb, false);
5466 rcu_read_unlock();
5467
5468 return ret;
5469 }
5470 EXPORT_SYMBOL(netif_receive_skb_core);
5471
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)5472 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5473 struct packet_type *pt_prev,
5474 struct net_device *orig_dev)
5475 {
5476 struct sk_buff *skb, *next;
5477
5478 if (!pt_prev)
5479 return;
5480 if (list_empty(head))
5481 return;
5482 if (pt_prev->list_func != NULL)
5483 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5484 ip_list_rcv, head, pt_prev, orig_dev);
5485 else
5486 list_for_each_entry_safe(skb, next, head, list) {
5487 skb_list_del_init(skb);
5488 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5489 }
5490 }
5491
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)5492 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5493 {
5494 /* Fast-path assumptions:
5495 * - There is no RX handler.
5496 * - Only one packet_type matches.
5497 * If either of these fails, we will end up doing some per-packet
5498 * processing in-line, then handling the 'last ptype' for the whole
5499 * sublist. This can't cause out-of-order delivery to any single ptype,
5500 * because the 'last ptype' must be constant across the sublist, and all
5501 * other ptypes are handled per-packet.
5502 */
5503 /* Current (common) ptype of sublist */
5504 struct packet_type *pt_curr = NULL;
5505 /* Current (common) orig_dev of sublist */
5506 struct net_device *od_curr = NULL;
5507 struct list_head sublist;
5508 struct sk_buff *skb, *next;
5509
5510 INIT_LIST_HEAD(&sublist);
5511 list_for_each_entry_safe(skb, next, head, list) {
5512 struct net_device *orig_dev = skb->dev;
5513 struct packet_type *pt_prev = NULL;
5514
5515 skb_list_del_init(skb);
5516 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5517 if (!pt_prev)
5518 continue;
5519 if (pt_curr != pt_prev || od_curr != orig_dev) {
5520 /* dispatch old sublist */
5521 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5522 /* start new sublist */
5523 INIT_LIST_HEAD(&sublist);
5524 pt_curr = pt_prev;
5525 od_curr = orig_dev;
5526 }
5527 list_add_tail(&skb->list, &sublist);
5528 }
5529
5530 /* dispatch final sublist */
5531 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5532 }
5533
__netif_receive_skb(struct sk_buff * skb)5534 static int __netif_receive_skb(struct sk_buff *skb)
5535 {
5536 int ret;
5537
5538 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5539 unsigned int noreclaim_flag;
5540
5541 /*
5542 * PFMEMALLOC skbs are special, they should
5543 * - be delivered to SOCK_MEMALLOC sockets only
5544 * - stay away from userspace
5545 * - have bounded memory usage
5546 *
5547 * Use PF_MEMALLOC as this saves us from propagating the allocation
5548 * context down to all allocation sites.
5549 */
5550 noreclaim_flag = memalloc_noreclaim_save();
5551 ret = __netif_receive_skb_one_core(skb, true);
5552 memalloc_noreclaim_restore(noreclaim_flag);
5553 } else
5554 ret = __netif_receive_skb_one_core(skb, false);
5555
5556 return ret;
5557 }
5558
__netif_receive_skb_list(struct list_head * head)5559 static void __netif_receive_skb_list(struct list_head *head)
5560 {
5561 unsigned long noreclaim_flag = 0;
5562 struct sk_buff *skb, *next;
5563 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5564
5565 list_for_each_entry_safe(skb, next, head, list) {
5566 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5567 struct list_head sublist;
5568
5569 /* Handle the previous sublist */
5570 list_cut_before(&sublist, head, &skb->list);
5571 if (!list_empty(&sublist))
5572 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5573 pfmemalloc = !pfmemalloc;
5574 /* See comments in __netif_receive_skb */
5575 if (pfmemalloc)
5576 noreclaim_flag = memalloc_noreclaim_save();
5577 else
5578 memalloc_noreclaim_restore(noreclaim_flag);
5579 }
5580 }
5581 /* Handle the remaining sublist */
5582 if (!list_empty(head))
5583 __netif_receive_skb_list_core(head, pfmemalloc);
5584 /* Restore pflags */
5585 if (pfmemalloc)
5586 memalloc_noreclaim_restore(noreclaim_flag);
5587 }
5588
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)5589 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5590 {
5591 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5592 struct bpf_prog *new = xdp->prog;
5593 int ret = 0;
5594
5595 if (new) {
5596 u32 i;
5597
5598 mutex_lock(&new->aux->used_maps_mutex);
5599
5600 /* generic XDP does not work with DEVMAPs that can
5601 * have a bpf_prog installed on an entry
5602 */
5603 for (i = 0; i < new->aux->used_map_cnt; i++) {
5604 if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5605 cpu_map_prog_allowed(new->aux->used_maps[i])) {
5606 mutex_unlock(&new->aux->used_maps_mutex);
5607 return -EINVAL;
5608 }
5609 }
5610
5611 mutex_unlock(&new->aux->used_maps_mutex);
5612 }
5613
5614 switch (xdp->command) {
5615 case XDP_SETUP_PROG:
5616 rcu_assign_pointer(dev->xdp_prog, new);
5617 if (old)
5618 bpf_prog_put(old);
5619
5620 if (old && !new) {
5621 static_branch_dec(&generic_xdp_needed_key);
5622 } else if (new && !old) {
5623 static_branch_inc(&generic_xdp_needed_key);
5624 dev_disable_lro(dev);
5625 dev_disable_gro_hw(dev);
5626 }
5627 break;
5628
5629 default:
5630 ret = -EINVAL;
5631 break;
5632 }
5633
5634 return ret;
5635 }
5636
netif_receive_skb_internal(struct sk_buff * skb)5637 static int netif_receive_skb_internal(struct sk_buff *skb)
5638 {
5639 int ret;
5640
5641 net_timestamp_check(netdev_tstamp_prequeue, skb);
5642
5643 if (skb_defer_rx_timestamp(skb))
5644 return NET_RX_SUCCESS;
5645
5646 rcu_read_lock();
5647 #ifdef CONFIG_RPS
5648 if (static_branch_unlikely(&rps_needed)) {
5649 struct rps_dev_flow voidflow, *rflow = &voidflow;
5650 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5651
5652 if (cpu >= 0) {
5653 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5654 rcu_read_unlock();
5655 return ret;
5656 }
5657 }
5658 #endif
5659 ret = __netif_receive_skb(skb);
5660 rcu_read_unlock();
5661 return ret;
5662 }
5663
netif_receive_skb_list_internal(struct list_head * head)5664 static void netif_receive_skb_list_internal(struct list_head *head)
5665 {
5666 struct sk_buff *skb, *next;
5667 struct list_head sublist;
5668
5669 INIT_LIST_HEAD(&sublist);
5670 list_for_each_entry_safe(skb, next, head, list) {
5671 net_timestamp_check(netdev_tstamp_prequeue, skb);
5672 skb_list_del_init(skb);
5673 if (!skb_defer_rx_timestamp(skb))
5674 list_add_tail(&skb->list, &sublist);
5675 }
5676 list_splice_init(&sublist, head);
5677
5678 rcu_read_lock();
5679 #ifdef CONFIG_RPS
5680 if (static_branch_unlikely(&rps_needed)) {
5681 list_for_each_entry_safe(skb, next, head, list) {
5682 struct rps_dev_flow voidflow, *rflow = &voidflow;
5683 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5684
5685 if (cpu >= 0) {
5686 /* Will be handled, remove from list */
5687 skb_list_del_init(skb);
5688 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5689 }
5690 }
5691 }
5692 #endif
5693 __netif_receive_skb_list(head);
5694 rcu_read_unlock();
5695 }
5696
5697 /**
5698 * netif_receive_skb - process receive buffer from network
5699 * @skb: buffer to process
5700 *
5701 * netif_receive_skb() is the main receive data processing function.
5702 * It always succeeds. The buffer may be dropped during processing
5703 * for congestion control or by the protocol layers.
5704 *
5705 * This function may only be called from softirq context and interrupts
5706 * should be enabled.
5707 *
5708 * Return values (usually ignored):
5709 * NET_RX_SUCCESS: no congestion
5710 * NET_RX_DROP: packet was dropped
5711 */
netif_receive_skb(struct sk_buff * skb)5712 int netif_receive_skb(struct sk_buff *skb)
5713 {
5714 int ret;
5715
5716 trace_netif_receive_skb_entry(skb);
5717
5718 ret = netif_receive_skb_internal(skb);
5719 trace_netif_receive_skb_exit(ret);
5720
5721 return ret;
5722 }
5723 EXPORT_SYMBOL(netif_receive_skb);
5724
5725 /**
5726 * netif_receive_skb_list - process many receive buffers from network
5727 * @head: list of skbs to process.
5728 *
5729 * Since return value of netif_receive_skb() is normally ignored, and
5730 * wouldn't be meaningful for a list, this function returns void.
5731 *
5732 * This function may only be called from softirq context and interrupts
5733 * should be enabled.
5734 */
netif_receive_skb_list(struct list_head * head)5735 void netif_receive_skb_list(struct list_head *head)
5736 {
5737 struct sk_buff *skb;
5738
5739 if (list_empty(head))
5740 return;
5741 if (trace_netif_receive_skb_list_entry_enabled()) {
5742 list_for_each_entry(skb, head, list)
5743 trace_netif_receive_skb_list_entry(skb);
5744 }
5745 netif_receive_skb_list_internal(head);
5746 trace_netif_receive_skb_list_exit(0);
5747 }
5748 EXPORT_SYMBOL(netif_receive_skb_list);
5749
5750 static DEFINE_PER_CPU(struct work_struct, flush_works);
5751
5752 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)5753 static void flush_backlog(struct work_struct *work)
5754 {
5755 struct sk_buff *skb, *tmp;
5756 struct softnet_data *sd;
5757
5758 local_bh_disable();
5759 sd = this_cpu_ptr(&softnet_data);
5760
5761 local_irq_disable();
5762 rps_lock(sd);
5763 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5764 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5765 __skb_unlink(skb, &sd->input_pkt_queue);
5766 dev_kfree_skb_irq(skb);
5767 input_queue_head_incr(sd);
5768 }
5769 }
5770 rps_unlock(sd);
5771 local_irq_enable();
5772
5773 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5774 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5775 __skb_unlink(skb, &sd->process_queue);
5776 kfree_skb(skb);
5777 input_queue_head_incr(sd);
5778 }
5779 }
5780 local_bh_enable();
5781 }
5782
flush_required(int cpu)5783 static bool flush_required(int cpu)
5784 {
5785 #if IS_ENABLED(CONFIG_RPS)
5786 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5787 bool do_flush;
5788
5789 local_irq_disable();
5790 rps_lock(sd);
5791
5792 /* as insertion into process_queue happens with the rps lock held,
5793 * process_queue access may race only with dequeue
5794 */
5795 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5796 !skb_queue_empty_lockless(&sd->process_queue);
5797 rps_unlock(sd);
5798 local_irq_enable();
5799
5800 return do_flush;
5801 #endif
5802 /* without RPS we can't safely check input_pkt_queue: during a
5803 * concurrent remote skb_queue_splice() we can detect as empty both
5804 * input_pkt_queue and process_queue even if the latter could end-up
5805 * containing a lot of packets.
5806 */
5807 return true;
5808 }
5809
flush_all_backlogs(void)5810 static void flush_all_backlogs(void)
5811 {
5812 static cpumask_t flush_cpus;
5813 unsigned int cpu;
5814
5815 /* since we are under rtnl lock protection we can use static data
5816 * for the cpumask and avoid allocating on stack the possibly
5817 * large mask
5818 */
5819 ASSERT_RTNL();
5820
5821 get_online_cpus();
5822
5823 cpumask_clear(&flush_cpus);
5824 for_each_online_cpu(cpu) {
5825 if (flush_required(cpu)) {
5826 queue_work_on(cpu, system_highpri_wq,
5827 per_cpu_ptr(&flush_works, cpu));
5828 cpumask_set_cpu(cpu, &flush_cpus);
5829 }
5830 }
5831
5832 /* we can have in flight packet[s] on the cpus we are not flushing,
5833 * synchronize_net() in unregister_netdevice_many() will take care of
5834 * them
5835 */
5836 for_each_cpu(cpu, &flush_cpus)
5837 flush_work(per_cpu_ptr(&flush_works, cpu));
5838
5839 put_online_cpus();
5840 }
5841
5842 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
gro_normal_list(struct napi_struct * napi)5843 static void gro_normal_list(struct napi_struct *napi)
5844 {
5845 if (!napi->rx_count)
5846 return;
5847 netif_receive_skb_list_internal(&napi->rx_list);
5848 INIT_LIST_HEAD(&napi->rx_list);
5849 napi->rx_count = 0;
5850 }
5851
5852 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5853 * pass the whole batch up to the stack.
5854 */
gro_normal_one(struct napi_struct * napi,struct sk_buff * skb,int segs)5855 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5856 {
5857 list_add_tail(&skb->list, &napi->rx_list);
5858 napi->rx_count += segs;
5859 if (napi->rx_count >= gro_normal_batch)
5860 gro_normal_list(napi);
5861 }
5862
napi_gro_complete(struct napi_struct * napi,struct sk_buff * skb)5863 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5864 {
5865 struct packet_offload *ptype;
5866 __be16 type = skb->protocol;
5867 struct list_head *head = &offload_base;
5868 int err = -ENOENT;
5869
5870 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5871
5872 if (NAPI_GRO_CB(skb)->count == 1) {
5873 skb_shinfo(skb)->gso_size = 0;
5874 goto out;
5875 }
5876
5877 rcu_read_lock();
5878 list_for_each_entry_rcu(ptype, head, list) {
5879 if (ptype->type != type || !ptype->callbacks.gro_complete)
5880 continue;
5881
5882 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5883 ipv6_gro_complete, inet_gro_complete,
5884 skb, 0);
5885 break;
5886 }
5887 rcu_read_unlock();
5888
5889 if (err) {
5890 WARN_ON(&ptype->list == head);
5891 kfree_skb(skb);
5892 return NET_RX_SUCCESS;
5893 }
5894
5895 out:
5896 gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5897 return NET_RX_SUCCESS;
5898 }
5899
__napi_gro_flush_chain(struct napi_struct * napi,u32 index,bool flush_old)5900 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5901 bool flush_old)
5902 {
5903 struct list_head *head = &napi->gro_hash[index].list;
5904 struct sk_buff *skb, *p;
5905
5906 list_for_each_entry_safe_reverse(skb, p, head, list) {
5907 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5908 return;
5909 skb_list_del_init(skb);
5910 napi_gro_complete(napi, skb);
5911 napi->gro_hash[index].count--;
5912 }
5913
5914 if (!napi->gro_hash[index].count)
5915 __clear_bit(index, &napi->gro_bitmask);
5916 }
5917
5918 /* napi->gro_hash[].list contains packets ordered by age.
5919 * youngest packets at the head of it.
5920 * Complete skbs in reverse order to reduce latencies.
5921 */
napi_gro_flush(struct napi_struct * napi,bool flush_old)5922 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5923 {
5924 unsigned long bitmask = napi->gro_bitmask;
5925 unsigned int i, base = ~0U;
5926
5927 while ((i = ffs(bitmask)) != 0) {
5928 bitmask >>= i;
5929 base += i;
5930 __napi_gro_flush_chain(napi, base, flush_old);
5931 }
5932 }
5933 EXPORT_SYMBOL(napi_gro_flush);
5934
gro_list_prepare(const struct list_head * head,const struct sk_buff * skb)5935 static void gro_list_prepare(const struct list_head *head,
5936 const struct sk_buff *skb)
5937 {
5938 unsigned int maclen = skb->dev->hard_header_len;
5939 u32 hash = skb_get_hash_raw(skb);
5940 struct sk_buff *p;
5941
5942 list_for_each_entry(p, head, list) {
5943 unsigned long diffs;
5944
5945 NAPI_GRO_CB(p)->flush = 0;
5946
5947 if (hash != skb_get_hash_raw(p)) {
5948 NAPI_GRO_CB(p)->same_flow = 0;
5949 continue;
5950 }
5951
5952 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5953 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5954 if (skb_vlan_tag_present(p))
5955 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5956 diffs |= skb_metadata_dst_cmp(p, skb);
5957 diffs |= skb_metadata_differs(p, skb);
5958 if (maclen == ETH_HLEN)
5959 diffs |= compare_ether_header(skb_mac_header(p),
5960 skb_mac_header(skb));
5961 else if (!diffs)
5962 diffs = memcmp(skb_mac_header(p),
5963 skb_mac_header(skb),
5964 maclen);
5965 NAPI_GRO_CB(p)->same_flow = !diffs;
5966 }
5967 }
5968
skb_gro_reset_offset(struct sk_buff * skb,u32 nhoff)5969 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5970 {
5971 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5972 const skb_frag_t *frag0 = &pinfo->frags[0];
5973
5974 NAPI_GRO_CB(skb)->data_offset = 0;
5975 NAPI_GRO_CB(skb)->frag0 = NULL;
5976 NAPI_GRO_CB(skb)->frag0_len = 0;
5977
5978 if (!skb_headlen(skb) && pinfo->nr_frags &&
5979 !PageHighMem(skb_frag_page(frag0)) &&
5980 (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
5981 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5982 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5983 skb_frag_size(frag0),
5984 skb->end - skb->tail);
5985 }
5986 }
5987
gro_pull_from_frag0(struct sk_buff * skb,int grow)5988 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5989 {
5990 struct skb_shared_info *pinfo = skb_shinfo(skb);
5991
5992 BUG_ON(skb->end - skb->tail < grow);
5993
5994 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5995
5996 skb->data_len -= grow;
5997 skb->tail += grow;
5998
5999 skb_frag_off_add(&pinfo->frags[0], grow);
6000 skb_frag_size_sub(&pinfo->frags[0], grow);
6001
6002 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6003 skb_frag_unref(skb, 0);
6004 memmove(pinfo->frags, pinfo->frags + 1,
6005 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
6006 }
6007 }
6008
gro_flush_oldest(struct napi_struct * napi,struct list_head * head)6009 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6010 {
6011 struct sk_buff *oldest;
6012
6013 oldest = list_last_entry(head, struct sk_buff, list);
6014
6015 /* We are called with head length >= MAX_GRO_SKBS, so this is
6016 * impossible.
6017 */
6018 if (WARN_ON_ONCE(!oldest))
6019 return;
6020
6021 /* Do not adjust napi->gro_hash[].count, caller is adding a new
6022 * SKB to the chain.
6023 */
6024 skb_list_del_init(oldest);
6025 napi_gro_complete(napi, oldest);
6026 }
6027
dev_gro_receive(struct napi_struct * napi,struct sk_buff * skb)6028 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6029 {
6030 u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6031 struct gro_list *gro_list = &napi->gro_hash[bucket];
6032 struct list_head *head = &offload_base;
6033 struct packet_offload *ptype;
6034 __be16 type = skb->protocol;
6035 struct sk_buff *pp = NULL;
6036 enum gro_result ret;
6037 int same_flow;
6038 int grow;
6039
6040 if (netif_elide_gro(skb->dev))
6041 goto normal;
6042
6043 gro_list_prepare(&gro_list->list, skb);
6044
6045 rcu_read_lock();
6046 list_for_each_entry_rcu(ptype, head, list) {
6047 if (ptype->type != type || !ptype->callbacks.gro_receive)
6048 continue;
6049
6050 skb_set_network_header(skb, skb_gro_offset(skb));
6051 skb_reset_mac_len(skb);
6052 NAPI_GRO_CB(skb)->same_flow = 0;
6053 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6054 NAPI_GRO_CB(skb)->free = 0;
6055 NAPI_GRO_CB(skb)->encap_mark = 0;
6056 NAPI_GRO_CB(skb)->recursion_counter = 0;
6057 NAPI_GRO_CB(skb)->is_fou = 0;
6058 NAPI_GRO_CB(skb)->is_atomic = 1;
6059 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6060
6061 /* Setup for GRO checksum validation */
6062 switch (skb->ip_summed) {
6063 case CHECKSUM_COMPLETE:
6064 NAPI_GRO_CB(skb)->csum = skb->csum;
6065 NAPI_GRO_CB(skb)->csum_valid = 1;
6066 NAPI_GRO_CB(skb)->csum_cnt = 0;
6067 break;
6068 case CHECKSUM_UNNECESSARY:
6069 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6070 NAPI_GRO_CB(skb)->csum_valid = 0;
6071 break;
6072 default:
6073 NAPI_GRO_CB(skb)->csum_cnt = 0;
6074 NAPI_GRO_CB(skb)->csum_valid = 0;
6075 }
6076
6077 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6078 ipv6_gro_receive, inet_gro_receive,
6079 &gro_list->list, skb);
6080 break;
6081 }
6082 rcu_read_unlock();
6083
6084 if (&ptype->list == head)
6085 goto normal;
6086
6087 if (PTR_ERR(pp) == -EINPROGRESS) {
6088 ret = GRO_CONSUMED;
6089 goto ok;
6090 }
6091
6092 same_flow = NAPI_GRO_CB(skb)->same_flow;
6093 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6094
6095 if (pp) {
6096 skb_list_del_init(pp);
6097 napi_gro_complete(napi, pp);
6098 gro_list->count--;
6099 }
6100
6101 if (same_flow)
6102 goto ok;
6103
6104 if (NAPI_GRO_CB(skb)->flush)
6105 goto normal;
6106
6107 if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6108 gro_flush_oldest(napi, &gro_list->list);
6109 else
6110 gro_list->count++;
6111
6112 NAPI_GRO_CB(skb)->count = 1;
6113 NAPI_GRO_CB(skb)->age = jiffies;
6114 NAPI_GRO_CB(skb)->last = skb;
6115 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6116 list_add(&skb->list, &gro_list->list);
6117 ret = GRO_HELD;
6118
6119 pull:
6120 grow = skb_gro_offset(skb) - skb_headlen(skb);
6121 if (grow > 0)
6122 gro_pull_from_frag0(skb, grow);
6123 ok:
6124 if (gro_list->count) {
6125 if (!test_bit(bucket, &napi->gro_bitmask))
6126 __set_bit(bucket, &napi->gro_bitmask);
6127 } else if (test_bit(bucket, &napi->gro_bitmask)) {
6128 __clear_bit(bucket, &napi->gro_bitmask);
6129 }
6130
6131 return ret;
6132
6133 normal:
6134 ret = GRO_NORMAL;
6135 goto pull;
6136 }
6137
gro_find_receive_by_type(__be16 type)6138 struct packet_offload *gro_find_receive_by_type(__be16 type)
6139 {
6140 struct list_head *offload_head = &offload_base;
6141 struct packet_offload *ptype;
6142
6143 list_for_each_entry_rcu(ptype, offload_head, list) {
6144 if (ptype->type != type || !ptype->callbacks.gro_receive)
6145 continue;
6146 return ptype;
6147 }
6148 return NULL;
6149 }
6150 EXPORT_SYMBOL(gro_find_receive_by_type);
6151
gro_find_complete_by_type(__be16 type)6152 struct packet_offload *gro_find_complete_by_type(__be16 type)
6153 {
6154 struct list_head *offload_head = &offload_base;
6155 struct packet_offload *ptype;
6156
6157 list_for_each_entry_rcu(ptype, offload_head, list) {
6158 if (ptype->type != type || !ptype->callbacks.gro_complete)
6159 continue;
6160 return ptype;
6161 }
6162 return NULL;
6163 }
6164 EXPORT_SYMBOL(gro_find_complete_by_type);
6165
napi_skb_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)6166 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6167 struct sk_buff *skb,
6168 gro_result_t ret)
6169 {
6170 switch (ret) {
6171 case GRO_NORMAL:
6172 gro_normal_one(napi, skb, 1);
6173 break;
6174
6175 case GRO_MERGED_FREE:
6176 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6177 napi_skb_free_stolen_head(skb);
6178 else
6179 __kfree_skb_defer(skb);
6180 break;
6181
6182 case GRO_HELD:
6183 case GRO_MERGED:
6184 case GRO_CONSUMED:
6185 break;
6186 }
6187
6188 return ret;
6189 }
6190
napi_gro_receive(struct napi_struct * napi,struct sk_buff * skb)6191 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6192 {
6193 gro_result_t ret;
6194
6195 skb_mark_napi_id(skb, napi);
6196 trace_napi_gro_receive_entry(skb);
6197
6198 skb_gro_reset_offset(skb, 0);
6199
6200 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6201 trace_napi_gro_receive_exit(ret);
6202
6203 return ret;
6204 }
6205 EXPORT_SYMBOL(napi_gro_receive);
6206
napi_reuse_skb(struct napi_struct * napi,struct sk_buff * skb)6207 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6208 {
6209 if (unlikely(skb->pfmemalloc)) {
6210 consume_skb(skb);
6211 return;
6212 }
6213 __skb_pull(skb, skb_headlen(skb));
6214 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6215 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6216 __vlan_hwaccel_clear_tag(skb);
6217 skb->dev = napi->dev;
6218 skb->skb_iif = 0;
6219
6220 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6221 skb->pkt_type = PACKET_HOST;
6222
6223 skb->encapsulation = 0;
6224 skb_shinfo(skb)->gso_type = 0;
6225 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6226 skb_ext_reset(skb);
6227
6228 napi->skb = skb;
6229 }
6230
napi_get_frags(struct napi_struct * napi)6231 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6232 {
6233 struct sk_buff *skb = napi->skb;
6234
6235 if (!skb) {
6236 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6237 if (skb) {
6238 napi->skb = skb;
6239 skb_mark_napi_id(skb, napi);
6240 }
6241 }
6242 return skb;
6243 }
6244 EXPORT_SYMBOL(napi_get_frags);
6245
napi_frags_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)6246 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6247 struct sk_buff *skb,
6248 gro_result_t ret)
6249 {
6250 switch (ret) {
6251 case GRO_NORMAL:
6252 case GRO_HELD:
6253 __skb_push(skb, ETH_HLEN);
6254 skb->protocol = eth_type_trans(skb, skb->dev);
6255 if (ret == GRO_NORMAL)
6256 gro_normal_one(napi, skb, 1);
6257 break;
6258
6259 case GRO_MERGED_FREE:
6260 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6261 napi_skb_free_stolen_head(skb);
6262 else
6263 napi_reuse_skb(napi, skb);
6264 break;
6265
6266 case GRO_MERGED:
6267 case GRO_CONSUMED:
6268 break;
6269 }
6270
6271 return ret;
6272 }
6273
6274 /* Upper GRO stack assumes network header starts at gro_offset=0
6275 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6276 * We copy ethernet header into skb->data to have a common layout.
6277 */
napi_frags_skb(struct napi_struct * napi)6278 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6279 {
6280 struct sk_buff *skb = napi->skb;
6281 const struct ethhdr *eth;
6282 unsigned int hlen = sizeof(*eth);
6283
6284 napi->skb = NULL;
6285
6286 skb_reset_mac_header(skb);
6287 skb_gro_reset_offset(skb, hlen);
6288
6289 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6290 eth = skb_gro_header_slow(skb, hlen, 0);
6291 if (unlikely(!eth)) {
6292 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6293 __func__, napi->dev->name);
6294 napi_reuse_skb(napi, skb);
6295 return NULL;
6296 }
6297 } else {
6298 eth = (const struct ethhdr *)skb->data;
6299 gro_pull_from_frag0(skb, hlen);
6300 NAPI_GRO_CB(skb)->frag0 += hlen;
6301 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6302 }
6303 __skb_pull(skb, hlen);
6304
6305 /*
6306 * This works because the only protocols we care about don't require
6307 * special handling.
6308 * We'll fix it up properly in napi_frags_finish()
6309 */
6310 skb->protocol = eth->h_proto;
6311
6312 return skb;
6313 }
6314
napi_gro_frags(struct napi_struct * napi)6315 gro_result_t napi_gro_frags(struct napi_struct *napi)
6316 {
6317 gro_result_t ret;
6318 struct sk_buff *skb = napi_frags_skb(napi);
6319
6320 trace_napi_gro_frags_entry(skb);
6321
6322 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6323 trace_napi_gro_frags_exit(ret);
6324
6325 return ret;
6326 }
6327 EXPORT_SYMBOL(napi_gro_frags);
6328
6329 /* Compute the checksum from gro_offset and return the folded value
6330 * after adding in any pseudo checksum.
6331 */
__skb_gro_checksum_complete(struct sk_buff * skb)6332 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6333 {
6334 __wsum wsum;
6335 __sum16 sum;
6336
6337 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6338
6339 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6340 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6341 /* See comments in __skb_checksum_complete(). */
6342 if (likely(!sum)) {
6343 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6344 !skb->csum_complete_sw)
6345 netdev_rx_csum_fault(skb->dev, skb);
6346 }
6347
6348 NAPI_GRO_CB(skb)->csum = wsum;
6349 NAPI_GRO_CB(skb)->csum_valid = 1;
6350
6351 return sum;
6352 }
6353 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6354
net_rps_send_ipi(struct softnet_data * remsd)6355 static void net_rps_send_ipi(struct softnet_data *remsd)
6356 {
6357 #ifdef CONFIG_RPS
6358 while (remsd) {
6359 struct softnet_data *next = remsd->rps_ipi_next;
6360
6361 if (cpu_online(remsd->cpu))
6362 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6363 remsd = next;
6364 }
6365 #endif
6366 }
6367
6368 /*
6369 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6370 * Note: called with local irq disabled, but exits with local irq enabled.
6371 */
net_rps_action_and_irq_enable(struct softnet_data * sd)6372 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6373 {
6374 #ifdef CONFIG_RPS
6375 struct softnet_data *remsd = sd->rps_ipi_list;
6376
6377 if (remsd) {
6378 sd->rps_ipi_list = NULL;
6379
6380 local_irq_enable();
6381
6382 /* Send pending IPI's to kick RPS processing on remote cpus. */
6383 net_rps_send_ipi(remsd);
6384 } else
6385 #endif
6386 local_irq_enable();
6387 }
6388
sd_has_rps_ipi_waiting(struct softnet_data * sd)6389 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6390 {
6391 #ifdef CONFIG_RPS
6392 return sd->rps_ipi_list != NULL;
6393 #else
6394 return false;
6395 #endif
6396 }
6397
process_backlog(struct napi_struct * napi,int quota)6398 static int process_backlog(struct napi_struct *napi, int quota)
6399 {
6400 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6401 bool again = true;
6402 int work = 0;
6403
6404 /* Check if we have pending ipi, its better to send them now,
6405 * not waiting net_rx_action() end.
6406 */
6407 if (sd_has_rps_ipi_waiting(sd)) {
6408 local_irq_disable();
6409 net_rps_action_and_irq_enable(sd);
6410 }
6411
6412 napi->weight = dev_rx_weight;
6413 while (again) {
6414 struct sk_buff *skb;
6415
6416 while ((skb = __skb_dequeue(&sd->process_queue))) {
6417 rcu_read_lock();
6418 __netif_receive_skb(skb);
6419 rcu_read_unlock();
6420 input_queue_head_incr(sd);
6421 if (++work >= quota)
6422 return work;
6423
6424 }
6425
6426 local_irq_disable();
6427 rps_lock(sd);
6428 if (skb_queue_empty(&sd->input_pkt_queue)) {
6429 /*
6430 * Inline a custom version of __napi_complete().
6431 * only current cpu owns and manipulates this napi,
6432 * and NAPI_STATE_SCHED is the only possible flag set
6433 * on backlog.
6434 * We can use a plain write instead of clear_bit(),
6435 * and we dont need an smp_mb() memory barrier.
6436 */
6437 napi->state = 0;
6438 again = false;
6439 } else {
6440 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6441 &sd->process_queue);
6442 }
6443 rps_unlock(sd);
6444 local_irq_enable();
6445 }
6446
6447 return work;
6448 }
6449
6450 /**
6451 * __napi_schedule - schedule for receive
6452 * @n: entry to schedule
6453 *
6454 * The entry's receive function will be scheduled to run.
6455 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6456 */
__napi_schedule(struct napi_struct * n)6457 void __napi_schedule(struct napi_struct *n)
6458 {
6459 unsigned long flags;
6460
6461 local_irq_save(flags);
6462 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6463 local_irq_restore(flags);
6464 }
6465 EXPORT_SYMBOL(__napi_schedule);
6466
6467 /**
6468 * napi_schedule_prep - check if napi can be scheduled
6469 * @n: napi context
6470 *
6471 * Test if NAPI routine is already running, and if not mark
6472 * it as running. This is used as a condition variable to
6473 * insure only one NAPI poll instance runs. We also make
6474 * sure there is no pending NAPI disable.
6475 */
napi_schedule_prep(struct napi_struct * n)6476 bool napi_schedule_prep(struct napi_struct *n)
6477 {
6478 unsigned long val, new;
6479
6480 do {
6481 val = READ_ONCE(n->state);
6482 if (unlikely(val & NAPIF_STATE_DISABLE))
6483 return false;
6484 new = val | NAPIF_STATE_SCHED;
6485
6486 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6487 * This was suggested by Alexander Duyck, as compiler
6488 * emits better code than :
6489 * if (val & NAPIF_STATE_SCHED)
6490 * new |= NAPIF_STATE_MISSED;
6491 */
6492 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6493 NAPIF_STATE_MISSED;
6494 } while (cmpxchg(&n->state, val, new) != val);
6495
6496 return !(val & NAPIF_STATE_SCHED);
6497 }
6498 EXPORT_SYMBOL(napi_schedule_prep);
6499
6500 /**
6501 * __napi_schedule_irqoff - schedule for receive
6502 * @n: entry to schedule
6503 *
6504 * Variant of __napi_schedule() assuming hard irqs are masked
6505 */
__napi_schedule_irqoff(struct napi_struct * n)6506 void __napi_schedule_irqoff(struct napi_struct *n)
6507 {
6508 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6509 }
6510 EXPORT_SYMBOL(__napi_schedule_irqoff);
6511
napi_complete_done(struct napi_struct * n,int work_done)6512 bool napi_complete_done(struct napi_struct *n, int work_done)
6513 {
6514 unsigned long flags, val, new, timeout = 0;
6515 bool ret = true;
6516
6517 /*
6518 * 1) Don't let napi dequeue from the cpu poll list
6519 * just in case its running on a different cpu.
6520 * 2) If we are busy polling, do nothing here, we have
6521 * the guarantee we will be called later.
6522 */
6523 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6524 NAPIF_STATE_IN_BUSY_POLL)))
6525 return false;
6526
6527 if (work_done) {
6528 if (n->gro_bitmask)
6529 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6530 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6531 }
6532 if (n->defer_hard_irqs_count > 0) {
6533 n->defer_hard_irqs_count--;
6534 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6535 if (timeout)
6536 ret = false;
6537 }
6538 if (n->gro_bitmask) {
6539 /* When the NAPI instance uses a timeout and keeps postponing
6540 * it, we need to bound somehow the time packets are kept in
6541 * the GRO layer
6542 */
6543 napi_gro_flush(n, !!timeout);
6544 }
6545
6546 gro_normal_list(n);
6547
6548 if (unlikely(!list_empty(&n->poll_list))) {
6549 /* If n->poll_list is not empty, we need to mask irqs */
6550 local_irq_save(flags);
6551 list_del_init(&n->poll_list);
6552 local_irq_restore(flags);
6553 }
6554
6555 do {
6556 val = READ_ONCE(n->state);
6557
6558 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6559
6560 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6561 NAPIF_STATE_SCHED_THREADED |
6562 NAPIF_STATE_PREFER_BUSY_POLL);
6563
6564 /* If STATE_MISSED was set, leave STATE_SCHED set,
6565 * because we will call napi->poll() one more time.
6566 * This C code was suggested by Alexander Duyck to help gcc.
6567 */
6568 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6569 NAPIF_STATE_SCHED;
6570 } while (cmpxchg(&n->state, val, new) != val);
6571
6572 if (unlikely(val & NAPIF_STATE_MISSED)) {
6573 __napi_schedule(n);
6574 return false;
6575 }
6576
6577 if (timeout)
6578 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6579 HRTIMER_MODE_REL_PINNED);
6580 return ret;
6581 }
6582 EXPORT_SYMBOL(napi_complete_done);
6583
6584 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)6585 static struct napi_struct *napi_by_id(unsigned int napi_id)
6586 {
6587 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6588 struct napi_struct *napi;
6589
6590 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6591 if (napi->napi_id == napi_id)
6592 return napi;
6593
6594 return NULL;
6595 }
6596
6597 #if defined(CONFIG_NET_RX_BUSY_POLL)
6598
__busy_poll_stop(struct napi_struct * napi,bool skip_schedule)6599 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6600 {
6601 if (!skip_schedule) {
6602 gro_normal_list(napi);
6603 __napi_schedule(napi);
6604 return;
6605 }
6606
6607 if (napi->gro_bitmask) {
6608 /* flush too old packets
6609 * If HZ < 1000, flush all packets.
6610 */
6611 napi_gro_flush(napi, HZ >= 1000);
6612 }
6613
6614 gro_normal_list(napi);
6615 clear_bit(NAPI_STATE_SCHED, &napi->state);
6616 }
6617
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock,bool prefer_busy_poll,u16 budget)6618 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6619 u16 budget)
6620 {
6621 bool skip_schedule = false;
6622 unsigned long timeout;
6623 int rc;
6624
6625 /* Busy polling means there is a high chance device driver hard irq
6626 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6627 * set in napi_schedule_prep().
6628 * Since we are about to call napi->poll() once more, we can safely
6629 * clear NAPI_STATE_MISSED.
6630 *
6631 * Note: x86 could use a single "lock and ..." instruction
6632 * to perform these two clear_bit()
6633 */
6634 clear_bit(NAPI_STATE_MISSED, &napi->state);
6635 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6636
6637 local_bh_disable();
6638
6639 if (prefer_busy_poll) {
6640 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6641 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6642 if (napi->defer_hard_irqs_count && timeout) {
6643 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6644 skip_schedule = true;
6645 }
6646 }
6647
6648 /* All we really want here is to re-enable device interrupts.
6649 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6650 */
6651 rc = napi->poll(napi, budget);
6652 /* We can't gro_normal_list() here, because napi->poll() might have
6653 * rearmed the napi (napi_complete_done()) in which case it could
6654 * already be running on another CPU.
6655 */
6656 trace_napi_poll(napi, rc, budget);
6657 netpoll_poll_unlock(have_poll_lock);
6658 if (rc == budget)
6659 __busy_poll_stop(napi, skip_schedule);
6660 local_bh_enable();
6661 }
6662
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6663 void napi_busy_loop(unsigned int napi_id,
6664 bool (*loop_end)(void *, unsigned long),
6665 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6666 {
6667 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6668 int (*napi_poll)(struct napi_struct *napi, int budget);
6669 void *have_poll_lock = NULL;
6670 struct napi_struct *napi;
6671
6672 restart:
6673 napi_poll = NULL;
6674
6675 rcu_read_lock();
6676
6677 napi = napi_by_id(napi_id);
6678 if (!napi)
6679 goto out;
6680
6681 preempt_disable();
6682 for (;;) {
6683 int work = 0;
6684
6685 local_bh_disable();
6686 if (!napi_poll) {
6687 unsigned long val = READ_ONCE(napi->state);
6688
6689 /* If multiple threads are competing for this napi,
6690 * we avoid dirtying napi->state as much as we can.
6691 */
6692 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6693 NAPIF_STATE_IN_BUSY_POLL)) {
6694 if (prefer_busy_poll)
6695 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6696 goto count;
6697 }
6698 if (cmpxchg(&napi->state, val,
6699 val | NAPIF_STATE_IN_BUSY_POLL |
6700 NAPIF_STATE_SCHED) != val) {
6701 if (prefer_busy_poll)
6702 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6703 goto count;
6704 }
6705 have_poll_lock = netpoll_poll_lock(napi);
6706 napi_poll = napi->poll;
6707 }
6708 work = napi_poll(napi, budget);
6709 trace_napi_poll(napi, work, budget);
6710 gro_normal_list(napi);
6711 count:
6712 if (work > 0)
6713 __NET_ADD_STATS(dev_net(napi->dev),
6714 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6715 local_bh_enable();
6716
6717 if (!loop_end || loop_end(loop_end_arg, start_time))
6718 break;
6719
6720 if (unlikely(need_resched())) {
6721 if (napi_poll)
6722 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6723 preempt_enable();
6724 rcu_read_unlock();
6725 cond_resched();
6726 if (loop_end(loop_end_arg, start_time))
6727 return;
6728 goto restart;
6729 }
6730 cpu_relax();
6731 }
6732 if (napi_poll)
6733 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6734 preempt_enable();
6735 out:
6736 rcu_read_unlock();
6737 }
6738 EXPORT_SYMBOL(napi_busy_loop);
6739
6740 #endif /* CONFIG_NET_RX_BUSY_POLL */
6741
napi_hash_add(struct napi_struct * napi)6742 static void napi_hash_add(struct napi_struct *napi)
6743 {
6744 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6745 return;
6746
6747 spin_lock(&napi_hash_lock);
6748
6749 /* 0..NR_CPUS range is reserved for sender_cpu use */
6750 do {
6751 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6752 napi_gen_id = MIN_NAPI_ID;
6753 } while (napi_by_id(napi_gen_id));
6754 napi->napi_id = napi_gen_id;
6755
6756 hlist_add_head_rcu(&napi->napi_hash_node,
6757 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6758
6759 spin_unlock(&napi_hash_lock);
6760 }
6761
6762 /* Warning : caller is responsible to make sure rcu grace period
6763 * is respected before freeing memory containing @napi
6764 */
napi_hash_del(struct napi_struct * napi)6765 static void napi_hash_del(struct napi_struct *napi)
6766 {
6767 spin_lock(&napi_hash_lock);
6768
6769 hlist_del_init_rcu(&napi->napi_hash_node);
6770
6771 spin_unlock(&napi_hash_lock);
6772 }
6773
napi_watchdog(struct hrtimer * timer)6774 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6775 {
6776 struct napi_struct *napi;
6777
6778 napi = container_of(timer, struct napi_struct, timer);
6779
6780 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6781 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6782 */
6783 if (!napi_disable_pending(napi) &&
6784 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6785 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6786 __napi_schedule_irqoff(napi);
6787 }
6788
6789 return HRTIMER_NORESTART;
6790 }
6791
init_gro_hash(struct napi_struct * napi)6792 static void init_gro_hash(struct napi_struct *napi)
6793 {
6794 int i;
6795
6796 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6797 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6798 napi->gro_hash[i].count = 0;
6799 }
6800 napi->gro_bitmask = 0;
6801 }
6802
dev_set_threaded(struct net_device * dev,bool threaded)6803 int dev_set_threaded(struct net_device *dev, bool threaded)
6804 {
6805 struct napi_struct *napi;
6806 int err = 0;
6807
6808 if (dev->threaded == threaded)
6809 return 0;
6810
6811 if (threaded) {
6812 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6813 if (!napi->thread) {
6814 err = napi_kthread_create(napi);
6815 if (err) {
6816 threaded = false;
6817 break;
6818 }
6819 }
6820 }
6821 }
6822
6823 dev->threaded = threaded;
6824
6825 /* Make sure kthread is created before THREADED bit
6826 * is set.
6827 */
6828 smp_mb__before_atomic();
6829
6830 /* Setting/unsetting threaded mode on a napi might not immediately
6831 * take effect, if the current napi instance is actively being
6832 * polled. In this case, the switch between threaded mode and
6833 * softirq mode will happen in the next round of napi_schedule().
6834 * This should not cause hiccups/stalls to the live traffic.
6835 */
6836 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6837 if (threaded)
6838 set_bit(NAPI_STATE_THREADED, &napi->state);
6839 else
6840 clear_bit(NAPI_STATE_THREADED, &napi->state);
6841 }
6842
6843 return err;
6844 }
6845 EXPORT_SYMBOL(dev_set_threaded);
6846
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)6847 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6848 int (*poll)(struct napi_struct *, int), int weight)
6849 {
6850 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6851 return;
6852
6853 INIT_LIST_HEAD(&napi->poll_list);
6854 INIT_HLIST_NODE(&napi->napi_hash_node);
6855 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6856 napi->timer.function = napi_watchdog;
6857 init_gro_hash(napi);
6858 napi->skb = NULL;
6859 INIT_LIST_HEAD(&napi->rx_list);
6860 napi->rx_count = 0;
6861 napi->poll = poll;
6862 if (weight > NAPI_POLL_WEIGHT)
6863 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6864 weight);
6865 napi->weight = weight;
6866 napi->dev = dev;
6867 #ifdef CONFIG_NETPOLL
6868 napi->poll_owner = -1;
6869 #endif
6870 set_bit(NAPI_STATE_SCHED, &napi->state);
6871 set_bit(NAPI_STATE_NPSVC, &napi->state);
6872 list_add_rcu(&napi->dev_list, &dev->napi_list);
6873 napi_hash_add(napi);
6874 /* Create kthread for this napi if dev->threaded is set.
6875 * Clear dev->threaded if kthread creation failed so that
6876 * threaded mode will not be enabled in napi_enable().
6877 */
6878 if (dev->threaded && napi_kthread_create(napi))
6879 dev->threaded = 0;
6880 }
6881 EXPORT_SYMBOL(netif_napi_add);
6882
napi_disable(struct napi_struct * n)6883 void napi_disable(struct napi_struct *n)
6884 {
6885 might_sleep();
6886 set_bit(NAPI_STATE_DISABLE, &n->state);
6887
6888 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6889 msleep(1);
6890 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6891 msleep(1);
6892
6893 hrtimer_cancel(&n->timer);
6894
6895 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6896 clear_bit(NAPI_STATE_DISABLE, &n->state);
6897 clear_bit(NAPI_STATE_THREADED, &n->state);
6898 }
6899 EXPORT_SYMBOL(napi_disable);
6900
6901 /**
6902 * napi_enable - enable NAPI scheduling
6903 * @n: NAPI context
6904 *
6905 * Resume NAPI from being scheduled on this context.
6906 * Must be paired with napi_disable.
6907 */
napi_enable(struct napi_struct * n)6908 void napi_enable(struct napi_struct *n)
6909 {
6910 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6911 smp_mb__before_atomic();
6912 clear_bit(NAPI_STATE_SCHED, &n->state);
6913 clear_bit(NAPI_STATE_NPSVC, &n->state);
6914 if (n->dev->threaded && n->thread)
6915 set_bit(NAPI_STATE_THREADED, &n->state);
6916 }
6917 EXPORT_SYMBOL(napi_enable);
6918
flush_gro_hash(struct napi_struct * napi)6919 static void flush_gro_hash(struct napi_struct *napi)
6920 {
6921 int i;
6922
6923 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6924 struct sk_buff *skb, *n;
6925
6926 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6927 kfree_skb(skb);
6928 napi->gro_hash[i].count = 0;
6929 }
6930 }
6931
6932 /* Must be called in process context */
__netif_napi_del(struct napi_struct * napi)6933 void __netif_napi_del(struct napi_struct *napi)
6934 {
6935 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6936 return;
6937
6938 napi_hash_del(napi);
6939 list_del_rcu(&napi->dev_list);
6940 napi_free_frags(napi);
6941
6942 flush_gro_hash(napi);
6943 napi->gro_bitmask = 0;
6944
6945 if (napi->thread) {
6946 kthread_stop(napi->thread);
6947 napi->thread = NULL;
6948 }
6949 }
6950 EXPORT_SYMBOL(__netif_napi_del);
6951
__napi_poll(struct napi_struct * n,bool * repoll)6952 static int __napi_poll(struct napi_struct *n, bool *repoll)
6953 {
6954 int work, weight;
6955
6956 weight = n->weight;
6957
6958 /* This NAPI_STATE_SCHED test is for avoiding a race
6959 * with netpoll's poll_napi(). Only the entity which
6960 * obtains the lock and sees NAPI_STATE_SCHED set will
6961 * actually make the ->poll() call. Therefore we avoid
6962 * accidentally calling ->poll() when NAPI is not scheduled.
6963 */
6964 work = 0;
6965 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6966 work = n->poll(n, weight);
6967 trace_napi_poll(n, work, weight);
6968 }
6969
6970 if (unlikely(work > weight))
6971 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6972 n->poll, work, weight);
6973
6974 if (likely(work < weight))
6975 return work;
6976
6977 /* Drivers must not modify the NAPI state if they
6978 * consume the entire weight. In such cases this code
6979 * still "owns" the NAPI instance and therefore can
6980 * move the instance around on the list at-will.
6981 */
6982 if (unlikely(napi_disable_pending(n))) {
6983 napi_complete(n);
6984 return work;
6985 }
6986
6987 /* The NAPI context has more processing work, but busy-polling
6988 * is preferred. Exit early.
6989 */
6990 if (napi_prefer_busy_poll(n)) {
6991 if (napi_complete_done(n, work)) {
6992 /* If timeout is not set, we need to make sure
6993 * that the NAPI is re-scheduled.
6994 */
6995 napi_schedule(n);
6996 }
6997 return work;
6998 }
6999
7000 if (n->gro_bitmask) {
7001 /* flush too old packets
7002 * If HZ < 1000, flush all packets.
7003 */
7004 napi_gro_flush(n, HZ >= 1000);
7005 }
7006
7007 gro_normal_list(n);
7008
7009 /* Some drivers may have called napi_schedule
7010 * prior to exhausting their budget.
7011 */
7012 if (unlikely(!list_empty(&n->poll_list))) {
7013 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7014 n->dev ? n->dev->name : "backlog");
7015 return work;
7016 }
7017
7018 *repoll = true;
7019
7020 return work;
7021 }
7022
napi_poll(struct napi_struct * n,struct list_head * repoll)7023 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7024 {
7025 bool do_repoll = false;
7026 void *have;
7027 int work;
7028
7029 list_del_init(&n->poll_list);
7030
7031 have = netpoll_poll_lock(n);
7032
7033 work = __napi_poll(n, &do_repoll);
7034
7035 if (do_repoll)
7036 list_add_tail(&n->poll_list, repoll);
7037
7038 netpoll_poll_unlock(have);
7039
7040 return work;
7041 }
7042
napi_thread_wait(struct napi_struct * napi)7043 static int napi_thread_wait(struct napi_struct *napi)
7044 {
7045 bool woken = false;
7046
7047 set_current_state(TASK_INTERRUPTIBLE);
7048
7049 while (!kthread_should_stop()) {
7050 /* Testing SCHED_THREADED bit here to make sure the current
7051 * kthread owns this napi and could poll on this napi.
7052 * Testing SCHED bit is not enough because SCHED bit might be
7053 * set by some other busy poll thread or by napi_disable().
7054 */
7055 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7056 WARN_ON(!list_empty(&napi->poll_list));
7057 __set_current_state(TASK_RUNNING);
7058 return 0;
7059 }
7060
7061 schedule();
7062 /* woken being true indicates this thread owns this napi. */
7063 woken = true;
7064 set_current_state(TASK_INTERRUPTIBLE);
7065 }
7066 __set_current_state(TASK_RUNNING);
7067
7068 return -1;
7069 }
7070
napi_threaded_poll(void * data)7071 static int napi_threaded_poll(void *data)
7072 {
7073 struct napi_struct *napi = data;
7074 void *have;
7075
7076 while (!napi_thread_wait(napi)) {
7077 for (;;) {
7078 bool repoll = false;
7079
7080 local_bh_disable();
7081
7082 have = netpoll_poll_lock(napi);
7083 __napi_poll(napi, &repoll);
7084 netpoll_poll_unlock(have);
7085
7086 local_bh_enable();
7087
7088 if (!repoll)
7089 break;
7090
7091 cond_resched();
7092 }
7093 }
7094 return 0;
7095 }
7096
net_rx_action(struct softirq_action * h)7097 static __latent_entropy void net_rx_action(struct softirq_action *h)
7098 {
7099 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7100 unsigned long time_limit = jiffies +
7101 usecs_to_jiffies(netdev_budget_usecs);
7102 int budget = netdev_budget;
7103 LIST_HEAD(list);
7104 LIST_HEAD(repoll);
7105
7106 local_irq_disable();
7107 list_splice_init(&sd->poll_list, &list);
7108 local_irq_enable();
7109
7110 for (;;) {
7111 struct napi_struct *n;
7112
7113 if (list_empty(&list)) {
7114 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7115 return;
7116 break;
7117 }
7118
7119 n = list_first_entry(&list, struct napi_struct, poll_list);
7120 budget -= napi_poll(n, &repoll);
7121
7122 /* If softirq window is exhausted then punt.
7123 * Allow this to run for 2 jiffies since which will allow
7124 * an average latency of 1.5/HZ.
7125 */
7126 if (unlikely(budget <= 0 ||
7127 time_after_eq(jiffies, time_limit))) {
7128 sd->time_squeeze++;
7129 break;
7130 }
7131 }
7132
7133 local_irq_disable();
7134
7135 list_splice_tail_init(&sd->poll_list, &list);
7136 list_splice_tail(&repoll, &list);
7137 list_splice(&list, &sd->poll_list);
7138 if (!list_empty(&sd->poll_list))
7139 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7140
7141 net_rps_action_and_irq_enable(sd);
7142 }
7143
7144 struct netdev_adjacent {
7145 struct net_device *dev;
7146
7147 /* upper master flag, there can only be one master device per list */
7148 bool master;
7149
7150 /* lookup ignore flag */
7151 bool ignore;
7152
7153 /* counter for the number of times this device was added to us */
7154 u16 ref_nr;
7155
7156 /* private field for the users */
7157 void *private;
7158
7159 struct list_head list;
7160 struct rcu_head rcu;
7161 };
7162
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)7163 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7164 struct list_head *adj_list)
7165 {
7166 struct netdev_adjacent *adj;
7167
7168 list_for_each_entry(adj, adj_list, list) {
7169 if (adj->dev == adj_dev)
7170 return adj;
7171 }
7172 return NULL;
7173 }
7174
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)7175 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7176 struct netdev_nested_priv *priv)
7177 {
7178 struct net_device *dev = (struct net_device *)priv->data;
7179
7180 return upper_dev == dev;
7181 }
7182
7183 /**
7184 * netdev_has_upper_dev - Check if device is linked to an upper device
7185 * @dev: device
7186 * @upper_dev: upper device to check
7187 *
7188 * Find out if a device is linked to specified upper device and return true
7189 * in case it is. Note that this checks only immediate upper device,
7190 * not through a complete stack of devices. The caller must hold the RTNL lock.
7191 */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7192 bool netdev_has_upper_dev(struct net_device *dev,
7193 struct net_device *upper_dev)
7194 {
7195 struct netdev_nested_priv priv = {
7196 .data = (void *)upper_dev,
7197 };
7198
7199 ASSERT_RTNL();
7200
7201 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7202 &priv);
7203 }
7204 EXPORT_SYMBOL(netdev_has_upper_dev);
7205
7206 /**
7207 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7208 * @dev: device
7209 * @upper_dev: upper device to check
7210 *
7211 * Find out if a device is linked to specified upper device and return true
7212 * in case it is. Note that this checks the entire upper device chain.
7213 * The caller must hold rcu lock.
7214 */
7215
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)7216 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7217 struct net_device *upper_dev)
7218 {
7219 struct netdev_nested_priv priv = {
7220 .data = (void *)upper_dev,
7221 };
7222
7223 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7224 &priv);
7225 }
7226 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7227
7228 /**
7229 * netdev_has_any_upper_dev - Check if device is linked to some device
7230 * @dev: device
7231 *
7232 * Find out if a device is linked to an upper device and return true in case
7233 * it is. The caller must hold the RTNL lock.
7234 */
netdev_has_any_upper_dev(struct net_device * dev)7235 bool netdev_has_any_upper_dev(struct net_device *dev)
7236 {
7237 ASSERT_RTNL();
7238
7239 return !list_empty(&dev->adj_list.upper);
7240 }
7241 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7242
7243 /**
7244 * netdev_master_upper_dev_get - Get master upper device
7245 * @dev: device
7246 *
7247 * Find a master upper device and return pointer to it or NULL in case
7248 * it's not there. The caller must hold the RTNL lock.
7249 */
netdev_master_upper_dev_get(struct net_device * dev)7250 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7251 {
7252 struct netdev_adjacent *upper;
7253
7254 ASSERT_RTNL();
7255
7256 if (list_empty(&dev->adj_list.upper))
7257 return NULL;
7258
7259 upper = list_first_entry(&dev->adj_list.upper,
7260 struct netdev_adjacent, list);
7261 if (likely(upper->master))
7262 return upper->dev;
7263 return NULL;
7264 }
7265 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7266
__netdev_master_upper_dev_get(struct net_device * dev)7267 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7268 {
7269 struct netdev_adjacent *upper;
7270
7271 ASSERT_RTNL();
7272
7273 if (list_empty(&dev->adj_list.upper))
7274 return NULL;
7275
7276 upper = list_first_entry(&dev->adj_list.upper,
7277 struct netdev_adjacent, list);
7278 if (likely(upper->master) && !upper->ignore)
7279 return upper->dev;
7280 return NULL;
7281 }
7282
7283 /**
7284 * netdev_has_any_lower_dev - Check if device is linked to some device
7285 * @dev: device
7286 *
7287 * Find out if a device is linked to a lower device and return true in case
7288 * it is. The caller must hold the RTNL lock.
7289 */
netdev_has_any_lower_dev(struct net_device * dev)7290 static bool netdev_has_any_lower_dev(struct net_device *dev)
7291 {
7292 ASSERT_RTNL();
7293
7294 return !list_empty(&dev->adj_list.lower);
7295 }
7296
netdev_adjacent_get_private(struct list_head * adj_list)7297 void *netdev_adjacent_get_private(struct list_head *adj_list)
7298 {
7299 struct netdev_adjacent *adj;
7300
7301 adj = list_entry(adj_list, struct netdev_adjacent, list);
7302
7303 return adj->private;
7304 }
7305 EXPORT_SYMBOL(netdev_adjacent_get_private);
7306
7307 /**
7308 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7309 * @dev: device
7310 * @iter: list_head ** of the current position
7311 *
7312 * Gets the next device from the dev's upper list, starting from iter
7313 * position. The caller must hold RCU read lock.
7314 */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)7315 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7316 struct list_head **iter)
7317 {
7318 struct netdev_adjacent *upper;
7319
7320 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7321
7322 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7323
7324 if (&upper->list == &dev->adj_list.upper)
7325 return NULL;
7326
7327 *iter = &upper->list;
7328
7329 return upper->dev;
7330 }
7331 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7332
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7333 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7334 struct list_head **iter,
7335 bool *ignore)
7336 {
7337 struct netdev_adjacent *upper;
7338
7339 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7340
7341 if (&upper->list == &dev->adj_list.upper)
7342 return NULL;
7343
7344 *iter = &upper->list;
7345 *ignore = upper->ignore;
7346
7347 return upper->dev;
7348 }
7349
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)7350 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7351 struct list_head **iter)
7352 {
7353 struct netdev_adjacent *upper;
7354
7355 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7356
7357 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7358
7359 if (&upper->list == &dev->adj_list.upper)
7360 return NULL;
7361
7362 *iter = &upper->list;
7363
7364 return upper->dev;
7365 }
7366
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7367 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7368 int (*fn)(struct net_device *dev,
7369 struct netdev_nested_priv *priv),
7370 struct netdev_nested_priv *priv)
7371 {
7372 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7373 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7374 int ret, cur = 0;
7375 bool ignore;
7376
7377 now = dev;
7378 iter = &dev->adj_list.upper;
7379
7380 while (1) {
7381 if (now != dev) {
7382 ret = fn(now, priv);
7383 if (ret)
7384 return ret;
7385 }
7386
7387 next = NULL;
7388 while (1) {
7389 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7390 if (!udev)
7391 break;
7392 if (ignore)
7393 continue;
7394
7395 next = udev;
7396 niter = &udev->adj_list.upper;
7397 dev_stack[cur] = now;
7398 iter_stack[cur++] = iter;
7399 break;
7400 }
7401
7402 if (!next) {
7403 if (!cur)
7404 return 0;
7405 next = dev_stack[--cur];
7406 niter = iter_stack[cur];
7407 }
7408
7409 now = next;
7410 iter = niter;
7411 }
7412
7413 return 0;
7414 }
7415
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7416 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7417 int (*fn)(struct net_device *dev,
7418 struct netdev_nested_priv *priv),
7419 struct netdev_nested_priv *priv)
7420 {
7421 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7422 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7423 int ret, cur = 0;
7424
7425 now = dev;
7426 iter = &dev->adj_list.upper;
7427
7428 while (1) {
7429 if (now != dev) {
7430 ret = fn(now, priv);
7431 if (ret)
7432 return ret;
7433 }
7434
7435 next = NULL;
7436 while (1) {
7437 udev = netdev_next_upper_dev_rcu(now, &iter);
7438 if (!udev)
7439 break;
7440
7441 next = udev;
7442 niter = &udev->adj_list.upper;
7443 dev_stack[cur] = now;
7444 iter_stack[cur++] = iter;
7445 break;
7446 }
7447
7448 if (!next) {
7449 if (!cur)
7450 return 0;
7451 next = dev_stack[--cur];
7452 niter = iter_stack[cur];
7453 }
7454
7455 now = next;
7456 iter = niter;
7457 }
7458
7459 return 0;
7460 }
7461 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7462
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7463 static bool __netdev_has_upper_dev(struct net_device *dev,
7464 struct net_device *upper_dev)
7465 {
7466 struct netdev_nested_priv priv = {
7467 .flags = 0,
7468 .data = (void *)upper_dev,
7469 };
7470
7471 ASSERT_RTNL();
7472
7473 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7474 &priv);
7475 }
7476
7477 /**
7478 * netdev_lower_get_next_private - Get the next ->private from the
7479 * lower neighbour list
7480 * @dev: device
7481 * @iter: list_head ** of the current position
7482 *
7483 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7484 * list, starting from iter position. The caller must hold either hold the
7485 * RTNL lock or its own locking that guarantees that the neighbour lower
7486 * list will remain unchanged.
7487 */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)7488 void *netdev_lower_get_next_private(struct net_device *dev,
7489 struct list_head **iter)
7490 {
7491 struct netdev_adjacent *lower;
7492
7493 lower = list_entry(*iter, struct netdev_adjacent, list);
7494
7495 if (&lower->list == &dev->adj_list.lower)
7496 return NULL;
7497
7498 *iter = lower->list.next;
7499
7500 return lower->private;
7501 }
7502 EXPORT_SYMBOL(netdev_lower_get_next_private);
7503
7504 /**
7505 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7506 * lower neighbour list, RCU
7507 * variant
7508 * @dev: device
7509 * @iter: list_head ** of the current position
7510 *
7511 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7512 * list, starting from iter position. The caller must hold RCU read lock.
7513 */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)7514 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7515 struct list_head **iter)
7516 {
7517 struct netdev_adjacent *lower;
7518
7519 WARN_ON_ONCE(!rcu_read_lock_held());
7520
7521 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7522
7523 if (&lower->list == &dev->adj_list.lower)
7524 return NULL;
7525
7526 *iter = &lower->list;
7527
7528 return lower->private;
7529 }
7530 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7531
7532 /**
7533 * netdev_lower_get_next - Get the next device from the lower neighbour
7534 * list
7535 * @dev: device
7536 * @iter: list_head ** of the current position
7537 *
7538 * Gets the next netdev_adjacent from the dev's lower neighbour
7539 * list, starting from iter position. The caller must hold RTNL lock or
7540 * its own locking that guarantees that the neighbour lower
7541 * list will remain unchanged.
7542 */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)7543 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7544 {
7545 struct netdev_adjacent *lower;
7546
7547 lower = list_entry(*iter, struct netdev_adjacent, list);
7548
7549 if (&lower->list == &dev->adj_list.lower)
7550 return NULL;
7551
7552 *iter = lower->list.next;
7553
7554 return lower->dev;
7555 }
7556 EXPORT_SYMBOL(netdev_lower_get_next);
7557
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)7558 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7559 struct list_head **iter)
7560 {
7561 struct netdev_adjacent *lower;
7562
7563 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7564
7565 if (&lower->list == &dev->adj_list.lower)
7566 return NULL;
7567
7568 *iter = &lower->list;
7569
7570 return lower->dev;
7571 }
7572
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7573 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7574 struct list_head **iter,
7575 bool *ignore)
7576 {
7577 struct netdev_adjacent *lower;
7578
7579 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7580
7581 if (&lower->list == &dev->adj_list.lower)
7582 return NULL;
7583
7584 *iter = &lower->list;
7585 *ignore = lower->ignore;
7586
7587 return lower->dev;
7588 }
7589
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7590 int netdev_walk_all_lower_dev(struct net_device *dev,
7591 int (*fn)(struct net_device *dev,
7592 struct netdev_nested_priv *priv),
7593 struct netdev_nested_priv *priv)
7594 {
7595 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7596 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7597 int ret, cur = 0;
7598
7599 now = dev;
7600 iter = &dev->adj_list.lower;
7601
7602 while (1) {
7603 if (now != dev) {
7604 ret = fn(now, priv);
7605 if (ret)
7606 return ret;
7607 }
7608
7609 next = NULL;
7610 while (1) {
7611 ldev = netdev_next_lower_dev(now, &iter);
7612 if (!ldev)
7613 break;
7614
7615 next = ldev;
7616 niter = &ldev->adj_list.lower;
7617 dev_stack[cur] = now;
7618 iter_stack[cur++] = iter;
7619 break;
7620 }
7621
7622 if (!next) {
7623 if (!cur)
7624 return 0;
7625 next = dev_stack[--cur];
7626 niter = iter_stack[cur];
7627 }
7628
7629 now = next;
7630 iter = niter;
7631 }
7632
7633 return 0;
7634 }
7635 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7636
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7637 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7638 int (*fn)(struct net_device *dev,
7639 struct netdev_nested_priv *priv),
7640 struct netdev_nested_priv *priv)
7641 {
7642 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7643 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7644 int ret, cur = 0;
7645 bool ignore;
7646
7647 now = dev;
7648 iter = &dev->adj_list.lower;
7649
7650 while (1) {
7651 if (now != dev) {
7652 ret = fn(now, priv);
7653 if (ret)
7654 return ret;
7655 }
7656
7657 next = NULL;
7658 while (1) {
7659 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7660 if (!ldev)
7661 break;
7662 if (ignore)
7663 continue;
7664
7665 next = ldev;
7666 niter = &ldev->adj_list.lower;
7667 dev_stack[cur] = now;
7668 iter_stack[cur++] = iter;
7669 break;
7670 }
7671
7672 if (!next) {
7673 if (!cur)
7674 return 0;
7675 next = dev_stack[--cur];
7676 niter = iter_stack[cur];
7677 }
7678
7679 now = next;
7680 iter = niter;
7681 }
7682
7683 return 0;
7684 }
7685
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)7686 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7687 struct list_head **iter)
7688 {
7689 struct netdev_adjacent *lower;
7690
7691 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7692 if (&lower->list == &dev->adj_list.lower)
7693 return NULL;
7694
7695 *iter = &lower->list;
7696
7697 return lower->dev;
7698 }
7699 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7700
__netdev_upper_depth(struct net_device * dev)7701 static u8 __netdev_upper_depth(struct net_device *dev)
7702 {
7703 struct net_device *udev;
7704 struct list_head *iter;
7705 u8 max_depth = 0;
7706 bool ignore;
7707
7708 for (iter = &dev->adj_list.upper,
7709 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7710 udev;
7711 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7712 if (ignore)
7713 continue;
7714 if (max_depth < udev->upper_level)
7715 max_depth = udev->upper_level;
7716 }
7717
7718 return max_depth;
7719 }
7720
__netdev_lower_depth(struct net_device * dev)7721 static u8 __netdev_lower_depth(struct net_device *dev)
7722 {
7723 struct net_device *ldev;
7724 struct list_head *iter;
7725 u8 max_depth = 0;
7726 bool ignore;
7727
7728 for (iter = &dev->adj_list.lower,
7729 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7730 ldev;
7731 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7732 if (ignore)
7733 continue;
7734 if (max_depth < ldev->lower_level)
7735 max_depth = ldev->lower_level;
7736 }
7737
7738 return max_depth;
7739 }
7740
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)7741 static int __netdev_update_upper_level(struct net_device *dev,
7742 struct netdev_nested_priv *__unused)
7743 {
7744 dev->upper_level = __netdev_upper_depth(dev) + 1;
7745 return 0;
7746 }
7747
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)7748 static int __netdev_update_lower_level(struct net_device *dev,
7749 struct netdev_nested_priv *priv)
7750 {
7751 dev->lower_level = __netdev_lower_depth(dev) + 1;
7752
7753 #ifdef CONFIG_LOCKDEP
7754 if (!priv)
7755 return 0;
7756
7757 if (priv->flags & NESTED_SYNC_IMM)
7758 dev->nested_level = dev->lower_level - 1;
7759 if (priv->flags & NESTED_SYNC_TODO)
7760 net_unlink_todo(dev);
7761 #endif
7762 return 0;
7763 }
7764
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7765 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7766 int (*fn)(struct net_device *dev,
7767 struct netdev_nested_priv *priv),
7768 struct netdev_nested_priv *priv)
7769 {
7770 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7771 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7772 int ret, cur = 0;
7773
7774 now = dev;
7775 iter = &dev->adj_list.lower;
7776
7777 while (1) {
7778 if (now != dev) {
7779 ret = fn(now, priv);
7780 if (ret)
7781 return ret;
7782 }
7783
7784 next = NULL;
7785 while (1) {
7786 ldev = netdev_next_lower_dev_rcu(now, &iter);
7787 if (!ldev)
7788 break;
7789
7790 next = ldev;
7791 niter = &ldev->adj_list.lower;
7792 dev_stack[cur] = now;
7793 iter_stack[cur++] = iter;
7794 break;
7795 }
7796
7797 if (!next) {
7798 if (!cur)
7799 return 0;
7800 next = dev_stack[--cur];
7801 niter = iter_stack[cur];
7802 }
7803
7804 now = next;
7805 iter = niter;
7806 }
7807
7808 return 0;
7809 }
7810 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7811
7812 /**
7813 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7814 * lower neighbour list, RCU
7815 * variant
7816 * @dev: device
7817 *
7818 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7819 * list. The caller must hold RCU read lock.
7820 */
netdev_lower_get_first_private_rcu(struct net_device * dev)7821 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7822 {
7823 struct netdev_adjacent *lower;
7824
7825 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7826 struct netdev_adjacent, list);
7827 if (lower)
7828 return lower->private;
7829 return NULL;
7830 }
7831 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7832
7833 /**
7834 * netdev_master_upper_dev_get_rcu - Get master upper device
7835 * @dev: device
7836 *
7837 * Find a master upper device and return pointer to it or NULL in case
7838 * it's not there. The caller must hold the RCU read lock.
7839 */
netdev_master_upper_dev_get_rcu(struct net_device * dev)7840 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7841 {
7842 struct netdev_adjacent *upper;
7843
7844 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7845 struct netdev_adjacent, list);
7846 if (upper && likely(upper->master))
7847 return upper->dev;
7848 return NULL;
7849 }
7850 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7851
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7852 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7853 struct net_device *adj_dev,
7854 struct list_head *dev_list)
7855 {
7856 char linkname[IFNAMSIZ+7];
7857
7858 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7859 "upper_%s" : "lower_%s", adj_dev->name);
7860 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7861 linkname);
7862 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)7863 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7864 char *name,
7865 struct list_head *dev_list)
7866 {
7867 char linkname[IFNAMSIZ+7];
7868
7869 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7870 "upper_%s" : "lower_%s", name);
7871 sysfs_remove_link(&(dev->dev.kobj), linkname);
7872 }
7873
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7874 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7875 struct net_device *adj_dev,
7876 struct list_head *dev_list)
7877 {
7878 return (dev_list == &dev->adj_list.upper ||
7879 dev_list == &dev->adj_list.lower) &&
7880 net_eq(dev_net(dev), dev_net(adj_dev));
7881 }
7882
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)7883 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7884 struct net_device *adj_dev,
7885 struct list_head *dev_list,
7886 void *private, bool master)
7887 {
7888 struct netdev_adjacent *adj;
7889 int ret;
7890
7891 adj = __netdev_find_adj(adj_dev, dev_list);
7892
7893 if (adj) {
7894 adj->ref_nr += 1;
7895 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7896 dev->name, adj_dev->name, adj->ref_nr);
7897
7898 return 0;
7899 }
7900
7901 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7902 if (!adj)
7903 return -ENOMEM;
7904
7905 adj->dev = adj_dev;
7906 adj->master = master;
7907 adj->ref_nr = 1;
7908 adj->private = private;
7909 adj->ignore = false;
7910 dev_hold(adj_dev);
7911
7912 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7913 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7914
7915 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7916 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7917 if (ret)
7918 goto free_adj;
7919 }
7920
7921 /* Ensure that master link is always the first item in list. */
7922 if (master) {
7923 ret = sysfs_create_link(&(dev->dev.kobj),
7924 &(adj_dev->dev.kobj), "master");
7925 if (ret)
7926 goto remove_symlinks;
7927
7928 list_add_rcu(&adj->list, dev_list);
7929 } else {
7930 list_add_tail_rcu(&adj->list, dev_list);
7931 }
7932
7933 return 0;
7934
7935 remove_symlinks:
7936 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7937 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7938 free_adj:
7939 kfree(adj);
7940 dev_put(adj_dev);
7941
7942 return ret;
7943 }
7944
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)7945 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7946 struct net_device *adj_dev,
7947 u16 ref_nr,
7948 struct list_head *dev_list)
7949 {
7950 struct netdev_adjacent *adj;
7951
7952 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7953 dev->name, adj_dev->name, ref_nr);
7954
7955 adj = __netdev_find_adj(adj_dev, dev_list);
7956
7957 if (!adj) {
7958 pr_err("Adjacency does not exist for device %s from %s\n",
7959 dev->name, adj_dev->name);
7960 WARN_ON(1);
7961 return;
7962 }
7963
7964 if (adj->ref_nr > ref_nr) {
7965 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7966 dev->name, adj_dev->name, ref_nr,
7967 adj->ref_nr - ref_nr);
7968 adj->ref_nr -= ref_nr;
7969 return;
7970 }
7971
7972 if (adj->master)
7973 sysfs_remove_link(&(dev->dev.kobj), "master");
7974
7975 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7976 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7977
7978 list_del_rcu(&adj->list);
7979 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7980 adj_dev->name, dev->name, adj_dev->name);
7981 dev_put(adj_dev);
7982 kfree_rcu(adj, rcu);
7983 }
7984
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)7985 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7986 struct net_device *upper_dev,
7987 struct list_head *up_list,
7988 struct list_head *down_list,
7989 void *private, bool master)
7990 {
7991 int ret;
7992
7993 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7994 private, master);
7995 if (ret)
7996 return ret;
7997
7998 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7999 private, false);
8000 if (ret) {
8001 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8002 return ret;
8003 }
8004
8005 return 0;
8006 }
8007
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)8008 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8009 struct net_device *upper_dev,
8010 u16 ref_nr,
8011 struct list_head *up_list,
8012 struct list_head *down_list)
8013 {
8014 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8015 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8016 }
8017
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)8018 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8019 struct net_device *upper_dev,
8020 void *private, bool master)
8021 {
8022 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8023 &dev->adj_list.upper,
8024 &upper_dev->adj_list.lower,
8025 private, master);
8026 }
8027
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)8028 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8029 struct net_device *upper_dev)
8030 {
8031 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8032 &dev->adj_list.upper,
8033 &upper_dev->adj_list.lower);
8034 }
8035
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)8036 static int __netdev_upper_dev_link(struct net_device *dev,
8037 struct net_device *upper_dev, bool master,
8038 void *upper_priv, void *upper_info,
8039 struct netdev_nested_priv *priv,
8040 struct netlink_ext_ack *extack)
8041 {
8042 struct netdev_notifier_changeupper_info changeupper_info = {
8043 .info = {
8044 .dev = dev,
8045 .extack = extack,
8046 },
8047 .upper_dev = upper_dev,
8048 .master = master,
8049 .linking = true,
8050 .upper_info = upper_info,
8051 };
8052 struct net_device *master_dev;
8053 int ret = 0;
8054
8055 ASSERT_RTNL();
8056
8057 if (dev == upper_dev)
8058 return -EBUSY;
8059
8060 /* To prevent loops, check if dev is not upper device to upper_dev. */
8061 if (__netdev_has_upper_dev(upper_dev, dev))
8062 return -EBUSY;
8063
8064 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8065 return -EMLINK;
8066
8067 if (!master) {
8068 if (__netdev_has_upper_dev(dev, upper_dev))
8069 return -EEXIST;
8070 } else {
8071 master_dev = __netdev_master_upper_dev_get(dev);
8072 if (master_dev)
8073 return master_dev == upper_dev ? -EEXIST : -EBUSY;
8074 }
8075
8076 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8077 &changeupper_info.info);
8078 ret = notifier_to_errno(ret);
8079 if (ret)
8080 return ret;
8081
8082 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8083 master);
8084 if (ret)
8085 return ret;
8086
8087 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8088 &changeupper_info.info);
8089 ret = notifier_to_errno(ret);
8090 if (ret)
8091 goto rollback;
8092
8093 __netdev_update_upper_level(dev, NULL);
8094 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8095
8096 __netdev_update_lower_level(upper_dev, priv);
8097 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8098 priv);
8099
8100 return 0;
8101
8102 rollback:
8103 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8104
8105 return ret;
8106 }
8107
8108 /**
8109 * netdev_upper_dev_link - Add a link to the upper device
8110 * @dev: device
8111 * @upper_dev: new upper device
8112 * @extack: netlink extended ack
8113 *
8114 * Adds a link to device which is upper to this one. The caller must hold
8115 * the RTNL lock. On a failure a negative errno code is returned.
8116 * On success the reference counts are adjusted and the function
8117 * returns zero.
8118 */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)8119 int netdev_upper_dev_link(struct net_device *dev,
8120 struct net_device *upper_dev,
8121 struct netlink_ext_ack *extack)
8122 {
8123 struct netdev_nested_priv priv = {
8124 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8125 .data = NULL,
8126 };
8127
8128 return __netdev_upper_dev_link(dev, upper_dev, false,
8129 NULL, NULL, &priv, extack);
8130 }
8131 EXPORT_SYMBOL(netdev_upper_dev_link);
8132
8133 /**
8134 * netdev_master_upper_dev_link - Add a master link to the upper device
8135 * @dev: device
8136 * @upper_dev: new upper device
8137 * @upper_priv: upper device private
8138 * @upper_info: upper info to be passed down via notifier
8139 * @extack: netlink extended ack
8140 *
8141 * Adds a link to device which is upper to this one. In this case, only
8142 * one master upper device can be linked, although other non-master devices
8143 * might be linked as well. The caller must hold the RTNL lock.
8144 * On a failure a negative errno code is returned. On success the reference
8145 * counts are adjusted and the function returns zero.
8146 */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)8147 int netdev_master_upper_dev_link(struct net_device *dev,
8148 struct net_device *upper_dev,
8149 void *upper_priv, void *upper_info,
8150 struct netlink_ext_ack *extack)
8151 {
8152 struct netdev_nested_priv priv = {
8153 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8154 .data = NULL,
8155 };
8156
8157 return __netdev_upper_dev_link(dev, upper_dev, true,
8158 upper_priv, upper_info, &priv, extack);
8159 }
8160 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8161
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)8162 static void __netdev_upper_dev_unlink(struct net_device *dev,
8163 struct net_device *upper_dev,
8164 struct netdev_nested_priv *priv)
8165 {
8166 struct netdev_notifier_changeupper_info changeupper_info = {
8167 .info = {
8168 .dev = dev,
8169 },
8170 .upper_dev = upper_dev,
8171 .linking = false,
8172 };
8173
8174 ASSERT_RTNL();
8175
8176 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8177
8178 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8179 &changeupper_info.info);
8180
8181 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8182
8183 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8184 &changeupper_info.info);
8185
8186 __netdev_update_upper_level(dev, NULL);
8187 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8188
8189 __netdev_update_lower_level(upper_dev, priv);
8190 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8191 priv);
8192 }
8193
8194 /**
8195 * netdev_upper_dev_unlink - Removes a link to upper device
8196 * @dev: device
8197 * @upper_dev: new upper device
8198 *
8199 * Removes a link to device which is upper to this one. The caller must hold
8200 * the RTNL lock.
8201 */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)8202 void netdev_upper_dev_unlink(struct net_device *dev,
8203 struct net_device *upper_dev)
8204 {
8205 struct netdev_nested_priv priv = {
8206 .flags = NESTED_SYNC_TODO,
8207 .data = NULL,
8208 };
8209
8210 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8211 }
8212 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8213
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)8214 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8215 struct net_device *lower_dev,
8216 bool val)
8217 {
8218 struct netdev_adjacent *adj;
8219
8220 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8221 if (adj)
8222 adj->ignore = val;
8223
8224 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8225 if (adj)
8226 adj->ignore = val;
8227 }
8228
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)8229 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8230 struct net_device *lower_dev)
8231 {
8232 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8233 }
8234
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)8235 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8236 struct net_device *lower_dev)
8237 {
8238 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8239 }
8240
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)8241 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8242 struct net_device *new_dev,
8243 struct net_device *dev,
8244 struct netlink_ext_ack *extack)
8245 {
8246 struct netdev_nested_priv priv = {
8247 .flags = 0,
8248 .data = NULL,
8249 };
8250 int err;
8251
8252 if (!new_dev)
8253 return 0;
8254
8255 if (old_dev && new_dev != old_dev)
8256 netdev_adjacent_dev_disable(dev, old_dev);
8257 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8258 extack);
8259 if (err) {
8260 if (old_dev && new_dev != old_dev)
8261 netdev_adjacent_dev_enable(dev, old_dev);
8262 return err;
8263 }
8264
8265 return 0;
8266 }
8267 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8268
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8269 void netdev_adjacent_change_commit(struct net_device *old_dev,
8270 struct net_device *new_dev,
8271 struct net_device *dev)
8272 {
8273 struct netdev_nested_priv priv = {
8274 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8275 .data = NULL,
8276 };
8277
8278 if (!new_dev || !old_dev)
8279 return;
8280
8281 if (new_dev == old_dev)
8282 return;
8283
8284 netdev_adjacent_dev_enable(dev, old_dev);
8285 __netdev_upper_dev_unlink(old_dev, dev, &priv);
8286 }
8287 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8288
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8289 void netdev_adjacent_change_abort(struct net_device *old_dev,
8290 struct net_device *new_dev,
8291 struct net_device *dev)
8292 {
8293 struct netdev_nested_priv priv = {
8294 .flags = 0,
8295 .data = NULL,
8296 };
8297
8298 if (!new_dev)
8299 return;
8300
8301 if (old_dev && new_dev != old_dev)
8302 netdev_adjacent_dev_enable(dev, old_dev);
8303
8304 __netdev_upper_dev_unlink(new_dev, dev, &priv);
8305 }
8306 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8307
8308 /**
8309 * netdev_bonding_info_change - Dispatch event about slave change
8310 * @dev: device
8311 * @bonding_info: info to dispatch
8312 *
8313 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8314 * The caller must hold the RTNL lock.
8315 */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)8316 void netdev_bonding_info_change(struct net_device *dev,
8317 struct netdev_bonding_info *bonding_info)
8318 {
8319 struct netdev_notifier_bonding_info info = {
8320 .info.dev = dev,
8321 };
8322
8323 memcpy(&info.bonding_info, bonding_info,
8324 sizeof(struct netdev_bonding_info));
8325 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8326 &info.info);
8327 }
8328 EXPORT_SYMBOL(netdev_bonding_info_change);
8329
8330 /**
8331 * netdev_get_xmit_slave - Get the xmit slave of master device
8332 * @dev: device
8333 * @skb: The packet
8334 * @all_slaves: assume all the slaves are active
8335 *
8336 * The reference counters are not incremented so the caller must be
8337 * careful with locks. The caller must hold RCU lock.
8338 * %NULL is returned if no slave is found.
8339 */
8340
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)8341 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8342 struct sk_buff *skb,
8343 bool all_slaves)
8344 {
8345 const struct net_device_ops *ops = dev->netdev_ops;
8346
8347 if (!ops->ndo_get_xmit_slave)
8348 return NULL;
8349 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8350 }
8351 EXPORT_SYMBOL(netdev_get_xmit_slave);
8352
netdev_sk_get_lower_dev(struct net_device * dev,struct sock * sk)8353 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8354 struct sock *sk)
8355 {
8356 const struct net_device_ops *ops = dev->netdev_ops;
8357
8358 if (!ops->ndo_sk_get_lower_dev)
8359 return NULL;
8360 return ops->ndo_sk_get_lower_dev(dev, sk);
8361 }
8362
8363 /**
8364 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8365 * @dev: device
8366 * @sk: the socket
8367 *
8368 * %NULL is returned if no lower device is found.
8369 */
8370
netdev_sk_get_lowest_dev(struct net_device * dev,struct sock * sk)8371 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8372 struct sock *sk)
8373 {
8374 struct net_device *lower;
8375
8376 lower = netdev_sk_get_lower_dev(dev, sk);
8377 while (lower) {
8378 dev = lower;
8379 lower = netdev_sk_get_lower_dev(dev, sk);
8380 }
8381
8382 return dev;
8383 }
8384 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8385
netdev_adjacent_add_links(struct net_device * dev)8386 static void netdev_adjacent_add_links(struct net_device *dev)
8387 {
8388 struct netdev_adjacent *iter;
8389
8390 struct net *net = dev_net(dev);
8391
8392 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8393 if (!net_eq(net, dev_net(iter->dev)))
8394 continue;
8395 netdev_adjacent_sysfs_add(iter->dev, dev,
8396 &iter->dev->adj_list.lower);
8397 netdev_adjacent_sysfs_add(dev, iter->dev,
8398 &dev->adj_list.upper);
8399 }
8400
8401 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8402 if (!net_eq(net, dev_net(iter->dev)))
8403 continue;
8404 netdev_adjacent_sysfs_add(iter->dev, dev,
8405 &iter->dev->adj_list.upper);
8406 netdev_adjacent_sysfs_add(dev, iter->dev,
8407 &dev->adj_list.lower);
8408 }
8409 }
8410
netdev_adjacent_del_links(struct net_device * dev)8411 static void netdev_adjacent_del_links(struct net_device *dev)
8412 {
8413 struct netdev_adjacent *iter;
8414
8415 struct net *net = dev_net(dev);
8416
8417 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8418 if (!net_eq(net, dev_net(iter->dev)))
8419 continue;
8420 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8421 &iter->dev->adj_list.lower);
8422 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8423 &dev->adj_list.upper);
8424 }
8425
8426 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8427 if (!net_eq(net, dev_net(iter->dev)))
8428 continue;
8429 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8430 &iter->dev->adj_list.upper);
8431 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8432 &dev->adj_list.lower);
8433 }
8434 }
8435
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)8436 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8437 {
8438 struct netdev_adjacent *iter;
8439
8440 struct net *net = dev_net(dev);
8441
8442 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8443 if (!net_eq(net, dev_net(iter->dev)))
8444 continue;
8445 netdev_adjacent_sysfs_del(iter->dev, oldname,
8446 &iter->dev->adj_list.lower);
8447 netdev_adjacent_sysfs_add(iter->dev, dev,
8448 &iter->dev->adj_list.lower);
8449 }
8450
8451 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8452 if (!net_eq(net, dev_net(iter->dev)))
8453 continue;
8454 netdev_adjacent_sysfs_del(iter->dev, oldname,
8455 &iter->dev->adj_list.upper);
8456 netdev_adjacent_sysfs_add(iter->dev, dev,
8457 &iter->dev->adj_list.upper);
8458 }
8459 }
8460
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)8461 void *netdev_lower_dev_get_private(struct net_device *dev,
8462 struct net_device *lower_dev)
8463 {
8464 struct netdev_adjacent *lower;
8465
8466 if (!lower_dev)
8467 return NULL;
8468 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8469 if (!lower)
8470 return NULL;
8471
8472 return lower->private;
8473 }
8474 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8475
8476
8477 /**
8478 * netdev_lower_state_changed - Dispatch event about lower device state change
8479 * @lower_dev: device
8480 * @lower_state_info: state to dispatch
8481 *
8482 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8483 * The caller must hold the RTNL lock.
8484 */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)8485 void netdev_lower_state_changed(struct net_device *lower_dev,
8486 void *lower_state_info)
8487 {
8488 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8489 .info.dev = lower_dev,
8490 };
8491
8492 ASSERT_RTNL();
8493 changelowerstate_info.lower_state_info = lower_state_info;
8494 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8495 &changelowerstate_info.info);
8496 }
8497 EXPORT_SYMBOL(netdev_lower_state_changed);
8498
dev_change_rx_flags(struct net_device * dev,int flags)8499 static void dev_change_rx_flags(struct net_device *dev, int flags)
8500 {
8501 const struct net_device_ops *ops = dev->netdev_ops;
8502
8503 if (ops->ndo_change_rx_flags)
8504 ops->ndo_change_rx_flags(dev, flags);
8505 }
8506
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)8507 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8508 {
8509 unsigned int old_flags = dev->flags;
8510 kuid_t uid;
8511 kgid_t gid;
8512
8513 ASSERT_RTNL();
8514
8515 dev->flags |= IFF_PROMISC;
8516 dev->promiscuity += inc;
8517 if (dev->promiscuity == 0) {
8518 /*
8519 * Avoid overflow.
8520 * If inc causes overflow, untouch promisc and return error.
8521 */
8522 if (inc < 0)
8523 dev->flags &= ~IFF_PROMISC;
8524 else {
8525 dev->promiscuity -= inc;
8526 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8527 dev->name);
8528 return -EOVERFLOW;
8529 }
8530 }
8531 if (dev->flags != old_flags) {
8532 pr_info("device %s %s promiscuous mode\n",
8533 dev->name,
8534 dev->flags & IFF_PROMISC ? "entered" : "left");
8535 if (audit_enabled) {
8536 current_uid_gid(&uid, &gid);
8537 audit_log(audit_context(), GFP_ATOMIC,
8538 AUDIT_ANOM_PROMISCUOUS,
8539 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8540 dev->name, (dev->flags & IFF_PROMISC),
8541 (old_flags & IFF_PROMISC),
8542 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8543 from_kuid(&init_user_ns, uid),
8544 from_kgid(&init_user_ns, gid),
8545 audit_get_sessionid(current));
8546 }
8547
8548 dev_change_rx_flags(dev, IFF_PROMISC);
8549 }
8550 if (notify)
8551 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8552 return 0;
8553 }
8554
8555 /**
8556 * dev_set_promiscuity - update promiscuity count on a device
8557 * @dev: device
8558 * @inc: modifier
8559 *
8560 * Add or remove promiscuity from a device. While the count in the device
8561 * remains above zero the interface remains promiscuous. Once it hits zero
8562 * the device reverts back to normal filtering operation. A negative inc
8563 * value is used to drop promiscuity on the device.
8564 * Return 0 if successful or a negative errno code on error.
8565 */
dev_set_promiscuity(struct net_device * dev,int inc)8566 int dev_set_promiscuity(struct net_device *dev, int inc)
8567 {
8568 unsigned int old_flags = dev->flags;
8569 int err;
8570
8571 err = __dev_set_promiscuity(dev, inc, true);
8572 if (err < 0)
8573 return err;
8574 if (dev->flags != old_flags)
8575 dev_set_rx_mode(dev);
8576 return err;
8577 }
8578 EXPORT_SYMBOL(dev_set_promiscuity);
8579
__dev_set_allmulti(struct net_device * dev,int inc,bool notify)8580 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8581 {
8582 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8583
8584 ASSERT_RTNL();
8585
8586 dev->flags |= IFF_ALLMULTI;
8587 dev->allmulti += inc;
8588 if (dev->allmulti == 0) {
8589 /*
8590 * Avoid overflow.
8591 * If inc causes overflow, untouch allmulti and return error.
8592 */
8593 if (inc < 0)
8594 dev->flags &= ~IFF_ALLMULTI;
8595 else {
8596 dev->allmulti -= inc;
8597 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8598 dev->name);
8599 return -EOVERFLOW;
8600 }
8601 }
8602 if (dev->flags ^ old_flags) {
8603 dev_change_rx_flags(dev, IFF_ALLMULTI);
8604 dev_set_rx_mode(dev);
8605 if (notify)
8606 __dev_notify_flags(dev, old_flags,
8607 dev->gflags ^ old_gflags);
8608 }
8609 return 0;
8610 }
8611
8612 /**
8613 * dev_set_allmulti - update allmulti count on a device
8614 * @dev: device
8615 * @inc: modifier
8616 *
8617 * Add or remove reception of all multicast frames to a device. While the
8618 * count in the device remains above zero the interface remains listening
8619 * to all interfaces. Once it hits zero the device reverts back to normal
8620 * filtering operation. A negative @inc value is used to drop the counter
8621 * when releasing a resource needing all multicasts.
8622 * Return 0 if successful or a negative errno code on error.
8623 */
8624
dev_set_allmulti(struct net_device * dev,int inc)8625 int dev_set_allmulti(struct net_device *dev, int inc)
8626 {
8627 return __dev_set_allmulti(dev, inc, true);
8628 }
8629 EXPORT_SYMBOL(dev_set_allmulti);
8630
8631 /*
8632 * Upload unicast and multicast address lists to device and
8633 * configure RX filtering. When the device doesn't support unicast
8634 * filtering it is put in promiscuous mode while unicast addresses
8635 * are present.
8636 */
__dev_set_rx_mode(struct net_device * dev)8637 void __dev_set_rx_mode(struct net_device *dev)
8638 {
8639 const struct net_device_ops *ops = dev->netdev_ops;
8640
8641 /* dev_open will call this function so the list will stay sane. */
8642 if (!(dev->flags&IFF_UP))
8643 return;
8644
8645 if (!netif_device_present(dev))
8646 return;
8647
8648 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8649 /* Unicast addresses changes may only happen under the rtnl,
8650 * therefore calling __dev_set_promiscuity here is safe.
8651 */
8652 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8653 __dev_set_promiscuity(dev, 1, false);
8654 dev->uc_promisc = true;
8655 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8656 __dev_set_promiscuity(dev, -1, false);
8657 dev->uc_promisc = false;
8658 }
8659 }
8660
8661 if (ops->ndo_set_rx_mode)
8662 ops->ndo_set_rx_mode(dev);
8663 }
8664
dev_set_rx_mode(struct net_device * dev)8665 void dev_set_rx_mode(struct net_device *dev)
8666 {
8667 netif_addr_lock_bh(dev);
8668 __dev_set_rx_mode(dev);
8669 netif_addr_unlock_bh(dev);
8670 }
8671
8672 /**
8673 * dev_get_flags - get flags reported to userspace
8674 * @dev: device
8675 *
8676 * Get the combination of flag bits exported through APIs to userspace.
8677 */
dev_get_flags(const struct net_device * dev)8678 unsigned int dev_get_flags(const struct net_device *dev)
8679 {
8680 unsigned int flags;
8681
8682 flags = (dev->flags & ~(IFF_PROMISC |
8683 IFF_ALLMULTI |
8684 IFF_RUNNING |
8685 IFF_LOWER_UP |
8686 IFF_DORMANT)) |
8687 (dev->gflags & (IFF_PROMISC |
8688 IFF_ALLMULTI));
8689
8690 if (netif_running(dev)) {
8691 if (netif_oper_up(dev))
8692 flags |= IFF_RUNNING;
8693 if (netif_carrier_ok(dev))
8694 flags |= IFF_LOWER_UP;
8695 if (netif_dormant(dev))
8696 flags |= IFF_DORMANT;
8697 }
8698
8699 return flags;
8700 }
8701 EXPORT_SYMBOL(dev_get_flags);
8702
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8703 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8704 struct netlink_ext_ack *extack)
8705 {
8706 unsigned int old_flags = dev->flags;
8707 int ret;
8708
8709 ASSERT_RTNL();
8710
8711 /*
8712 * Set the flags on our device.
8713 */
8714
8715 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8716 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8717 IFF_AUTOMEDIA)) |
8718 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8719 IFF_ALLMULTI));
8720
8721 /*
8722 * Load in the correct multicast list now the flags have changed.
8723 */
8724
8725 if ((old_flags ^ flags) & IFF_MULTICAST)
8726 dev_change_rx_flags(dev, IFF_MULTICAST);
8727
8728 dev_set_rx_mode(dev);
8729
8730 /*
8731 * Have we downed the interface. We handle IFF_UP ourselves
8732 * according to user attempts to set it, rather than blindly
8733 * setting it.
8734 */
8735
8736 ret = 0;
8737 if ((old_flags ^ flags) & IFF_UP) {
8738 if (old_flags & IFF_UP)
8739 __dev_close(dev);
8740 else
8741 ret = __dev_open(dev, extack);
8742 }
8743
8744 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8745 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8746 unsigned int old_flags = dev->flags;
8747
8748 dev->gflags ^= IFF_PROMISC;
8749
8750 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8751 if (dev->flags != old_flags)
8752 dev_set_rx_mode(dev);
8753 }
8754
8755 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8756 * is important. Some (broken) drivers set IFF_PROMISC, when
8757 * IFF_ALLMULTI is requested not asking us and not reporting.
8758 */
8759 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8760 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8761
8762 dev->gflags ^= IFF_ALLMULTI;
8763 __dev_set_allmulti(dev, inc, false);
8764 }
8765
8766 return ret;
8767 }
8768
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges)8769 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8770 unsigned int gchanges)
8771 {
8772 unsigned int changes = dev->flags ^ old_flags;
8773
8774 if (gchanges)
8775 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8776
8777 if (changes & IFF_UP) {
8778 if (dev->flags & IFF_UP)
8779 call_netdevice_notifiers(NETDEV_UP, dev);
8780 else
8781 call_netdevice_notifiers(NETDEV_DOWN, dev);
8782 }
8783
8784 if (dev->flags & IFF_UP &&
8785 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8786 struct netdev_notifier_change_info change_info = {
8787 .info = {
8788 .dev = dev,
8789 },
8790 .flags_changed = changes,
8791 };
8792
8793 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8794 }
8795 }
8796
8797 /**
8798 * dev_change_flags - change device settings
8799 * @dev: device
8800 * @flags: device state flags
8801 * @extack: netlink extended ack
8802 *
8803 * Change settings on device based state flags. The flags are
8804 * in the userspace exported format.
8805 */
dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8806 int dev_change_flags(struct net_device *dev, unsigned int flags,
8807 struct netlink_ext_ack *extack)
8808 {
8809 int ret;
8810 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8811
8812 ret = __dev_change_flags(dev, flags, extack);
8813 if (ret < 0)
8814 return ret;
8815
8816 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8817 __dev_notify_flags(dev, old_flags, changes);
8818 return ret;
8819 }
8820 EXPORT_SYMBOL(dev_change_flags);
8821
__dev_set_mtu(struct net_device * dev,int new_mtu)8822 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8823 {
8824 const struct net_device_ops *ops = dev->netdev_ops;
8825
8826 if (ops->ndo_change_mtu)
8827 return ops->ndo_change_mtu(dev, new_mtu);
8828
8829 /* Pairs with all the lockless reads of dev->mtu in the stack */
8830 WRITE_ONCE(dev->mtu, new_mtu);
8831 return 0;
8832 }
8833 EXPORT_SYMBOL(__dev_set_mtu);
8834
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8835 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8836 struct netlink_ext_ack *extack)
8837 {
8838 /* MTU must be positive, and in range */
8839 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8840 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8841 return -EINVAL;
8842 }
8843
8844 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8845 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8846 return -EINVAL;
8847 }
8848 return 0;
8849 }
8850
8851 /**
8852 * dev_set_mtu_ext - Change maximum transfer unit
8853 * @dev: device
8854 * @new_mtu: new transfer unit
8855 * @extack: netlink extended ack
8856 *
8857 * Change the maximum transfer size of the network device.
8858 */
dev_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8859 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8860 struct netlink_ext_ack *extack)
8861 {
8862 int err, orig_mtu;
8863
8864 if (new_mtu == dev->mtu)
8865 return 0;
8866
8867 err = dev_validate_mtu(dev, new_mtu, extack);
8868 if (err)
8869 return err;
8870
8871 if (!netif_device_present(dev))
8872 return -ENODEV;
8873
8874 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8875 err = notifier_to_errno(err);
8876 if (err)
8877 return err;
8878
8879 orig_mtu = dev->mtu;
8880 err = __dev_set_mtu(dev, new_mtu);
8881
8882 if (!err) {
8883 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8884 orig_mtu);
8885 err = notifier_to_errno(err);
8886 if (err) {
8887 /* setting mtu back and notifying everyone again,
8888 * so that they have a chance to revert changes.
8889 */
8890 __dev_set_mtu(dev, orig_mtu);
8891 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8892 new_mtu);
8893 }
8894 }
8895 return err;
8896 }
8897
dev_set_mtu(struct net_device * dev,int new_mtu)8898 int dev_set_mtu(struct net_device *dev, int new_mtu)
8899 {
8900 struct netlink_ext_ack extack;
8901 int err;
8902
8903 memset(&extack, 0, sizeof(extack));
8904 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8905 if (err && extack._msg)
8906 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8907 return err;
8908 }
8909 EXPORT_SYMBOL(dev_set_mtu);
8910
8911 /**
8912 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8913 * @dev: device
8914 * @new_len: new tx queue length
8915 */
dev_change_tx_queue_len(struct net_device * dev,unsigned long new_len)8916 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8917 {
8918 unsigned int orig_len = dev->tx_queue_len;
8919 int res;
8920
8921 if (new_len != (unsigned int)new_len)
8922 return -ERANGE;
8923
8924 if (new_len != orig_len) {
8925 dev->tx_queue_len = new_len;
8926 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8927 res = notifier_to_errno(res);
8928 if (res)
8929 goto err_rollback;
8930 res = dev_qdisc_change_tx_queue_len(dev);
8931 if (res)
8932 goto err_rollback;
8933 }
8934
8935 return 0;
8936
8937 err_rollback:
8938 netdev_err(dev, "refused to change device tx_queue_len\n");
8939 dev->tx_queue_len = orig_len;
8940 return res;
8941 }
8942
8943 /**
8944 * dev_set_group - Change group this device belongs to
8945 * @dev: device
8946 * @new_group: group this device should belong to
8947 */
dev_set_group(struct net_device * dev,int new_group)8948 void dev_set_group(struct net_device *dev, int new_group)
8949 {
8950 dev->group = new_group;
8951 }
8952 EXPORT_SYMBOL(dev_set_group);
8953
8954 /**
8955 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8956 * @dev: device
8957 * @addr: new address
8958 * @extack: netlink extended ack
8959 */
dev_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)8960 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8961 struct netlink_ext_ack *extack)
8962 {
8963 struct netdev_notifier_pre_changeaddr_info info = {
8964 .info.dev = dev,
8965 .info.extack = extack,
8966 .dev_addr = addr,
8967 };
8968 int rc;
8969
8970 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8971 return notifier_to_errno(rc);
8972 }
8973 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8974
8975 /**
8976 * dev_set_mac_address - Change Media Access Control Address
8977 * @dev: device
8978 * @sa: new address
8979 * @extack: netlink extended ack
8980 *
8981 * Change the hardware (MAC) address of the device
8982 */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8983 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8984 struct netlink_ext_ack *extack)
8985 {
8986 const struct net_device_ops *ops = dev->netdev_ops;
8987 int err;
8988
8989 if (!ops->ndo_set_mac_address)
8990 return -EOPNOTSUPP;
8991 if (sa->sa_family != dev->type)
8992 return -EINVAL;
8993 if (!netif_device_present(dev))
8994 return -ENODEV;
8995 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8996 if (err)
8997 return err;
8998 err = ops->ndo_set_mac_address(dev, sa);
8999 if (err)
9000 return err;
9001 dev->addr_assign_type = NET_ADDR_SET;
9002 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9003 add_device_randomness(dev->dev_addr, dev->addr_len);
9004 return 0;
9005 }
9006 EXPORT_SYMBOL(dev_set_mac_address);
9007
9008 static DECLARE_RWSEM(dev_addr_sem);
9009
dev_set_mac_address_user(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)9010 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9011 struct netlink_ext_ack *extack)
9012 {
9013 int ret;
9014
9015 down_write(&dev_addr_sem);
9016 ret = dev_set_mac_address(dev, sa, extack);
9017 up_write(&dev_addr_sem);
9018 return ret;
9019 }
9020 EXPORT_SYMBOL(dev_set_mac_address_user);
9021
dev_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)9022 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9023 {
9024 size_t size = sizeof(sa->sa_data);
9025 struct net_device *dev;
9026 int ret = 0;
9027
9028 down_read(&dev_addr_sem);
9029 rcu_read_lock();
9030
9031 dev = dev_get_by_name_rcu(net, dev_name);
9032 if (!dev) {
9033 ret = -ENODEV;
9034 goto unlock;
9035 }
9036 if (!dev->addr_len)
9037 memset(sa->sa_data, 0, size);
9038 else
9039 memcpy(sa->sa_data, dev->dev_addr,
9040 min_t(size_t, size, dev->addr_len));
9041 sa->sa_family = dev->type;
9042
9043 unlock:
9044 rcu_read_unlock();
9045 up_read(&dev_addr_sem);
9046 return ret;
9047 }
9048 EXPORT_SYMBOL(dev_get_mac_address);
9049
9050 /**
9051 * dev_change_carrier - Change device carrier
9052 * @dev: device
9053 * @new_carrier: new value
9054 *
9055 * Change device carrier
9056 */
dev_change_carrier(struct net_device * dev,bool new_carrier)9057 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9058 {
9059 const struct net_device_ops *ops = dev->netdev_ops;
9060
9061 if (!ops->ndo_change_carrier)
9062 return -EOPNOTSUPP;
9063 if (!netif_device_present(dev))
9064 return -ENODEV;
9065 return ops->ndo_change_carrier(dev, new_carrier);
9066 }
9067 EXPORT_SYMBOL(dev_change_carrier);
9068
9069 /**
9070 * dev_get_phys_port_id - Get device physical port ID
9071 * @dev: device
9072 * @ppid: port ID
9073 *
9074 * Get device physical port ID
9075 */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)9076 int dev_get_phys_port_id(struct net_device *dev,
9077 struct netdev_phys_item_id *ppid)
9078 {
9079 const struct net_device_ops *ops = dev->netdev_ops;
9080
9081 if (!ops->ndo_get_phys_port_id)
9082 return -EOPNOTSUPP;
9083 return ops->ndo_get_phys_port_id(dev, ppid);
9084 }
9085 EXPORT_SYMBOL(dev_get_phys_port_id);
9086
9087 /**
9088 * dev_get_phys_port_name - Get device physical port name
9089 * @dev: device
9090 * @name: port name
9091 * @len: limit of bytes to copy to name
9092 *
9093 * Get device physical port name
9094 */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)9095 int dev_get_phys_port_name(struct net_device *dev,
9096 char *name, size_t len)
9097 {
9098 const struct net_device_ops *ops = dev->netdev_ops;
9099 int err;
9100
9101 if (ops->ndo_get_phys_port_name) {
9102 err = ops->ndo_get_phys_port_name(dev, name, len);
9103 if (err != -EOPNOTSUPP)
9104 return err;
9105 }
9106 return devlink_compat_phys_port_name_get(dev, name, len);
9107 }
9108 EXPORT_SYMBOL(dev_get_phys_port_name);
9109
9110 /**
9111 * dev_get_port_parent_id - Get the device's port parent identifier
9112 * @dev: network device
9113 * @ppid: pointer to a storage for the port's parent identifier
9114 * @recurse: allow/disallow recursion to lower devices
9115 *
9116 * Get the devices's port parent identifier
9117 */
dev_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)9118 int dev_get_port_parent_id(struct net_device *dev,
9119 struct netdev_phys_item_id *ppid,
9120 bool recurse)
9121 {
9122 const struct net_device_ops *ops = dev->netdev_ops;
9123 struct netdev_phys_item_id first = { };
9124 struct net_device *lower_dev;
9125 struct list_head *iter;
9126 int err;
9127
9128 if (ops->ndo_get_port_parent_id) {
9129 err = ops->ndo_get_port_parent_id(dev, ppid);
9130 if (err != -EOPNOTSUPP)
9131 return err;
9132 }
9133
9134 err = devlink_compat_switch_id_get(dev, ppid);
9135 if (!err || err != -EOPNOTSUPP)
9136 return err;
9137
9138 if (!recurse)
9139 return -EOPNOTSUPP;
9140
9141 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9142 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9143 if (err)
9144 break;
9145 if (!first.id_len)
9146 first = *ppid;
9147 else if (memcmp(&first, ppid, sizeof(*ppid)))
9148 return -EOPNOTSUPP;
9149 }
9150
9151 return err;
9152 }
9153 EXPORT_SYMBOL(dev_get_port_parent_id);
9154
9155 /**
9156 * netdev_port_same_parent_id - Indicate if two network devices have
9157 * the same port parent identifier
9158 * @a: first network device
9159 * @b: second network device
9160 */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)9161 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9162 {
9163 struct netdev_phys_item_id a_id = { };
9164 struct netdev_phys_item_id b_id = { };
9165
9166 if (dev_get_port_parent_id(a, &a_id, true) ||
9167 dev_get_port_parent_id(b, &b_id, true))
9168 return false;
9169
9170 return netdev_phys_item_id_same(&a_id, &b_id);
9171 }
9172 EXPORT_SYMBOL(netdev_port_same_parent_id);
9173
9174 /**
9175 * dev_change_proto_down - update protocol port state information
9176 * @dev: device
9177 * @proto_down: new value
9178 *
9179 * This info can be used by switch drivers to set the phys state of the
9180 * port.
9181 */
dev_change_proto_down(struct net_device * dev,bool proto_down)9182 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9183 {
9184 const struct net_device_ops *ops = dev->netdev_ops;
9185
9186 if (!ops->ndo_change_proto_down)
9187 return -EOPNOTSUPP;
9188 if (!netif_device_present(dev))
9189 return -ENODEV;
9190 return ops->ndo_change_proto_down(dev, proto_down);
9191 }
9192 EXPORT_SYMBOL(dev_change_proto_down);
9193
9194 /**
9195 * dev_change_proto_down_generic - generic implementation for
9196 * ndo_change_proto_down that sets carrier according to
9197 * proto_down.
9198 *
9199 * @dev: device
9200 * @proto_down: new value
9201 */
dev_change_proto_down_generic(struct net_device * dev,bool proto_down)9202 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9203 {
9204 if (proto_down)
9205 netif_carrier_off(dev);
9206 else
9207 netif_carrier_on(dev);
9208 dev->proto_down = proto_down;
9209 return 0;
9210 }
9211 EXPORT_SYMBOL(dev_change_proto_down_generic);
9212
9213 /**
9214 * dev_change_proto_down_reason - proto down reason
9215 *
9216 * @dev: device
9217 * @mask: proto down mask
9218 * @value: proto down value
9219 */
dev_change_proto_down_reason(struct net_device * dev,unsigned long mask,u32 value)9220 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9221 u32 value)
9222 {
9223 int b;
9224
9225 if (!mask) {
9226 dev->proto_down_reason = value;
9227 } else {
9228 for_each_set_bit(b, &mask, 32) {
9229 if (value & (1 << b))
9230 dev->proto_down_reason |= BIT(b);
9231 else
9232 dev->proto_down_reason &= ~BIT(b);
9233 }
9234 }
9235 }
9236 EXPORT_SYMBOL(dev_change_proto_down_reason);
9237
9238 struct bpf_xdp_link {
9239 struct bpf_link link;
9240 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9241 int flags;
9242 };
9243
dev_xdp_mode(struct net_device * dev,u32 flags)9244 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9245 {
9246 if (flags & XDP_FLAGS_HW_MODE)
9247 return XDP_MODE_HW;
9248 if (flags & XDP_FLAGS_DRV_MODE)
9249 return XDP_MODE_DRV;
9250 if (flags & XDP_FLAGS_SKB_MODE)
9251 return XDP_MODE_SKB;
9252 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9253 }
9254
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)9255 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9256 {
9257 switch (mode) {
9258 case XDP_MODE_SKB:
9259 return generic_xdp_install;
9260 case XDP_MODE_DRV:
9261 case XDP_MODE_HW:
9262 return dev->netdev_ops->ndo_bpf;
9263 default:
9264 return NULL;
9265 }
9266 }
9267
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)9268 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9269 enum bpf_xdp_mode mode)
9270 {
9271 return dev->xdp_state[mode].link;
9272 }
9273
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)9274 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9275 enum bpf_xdp_mode mode)
9276 {
9277 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9278
9279 if (link)
9280 return link->link.prog;
9281 return dev->xdp_state[mode].prog;
9282 }
9283
dev_xdp_prog_count(struct net_device * dev)9284 static u8 dev_xdp_prog_count(struct net_device *dev)
9285 {
9286 u8 count = 0;
9287 int i;
9288
9289 for (i = 0; i < __MAX_XDP_MODE; i++)
9290 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9291 count++;
9292 return count;
9293 }
9294
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)9295 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9296 {
9297 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9298
9299 return prog ? prog->aux->id : 0;
9300 }
9301
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)9302 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9303 struct bpf_xdp_link *link)
9304 {
9305 dev->xdp_state[mode].link = link;
9306 dev->xdp_state[mode].prog = NULL;
9307 }
9308
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)9309 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9310 struct bpf_prog *prog)
9311 {
9312 dev->xdp_state[mode].link = NULL;
9313 dev->xdp_state[mode].prog = prog;
9314 }
9315
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)9316 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9317 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9318 u32 flags, struct bpf_prog *prog)
9319 {
9320 struct netdev_bpf xdp;
9321 int err;
9322
9323 memset(&xdp, 0, sizeof(xdp));
9324 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9325 xdp.extack = extack;
9326 xdp.flags = flags;
9327 xdp.prog = prog;
9328
9329 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9330 * "moved" into driver), so they don't increment it on their own, but
9331 * they do decrement refcnt when program is detached or replaced.
9332 * Given net_device also owns link/prog, we need to bump refcnt here
9333 * to prevent drivers from underflowing it.
9334 */
9335 if (prog)
9336 bpf_prog_inc(prog);
9337 err = bpf_op(dev, &xdp);
9338 if (err) {
9339 if (prog)
9340 bpf_prog_put(prog);
9341 return err;
9342 }
9343
9344 if (mode != XDP_MODE_HW)
9345 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9346
9347 return 0;
9348 }
9349
dev_xdp_uninstall(struct net_device * dev)9350 static void dev_xdp_uninstall(struct net_device *dev)
9351 {
9352 struct bpf_xdp_link *link;
9353 struct bpf_prog *prog;
9354 enum bpf_xdp_mode mode;
9355 bpf_op_t bpf_op;
9356
9357 ASSERT_RTNL();
9358
9359 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9360 prog = dev_xdp_prog(dev, mode);
9361 if (!prog)
9362 continue;
9363
9364 bpf_op = dev_xdp_bpf_op(dev, mode);
9365 if (!bpf_op)
9366 continue;
9367
9368 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9369
9370 /* auto-detach link from net device */
9371 link = dev_xdp_link(dev, mode);
9372 if (link)
9373 link->dev = NULL;
9374 else
9375 bpf_prog_put(prog);
9376
9377 dev_xdp_set_link(dev, mode, NULL);
9378 }
9379 }
9380
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)9381 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9382 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9383 struct bpf_prog *old_prog, u32 flags)
9384 {
9385 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9386 struct bpf_prog *cur_prog;
9387 enum bpf_xdp_mode mode;
9388 bpf_op_t bpf_op;
9389 int err;
9390
9391 ASSERT_RTNL();
9392
9393 /* either link or prog attachment, never both */
9394 if (link && (new_prog || old_prog))
9395 return -EINVAL;
9396 /* link supports only XDP mode flags */
9397 if (link && (flags & ~XDP_FLAGS_MODES)) {
9398 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9399 return -EINVAL;
9400 }
9401 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9402 if (num_modes > 1) {
9403 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9404 return -EINVAL;
9405 }
9406 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9407 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9408 NL_SET_ERR_MSG(extack,
9409 "More than one program loaded, unset mode is ambiguous");
9410 return -EINVAL;
9411 }
9412 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9413 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9414 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9415 return -EINVAL;
9416 }
9417
9418 mode = dev_xdp_mode(dev, flags);
9419 /* can't replace attached link */
9420 if (dev_xdp_link(dev, mode)) {
9421 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9422 return -EBUSY;
9423 }
9424
9425 cur_prog = dev_xdp_prog(dev, mode);
9426 /* can't replace attached prog with link */
9427 if (link && cur_prog) {
9428 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9429 return -EBUSY;
9430 }
9431 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9432 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9433 return -EEXIST;
9434 }
9435
9436 /* put effective new program into new_prog */
9437 if (link)
9438 new_prog = link->link.prog;
9439
9440 if (new_prog) {
9441 bool offload = mode == XDP_MODE_HW;
9442 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9443 ? XDP_MODE_DRV : XDP_MODE_SKB;
9444
9445 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9446 NL_SET_ERR_MSG(extack, "XDP program already attached");
9447 return -EBUSY;
9448 }
9449 if (!offload && dev_xdp_prog(dev, other_mode)) {
9450 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9451 return -EEXIST;
9452 }
9453 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9454 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9455 return -EINVAL;
9456 }
9457 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9458 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9459 return -EINVAL;
9460 }
9461 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9462 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9463 return -EINVAL;
9464 }
9465 }
9466
9467 /* don't call drivers if the effective program didn't change */
9468 if (new_prog != cur_prog) {
9469 bpf_op = dev_xdp_bpf_op(dev, mode);
9470 if (!bpf_op) {
9471 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9472 return -EOPNOTSUPP;
9473 }
9474
9475 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9476 if (err)
9477 return err;
9478 }
9479
9480 if (link)
9481 dev_xdp_set_link(dev, mode, link);
9482 else
9483 dev_xdp_set_prog(dev, mode, new_prog);
9484 if (cur_prog)
9485 bpf_prog_put(cur_prog);
9486
9487 return 0;
9488 }
9489
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9490 static int dev_xdp_attach_link(struct net_device *dev,
9491 struct netlink_ext_ack *extack,
9492 struct bpf_xdp_link *link)
9493 {
9494 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9495 }
9496
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9497 static int dev_xdp_detach_link(struct net_device *dev,
9498 struct netlink_ext_ack *extack,
9499 struct bpf_xdp_link *link)
9500 {
9501 enum bpf_xdp_mode mode;
9502 bpf_op_t bpf_op;
9503
9504 ASSERT_RTNL();
9505
9506 mode = dev_xdp_mode(dev, link->flags);
9507 if (dev_xdp_link(dev, mode) != link)
9508 return -EINVAL;
9509
9510 bpf_op = dev_xdp_bpf_op(dev, mode);
9511 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9512 dev_xdp_set_link(dev, mode, NULL);
9513 return 0;
9514 }
9515
bpf_xdp_link_release(struct bpf_link * link)9516 static void bpf_xdp_link_release(struct bpf_link *link)
9517 {
9518 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9519
9520 rtnl_lock();
9521
9522 /* if racing with net_device's tear down, xdp_link->dev might be
9523 * already NULL, in which case link was already auto-detached
9524 */
9525 if (xdp_link->dev) {
9526 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9527 xdp_link->dev = NULL;
9528 }
9529
9530 rtnl_unlock();
9531 }
9532
bpf_xdp_link_detach(struct bpf_link * link)9533 static int bpf_xdp_link_detach(struct bpf_link *link)
9534 {
9535 bpf_xdp_link_release(link);
9536 return 0;
9537 }
9538
bpf_xdp_link_dealloc(struct bpf_link * link)9539 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9540 {
9541 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9542
9543 kfree(xdp_link);
9544 }
9545
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)9546 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9547 struct seq_file *seq)
9548 {
9549 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9550 u32 ifindex = 0;
9551
9552 rtnl_lock();
9553 if (xdp_link->dev)
9554 ifindex = xdp_link->dev->ifindex;
9555 rtnl_unlock();
9556
9557 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9558 }
9559
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)9560 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9561 struct bpf_link_info *info)
9562 {
9563 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9564 u32 ifindex = 0;
9565
9566 rtnl_lock();
9567 if (xdp_link->dev)
9568 ifindex = xdp_link->dev->ifindex;
9569 rtnl_unlock();
9570
9571 info->xdp.ifindex = ifindex;
9572 return 0;
9573 }
9574
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)9575 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9576 struct bpf_prog *old_prog)
9577 {
9578 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9579 enum bpf_xdp_mode mode;
9580 bpf_op_t bpf_op;
9581 int err = 0;
9582
9583 rtnl_lock();
9584
9585 /* link might have been auto-released already, so fail */
9586 if (!xdp_link->dev) {
9587 err = -ENOLINK;
9588 goto out_unlock;
9589 }
9590
9591 if (old_prog && link->prog != old_prog) {
9592 err = -EPERM;
9593 goto out_unlock;
9594 }
9595 old_prog = link->prog;
9596 if (old_prog == new_prog) {
9597 /* no-op, don't disturb drivers */
9598 bpf_prog_put(new_prog);
9599 goto out_unlock;
9600 }
9601
9602 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9603 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9604 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9605 xdp_link->flags, new_prog);
9606 if (err)
9607 goto out_unlock;
9608
9609 old_prog = xchg(&link->prog, new_prog);
9610 bpf_prog_put(old_prog);
9611
9612 out_unlock:
9613 rtnl_unlock();
9614 return err;
9615 }
9616
9617 static const struct bpf_link_ops bpf_xdp_link_lops = {
9618 .release = bpf_xdp_link_release,
9619 .dealloc = bpf_xdp_link_dealloc,
9620 .detach = bpf_xdp_link_detach,
9621 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9622 .fill_link_info = bpf_xdp_link_fill_link_info,
9623 .update_prog = bpf_xdp_link_update,
9624 };
9625
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)9626 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9627 {
9628 struct net *net = current->nsproxy->net_ns;
9629 struct bpf_link_primer link_primer;
9630 struct bpf_xdp_link *link;
9631 struct net_device *dev;
9632 int err, fd;
9633
9634 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9635 if (!dev)
9636 return -EINVAL;
9637
9638 link = kzalloc(sizeof(*link), GFP_USER);
9639 if (!link) {
9640 err = -ENOMEM;
9641 goto out_put_dev;
9642 }
9643
9644 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9645 link->dev = dev;
9646 link->flags = attr->link_create.flags;
9647
9648 err = bpf_link_prime(&link->link, &link_primer);
9649 if (err) {
9650 kfree(link);
9651 goto out_put_dev;
9652 }
9653
9654 rtnl_lock();
9655 err = dev_xdp_attach_link(dev, NULL, link);
9656 rtnl_unlock();
9657
9658 if (err) {
9659 bpf_link_cleanup(&link_primer);
9660 goto out_put_dev;
9661 }
9662
9663 fd = bpf_link_settle(&link_primer);
9664 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9665 dev_put(dev);
9666 return fd;
9667
9668 out_put_dev:
9669 dev_put(dev);
9670 return err;
9671 }
9672
9673 /**
9674 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9675 * @dev: device
9676 * @extack: netlink extended ack
9677 * @fd: new program fd or negative value to clear
9678 * @expected_fd: old program fd that userspace expects to replace or clear
9679 * @flags: xdp-related flags
9680 *
9681 * Set or clear a bpf program for a device
9682 */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)9683 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9684 int fd, int expected_fd, u32 flags)
9685 {
9686 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9687 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9688 int err;
9689
9690 ASSERT_RTNL();
9691
9692 if (fd >= 0) {
9693 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9694 mode != XDP_MODE_SKB);
9695 if (IS_ERR(new_prog))
9696 return PTR_ERR(new_prog);
9697 }
9698
9699 if (expected_fd >= 0) {
9700 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9701 mode != XDP_MODE_SKB);
9702 if (IS_ERR(old_prog)) {
9703 err = PTR_ERR(old_prog);
9704 old_prog = NULL;
9705 goto err_out;
9706 }
9707 }
9708
9709 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9710
9711 err_out:
9712 if (err && new_prog)
9713 bpf_prog_put(new_prog);
9714 if (old_prog)
9715 bpf_prog_put(old_prog);
9716 return err;
9717 }
9718
9719 /**
9720 * dev_new_index - allocate an ifindex
9721 * @net: the applicable net namespace
9722 *
9723 * Returns a suitable unique value for a new device interface
9724 * number. The caller must hold the rtnl semaphore or the
9725 * dev_base_lock to be sure it remains unique.
9726 */
dev_new_index(struct net * net)9727 static int dev_new_index(struct net *net)
9728 {
9729 int ifindex = net->ifindex;
9730
9731 for (;;) {
9732 if (++ifindex <= 0)
9733 ifindex = 1;
9734 if (!__dev_get_by_index(net, ifindex))
9735 return net->ifindex = ifindex;
9736 }
9737 }
9738
9739 /* Delayed registration/unregisteration */
9740 static LIST_HEAD(net_todo_list);
9741 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9742
net_set_todo(struct net_device * dev)9743 static void net_set_todo(struct net_device *dev)
9744 {
9745 list_add_tail(&dev->todo_list, &net_todo_list);
9746 dev_net(dev)->dev_unreg_count++;
9747 }
9748
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)9749 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9750 struct net_device *upper, netdev_features_t features)
9751 {
9752 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9753 netdev_features_t feature;
9754 int feature_bit;
9755
9756 for_each_netdev_feature(upper_disables, feature_bit) {
9757 feature = __NETIF_F_BIT(feature_bit);
9758 if (!(upper->wanted_features & feature)
9759 && (features & feature)) {
9760 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9761 &feature, upper->name);
9762 features &= ~feature;
9763 }
9764 }
9765
9766 return features;
9767 }
9768
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)9769 static void netdev_sync_lower_features(struct net_device *upper,
9770 struct net_device *lower, netdev_features_t features)
9771 {
9772 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9773 netdev_features_t feature;
9774 int feature_bit;
9775
9776 for_each_netdev_feature(upper_disables, feature_bit) {
9777 feature = __NETIF_F_BIT(feature_bit);
9778 if (!(features & feature) && (lower->features & feature)) {
9779 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9780 &feature, lower->name);
9781 lower->wanted_features &= ~feature;
9782 __netdev_update_features(lower);
9783
9784 if (unlikely(lower->features & feature))
9785 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9786 &feature, lower->name);
9787 else
9788 netdev_features_change(lower);
9789 }
9790 }
9791 }
9792
netdev_fix_features(struct net_device * dev,netdev_features_t features)9793 static netdev_features_t netdev_fix_features(struct net_device *dev,
9794 netdev_features_t features)
9795 {
9796 /* Fix illegal checksum combinations */
9797 if ((features & NETIF_F_HW_CSUM) &&
9798 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9799 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9800 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9801 }
9802
9803 /* TSO requires that SG is present as well. */
9804 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9805 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9806 features &= ~NETIF_F_ALL_TSO;
9807 }
9808
9809 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9810 !(features & NETIF_F_IP_CSUM)) {
9811 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9812 features &= ~NETIF_F_TSO;
9813 features &= ~NETIF_F_TSO_ECN;
9814 }
9815
9816 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9817 !(features & NETIF_F_IPV6_CSUM)) {
9818 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9819 features &= ~NETIF_F_TSO6;
9820 }
9821
9822 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9823 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9824 features &= ~NETIF_F_TSO_MANGLEID;
9825
9826 /* TSO ECN requires that TSO is present as well. */
9827 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9828 features &= ~NETIF_F_TSO_ECN;
9829
9830 /* Software GSO depends on SG. */
9831 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9832 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9833 features &= ~NETIF_F_GSO;
9834 }
9835
9836 /* GSO partial features require GSO partial be set */
9837 if ((features & dev->gso_partial_features) &&
9838 !(features & NETIF_F_GSO_PARTIAL)) {
9839 netdev_dbg(dev,
9840 "Dropping partially supported GSO features since no GSO partial.\n");
9841 features &= ~dev->gso_partial_features;
9842 }
9843
9844 if (!(features & NETIF_F_RXCSUM)) {
9845 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9846 * successfully merged by hardware must also have the
9847 * checksum verified by hardware. If the user does not
9848 * want to enable RXCSUM, logically, we should disable GRO_HW.
9849 */
9850 if (features & NETIF_F_GRO_HW) {
9851 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9852 features &= ~NETIF_F_GRO_HW;
9853 }
9854 }
9855
9856 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9857 if (features & NETIF_F_RXFCS) {
9858 if (features & NETIF_F_LRO) {
9859 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9860 features &= ~NETIF_F_LRO;
9861 }
9862
9863 if (features & NETIF_F_GRO_HW) {
9864 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9865 features &= ~NETIF_F_GRO_HW;
9866 }
9867 }
9868
9869 if (features & NETIF_F_HW_TLS_TX) {
9870 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9871 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9872 bool hw_csum = features & NETIF_F_HW_CSUM;
9873
9874 if (!ip_csum && !hw_csum) {
9875 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9876 features &= ~NETIF_F_HW_TLS_TX;
9877 }
9878 }
9879
9880 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9881 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9882 features &= ~NETIF_F_HW_TLS_RX;
9883 }
9884
9885 return features;
9886 }
9887
__netdev_update_features(struct net_device * dev)9888 int __netdev_update_features(struct net_device *dev)
9889 {
9890 struct net_device *upper, *lower;
9891 netdev_features_t features;
9892 struct list_head *iter;
9893 int err = -1;
9894
9895 ASSERT_RTNL();
9896
9897 features = netdev_get_wanted_features(dev);
9898
9899 if (dev->netdev_ops->ndo_fix_features)
9900 features = dev->netdev_ops->ndo_fix_features(dev, features);
9901
9902 /* driver might be less strict about feature dependencies */
9903 features = netdev_fix_features(dev, features);
9904
9905 /* some features can't be enabled if they're off on an upper device */
9906 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9907 features = netdev_sync_upper_features(dev, upper, features);
9908
9909 if (dev->features == features)
9910 goto sync_lower;
9911
9912 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9913 &dev->features, &features);
9914
9915 if (dev->netdev_ops->ndo_set_features)
9916 err = dev->netdev_ops->ndo_set_features(dev, features);
9917 else
9918 err = 0;
9919
9920 if (unlikely(err < 0)) {
9921 netdev_err(dev,
9922 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9923 err, &features, &dev->features);
9924 /* return non-0 since some features might have changed and
9925 * it's better to fire a spurious notification than miss it
9926 */
9927 return -1;
9928 }
9929
9930 sync_lower:
9931 /* some features must be disabled on lower devices when disabled
9932 * on an upper device (think: bonding master or bridge)
9933 */
9934 netdev_for_each_lower_dev(dev, lower, iter)
9935 netdev_sync_lower_features(dev, lower, features);
9936
9937 if (!err) {
9938 netdev_features_t diff = features ^ dev->features;
9939
9940 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9941 /* udp_tunnel_{get,drop}_rx_info both need
9942 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9943 * device, or they won't do anything.
9944 * Thus we need to update dev->features
9945 * *before* calling udp_tunnel_get_rx_info,
9946 * but *after* calling udp_tunnel_drop_rx_info.
9947 */
9948 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9949 dev->features = features;
9950 udp_tunnel_get_rx_info(dev);
9951 } else {
9952 udp_tunnel_drop_rx_info(dev);
9953 }
9954 }
9955
9956 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9957 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9958 dev->features = features;
9959 err |= vlan_get_rx_ctag_filter_info(dev);
9960 } else {
9961 vlan_drop_rx_ctag_filter_info(dev);
9962 }
9963 }
9964
9965 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9966 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9967 dev->features = features;
9968 err |= vlan_get_rx_stag_filter_info(dev);
9969 } else {
9970 vlan_drop_rx_stag_filter_info(dev);
9971 }
9972 }
9973
9974 dev->features = features;
9975 }
9976
9977 return err < 0 ? 0 : 1;
9978 }
9979
9980 /**
9981 * netdev_update_features - recalculate device features
9982 * @dev: the device to check
9983 *
9984 * Recalculate dev->features set and send notifications if it
9985 * has changed. Should be called after driver or hardware dependent
9986 * conditions might have changed that influence the features.
9987 */
netdev_update_features(struct net_device * dev)9988 void netdev_update_features(struct net_device *dev)
9989 {
9990 if (__netdev_update_features(dev))
9991 netdev_features_change(dev);
9992 }
9993 EXPORT_SYMBOL(netdev_update_features);
9994
9995 /**
9996 * netdev_change_features - recalculate device features
9997 * @dev: the device to check
9998 *
9999 * Recalculate dev->features set and send notifications even
10000 * if they have not changed. Should be called instead of
10001 * netdev_update_features() if also dev->vlan_features might
10002 * have changed to allow the changes to be propagated to stacked
10003 * VLAN devices.
10004 */
netdev_change_features(struct net_device * dev)10005 void netdev_change_features(struct net_device *dev)
10006 {
10007 __netdev_update_features(dev);
10008 netdev_features_change(dev);
10009 }
10010 EXPORT_SYMBOL(netdev_change_features);
10011
10012 /**
10013 * netif_stacked_transfer_operstate - transfer operstate
10014 * @rootdev: the root or lower level device to transfer state from
10015 * @dev: the device to transfer operstate to
10016 *
10017 * Transfer operational state from root to device. This is normally
10018 * called when a stacking relationship exists between the root
10019 * device and the device(a leaf device).
10020 */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)10021 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10022 struct net_device *dev)
10023 {
10024 if (rootdev->operstate == IF_OPER_DORMANT)
10025 netif_dormant_on(dev);
10026 else
10027 netif_dormant_off(dev);
10028
10029 if (rootdev->operstate == IF_OPER_TESTING)
10030 netif_testing_on(dev);
10031 else
10032 netif_testing_off(dev);
10033
10034 if (netif_carrier_ok(rootdev))
10035 netif_carrier_on(dev);
10036 else
10037 netif_carrier_off(dev);
10038 }
10039 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10040
netif_alloc_rx_queues(struct net_device * dev)10041 static int netif_alloc_rx_queues(struct net_device *dev)
10042 {
10043 unsigned int i, count = dev->num_rx_queues;
10044 struct netdev_rx_queue *rx;
10045 size_t sz = count * sizeof(*rx);
10046 int err = 0;
10047
10048 BUG_ON(count < 1);
10049
10050 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10051 if (!rx)
10052 return -ENOMEM;
10053
10054 dev->_rx = rx;
10055
10056 for (i = 0; i < count; i++) {
10057 rx[i].dev = dev;
10058
10059 /* XDP RX-queue setup */
10060 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10061 if (err < 0)
10062 goto err_rxq_info;
10063 }
10064 return 0;
10065
10066 err_rxq_info:
10067 /* Rollback successful reg's and free other resources */
10068 while (i--)
10069 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10070 kvfree(dev->_rx);
10071 dev->_rx = NULL;
10072 return err;
10073 }
10074
netif_free_rx_queues(struct net_device * dev)10075 static void netif_free_rx_queues(struct net_device *dev)
10076 {
10077 unsigned int i, count = dev->num_rx_queues;
10078
10079 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10080 if (!dev->_rx)
10081 return;
10082
10083 for (i = 0; i < count; i++)
10084 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10085
10086 kvfree(dev->_rx);
10087 }
10088
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)10089 static void netdev_init_one_queue(struct net_device *dev,
10090 struct netdev_queue *queue, void *_unused)
10091 {
10092 /* Initialize queue lock */
10093 spin_lock_init(&queue->_xmit_lock);
10094 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10095 queue->xmit_lock_owner = -1;
10096 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10097 queue->dev = dev;
10098 #ifdef CONFIG_BQL
10099 dql_init(&queue->dql, HZ);
10100 #endif
10101 }
10102
netif_free_tx_queues(struct net_device * dev)10103 static void netif_free_tx_queues(struct net_device *dev)
10104 {
10105 kvfree(dev->_tx);
10106 }
10107
netif_alloc_netdev_queues(struct net_device * dev)10108 static int netif_alloc_netdev_queues(struct net_device *dev)
10109 {
10110 unsigned int count = dev->num_tx_queues;
10111 struct netdev_queue *tx;
10112 size_t sz = count * sizeof(*tx);
10113
10114 if (count < 1 || count > 0xffff)
10115 return -EINVAL;
10116
10117 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10118 if (!tx)
10119 return -ENOMEM;
10120
10121 dev->_tx = tx;
10122
10123 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10124 spin_lock_init(&dev->tx_global_lock);
10125
10126 return 0;
10127 }
10128
netif_tx_stop_all_queues(struct net_device * dev)10129 void netif_tx_stop_all_queues(struct net_device *dev)
10130 {
10131 unsigned int i;
10132
10133 for (i = 0; i < dev->num_tx_queues; i++) {
10134 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10135
10136 netif_tx_stop_queue(txq);
10137 }
10138 }
10139 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10140
10141 /**
10142 * register_netdevice - register a network device
10143 * @dev: device to register
10144 *
10145 * Take a completed network device structure and add it to the kernel
10146 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10147 * chain. 0 is returned on success. A negative errno code is returned
10148 * on a failure to set up the device, or if the name is a duplicate.
10149 *
10150 * Callers must hold the rtnl semaphore. You may want
10151 * register_netdev() instead of this.
10152 *
10153 * BUGS:
10154 * The locking appears insufficient to guarantee two parallel registers
10155 * will not get the same name.
10156 */
10157
register_netdevice(struct net_device * dev)10158 int register_netdevice(struct net_device *dev)
10159 {
10160 int ret;
10161 struct net *net = dev_net(dev);
10162
10163 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10164 NETDEV_FEATURE_COUNT);
10165 BUG_ON(dev_boot_phase);
10166 ASSERT_RTNL();
10167
10168 might_sleep();
10169
10170 /* When net_device's are persistent, this will be fatal. */
10171 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10172 BUG_ON(!net);
10173
10174 ret = ethtool_check_ops(dev->ethtool_ops);
10175 if (ret)
10176 return ret;
10177
10178 spin_lock_init(&dev->addr_list_lock);
10179 netdev_set_addr_lockdep_class(dev);
10180
10181 ret = dev_get_valid_name(net, dev, dev->name);
10182 if (ret < 0)
10183 goto out;
10184
10185 ret = -ENOMEM;
10186 dev->name_node = netdev_name_node_head_alloc(dev);
10187 if (!dev->name_node)
10188 goto out;
10189
10190 /* Init, if this function is available */
10191 if (dev->netdev_ops->ndo_init) {
10192 ret = dev->netdev_ops->ndo_init(dev);
10193 if (ret) {
10194 if (ret > 0)
10195 ret = -EIO;
10196 goto err_free_name;
10197 }
10198 }
10199
10200 if (((dev->hw_features | dev->features) &
10201 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10202 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10203 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10204 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10205 ret = -EINVAL;
10206 goto err_uninit;
10207 }
10208
10209 ret = -EBUSY;
10210 if (!dev->ifindex)
10211 dev->ifindex = dev_new_index(net);
10212 else if (__dev_get_by_index(net, dev->ifindex))
10213 goto err_uninit;
10214
10215 /* Transfer changeable features to wanted_features and enable
10216 * software offloads (GSO and GRO).
10217 */
10218 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10219 dev->features |= NETIF_F_SOFT_FEATURES;
10220
10221 if (dev->udp_tunnel_nic_info) {
10222 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10223 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10224 }
10225
10226 dev->wanted_features = dev->features & dev->hw_features;
10227
10228 if (!(dev->flags & IFF_LOOPBACK))
10229 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10230
10231 /* If IPv4 TCP segmentation offload is supported we should also
10232 * allow the device to enable segmenting the frame with the option
10233 * of ignoring a static IP ID value. This doesn't enable the
10234 * feature itself but allows the user to enable it later.
10235 */
10236 if (dev->hw_features & NETIF_F_TSO)
10237 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10238 if (dev->vlan_features & NETIF_F_TSO)
10239 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10240 if (dev->mpls_features & NETIF_F_TSO)
10241 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10242 if (dev->hw_enc_features & NETIF_F_TSO)
10243 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10244
10245 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10246 */
10247 dev->vlan_features |= NETIF_F_HIGHDMA;
10248
10249 /* Make NETIF_F_SG inheritable to tunnel devices.
10250 */
10251 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10252
10253 /* Make NETIF_F_SG inheritable to MPLS.
10254 */
10255 dev->mpls_features |= NETIF_F_SG;
10256
10257 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10258 ret = notifier_to_errno(ret);
10259 if (ret)
10260 goto err_uninit;
10261
10262 ret = netdev_register_kobject(dev);
10263 if (ret) {
10264 dev->reg_state = NETREG_UNREGISTERED;
10265 goto err_uninit;
10266 }
10267 dev->reg_state = NETREG_REGISTERED;
10268
10269 __netdev_update_features(dev);
10270
10271 /*
10272 * Default initial state at registry is that the
10273 * device is present.
10274 */
10275
10276 set_bit(__LINK_STATE_PRESENT, &dev->state);
10277
10278 linkwatch_init_dev(dev);
10279
10280 dev_init_scheduler(dev);
10281 dev_hold(dev);
10282 list_netdevice(dev);
10283 add_device_randomness(dev->dev_addr, dev->addr_len);
10284
10285 /* If the device has permanent device address, driver should
10286 * set dev_addr and also addr_assign_type should be set to
10287 * NET_ADDR_PERM (default value).
10288 */
10289 if (dev->addr_assign_type == NET_ADDR_PERM)
10290 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10291
10292 /* Notify protocols, that a new device appeared. */
10293 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10294 ret = notifier_to_errno(ret);
10295 if (ret) {
10296 /* Expect explicit free_netdev() on failure */
10297 dev->needs_free_netdev = false;
10298 unregister_netdevice_queue(dev, NULL);
10299 goto out;
10300 }
10301 /*
10302 * Prevent userspace races by waiting until the network
10303 * device is fully setup before sending notifications.
10304 */
10305 if (!dev->rtnl_link_ops ||
10306 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10307 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10308
10309 out:
10310 return ret;
10311
10312 err_uninit:
10313 if (dev->netdev_ops->ndo_uninit)
10314 dev->netdev_ops->ndo_uninit(dev);
10315 if (dev->priv_destructor)
10316 dev->priv_destructor(dev);
10317 err_free_name:
10318 netdev_name_node_free(dev->name_node);
10319 goto out;
10320 }
10321 EXPORT_SYMBOL(register_netdevice);
10322
10323 /**
10324 * init_dummy_netdev - init a dummy network device for NAPI
10325 * @dev: device to init
10326 *
10327 * This takes a network device structure and initialize the minimum
10328 * amount of fields so it can be used to schedule NAPI polls without
10329 * registering a full blown interface. This is to be used by drivers
10330 * that need to tie several hardware interfaces to a single NAPI
10331 * poll scheduler due to HW limitations.
10332 */
init_dummy_netdev(struct net_device * dev)10333 int init_dummy_netdev(struct net_device *dev)
10334 {
10335 /* Clear everything. Note we don't initialize spinlocks
10336 * are they aren't supposed to be taken by any of the
10337 * NAPI code and this dummy netdev is supposed to be
10338 * only ever used for NAPI polls
10339 */
10340 memset(dev, 0, sizeof(struct net_device));
10341
10342 /* make sure we BUG if trying to hit standard
10343 * register/unregister code path
10344 */
10345 dev->reg_state = NETREG_DUMMY;
10346
10347 /* NAPI wants this */
10348 INIT_LIST_HEAD(&dev->napi_list);
10349
10350 /* a dummy interface is started by default */
10351 set_bit(__LINK_STATE_PRESENT, &dev->state);
10352 set_bit(__LINK_STATE_START, &dev->state);
10353
10354 /* napi_busy_loop stats accounting wants this */
10355 dev_net_set(dev, &init_net);
10356
10357 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10358 * because users of this 'device' dont need to change
10359 * its refcount.
10360 */
10361
10362 return 0;
10363 }
10364 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10365
10366
10367 /**
10368 * register_netdev - register a network device
10369 * @dev: device to register
10370 *
10371 * Take a completed network device structure and add it to the kernel
10372 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10373 * chain. 0 is returned on success. A negative errno code is returned
10374 * on a failure to set up the device, or if the name is a duplicate.
10375 *
10376 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10377 * and expands the device name if you passed a format string to
10378 * alloc_netdev.
10379 */
register_netdev(struct net_device * dev)10380 int register_netdev(struct net_device *dev)
10381 {
10382 int err;
10383
10384 if (rtnl_lock_killable())
10385 return -EINTR;
10386 err = register_netdevice(dev);
10387 rtnl_unlock();
10388 return err;
10389 }
10390 EXPORT_SYMBOL(register_netdev);
10391
netdev_refcnt_read(const struct net_device * dev)10392 int netdev_refcnt_read(const struct net_device *dev)
10393 {
10394 #ifdef CONFIG_PCPU_DEV_REFCNT
10395 int i, refcnt = 0;
10396
10397 for_each_possible_cpu(i)
10398 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10399 return refcnt;
10400 #else
10401 return refcount_read(&dev->dev_refcnt);
10402 #endif
10403 }
10404 EXPORT_SYMBOL(netdev_refcnt_read);
10405
10406 int netdev_unregister_timeout_secs __read_mostly = 10;
10407
10408 #define WAIT_REFS_MIN_MSECS 1
10409 #define WAIT_REFS_MAX_MSECS 250
10410 /**
10411 * netdev_wait_allrefs - wait until all references are gone.
10412 * @dev: target net_device
10413 *
10414 * This is called when unregistering network devices.
10415 *
10416 * Any protocol or device that holds a reference should register
10417 * for netdevice notification, and cleanup and put back the
10418 * reference if they receive an UNREGISTER event.
10419 * We can get stuck here if buggy protocols don't correctly
10420 * call dev_put.
10421 */
netdev_wait_allrefs(struct net_device * dev)10422 static void netdev_wait_allrefs(struct net_device *dev)
10423 {
10424 unsigned long rebroadcast_time, warning_time;
10425 int wait = 0, refcnt;
10426
10427 linkwatch_forget_dev(dev);
10428
10429 rebroadcast_time = warning_time = jiffies;
10430 refcnt = netdev_refcnt_read(dev);
10431
10432 while (refcnt != 1) {
10433 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10434 rtnl_lock();
10435
10436 /* Rebroadcast unregister notification */
10437 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10438
10439 __rtnl_unlock();
10440 rcu_barrier();
10441 rtnl_lock();
10442
10443 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10444 &dev->state)) {
10445 /* We must not have linkwatch events
10446 * pending on unregister. If this
10447 * happens, we simply run the queue
10448 * unscheduled, resulting in a noop
10449 * for this device.
10450 */
10451 linkwatch_run_queue();
10452 }
10453
10454 __rtnl_unlock();
10455
10456 rebroadcast_time = jiffies;
10457 }
10458
10459 if (!wait) {
10460 rcu_barrier();
10461 wait = WAIT_REFS_MIN_MSECS;
10462 } else {
10463 msleep(wait);
10464 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10465 }
10466
10467 refcnt = netdev_refcnt_read(dev);
10468
10469 if (refcnt != 1 &&
10470 time_after(jiffies, warning_time +
10471 netdev_unregister_timeout_secs * HZ)) {
10472 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10473 dev->name, refcnt);
10474 warning_time = jiffies;
10475 }
10476 }
10477 }
10478
10479 /* The sequence is:
10480 *
10481 * rtnl_lock();
10482 * ...
10483 * register_netdevice(x1);
10484 * register_netdevice(x2);
10485 * ...
10486 * unregister_netdevice(y1);
10487 * unregister_netdevice(y2);
10488 * ...
10489 * rtnl_unlock();
10490 * free_netdev(y1);
10491 * free_netdev(y2);
10492 *
10493 * We are invoked by rtnl_unlock().
10494 * This allows us to deal with problems:
10495 * 1) We can delete sysfs objects which invoke hotplug
10496 * without deadlocking with linkwatch via keventd.
10497 * 2) Since we run with the RTNL semaphore not held, we can sleep
10498 * safely in order to wait for the netdev refcnt to drop to zero.
10499 *
10500 * We must not return until all unregister events added during
10501 * the interval the lock was held have been completed.
10502 */
netdev_run_todo(void)10503 void netdev_run_todo(void)
10504 {
10505 struct list_head list;
10506 #ifdef CONFIG_LOCKDEP
10507 struct list_head unlink_list;
10508
10509 list_replace_init(&net_unlink_list, &unlink_list);
10510
10511 while (!list_empty(&unlink_list)) {
10512 struct net_device *dev = list_first_entry(&unlink_list,
10513 struct net_device,
10514 unlink_list);
10515 list_del_init(&dev->unlink_list);
10516 dev->nested_level = dev->lower_level - 1;
10517 }
10518 #endif
10519
10520 /* Snapshot list, allow later requests */
10521 list_replace_init(&net_todo_list, &list);
10522
10523 __rtnl_unlock();
10524
10525
10526 /* Wait for rcu callbacks to finish before next phase */
10527 if (!list_empty(&list))
10528 rcu_barrier();
10529
10530 while (!list_empty(&list)) {
10531 struct net_device *dev
10532 = list_first_entry(&list, struct net_device, todo_list);
10533 list_del(&dev->todo_list);
10534
10535 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10536 pr_err("network todo '%s' but state %d\n",
10537 dev->name, dev->reg_state);
10538 dump_stack();
10539 continue;
10540 }
10541
10542 dev->reg_state = NETREG_UNREGISTERED;
10543
10544 netdev_wait_allrefs(dev);
10545
10546 /* paranoia */
10547 BUG_ON(netdev_refcnt_read(dev) != 1);
10548 BUG_ON(!list_empty(&dev->ptype_all));
10549 BUG_ON(!list_empty(&dev->ptype_specific));
10550 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10551 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10552 #if IS_ENABLED(CONFIG_DECNET)
10553 WARN_ON(dev->dn_ptr);
10554 #endif
10555 if (dev->priv_destructor)
10556 dev->priv_destructor(dev);
10557 if (dev->needs_free_netdev)
10558 free_netdev(dev);
10559
10560 /* Report a network device has been unregistered */
10561 rtnl_lock();
10562 dev_net(dev)->dev_unreg_count--;
10563 __rtnl_unlock();
10564 wake_up(&netdev_unregistering_wq);
10565
10566 /* Free network device */
10567 kobject_put(&dev->dev.kobj);
10568 }
10569 }
10570
10571 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10572 * all the same fields in the same order as net_device_stats, with only
10573 * the type differing, but rtnl_link_stats64 may have additional fields
10574 * at the end for newer counters.
10575 */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)10576 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10577 const struct net_device_stats *netdev_stats)
10578 {
10579 #if BITS_PER_LONG == 64
10580 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10581 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10582 /* zero out counters that only exist in rtnl_link_stats64 */
10583 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10584 sizeof(*stats64) - sizeof(*netdev_stats));
10585 #else
10586 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10587 const unsigned long *src = (const unsigned long *)netdev_stats;
10588 u64 *dst = (u64 *)stats64;
10589
10590 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10591 for (i = 0; i < n; i++)
10592 dst[i] = src[i];
10593 /* zero out counters that only exist in rtnl_link_stats64 */
10594 memset((char *)stats64 + n * sizeof(u64), 0,
10595 sizeof(*stats64) - n * sizeof(u64));
10596 #endif
10597 }
10598 EXPORT_SYMBOL(netdev_stats_to_stats64);
10599
10600 /**
10601 * dev_get_stats - get network device statistics
10602 * @dev: device to get statistics from
10603 * @storage: place to store stats
10604 *
10605 * Get network statistics from device. Return @storage.
10606 * The device driver may provide its own method by setting
10607 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10608 * otherwise the internal statistics structure is used.
10609 */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)10610 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10611 struct rtnl_link_stats64 *storage)
10612 {
10613 const struct net_device_ops *ops = dev->netdev_ops;
10614
10615 if (ops->ndo_get_stats64) {
10616 memset(storage, 0, sizeof(*storage));
10617 ops->ndo_get_stats64(dev, storage);
10618 } else if (ops->ndo_get_stats) {
10619 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10620 } else {
10621 netdev_stats_to_stats64(storage, &dev->stats);
10622 }
10623 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10624 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10625 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10626 return storage;
10627 }
10628 EXPORT_SYMBOL(dev_get_stats);
10629
10630 /**
10631 * dev_fetch_sw_netstats - get per-cpu network device statistics
10632 * @s: place to store stats
10633 * @netstats: per-cpu network stats to read from
10634 *
10635 * Read per-cpu network statistics and populate the related fields in @s.
10636 */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)10637 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10638 const struct pcpu_sw_netstats __percpu *netstats)
10639 {
10640 int cpu;
10641
10642 for_each_possible_cpu(cpu) {
10643 const struct pcpu_sw_netstats *stats;
10644 struct pcpu_sw_netstats tmp;
10645 unsigned int start;
10646
10647 stats = per_cpu_ptr(netstats, cpu);
10648 do {
10649 start = u64_stats_fetch_begin_irq(&stats->syncp);
10650 tmp.rx_packets = stats->rx_packets;
10651 tmp.rx_bytes = stats->rx_bytes;
10652 tmp.tx_packets = stats->tx_packets;
10653 tmp.tx_bytes = stats->tx_bytes;
10654 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10655
10656 s->rx_packets += tmp.rx_packets;
10657 s->rx_bytes += tmp.rx_bytes;
10658 s->tx_packets += tmp.tx_packets;
10659 s->tx_bytes += tmp.tx_bytes;
10660 }
10661 }
10662 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10663
10664 /**
10665 * dev_get_tstats64 - ndo_get_stats64 implementation
10666 * @dev: device to get statistics from
10667 * @s: place to store stats
10668 *
10669 * Populate @s from dev->stats and dev->tstats. Can be used as
10670 * ndo_get_stats64() callback.
10671 */
dev_get_tstats64(struct net_device * dev,struct rtnl_link_stats64 * s)10672 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10673 {
10674 netdev_stats_to_stats64(s, &dev->stats);
10675 dev_fetch_sw_netstats(s, dev->tstats);
10676 }
10677 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10678
dev_ingress_queue_create(struct net_device * dev)10679 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10680 {
10681 struct netdev_queue *queue = dev_ingress_queue(dev);
10682
10683 #ifdef CONFIG_NET_CLS_ACT
10684 if (queue)
10685 return queue;
10686 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10687 if (!queue)
10688 return NULL;
10689 netdev_init_one_queue(dev, queue, NULL);
10690 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10691 queue->qdisc_sleeping = &noop_qdisc;
10692 rcu_assign_pointer(dev->ingress_queue, queue);
10693 #endif
10694 return queue;
10695 }
10696
10697 static const struct ethtool_ops default_ethtool_ops;
10698
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)10699 void netdev_set_default_ethtool_ops(struct net_device *dev,
10700 const struct ethtool_ops *ops)
10701 {
10702 if (dev->ethtool_ops == &default_ethtool_ops)
10703 dev->ethtool_ops = ops;
10704 }
10705 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10706
netdev_freemem(struct net_device * dev)10707 void netdev_freemem(struct net_device *dev)
10708 {
10709 char *addr = (char *)dev - dev->padded;
10710
10711 kvfree(addr);
10712 }
10713
10714 /**
10715 * alloc_netdev_mqs - allocate network device
10716 * @sizeof_priv: size of private data to allocate space for
10717 * @name: device name format string
10718 * @name_assign_type: origin of device name
10719 * @setup: callback to initialize device
10720 * @txqs: the number of TX subqueues to allocate
10721 * @rxqs: the number of RX subqueues to allocate
10722 *
10723 * Allocates a struct net_device with private data area for driver use
10724 * and performs basic initialization. Also allocates subqueue structs
10725 * for each queue on the device.
10726 */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)10727 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10728 unsigned char name_assign_type,
10729 void (*setup)(struct net_device *),
10730 unsigned int txqs, unsigned int rxqs)
10731 {
10732 struct net_device *dev;
10733 unsigned int alloc_size;
10734 struct net_device *p;
10735
10736 BUG_ON(strlen(name) >= sizeof(dev->name));
10737
10738 if (txqs < 1) {
10739 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10740 return NULL;
10741 }
10742
10743 if (rxqs < 1) {
10744 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10745 return NULL;
10746 }
10747
10748 alloc_size = sizeof(struct net_device);
10749 if (sizeof_priv) {
10750 /* ensure 32-byte alignment of private area */
10751 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10752 alloc_size += sizeof_priv;
10753 }
10754 /* ensure 32-byte alignment of whole construct */
10755 alloc_size += NETDEV_ALIGN - 1;
10756
10757 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10758 if (!p)
10759 return NULL;
10760
10761 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10762 dev->padded = (char *)dev - (char *)p;
10763
10764 #ifdef CONFIG_PCPU_DEV_REFCNT
10765 dev->pcpu_refcnt = alloc_percpu(int);
10766 if (!dev->pcpu_refcnt)
10767 goto free_dev;
10768 dev_hold(dev);
10769 #else
10770 refcount_set(&dev->dev_refcnt, 1);
10771 #endif
10772
10773 if (dev_addr_init(dev))
10774 goto free_pcpu;
10775
10776 dev_mc_init(dev);
10777 dev_uc_init(dev);
10778
10779 dev_net_set(dev, &init_net);
10780
10781 dev->gso_max_size = GSO_MAX_SIZE;
10782 dev->gso_max_segs = GSO_MAX_SEGS;
10783 dev->upper_level = 1;
10784 dev->lower_level = 1;
10785 #ifdef CONFIG_LOCKDEP
10786 dev->nested_level = 0;
10787 INIT_LIST_HEAD(&dev->unlink_list);
10788 #endif
10789
10790 INIT_LIST_HEAD(&dev->napi_list);
10791 INIT_LIST_HEAD(&dev->unreg_list);
10792 INIT_LIST_HEAD(&dev->close_list);
10793 INIT_LIST_HEAD(&dev->link_watch_list);
10794 INIT_LIST_HEAD(&dev->adj_list.upper);
10795 INIT_LIST_HEAD(&dev->adj_list.lower);
10796 INIT_LIST_HEAD(&dev->ptype_all);
10797 INIT_LIST_HEAD(&dev->ptype_specific);
10798 INIT_LIST_HEAD(&dev->net_notifier_list);
10799 #ifdef CONFIG_NET_SCHED
10800 hash_init(dev->qdisc_hash);
10801 #endif
10802 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10803 setup(dev);
10804
10805 if (!dev->tx_queue_len) {
10806 dev->priv_flags |= IFF_NO_QUEUE;
10807 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10808 }
10809
10810 dev->num_tx_queues = txqs;
10811 dev->real_num_tx_queues = txqs;
10812 if (netif_alloc_netdev_queues(dev))
10813 goto free_all;
10814
10815 dev->num_rx_queues = rxqs;
10816 dev->real_num_rx_queues = rxqs;
10817 if (netif_alloc_rx_queues(dev))
10818 goto free_all;
10819
10820 strcpy(dev->name, name);
10821 dev->name_assign_type = name_assign_type;
10822 dev->group = INIT_NETDEV_GROUP;
10823 if (!dev->ethtool_ops)
10824 dev->ethtool_ops = &default_ethtool_ops;
10825
10826 nf_hook_ingress_init(dev);
10827
10828 return dev;
10829
10830 free_all:
10831 free_netdev(dev);
10832 return NULL;
10833
10834 free_pcpu:
10835 #ifdef CONFIG_PCPU_DEV_REFCNT
10836 free_percpu(dev->pcpu_refcnt);
10837 free_dev:
10838 #endif
10839 netdev_freemem(dev);
10840 return NULL;
10841 }
10842 EXPORT_SYMBOL(alloc_netdev_mqs);
10843
10844 /**
10845 * free_netdev - free network device
10846 * @dev: device
10847 *
10848 * This function does the last stage of destroying an allocated device
10849 * interface. The reference to the device object is released. If this
10850 * is the last reference then it will be freed.Must be called in process
10851 * context.
10852 */
free_netdev(struct net_device * dev)10853 void free_netdev(struct net_device *dev)
10854 {
10855 struct napi_struct *p, *n;
10856
10857 might_sleep();
10858
10859 /* When called immediately after register_netdevice() failed the unwind
10860 * handling may still be dismantling the device. Handle that case by
10861 * deferring the free.
10862 */
10863 if (dev->reg_state == NETREG_UNREGISTERING) {
10864 ASSERT_RTNL();
10865 dev->needs_free_netdev = true;
10866 return;
10867 }
10868
10869 netif_free_tx_queues(dev);
10870 netif_free_rx_queues(dev);
10871
10872 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10873
10874 /* Flush device addresses */
10875 dev_addr_flush(dev);
10876
10877 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10878 netif_napi_del(p);
10879
10880 #ifdef CONFIG_PCPU_DEV_REFCNT
10881 free_percpu(dev->pcpu_refcnt);
10882 dev->pcpu_refcnt = NULL;
10883 #endif
10884 free_percpu(dev->xdp_bulkq);
10885 dev->xdp_bulkq = NULL;
10886
10887 /* Compatibility with error handling in drivers */
10888 if (dev->reg_state == NETREG_UNINITIALIZED) {
10889 netdev_freemem(dev);
10890 return;
10891 }
10892
10893 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10894 dev->reg_state = NETREG_RELEASED;
10895
10896 /* will free via device release */
10897 put_device(&dev->dev);
10898 }
10899 EXPORT_SYMBOL(free_netdev);
10900
10901 /**
10902 * synchronize_net - Synchronize with packet receive processing
10903 *
10904 * Wait for packets currently being received to be done.
10905 * Does not block later packets from starting.
10906 */
synchronize_net(void)10907 void synchronize_net(void)
10908 {
10909 might_sleep();
10910 if (rtnl_is_locked())
10911 synchronize_rcu_expedited();
10912 else
10913 synchronize_rcu();
10914 }
10915 EXPORT_SYMBOL(synchronize_net);
10916
10917 /**
10918 * unregister_netdevice_queue - remove device from the kernel
10919 * @dev: device
10920 * @head: list
10921 *
10922 * This function shuts down a device interface and removes it
10923 * from the kernel tables.
10924 * If head not NULL, device is queued to be unregistered later.
10925 *
10926 * Callers must hold the rtnl semaphore. You may want
10927 * unregister_netdev() instead of this.
10928 */
10929
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)10930 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10931 {
10932 ASSERT_RTNL();
10933
10934 if (head) {
10935 list_move_tail(&dev->unreg_list, head);
10936 } else {
10937 LIST_HEAD(single);
10938
10939 list_add(&dev->unreg_list, &single);
10940 unregister_netdevice_many(&single);
10941 }
10942 }
10943 EXPORT_SYMBOL(unregister_netdevice_queue);
10944
10945 /**
10946 * unregister_netdevice_many - unregister many devices
10947 * @head: list of devices
10948 *
10949 * Note: As most callers use a stack allocated list_head,
10950 * we force a list_del() to make sure stack wont be corrupted later.
10951 */
unregister_netdevice_many(struct list_head * head)10952 void unregister_netdevice_many(struct list_head *head)
10953 {
10954 struct net_device *dev, *tmp;
10955 LIST_HEAD(close_head);
10956
10957 BUG_ON(dev_boot_phase);
10958 ASSERT_RTNL();
10959
10960 if (list_empty(head))
10961 return;
10962
10963 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10964 /* Some devices call without registering
10965 * for initialization unwind. Remove those
10966 * devices and proceed with the remaining.
10967 */
10968 if (dev->reg_state == NETREG_UNINITIALIZED) {
10969 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10970 dev->name, dev);
10971
10972 WARN_ON(1);
10973 list_del(&dev->unreg_list);
10974 continue;
10975 }
10976 dev->dismantle = true;
10977 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10978 }
10979
10980 /* If device is running, close it first. */
10981 list_for_each_entry(dev, head, unreg_list)
10982 list_add_tail(&dev->close_list, &close_head);
10983 dev_close_many(&close_head, true);
10984
10985 list_for_each_entry(dev, head, unreg_list) {
10986 /* And unlink it from device chain. */
10987 unlist_netdevice(dev);
10988
10989 dev->reg_state = NETREG_UNREGISTERING;
10990 }
10991 flush_all_backlogs();
10992
10993 synchronize_net();
10994
10995 list_for_each_entry(dev, head, unreg_list) {
10996 struct sk_buff *skb = NULL;
10997
10998 /* Shutdown queueing discipline. */
10999 dev_shutdown(dev);
11000
11001 dev_xdp_uninstall(dev);
11002
11003 /* Notify protocols, that we are about to destroy
11004 * this device. They should clean all the things.
11005 */
11006 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11007
11008 if (!dev->rtnl_link_ops ||
11009 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11010 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11011 GFP_KERNEL, NULL, 0);
11012
11013 /*
11014 * Flush the unicast and multicast chains
11015 */
11016 dev_uc_flush(dev);
11017 dev_mc_flush(dev);
11018
11019 netdev_name_node_alt_flush(dev);
11020 netdev_name_node_free(dev->name_node);
11021
11022 if (dev->netdev_ops->ndo_uninit)
11023 dev->netdev_ops->ndo_uninit(dev);
11024
11025 if (skb)
11026 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11027
11028 /* Notifier chain MUST detach us all upper devices. */
11029 WARN_ON(netdev_has_any_upper_dev(dev));
11030 WARN_ON(netdev_has_any_lower_dev(dev));
11031
11032 /* Remove entries from kobject tree */
11033 netdev_unregister_kobject(dev);
11034 #ifdef CONFIG_XPS
11035 /* Remove XPS queueing entries */
11036 netif_reset_xps_queues_gt(dev, 0);
11037 #endif
11038 }
11039
11040 synchronize_net();
11041
11042 list_for_each_entry(dev, head, unreg_list) {
11043 dev_put(dev);
11044 net_set_todo(dev);
11045 }
11046
11047 list_del(head);
11048 }
11049 EXPORT_SYMBOL(unregister_netdevice_many);
11050
11051 /**
11052 * unregister_netdev - remove device from the kernel
11053 * @dev: device
11054 *
11055 * This function shuts down a device interface and removes it
11056 * from the kernel tables.
11057 *
11058 * This is just a wrapper for unregister_netdevice that takes
11059 * the rtnl semaphore. In general you want to use this and not
11060 * unregister_netdevice.
11061 */
unregister_netdev(struct net_device * dev)11062 void unregister_netdev(struct net_device *dev)
11063 {
11064 rtnl_lock();
11065 unregister_netdevice(dev);
11066 rtnl_unlock();
11067 }
11068 EXPORT_SYMBOL(unregister_netdev);
11069
11070 /**
11071 * __dev_change_net_namespace - move device to different nethost namespace
11072 * @dev: device
11073 * @net: network namespace
11074 * @pat: If not NULL name pattern to try if the current device name
11075 * is already taken in the destination network namespace.
11076 * @new_ifindex: If not zero, specifies device index in the target
11077 * namespace.
11078 *
11079 * This function shuts down a device interface and moves it
11080 * to a new network namespace. On success 0 is returned, on
11081 * a failure a netagive errno code is returned.
11082 *
11083 * Callers must hold the rtnl semaphore.
11084 */
11085
__dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat,int new_ifindex)11086 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11087 const char *pat, int new_ifindex)
11088 {
11089 struct net *net_old = dev_net(dev);
11090 int err, new_nsid;
11091
11092 ASSERT_RTNL();
11093
11094 /* Don't allow namespace local devices to be moved. */
11095 err = -EINVAL;
11096 if (dev->features & NETIF_F_NETNS_LOCAL)
11097 goto out;
11098
11099 /* Ensure the device has been registrered */
11100 if (dev->reg_state != NETREG_REGISTERED)
11101 goto out;
11102
11103 /* Get out if there is nothing todo */
11104 err = 0;
11105 if (net_eq(net_old, net))
11106 goto out;
11107
11108 /* Pick the destination device name, and ensure
11109 * we can use it in the destination network namespace.
11110 */
11111 err = -EEXIST;
11112 if (__dev_get_by_name(net, dev->name)) {
11113 /* We get here if we can't use the current device name */
11114 if (!pat)
11115 goto out;
11116 err = dev_get_valid_name(net, dev, pat);
11117 if (err < 0)
11118 goto out;
11119 }
11120
11121 /* Check that new_ifindex isn't used yet. */
11122 err = -EBUSY;
11123 if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11124 goto out;
11125
11126 /*
11127 * And now a mini version of register_netdevice unregister_netdevice.
11128 */
11129
11130 /* If device is running close it first. */
11131 dev_close(dev);
11132
11133 /* And unlink it from device chain */
11134 unlist_netdevice(dev);
11135
11136 synchronize_net();
11137
11138 /* Shutdown queueing discipline. */
11139 dev_shutdown(dev);
11140
11141 /* Notify protocols, that we are about to destroy
11142 * this device. They should clean all the things.
11143 *
11144 * Note that dev->reg_state stays at NETREG_REGISTERED.
11145 * This is wanted because this way 8021q and macvlan know
11146 * the device is just moving and can keep their slaves up.
11147 */
11148 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11149 rcu_barrier();
11150
11151 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11152 /* If there is an ifindex conflict assign a new one */
11153 if (!new_ifindex) {
11154 if (__dev_get_by_index(net, dev->ifindex))
11155 new_ifindex = dev_new_index(net);
11156 else
11157 new_ifindex = dev->ifindex;
11158 }
11159
11160 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11161 new_ifindex);
11162
11163 /*
11164 * Flush the unicast and multicast chains
11165 */
11166 dev_uc_flush(dev);
11167 dev_mc_flush(dev);
11168
11169 /* Send a netdev-removed uevent to the old namespace */
11170 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11171 netdev_adjacent_del_links(dev);
11172
11173 /* Move per-net netdevice notifiers that are following the netdevice */
11174 move_netdevice_notifiers_dev_net(dev, net);
11175
11176 /* Actually switch the network namespace */
11177 dev_net_set(dev, net);
11178 dev->ifindex = new_ifindex;
11179
11180 /* Send a netdev-add uevent to the new namespace */
11181 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11182 netdev_adjacent_add_links(dev);
11183
11184 /* Fixup kobjects */
11185 err = device_rename(&dev->dev, dev->name);
11186 WARN_ON(err);
11187
11188 /* Adapt owner in case owning user namespace of target network
11189 * namespace is different from the original one.
11190 */
11191 err = netdev_change_owner(dev, net_old, net);
11192 WARN_ON(err);
11193
11194 /* Add the device back in the hashes */
11195 list_netdevice(dev);
11196
11197 /* Notify protocols, that a new device appeared. */
11198 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11199
11200 /*
11201 * Prevent userspace races by waiting until the network
11202 * device is fully setup before sending notifications.
11203 */
11204 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11205
11206 synchronize_net();
11207 err = 0;
11208 out:
11209 return err;
11210 }
11211 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11212
dev_cpu_dead(unsigned int oldcpu)11213 static int dev_cpu_dead(unsigned int oldcpu)
11214 {
11215 struct sk_buff **list_skb;
11216 struct sk_buff *skb;
11217 unsigned int cpu;
11218 struct softnet_data *sd, *oldsd, *remsd = NULL;
11219
11220 local_irq_disable();
11221 cpu = smp_processor_id();
11222 sd = &per_cpu(softnet_data, cpu);
11223 oldsd = &per_cpu(softnet_data, oldcpu);
11224
11225 /* Find end of our completion_queue. */
11226 list_skb = &sd->completion_queue;
11227 while (*list_skb)
11228 list_skb = &(*list_skb)->next;
11229 /* Append completion queue from offline CPU. */
11230 *list_skb = oldsd->completion_queue;
11231 oldsd->completion_queue = NULL;
11232
11233 /* Append output queue from offline CPU. */
11234 if (oldsd->output_queue) {
11235 *sd->output_queue_tailp = oldsd->output_queue;
11236 sd->output_queue_tailp = oldsd->output_queue_tailp;
11237 oldsd->output_queue = NULL;
11238 oldsd->output_queue_tailp = &oldsd->output_queue;
11239 }
11240 /* Append NAPI poll list from offline CPU, with one exception :
11241 * process_backlog() must be called by cpu owning percpu backlog.
11242 * We properly handle process_queue & input_pkt_queue later.
11243 */
11244 while (!list_empty(&oldsd->poll_list)) {
11245 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11246 struct napi_struct,
11247 poll_list);
11248
11249 list_del_init(&napi->poll_list);
11250 if (napi->poll == process_backlog)
11251 napi->state = 0;
11252 else
11253 ____napi_schedule(sd, napi);
11254 }
11255
11256 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11257 local_irq_enable();
11258
11259 #ifdef CONFIG_RPS
11260 remsd = oldsd->rps_ipi_list;
11261 oldsd->rps_ipi_list = NULL;
11262 #endif
11263 /* send out pending IPI's on offline CPU */
11264 net_rps_send_ipi(remsd);
11265
11266 /* Process offline CPU's input_pkt_queue */
11267 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11268 netif_rx_ni(skb);
11269 input_queue_head_incr(oldsd);
11270 }
11271 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11272 netif_rx_ni(skb);
11273 input_queue_head_incr(oldsd);
11274 }
11275
11276 return 0;
11277 }
11278
11279 /**
11280 * netdev_increment_features - increment feature set by one
11281 * @all: current feature set
11282 * @one: new feature set
11283 * @mask: mask feature set
11284 *
11285 * Computes a new feature set after adding a device with feature set
11286 * @one to the master device with current feature set @all. Will not
11287 * enable anything that is off in @mask. Returns the new feature set.
11288 */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)11289 netdev_features_t netdev_increment_features(netdev_features_t all,
11290 netdev_features_t one, netdev_features_t mask)
11291 {
11292 if (mask & NETIF_F_HW_CSUM)
11293 mask |= NETIF_F_CSUM_MASK;
11294 mask |= NETIF_F_VLAN_CHALLENGED;
11295
11296 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11297 all &= one | ~NETIF_F_ALL_FOR_ALL;
11298
11299 /* If one device supports hw checksumming, set for all. */
11300 if (all & NETIF_F_HW_CSUM)
11301 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11302
11303 return all;
11304 }
11305 EXPORT_SYMBOL(netdev_increment_features);
11306
netdev_create_hash(void)11307 static struct hlist_head * __net_init netdev_create_hash(void)
11308 {
11309 int i;
11310 struct hlist_head *hash;
11311
11312 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11313 if (hash != NULL)
11314 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11315 INIT_HLIST_HEAD(&hash[i]);
11316
11317 return hash;
11318 }
11319
11320 /* Initialize per network namespace state */
netdev_init(struct net * net)11321 static int __net_init netdev_init(struct net *net)
11322 {
11323 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11324 8 * sizeof_field(struct napi_struct, gro_bitmask));
11325
11326 if (net != &init_net)
11327 INIT_LIST_HEAD(&net->dev_base_head);
11328
11329 net->dev_name_head = netdev_create_hash();
11330 if (net->dev_name_head == NULL)
11331 goto err_name;
11332
11333 net->dev_index_head = netdev_create_hash();
11334 if (net->dev_index_head == NULL)
11335 goto err_idx;
11336
11337 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11338
11339 return 0;
11340
11341 err_idx:
11342 kfree(net->dev_name_head);
11343 err_name:
11344 return -ENOMEM;
11345 }
11346
11347 /**
11348 * netdev_drivername - network driver for the device
11349 * @dev: network device
11350 *
11351 * Determine network driver for device.
11352 */
netdev_drivername(const struct net_device * dev)11353 const char *netdev_drivername(const struct net_device *dev)
11354 {
11355 const struct device_driver *driver;
11356 const struct device *parent;
11357 const char *empty = "";
11358
11359 parent = dev->dev.parent;
11360 if (!parent)
11361 return empty;
11362
11363 driver = parent->driver;
11364 if (driver && driver->name)
11365 return driver->name;
11366 return empty;
11367 }
11368
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)11369 static void __netdev_printk(const char *level, const struct net_device *dev,
11370 struct va_format *vaf)
11371 {
11372 if (dev && dev->dev.parent) {
11373 dev_printk_emit(level[1] - '0',
11374 dev->dev.parent,
11375 "%s %s %s%s: %pV",
11376 dev_driver_string(dev->dev.parent),
11377 dev_name(dev->dev.parent),
11378 netdev_name(dev), netdev_reg_state(dev),
11379 vaf);
11380 } else if (dev) {
11381 printk("%s%s%s: %pV",
11382 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11383 } else {
11384 printk("%s(NULL net_device): %pV", level, vaf);
11385 }
11386 }
11387
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)11388 void netdev_printk(const char *level, const struct net_device *dev,
11389 const char *format, ...)
11390 {
11391 struct va_format vaf;
11392 va_list args;
11393
11394 va_start(args, format);
11395
11396 vaf.fmt = format;
11397 vaf.va = &args;
11398
11399 __netdev_printk(level, dev, &vaf);
11400
11401 va_end(args);
11402 }
11403 EXPORT_SYMBOL(netdev_printk);
11404
11405 #define define_netdev_printk_level(func, level) \
11406 void func(const struct net_device *dev, const char *fmt, ...) \
11407 { \
11408 struct va_format vaf; \
11409 va_list args; \
11410 \
11411 va_start(args, fmt); \
11412 \
11413 vaf.fmt = fmt; \
11414 vaf.va = &args; \
11415 \
11416 __netdev_printk(level, dev, &vaf); \
11417 \
11418 va_end(args); \
11419 } \
11420 EXPORT_SYMBOL(func);
11421
11422 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11423 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11424 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11425 define_netdev_printk_level(netdev_err, KERN_ERR);
11426 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11427 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11428 define_netdev_printk_level(netdev_info, KERN_INFO);
11429
netdev_exit(struct net * net)11430 static void __net_exit netdev_exit(struct net *net)
11431 {
11432 kfree(net->dev_name_head);
11433 kfree(net->dev_index_head);
11434 if (net != &init_net)
11435 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11436 }
11437
11438 static struct pernet_operations __net_initdata netdev_net_ops = {
11439 .init = netdev_init,
11440 .exit = netdev_exit,
11441 };
11442
default_device_exit(struct net * net)11443 static void __net_exit default_device_exit(struct net *net)
11444 {
11445 struct net_device *dev, *aux;
11446 /*
11447 * Push all migratable network devices back to the
11448 * initial network namespace
11449 */
11450 rtnl_lock();
11451 for_each_netdev_safe(net, dev, aux) {
11452 int err;
11453 char fb_name[IFNAMSIZ];
11454
11455 /* Ignore unmoveable devices (i.e. loopback) */
11456 if (dev->features & NETIF_F_NETNS_LOCAL)
11457 continue;
11458
11459 /* Leave virtual devices for the generic cleanup */
11460 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11461 continue;
11462
11463 /* Push remaining network devices to init_net */
11464 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11465 if (__dev_get_by_name(&init_net, fb_name))
11466 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11467 err = dev_change_net_namespace(dev, &init_net, fb_name);
11468 if (err) {
11469 pr_emerg("%s: failed to move %s to init_net: %d\n",
11470 __func__, dev->name, err);
11471 BUG();
11472 }
11473 }
11474 rtnl_unlock();
11475 }
11476
rtnl_lock_unregistering(struct list_head * net_list)11477 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11478 {
11479 /* Return with the rtnl_lock held when there are no network
11480 * devices unregistering in any network namespace in net_list.
11481 */
11482 struct net *net;
11483 bool unregistering;
11484 DEFINE_WAIT_FUNC(wait, woken_wake_function);
11485
11486 add_wait_queue(&netdev_unregistering_wq, &wait);
11487 for (;;) {
11488 unregistering = false;
11489 rtnl_lock();
11490 list_for_each_entry(net, net_list, exit_list) {
11491 if (net->dev_unreg_count > 0) {
11492 unregistering = true;
11493 break;
11494 }
11495 }
11496 if (!unregistering)
11497 break;
11498 __rtnl_unlock();
11499
11500 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11501 }
11502 remove_wait_queue(&netdev_unregistering_wq, &wait);
11503 }
11504
default_device_exit_batch(struct list_head * net_list)11505 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11506 {
11507 /* At exit all network devices most be removed from a network
11508 * namespace. Do this in the reverse order of registration.
11509 * Do this across as many network namespaces as possible to
11510 * improve batching efficiency.
11511 */
11512 struct net_device *dev;
11513 struct net *net;
11514 LIST_HEAD(dev_kill_list);
11515
11516 /* To prevent network device cleanup code from dereferencing
11517 * loopback devices or network devices that have been freed
11518 * wait here for all pending unregistrations to complete,
11519 * before unregistring the loopback device and allowing the
11520 * network namespace be freed.
11521 *
11522 * The netdev todo list containing all network devices
11523 * unregistrations that happen in default_device_exit_batch
11524 * will run in the rtnl_unlock() at the end of
11525 * default_device_exit_batch.
11526 */
11527 rtnl_lock_unregistering(net_list);
11528 list_for_each_entry(net, net_list, exit_list) {
11529 for_each_netdev_reverse(net, dev) {
11530 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11531 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11532 else
11533 unregister_netdevice_queue(dev, &dev_kill_list);
11534 }
11535 }
11536 unregister_netdevice_many(&dev_kill_list);
11537 rtnl_unlock();
11538 }
11539
11540 static struct pernet_operations __net_initdata default_device_ops = {
11541 .exit = default_device_exit,
11542 .exit_batch = default_device_exit_batch,
11543 };
11544
11545 /*
11546 * Initialize the DEV module. At boot time this walks the device list and
11547 * unhooks any devices that fail to initialise (normally hardware not
11548 * present) and leaves us with a valid list of present and active devices.
11549 *
11550 */
11551
11552 /*
11553 * This is called single threaded during boot, so no need
11554 * to take the rtnl semaphore.
11555 */
net_dev_init(void)11556 static int __init net_dev_init(void)
11557 {
11558 int i, rc = -ENOMEM;
11559
11560 BUG_ON(!dev_boot_phase);
11561
11562 if (dev_proc_init())
11563 goto out;
11564
11565 if (netdev_kobject_init())
11566 goto out;
11567
11568 INIT_LIST_HEAD(&ptype_all);
11569 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11570 INIT_LIST_HEAD(&ptype_base[i]);
11571
11572 INIT_LIST_HEAD(&offload_base);
11573
11574 if (register_pernet_subsys(&netdev_net_ops))
11575 goto out;
11576
11577 /*
11578 * Initialise the packet receive queues.
11579 */
11580
11581 for_each_possible_cpu(i) {
11582 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11583 struct softnet_data *sd = &per_cpu(softnet_data, i);
11584
11585 INIT_WORK(flush, flush_backlog);
11586
11587 skb_queue_head_init(&sd->input_pkt_queue);
11588 skb_queue_head_init(&sd->process_queue);
11589 #ifdef CONFIG_XFRM_OFFLOAD
11590 skb_queue_head_init(&sd->xfrm_backlog);
11591 #endif
11592 INIT_LIST_HEAD(&sd->poll_list);
11593 sd->output_queue_tailp = &sd->output_queue;
11594 #ifdef CONFIG_RPS
11595 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11596 sd->cpu = i;
11597 #endif
11598
11599 init_gro_hash(&sd->backlog);
11600 sd->backlog.poll = process_backlog;
11601 sd->backlog.weight = weight_p;
11602 }
11603
11604 dev_boot_phase = 0;
11605
11606 /* The loopback device is special if any other network devices
11607 * is present in a network namespace the loopback device must
11608 * be present. Since we now dynamically allocate and free the
11609 * loopback device ensure this invariant is maintained by
11610 * keeping the loopback device as the first device on the
11611 * list of network devices. Ensuring the loopback devices
11612 * is the first device that appears and the last network device
11613 * that disappears.
11614 */
11615 if (register_pernet_device(&loopback_net_ops))
11616 goto out;
11617
11618 if (register_pernet_device(&default_device_ops))
11619 goto out;
11620
11621 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11622 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11623
11624 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11625 NULL, dev_cpu_dead);
11626 WARN_ON(rc < 0);
11627 rc = 0;
11628 out:
11629 return rc;
11630 }
11631
11632 subsys_initcall(net_dev_init);
11633