1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Generic socket support routines. Memory allocators, socket lock/release
8 * handler for protocols to use and generic option handler.
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 */
85
86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87
88 #include <asm/unaligned.h>
89 #include <linux/capability.h>
90 #include <linux/errno.h>
91 #include <linux/errqueue.h>
92 #include <linux/types.h>
93 #include <linux/socket.h>
94 #include <linux/in.h>
95 #include <linux/kernel.h>
96 #include <linux/module.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/sched.h>
100 #include <linux/sched/mm.h>
101 #include <linux/timer.h>
102 #include <linux/string.h>
103 #include <linux/sockios.h>
104 #include <linux/net.h>
105 #include <linux/mm.h>
106 #include <linux/slab.h>
107 #include <linux/interrupt.h>
108 #include <linux/poll.h>
109 #include <linux/tcp.h>
110 #include <linux/init.h>
111 #include <linux/highmem.h>
112 #include <linux/user_namespace.h>
113 #include <linux/static_key.h>
114 #include <linux/memcontrol.h>
115 #include <linux/prefetch.h>
116 #include <linux/compat.h>
117
118 #include <linux/uaccess.h>
119
120 #include <linux/netdevice.h>
121 #include <net/protocol.h>
122 #include <linux/skbuff.h>
123 #include <net/net_namespace.h>
124 #include <net/request_sock.h>
125 #include <net/sock.h>
126 #include <linux/net_tstamp.h>
127 #include <net/xfrm.h>
128 #include <linux/ipsec.h>
129 #include <net/cls_cgroup.h>
130 #include <net/netprio_cgroup.h>
131 #include <linux/sock_diag.h>
132
133 #include <linux/filter.h>
134 #include <net/sock_reuseport.h>
135 #include <net/bpf_sk_storage.h>
136
137 #include <trace/events/sock.h>
138
139 #include <net/tcp.h>
140 #include <net/busy_poll.h>
141
142 static DEFINE_MUTEX(proto_list_mutex);
143 static LIST_HEAD(proto_list);
144
145 static void sock_inuse_add(struct net *net, int val);
146
147 /**
148 * sk_ns_capable - General socket capability test
149 * @sk: Socket to use a capability on or through
150 * @user_ns: The user namespace of the capability to use
151 * @cap: The capability to use
152 *
153 * Test to see if the opener of the socket had when the socket was
154 * created and the current process has the capability @cap in the user
155 * namespace @user_ns.
156 */
sk_ns_capable(const struct sock * sk,struct user_namespace * user_ns,int cap)157 bool sk_ns_capable(const struct sock *sk,
158 struct user_namespace *user_ns, int cap)
159 {
160 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
161 ns_capable(user_ns, cap);
162 }
163 EXPORT_SYMBOL(sk_ns_capable);
164
165 /**
166 * sk_capable - Socket global capability test
167 * @sk: Socket to use a capability on or through
168 * @cap: The global capability to use
169 *
170 * Test to see if the opener of the socket had when the socket was
171 * created and the current process has the capability @cap in all user
172 * namespaces.
173 */
sk_capable(const struct sock * sk,int cap)174 bool sk_capable(const struct sock *sk, int cap)
175 {
176 return sk_ns_capable(sk, &init_user_ns, cap);
177 }
178 EXPORT_SYMBOL(sk_capable);
179
180 /**
181 * sk_net_capable - Network namespace socket capability test
182 * @sk: Socket to use a capability on or through
183 * @cap: The capability to use
184 *
185 * Test to see if the opener of the socket had when the socket was created
186 * and the current process has the capability @cap over the network namespace
187 * the socket is a member of.
188 */
sk_net_capable(const struct sock * sk,int cap)189 bool sk_net_capable(const struct sock *sk, int cap)
190 {
191 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
192 }
193 EXPORT_SYMBOL(sk_net_capable);
194
195 /*
196 * Each address family might have different locking rules, so we have
197 * one slock key per address family and separate keys for internal and
198 * userspace sockets.
199 */
200 static struct lock_class_key af_family_keys[AF_MAX];
201 static struct lock_class_key af_family_kern_keys[AF_MAX];
202 static struct lock_class_key af_family_slock_keys[AF_MAX];
203 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
204
205 /*
206 * Make lock validator output more readable. (we pre-construct these
207 * strings build-time, so that runtime initialization of socket
208 * locks is fast):
209 */
210
211 #define _sock_locks(x) \
212 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
213 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
214 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
215 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
216 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
217 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
218 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
219 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
220 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
221 x "27" , x "28" , x "AF_CAN" , \
222 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
223 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
224 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
225 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
226 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \
227 x "AF_MAX"
228
229 static const char *const af_family_key_strings[AF_MAX+1] = {
230 _sock_locks("sk_lock-")
231 };
232 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
233 _sock_locks("slock-")
234 };
235 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
236 _sock_locks("clock-")
237 };
238
239 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
240 _sock_locks("k-sk_lock-")
241 };
242 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
243 _sock_locks("k-slock-")
244 };
245 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
246 _sock_locks("k-clock-")
247 };
248 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
249 _sock_locks("rlock-")
250 };
251 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
252 _sock_locks("wlock-")
253 };
254 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
255 _sock_locks("elock-")
256 };
257
258 /*
259 * sk_callback_lock and sk queues locking rules are per-address-family,
260 * so split the lock classes by using a per-AF key:
261 */
262 static struct lock_class_key af_callback_keys[AF_MAX];
263 static struct lock_class_key af_rlock_keys[AF_MAX];
264 static struct lock_class_key af_wlock_keys[AF_MAX];
265 static struct lock_class_key af_elock_keys[AF_MAX];
266 static struct lock_class_key af_kern_callback_keys[AF_MAX];
267
268 /* Run time adjustable parameters. */
269 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
270 EXPORT_SYMBOL(sysctl_wmem_max);
271 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
272 EXPORT_SYMBOL(sysctl_rmem_max);
273 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
274 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
275
276 /* Maximal space eaten by iovec or ancillary data plus some space */
277 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
278 EXPORT_SYMBOL(sysctl_optmem_max);
279
280 int sysctl_tstamp_allow_data __read_mostly = 1;
281
282 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
283 EXPORT_SYMBOL_GPL(memalloc_socks_key);
284
285 /**
286 * sk_set_memalloc - sets %SOCK_MEMALLOC
287 * @sk: socket to set it on
288 *
289 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
290 * It's the responsibility of the admin to adjust min_free_kbytes
291 * to meet the requirements
292 */
sk_set_memalloc(struct sock * sk)293 void sk_set_memalloc(struct sock *sk)
294 {
295 sock_set_flag(sk, SOCK_MEMALLOC);
296 sk->sk_allocation |= __GFP_MEMALLOC;
297 static_branch_inc(&memalloc_socks_key);
298 }
299 EXPORT_SYMBOL_GPL(sk_set_memalloc);
300
sk_clear_memalloc(struct sock * sk)301 void sk_clear_memalloc(struct sock *sk)
302 {
303 sock_reset_flag(sk, SOCK_MEMALLOC);
304 sk->sk_allocation &= ~__GFP_MEMALLOC;
305 static_branch_dec(&memalloc_socks_key);
306
307 /*
308 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
309 * progress of swapping. SOCK_MEMALLOC may be cleared while
310 * it has rmem allocations due to the last swapfile being deactivated
311 * but there is a risk that the socket is unusable due to exceeding
312 * the rmem limits. Reclaim the reserves and obey rmem limits again.
313 */
314 sk_mem_reclaim(sk);
315 }
316 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
317
__sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)318 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
319 {
320 int ret;
321 unsigned int noreclaim_flag;
322
323 /* these should have been dropped before queueing */
324 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
325
326 noreclaim_flag = memalloc_noreclaim_save();
327 ret = sk->sk_backlog_rcv(sk, skb);
328 memalloc_noreclaim_restore(noreclaim_flag);
329
330 return ret;
331 }
332 EXPORT_SYMBOL(__sk_backlog_rcv);
333
sock_get_timeout(long timeo,void * optval,bool old_timeval)334 static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
335 {
336 struct __kernel_sock_timeval tv;
337
338 if (timeo == MAX_SCHEDULE_TIMEOUT) {
339 tv.tv_sec = 0;
340 tv.tv_usec = 0;
341 } else {
342 tv.tv_sec = timeo / HZ;
343 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
344 }
345
346 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
347 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
348 *(struct old_timeval32 *)optval = tv32;
349 return sizeof(tv32);
350 }
351
352 if (old_timeval) {
353 struct __kernel_old_timeval old_tv;
354 old_tv.tv_sec = tv.tv_sec;
355 old_tv.tv_usec = tv.tv_usec;
356 *(struct __kernel_old_timeval *)optval = old_tv;
357 return sizeof(old_tv);
358 }
359
360 *(struct __kernel_sock_timeval *)optval = tv;
361 return sizeof(tv);
362 }
363
sock_set_timeout(long * timeo_p,sockptr_t optval,int optlen,bool old_timeval)364 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
365 bool old_timeval)
366 {
367 struct __kernel_sock_timeval tv;
368
369 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
370 struct old_timeval32 tv32;
371
372 if (optlen < sizeof(tv32))
373 return -EINVAL;
374
375 if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
376 return -EFAULT;
377 tv.tv_sec = tv32.tv_sec;
378 tv.tv_usec = tv32.tv_usec;
379 } else if (old_timeval) {
380 struct __kernel_old_timeval old_tv;
381
382 if (optlen < sizeof(old_tv))
383 return -EINVAL;
384 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
385 return -EFAULT;
386 tv.tv_sec = old_tv.tv_sec;
387 tv.tv_usec = old_tv.tv_usec;
388 } else {
389 if (optlen < sizeof(tv))
390 return -EINVAL;
391 if (copy_from_sockptr(&tv, optval, sizeof(tv)))
392 return -EFAULT;
393 }
394 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
395 return -EDOM;
396
397 if (tv.tv_sec < 0) {
398 static int warned __read_mostly;
399
400 *timeo_p = 0;
401 if (warned < 10 && net_ratelimit()) {
402 warned++;
403 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
404 __func__, current->comm, task_pid_nr(current));
405 }
406 return 0;
407 }
408 *timeo_p = MAX_SCHEDULE_TIMEOUT;
409 if (tv.tv_sec == 0 && tv.tv_usec == 0)
410 return 0;
411 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
412 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
413 return 0;
414 }
415
sock_needs_netstamp(const struct sock * sk)416 static bool sock_needs_netstamp(const struct sock *sk)
417 {
418 switch (sk->sk_family) {
419 case AF_UNSPEC:
420 case AF_UNIX:
421 return false;
422 default:
423 return true;
424 }
425 }
426
sock_disable_timestamp(struct sock * sk,unsigned long flags)427 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
428 {
429 if (sk->sk_flags & flags) {
430 sk->sk_flags &= ~flags;
431 if (sock_needs_netstamp(sk) &&
432 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
433 net_disable_timestamp();
434 }
435 }
436
437
__sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)438 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
439 {
440 unsigned long flags;
441 struct sk_buff_head *list = &sk->sk_receive_queue;
442
443 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
444 atomic_inc(&sk->sk_drops);
445 trace_sock_rcvqueue_full(sk, skb);
446 return -ENOMEM;
447 }
448
449 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
450 atomic_inc(&sk->sk_drops);
451 return -ENOBUFS;
452 }
453
454 skb->dev = NULL;
455 skb_set_owner_r(skb, sk);
456
457 /* we escape from rcu protected region, make sure we dont leak
458 * a norefcounted dst
459 */
460 skb_dst_force(skb);
461
462 spin_lock_irqsave(&list->lock, flags);
463 sock_skb_set_dropcount(sk, skb);
464 __skb_queue_tail(list, skb);
465 spin_unlock_irqrestore(&list->lock, flags);
466
467 if (!sock_flag(sk, SOCK_DEAD))
468 sk->sk_data_ready(sk);
469 return 0;
470 }
471 EXPORT_SYMBOL(__sock_queue_rcv_skb);
472
sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)473 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
474 {
475 int err;
476
477 err = sk_filter(sk, skb);
478 if (err)
479 return err;
480
481 return __sock_queue_rcv_skb(sk, skb);
482 }
483 EXPORT_SYMBOL(sock_queue_rcv_skb);
484
__sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested,unsigned int trim_cap,bool refcounted)485 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
486 const int nested, unsigned int trim_cap, bool refcounted)
487 {
488 int rc = NET_RX_SUCCESS;
489
490 if (sk_filter_trim_cap(sk, skb, trim_cap))
491 goto discard_and_relse;
492
493 skb->dev = NULL;
494
495 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
496 atomic_inc(&sk->sk_drops);
497 goto discard_and_relse;
498 }
499 if (nested)
500 bh_lock_sock_nested(sk);
501 else
502 bh_lock_sock(sk);
503 if (!sock_owned_by_user(sk)) {
504 /*
505 * trylock + unlock semantics:
506 */
507 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
508
509 rc = sk_backlog_rcv(sk, skb);
510
511 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
512 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
513 bh_unlock_sock(sk);
514 atomic_inc(&sk->sk_drops);
515 goto discard_and_relse;
516 }
517
518 bh_unlock_sock(sk);
519 out:
520 if (refcounted)
521 sock_put(sk);
522 return rc;
523 discard_and_relse:
524 kfree_skb(skb);
525 goto out;
526 }
527 EXPORT_SYMBOL(__sk_receive_skb);
528
529 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
530 u32));
531 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
532 u32));
__sk_dst_check(struct sock * sk,u32 cookie)533 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
534 {
535 struct dst_entry *dst = __sk_dst_get(sk);
536
537 if (dst && dst->obsolete &&
538 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
539 dst, cookie) == NULL) {
540 sk_tx_queue_clear(sk);
541 sk->sk_dst_pending_confirm = 0;
542 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
543 dst_release(dst);
544 return NULL;
545 }
546
547 return dst;
548 }
549 EXPORT_SYMBOL(__sk_dst_check);
550
sk_dst_check(struct sock * sk,u32 cookie)551 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
552 {
553 struct dst_entry *dst = sk_dst_get(sk);
554
555 if (dst && dst->obsolete &&
556 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
557 dst, cookie) == NULL) {
558 sk_dst_reset(sk);
559 dst_release(dst);
560 return NULL;
561 }
562
563 return dst;
564 }
565 EXPORT_SYMBOL(sk_dst_check);
566
sock_bindtoindex_locked(struct sock * sk,int ifindex)567 static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
568 {
569 int ret = -ENOPROTOOPT;
570 #ifdef CONFIG_NETDEVICES
571 struct net *net = sock_net(sk);
572
573 /* Sorry... */
574 ret = -EPERM;
575 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
576 goto out;
577
578 ret = -EINVAL;
579 if (ifindex < 0)
580 goto out;
581
582 sk->sk_bound_dev_if = ifindex;
583 if (sk->sk_prot->rehash)
584 sk->sk_prot->rehash(sk);
585 sk_dst_reset(sk);
586
587 ret = 0;
588
589 out:
590 #endif
591
592 return ret;
593 }
594
sock_bindtoindex(struct sock * sk,int ifindex,bool lock_sk)595 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
596 {
597 int ret;
598
599 if (lock_sk)
600 lock_sock(sk);
601 ret = sock_bindtoindex_locked(sk, ifindex);
602 if (lock_sk)
603 release_sock(sk);
604
605 return ret;
606 }
607 EXPORT_SYMBOL(sock_bindtoindex);
608
sock_setbindtodevice(struct sock * sk,sockptr_t optval,int optlen)609 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
610 {
611 int ret = -ENOPROTOOPT;
612 #ifdef CONFIG_NETDEVICES
613 struct net *net = sock_net(sk);
614 char devname[IFNAMSIZ];
615 int index;
616
617 ret = -EINVAL;
618 if (optlen < 0)
619 goto out;
620
621 /* Bind this socket to a particular device like "eth0",
622 * as specified in the passed interface name. If the
623 * name is "" or the option length is zero the socket
624 * is not bound.
625 */
626 if (optlen > IFNAMSIZ - 1)
627 optlen = IFNAMSIZ - 1;
628 memset(devname, 0, sizeof(devname));
629
630 ret = -EFAULT;
631 if (copy_from_sockptr(devname, optval, optlen))
632 goto out;
633
634 index = 0;
635 if (devname[0] != '\0') {
636 struct net_device *dev;
637
638 rcu_read_lock();
639 dev = dev_get_by_name_rcu(net, devname);
640 if (dev)
641 index = dev->ifindex;
642 rcu_read_unlock();
643 ret = -ENODEV;
644 if (!dev)
645 goto out;
646 }
647
648 return sock_bindtoindex(sk, index, true);
649 out:
650 #endif
651
652 return ret;
653 }
654
sock_getbindtodevice(struct sock * sk,char __user * optval,int __user * optlen,int len)655 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
656 int __user *optlen, int len)
657 {
658 int ret = -ENOPROTOOPT;
659 #ifdef CONFIG_NETDEVICES
660 struct net *net = sock_net(sk);
661 char devname[IFNAMSIZ];
662
663 if (sk->sk_bound_dev_if == 0) {
664 len = 0;
665 goto zero;
666 }
667
668 ret = -EINVAL;
669 if (len < IFNAMSIZ)
670 goto out;
671
672 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
673 if (ret)
674 goto out;
675
676 len = strlen(devname) + 1;
677
678 ret = -EFAULT;
679 if (copy_to_user(optval, devname, len))
680 goto out;
681
682 zero:
683 ret = -EFAULT;
684 if (put_user(len, optlen))
685 goto out;
686
687 ret = 0;
688
689 out:
690 #endif
691
692 return ret;
693 }
694
sk_mc_loop(struct sock * sk)695 bool sk_mc_loop(struct sock *sk)
696 {
697 if (dev_recursion_level())
698 return false;
699 if (!sk)
700 return true;
701 switch (sk->sk_family) {
702 case AF_INET:
703 return inet_sk(sk)->mc_loop;
704 #if IS_ENABLED(CONFIG_IPV6)
705 case AF_INET6:
706 return inet6_sk(sk)->mc_loop;
707 #endif
708 }
709 WARN_ON_ONCE(1);
710 return true;
711 }
712 EXPORT_SYMBOL(sk_mc_loop);
713
sock_set_reuseaddr(struct sock * sk)714 void sock_set_reuseaddr(struct sock *sk)
715 {
716 lock_sock(sk);
717 sk->sk_reuse = SK_CAN_REUSE;
718 release_sock(sk);
719 }
720 EXPORT_SYMBOL(sock_set_reuseaddr);
721
sock_set_reuseport(struct sock * sk)722 void sock_set_reuseport(struct sock *sk)
723 {
724 lock_sock(sk);
725 sk->sk_reuseport = true;
726 release_sock(sk);
727 }
728 EXPORT_SYMBOL(sock_set_reuseport);
729
sock_no_linger(struct sock * sk)730 void sock_no_linger(struct sock *sk)
731 {
732 lock_sock(sk);
733 sk->sk_lingertime = 0;
734 sock_set_flag(sk, SOCK_LINGER);
735 release_sock(sk);
736 }
737 EXPORT_SYMBOL(sock_no_linger);
738
sock_set_priority(struct sock * sk,u32 priority)739 void sock_set_priority(struct sock *sk, u32 priority)
740 {
741 lock_sock(sk);
742 sk->sk_priority = priority;
743 release_sock(sk);
744 }
745 EXPORT_SYMBOL(sock_set_priority);
746
sock_set_sndtimeo(struct sock * sk,s64 secs)747 void sock_set_sndtimeo(struct sock *sk, s64 secs)
748 {
749 lock_sock(sk);
750 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
751 sk->sk_sndtimeo = secs * HZ;
752 else
753 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
754 release_sock(sk);
755 }
756 EXPORT_SYMBOL(sock_set_sndtimeo);
757
__sock_set_timestamps(struct sock * sk,bool val,bool new,bool ns)758 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
759 {
760 if (val) {
761 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
762 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
763 sock_set_flag(sk, SOCK_RCVTSTAMP);
764 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
765 } else {
766 sock_reset_flag(sk, SOCK_RCVTSTAMP);
767 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
768 }
769 }
770
sock_enable_timestamps(struct sock * sk)771 void sock_enable_timestamps(struct sock *sk)
772 {
773 lock_sock(sk);
774 __sock_set_timestamps(sk, true, false, true);
775 release_sock(sk);
776 }
777 EXPORT_SYMBOL(sock_enable_timestamps);
778
sock_set_keepalive(struct sock * sk)779 void sock_set_keepalive(struct sock *sk)
780 {
781 lock_sock(sk);
782 if (sk->sk_prot->keepalive)
783 sk->sk_prot->keepalive(sk, true);
784 sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
785 release_sock(sk);
786 }
787 EXPORT_SYMBOL(sock_set_keepalive);
788
__sock_set_rcvbuf(struct sock * sk,int val)789 static void __sock_set_rcvbuf(struct sock *sk, int val)
790 {
791 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it
792 * as a negative value.
793 */
794 val = min_t(int, val, INT_MAX / 2);
795 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
796
797 /* We double it on the way in to account for "struct sk_buff" etc.
798 * overhead. Applications assume that the SO_RCVBUF setting they make
799 * will allow that much actual data to be received on that socket.
800 *
801 * Applications are unaware that "struct sk_buff" and other overheads
802 * allocate from the receive buffer during socket buffer allocation.
803 *
804 * And after considering the possible alternatives, returning the value
805 * we actually used in getsockopt is the most desirable behavior.
806 */
807 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
808 }
809
sock_set_rcvbuf(struct sock * sk,int val)810 void sock_set_rcvbuf(struct sock *sk, int val)
811 {
812 lock_sock(sk);
813 __sock_set_rcvbuf(sk, val);
814 release_sock(sk);
815 }
816 EXPORT_SYMBOL(sock_set_rcvbuf);
817
sock_set_mark(struct sock * sk,u32 val)818 void sock_set_mark(struct sock *sk, u32 val)
819 {
820 lock_sock(sk);
821 sk->sk_mark = val;
822 release_sock(sk);
823 }
824 EXPORT_SYMBOL(sock_set_mark);
825
826 /*
827 * This is meant for all protocols to use and covers goings on
828 * at the socket level. Everything here is generic.
829 */
830
sock_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)831 int sock_setsockopt(struct socket *sock, int level, int optname,
832 sockptr_t optval, unsigned int optlen)
833 {
834 struct sock_txtime sk_txtime;
835 struct sock *sk = sock->sk;
836 int val;
837 int valbool;
838 struct linger ling;
839 int ret = 0;
840
841 /*
842 * Options without arguments
843 */
844
845 if (optname == SO_BINDTODEVICE)
846 return sock_setbindtodevice(sk, optval, optlen);
847
848 if (optlen < sizeof(int))
849 return -EINVAL;
850
851 if (copy_from_sockptr(&val, optval, sizeof(val)))
852 return -EFAULT;
853
854 valbool = val ? 1 : 0;
855
856 lock_sock(sk);
857
858 switch (optname) {
859 case SO_DEBUG:
860 if (val && !capable(CAP_NET_ADMIN))
861 ret = -EACCES;
862 else
863 sock_valbool_flag(sk, SOCK_DBG, valbool);
864 break;
865 case SO_REUSEADDR:
866 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
867 break;
868 case SO_REUSEPORT:
869 sk->sk_reuseport = valbool;
870 break;
871 case SO_TYPE:
872 case SO_PROTOCOL:
873 case SO_DOMAIN:
874 case SO_ERROR:
875 ret = -ENOPROTOOPT;
876 break;
877 case SO_DONTROUTE:
878 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
879 sk_dst_reset(sk);
880 break;
881 case SO_BROADCAST:
882 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
883 break;
884 case SO_SNDBUF:
885 /* Don't error on this BSD doesn't and if you think
886 * about it this is right. Otherwise apps have to
887 * play 'guess the biggest size' games. RCVBUF/SNDBUF
888 * are treated in BSD as hints
889 */
890 val = min_t(u32, val, sysctl_wmem_max);
891 set_sndbuf:
892 /* Ensure val * 2 fits into an int, to prevent max_t()
893 * from treating it as a negative value.
894 */
895 val = min_t(int, val, INT_MAX / 2);
896 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
897 WRITE_ONCE(sk->sk_sndbuf,
898 max_t(int, val * 2, SOCK_MIN_SNDBUF));
899 /* Wake up sending tasks if we upped the value. */
900 sk->sk_write_space(sk);
901 break;
902
903 case SO_SNDBUFFORCE:
904 if (!capable(CAP_NET_ADMIN)) {
905 ret = -EPERM;
906 break;
907 }
908
909 /* No negative values (to prevent underflow, as val will be
910 * multiplied by 2).
911 */
912 if (val < 0)
913 val = 0;
914 goto set_sndbuf;
915
916 case SO_RCVBUF:
917 /* Don't error on this BSD doesn't and if you think
918 * about it this is right. Otherwise apps have to
919 * play 'guess the biggest size' games. RCVBUF/SNDBUF
920 * are treated in BSD as hints
921 */
922 __sock_set_rcvbuf(sk, min_t(u32, val, sysctl_rmem_max));
923 break;
924
925 case SO_RCVBUFFORCE:
926 if (!capable(CAP_NET_ADMIN)) {
927 ret = -EPERM;
928 break;
929 }
930
931 /* No negative values (to prevent underflow, as val will be
932 * multiplied by 2).
933 */
934 __sock_set_rcvbuf(sk, max(val, 0));
935 break;
936
937 case SO_KEEPALIVE:
938 if (sk->sk_prot->keepalive)
939 sk->sk_prot->keepalive(sk, valbool);
940 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
941 break;
942
943 case SO_OOBINLINE:
944 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
945 break;
946
947 case SO_NO_CHECK:
948 sk->sk_no_check_tx = valbool;
949 break;
950
951 case SO_PRIORITY:
952 if ((val >= 0 && val <= 6) ||
953 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
954 sk->sk_priority = val;
955 else
956 ret = -EPERM;
957 break;
958
959 case SO_LINGER:
960 if (optlen < sizeof(ling)) {
961 ret = -EINVAL; /* 1003.1g */
962 break;
963 }
964 if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
965 ret = -EFAULT;
966 break;
967 }
968 if (!ling.l_onoff)
969 sock_reset_flag(sk, SOCK_LINGER);
970 else {
971 #if (BITS_PER_LONG == 32)
972 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
973 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
974 else
975 #endif
976 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
977 sock_set_flag(sk, SOCK_LINGER);
978 }
979 break;
980
981 case SO_BSDCOMPAT:
982 break;
983
984 case SO_PASSCRED:
985 if (valbool)
986 set_bit(SOCK_PASSCRED, &sock->flags);
987 else
988 clear_bit(SOCK_PASSCRED, &sock->flags);
989 break;
990
991 case SO_TIMESTAMP_OLD:
992 __sock_set_timestamps(sk, valbool, false, false);
993 break;
994 case SO_TIMESTAMP_NEW:
995 __sock_set_timestamps(sk, valbool, true, false);
996 break;
997 case SO_TIMESTAMPNS_OLD:
998 __sock_set_timestamps(sk, valbool, false, true);
999 break;
1000 case SO_TIMESTAMPNS_NEW:
1001 __sock_set_timestamps(sk, valbool, true, true);
1002 break;
1003 case SO_TIMESTAMPING_NEW:
1004 case SO_TIMESTAMPING_OLD:
1005 if (val & ~SOF_TIMESTAMPING_MASK) {
1006 ret = -EINVAL;
1007 break;
1008 }
1009
1010 if (val & SOF_TIMESTAMPING_OPT_ID &&
1011 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
1012 if (sk->sk_protocol == IPPROTO_TCP &&
1013 sk->sk_type == SOCK_STREAM) {
1014 if ((1 << sk->sk_state) &
1015 (TCPF_CLOSE | TCPF_LISTEN)) {
1016 ret = -EINVAL;
1017 break;
1018 }
1019 sk->sk_tskey = tcp_sk(sk)->snd_una;
1020 } else {
1021 sk->sk_tskey = 0;
1022 }
1023 }
1024
1025 if (val & SOF_TIMESTAMPING_OPT_STATS &&
1026 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
1027 ret = -EINVAL;
1028 break;
1029 }
1030
1031 sk->sk_tsflags = val;
1032 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
1033
1034 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
1035 sock_enable_timestamp(sk,
1036 SOCK_TIMESTAMPING_RX_SOFTWARE);
1037 else
1038 sock_disable_timestamp(sk,
1039 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
1040 break;
1041
1042 case SO_RCVLOWAT:
1043 if (val < 0)
1044 val = INT_MAX;
1045 if (sock->ops->set_rcvlowat)
1046 ret = sock->ops->set_rcvlowat(sk, val);
1047 else
1048 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1049 break;
1050
1051 case SO_RCVTIMEO_OLD:
1052 case SO_RCVTIMEO_NEW:
1053 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1054 optlen, optname == SO_RCVTIMEO_OLD);
1055 break;
1056
1057 case SO_SNDTIMEO_OLD:
1058 case SO_SNDTIMEO_NEW:
1059 ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1060 optlen, optname == SO_SNDTIMEO_OLD);
1061 break;
1062
1063 case SO_ATTACH_FILTER: {
1064 struct sock_fprog fprog;
1065
1066 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1067 if (!ret)
1068 ret = sk_attach_filter(&fprog, sk);
1069 break;
1070 }
1071 case SO_ATTACH_BPF:
1072 ret = -EINVAL;
1073 if (optlen == sizeof(u32)) {
1074 u32 ufd;
1075
1076 ret = -EFAULT;
1077 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1078 break;
1079
1080 ret = sk_attach_bpf(ufd, sk);
1081 }
1082 break;
1083
1084 case SO_ATTACH_REUSEPORT_CBPF: {
1085 struct sock_fprog fprog;
1086
1087 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1088 if (!ret)
1089 ret = sk_reuseport_attach_filter(&fprog, sk);
1090 break;
1091 }
1092 case SO_ATTACH_REUSEPORT_EBPF:
1093 ret = -EINVAL;
1094 if (optlen == sizeof(u32)) {
1095 u32 ufd;
1096
1097 ret = -EFAULT;
1098 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1099 break;
1100
1101 ret = sk_reuseport_attach_bpf(ufd, sk);
1102 }
1103 break;
1104
1105 case SO_DETACH_REUSEPORT_BPF:
1106 ret = reuseport_detach_prog(sk);
1107 break;
1108
1109 case SO_DETACH_FILTER:
1110 ret = sk_detach_filter(sk);
1111 break;
1112
1113 case SO_LOCK_FILTER:
1114 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1115 ret = -EPERM;
1116 else
1117 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1118 break;
1119
1120 case SO_PASSSEC:
1121 if (valbool)
1122 set_bit(SOCK_PASSSEC, &sock->flags);
1123 else
1124 clear_bit(SOCK_PASSSEC, &sock->flags);
1125 break;
1126 case SO_MARK:
1127 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1128 ret = -EPERM;
1129 } else if (val != sk->sk_mark) {
1130 sk->sk_mark = val;
1131 sk_dst_reset(sk);
1132 }
1133 break;
1134
1135 case SO_RXQ_OVFL:
1136 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1137 break;
1138
1139 case SO_WIFI_STATUS:
1140 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1141 break;
1142
1143 case SO_PEEK_OFF:
1144 if (sock->ops->set_peek_off)
1145 ret = sock->ops->set_peek_off(sk, val);
1146 else
1147 ret = -EOPNOTSUPP;
1148 break;
1149
1150 case SO_NOFCS:
1151 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1152 break;
1153
1154 case SO_SELECT_ERR_QUEUE:
1155 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1156 break;
1157
1158 #ifdef CONFIG_NET_RX_BUSY_POLL
1159 case SO_BUSY_POLL:
1160 /* allow unprivileged users to decrease the value */
1161 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1162 ret = -EPERM;
1163 else {
1164 if (val < 0)
1165 ret = -EINVAL;
1166 else
1167 sk->sk_ll_usec = val;
1168 }
1169 break;
1170 case SO_PREFER_BUSY_POLL:
1171 if (valbool && !capable(CAP_NET_ADMIN))
1172 ret = -EPERM;
1173 else
1174 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1175 break;
1176 case SO_BUSY_POLL_BUDGET:
1177 if (val > READ_ONCE(sk->sk_busy_poll_budget) && !capable(CAP_NET_ADMIN)) {
1178 ret = -EPERM;
1179 } else {
1180 if (val < 0 || val > U16_MAX)
1181 ret = -EINVAL;
1182 else
1183 WRITE_ONCE(sk->sk_busy_poll_budget, val);
1184 }
1185 break;
1186 #endif
1187
1188 case SO_MAX_PACING_RATE:
1189 {
1190 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1191
1192 if (sizeof(ulval) != sizeof(val) &&
1193 optlen >= sizeof(ulval) &&
1194 copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1195 ret = -EFAULT;
1196 break;
1197 }
1198 if (ulval != ~0UL)
1199 cmpxchg(&sk->sk_pacing_status,
1200 SK_PACING_NONE,
1201 SK_PACING_NEEDED);
1202 sk->sk_max_pacing_rate = ulval;
1203 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1204 break;
1205 }
1206 case SO_INCOMING_CPU:
1207 WRITE_ONCE(sk->sk_incoming_cpu, val);
1208 break;
1209
1210 case SO_CNX_ADVICE:
1211 if (val == 1)
1212 dst_negative_advice(sk);
1213 break;
1214
1215 case SO_ZEROCOPY:
1216 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1217 if (!((sk->sk_type == SOCK_STREAM &&
1218 sk->sk_protocol == IPPROTO_TCP) ||
1219 (sk->sk_type == SOCK_DGRAM &&
1220 sk->sk_protocol == IPPROTO_UDP)))
1221 ret = -ENOTSUPP;
1222 } else if (sk->sk_family != PF_RDS) {
1223 ret = -ENOTSUPP;
1224 }
1225 if (!ret) {
1226 if (val < 0 || val > 1)
1227 ret = -EINVAL;
1228 else
1229 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1230 }
1231 break;
1232
1233 case SO_TXTIME:
1234 if (optlen != sizeof(struct sock_txtime)) {
1235 ret = -EINVAL;
1236 break;
1237 } else if (copy_from_sockptr(&sk_txtime, optval,
1238 sizeof(struct sock_txtime))) {
1239 ret = -EFAULT;
1240 break;
1241 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1242 ret = -EINVAL;
1243 break;
1244 }
1245 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1246 * scheduler has enough safe guards.
1247 */
1248 if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1249 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1250 ret = -EPERM;
1251 break;
1252 }
1253 sock_valbool_flag(sk, SOCK_TXTIME, true);
1254 sk->sk_clockid = sk_txtime.clockid;
1255 sk->sk_txtime_deadline_mode =
1256 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1257 sk->sk_txtime_report_errors =
1258 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1259 break;
1260
1261 case SO_BINDTOIFINDEX:
1262 ret = sock_bindtoindex_locked(sk, val);
1263 break;
1264
1265 default:
1266 ret = -ENOPROTOOPT;
1267 break;
1268 }
1269 release_sock(sk);
1270 return ret;
1271 }
1272 EXPORT_SYMBOL(sock_setsockopt);
1273
1274
cred_to_ucred(struct pid * pid,const struct cred * cred,struct ucred * ucred)1275 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1276 struct ucred *ucred)
1277 {
1278 ucred->pid = pid_vnr(pid);
1279 ucred->uid = ucred->gid = -1;
1280 if (cred) {
1281 struct user_namespace *current_ns = current_user_ns();
1282
1283 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1284 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1285 }
1286 }
1287
groups_to_user(gid_t __user * dst,const struct group_info * src)1288 static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1289 {
1290 struct user_namespace *user_ns = current_user_ns();
1291 int i;
1292
1293 for (i = 0; i < src->ngroups; i++)
1294 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1295 return -EFAULT;
1296
1297 return 0;
1298 }
1299
sock_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1300 int sock_getsockopt(struct socket *sock, int level, int optname,
1301 char __user *optval, int __user *optlen)
1302 {
1303 struct sock *sk = sock->sk;
1304
1305 union {
1306 int val;
1307 u64 val64;
1308 unsigned long ulval;
1309 struct linger ling;
1310 struct old_timeval32 tm32;
1311 struct __kernel_old_timeval tm;
1312 struct __kernel_sock_timeval stm;
1313 struct sock_txtime txtime;
1314 } v;
1315
1316 int lv = sizeof(int);
1317 int len;
1318
1319 if (get_user(len, optlen))
1320 return -EFAULT;
1321 if (len < 0)
1322 return -EINVAL;
1323
1324 memset(&v, 0, sizeof(v));
1325
1326 switch (optname) {
1327 case SO_DEBUG:
1328 v.val = sock_flag(sk, SOCK_DBG);
1329 break;
1330
1331 case SO_DONTROUTE:
1332 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1333 break;
1334
1335 case SO_BROADCAST:
1336 v.val = sock_flag(sk, SOCK_BROADCAST);
1337 break;
1338
1339 case SO_SNDBUF:
1340 v.val = sk->sk_sndbuf;
1341 break;
1342
1343 case SO_RCVBUF:
1344 v.val = sk->sk_rcvbuf;
1345 break;
1346
1347 case SO_REUSEADDR:
1348 v.val = sk->sk_reuse;
1349 break;
1350
1351 case SO_REUSEPORT:
1352 v.val = sk->sk_reuseport;
1353 break;
1354
1355 case SO_KEEPALIVE:
1356 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1357 break;
1358
1359 case SO_TYPE:
1360 v.val = sk->sk_type;
1361 break;
1362
1363 case SO_PROTOCOL:
1364 v.val = sk->sk_protocol;
1365 break;
1366
1367 case SO_DOMAIN:
1368 v.val = sk->sk_family;
1369 break;
1370
1371 case SO_ERROR:
1372 v.val = -sock_error(sk);
1373 if (v.val == 0)
1374 v.val = xchg(&sk->sk_err_soft, 0);
1375 break;
1376
1377 case SO_OOBINLINE:
1378 v.val = sock_flag(sk, SOCK_URGINLINE);
1379 break;
1380
1381 case SO_NO_CHECK:
1382 v.val = sk->sk_no_check_tx;
1383 break;
1384
1385 case SO_PRIORITY:
1386 v.val = sk->sk_priority;
1387 break;
1388
1389 case SO_LINGER:
1390 lv = sizeof(v.ling);
1391 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1392 v.ling.l_linger = sk->sk_lingertime / HZ;
1393 break;
1394
1395 case SO_BSDCOMPAT:
1396 break;
1397
1398 case SO_TIMESTAMP_OLD:
1399 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1400 !sock_flag(sk, SOCK_TSTAMP_NEW) &&
1401 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1402 break;
1403
1404 case SO_TIMESTAMPNS_OLD:
1405 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1406 break;
1407
1408 case SO_TIMESTAMP_NEW:
1409 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1410 break;
1411
1412 case SO_TIMESTAMPNS_NEW:
1413 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1414 break;
1415
1416 case SO_TIMESTAMPING_OLD:
1417 v.val = sk->sk_tsflags;
1418 break;
1419
1420 case SO_RCVTIMEO_OLD:
1421 case SO_RCVTIMEO_NEW:
1422 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1423 break;
1424
1425 case SO_SNDTIMEO_OLD:
1426 case SO_SNDTIMEO_NEW:
1427 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1428 break;
1429
1430 case SO_RCVLOWAT:
1431 v.val = sk->sk_rcvlowat;
1432 break;
1433
1434 case SO_SNDLOWAT:
1435 v.val = 1;
1436 break;
1437
1438 case SO_PASSCRED:
1439 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1440 break;
1441
1442 case SO_PEERCRED:
1443 {
1444 struct ucred peercred;
1445 if (len > sizeof(peercred))
1446 len = sizeof(peercred);
1447 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1448 if (copy_to_user(optval, &peercred, len))
1449 return -EFAULT;
1450 goto lenout;
1451 }
1452
1453 case SO_PEERGROUPS:
1454 {
1455 int ret, n;
1456
1457 if (!sk->sk_peer_cred)
1458 return -ENODATA;
1459
1460 n = sk->sk_peer_cred->group_info->ngroups;
1461 if (len < n * sizeof(gid_t)) {
1462 len = n * sizeof(gid_t);
1463 return put_user(len, optlen) ? -EFAULT : -ERANGE;
1464 }
1465 len = n * sizeof(gid_t);
1466
1467 ret = groups_to_user((gid_t __user *)optval,
1468 sk->sk_peer_cred->group_info);
1469 if (ret)
1470 return ret;
1471 goto lenout;
1472 }
1473
1474 case SO_PEERNAME:
1475 {
1476 char address[128];
1477
1478 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1479 if (lv < 0)
1480 return -ENOTCONN;
1481 if (lv < len)
1482 return -EINVAL;
1483 if (copy_to_user(optval, address, len))
1484 return -EFAULT;
1485 goto lenout;
1486 }
1487
1488 /* Dubious BSD thing... Probably nobody even uses it, but
1489 * the UNIX standard wants it for whatever reason... -DaveM
1490 */
1491 case SO_ACCEPTCONN:
1492 v.val = sk->sk_state == TCP_LISTEN;
1493 break;
1494
1495 case SO_PASSSEC:
1496 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1497 break;
1498
1499 case SO_PEERSEC:
1500 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1501
1502 case SO_MARK:
1503 v.val = sk->sk_mark;
1504 break;
1505
1506 case SO_RXQ_OVFL:
1507 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1508 break;
1509
1510 case SO_WIFI_STATUS:
1511 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1512 break;
1513
1514 case SO_PEEK_OFF:
1515 if (!sock->ops->set_peek_off)
1516 return -EOPNOTSUPP;
1517
1518 v.val = sk->sk_peek_off;
1519 break;
1520 case SO_NOFCS:
1521 v.val = sock_flag(sk, SOCK_NOFCS);
1522 break;
1523
1524 case SO_BINDTODEVICE:
1525 return sock_getbindtodevice(sk, optval, optlen, len);
1526
1527 case SO_GET_FILTER:
1528 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1529 if (len < 0)
1530 return len;
1531
1532 goto lenout;
1533
1534 case SO_LOCK_FILTER:
1535 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1536 break;
1537
1538 case SO_BPF_EXTENSIONS:
1539 v.val = bpf_tell_extensions();
1540 break;
1541
1542 case SO_SELECT_ERR_QUEUE:
1543 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1544 break;
1545
1546 #ifdef CONFIG_NET_RX_BUSY_POLL
1547 case SO_BUSY_POLL:
1548 v.val = sk->sk_ll_usec;
1549 break;
1550 case SO_PREFER_BUSY_POLL:
1551 v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1552 break;
1553 #endif
1554
1555 case SO_MAX_PACING_RATE:
1556 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1557 lv = sizeof(v.ulval);
1558 v.ulval = sk->sk_max_pacing_rate;
1559 } else {
1560 /* 32bit version */
1561 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1562 }
1563 break;
1564
1565 case SO_INCOMING_CPU:
1566 v.val = READ_ONCE(sk->sk_incoming_cpu);
1567 break;
1568
1569 case SO_MEMINFO:
1570 {
1571 u32 meminfo[SK_MEMINFO_VARS];
1572
1573 sk_get_meminfo(sk, meminfo);
1574
1575 len = min_t(unsigned int, len, sizeof(meminfo));
1576 if (copy_to_user(optval, &meminfo, len))
1577 return -EFAULT;
1578
1579 goto lenout;
1580 }
1581
1582 #ifdef CONFIG_NET_RX_BUSY_POLL
1583 case SO_INCOMING_NAPI_ID:
1584 v.val = READ_ONCE(sk->sk_napi_id);
1585
1586 /* aggregate non-NAPI IDs down to 0 */
1587 if (v.val < MIN_NAPI_ID)
1588 v.val = 0;
1589
1590 break;
1591 #endif
1592
1593 case SO_COOKIE:
1594 lv = sizeof(u64);
1595 if (len < lv)
1596 return -EINVAL;
1597 v.val64 = sock_gen_cookie(sk);
1598 break;
1599
1600 case SO_ZEROCOPY:
1601 v.val = sock_flag(sk, SOCK_ZEROCOPY);
1602 break;
1603
1604 case SO_TXTIME:
1605 lv = sizeof(v.txtime);
1606 v.txtime.clockid = sk->sk_clockid;
1607 v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1608 SOF_TXTIME_DEADLINE_MODE : 0;
1609 v.txtime.flags |= sk->sk_txtime_report_errors ?
1610 SOF_TXTIME_REPORT_ERRORS : 0;
1611 break;
1612
1613 case SO_BINDTOIFINDEX:
1614 v.val = sk->sk_bound_dev_if;
1615 break;
1616
1617 default:
1618 /* We implement the SO_SNDLOWAT etc to not be settable
1619 * (1003.1g 7).
1620 */
1621 return -ENOPROTOOPT;
1622 }
1623
1624 if (len > lv)
1625 len = lv;
1626 if (copy_to_user(optval, &v, len))
1627 return -EFAULT;
1628 lenout:
1629 if (put_user(len, optlen))
1630 return -EFAULT;
1631 return 0;
1632 }
1633
1634 /*
1635 * Initialize an sk_lock.
1636 *
1637 * (We also register the sk_lock with the lock validator.)
1638 */
sock_lock_init(struct sock * sk)1639 static inline void sock_lock_init(struct sock *sk)
1640 {
1641 if (sk->sk_kern_sock)
1642 sock_lock_init_class_and_name(
1643 sk,
1644 af_family_kern_slock_key_strings[sk->sk_family],
1645 af_family_kern_slock_keys + sk->sk_family,
1646 af_family_kern_key_strings[sk->sk_family],
1647 af_family_kern_keys + sk->sk_family);
1648 else
1649 sock_lock_init_class_and_name(
1650 sk,
1651 af_family_slock_key_strings[sk->sk_family],
1652 af_family_slock_keys + sk->sk_family,
1653 af_family_key_strings[sk->sk_family],
1654 af_family_keys + sk->sk_family);
1655 }
1656
1657 /*
1658 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1659 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1660 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1661 */
sock_copy(struct sock * nsk,const struct sock * osk)1662 static void sock_copy(struct sock *nsk, const struct sock *osk)
1663 {
1664 const struct proto *prot = READ_ONCE(osk->sk_prot);
1665 #ifdef CONFIG_SECURITY_NETWORK
1666 void *sptr = nsk->sk_security;
1667 #endif
1668
1669 /* If we move sk_tx_queue_mapping out of the private section,
1670 * we must check if sk_tx_queue_clear() is called after
1671 * sock_copy() in sk_clone_lock().
1672 */
1673 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
1674 offsetof(struct sock, sk_dontcopy_begin) ||
1675 offsetof(struct sock, sk_tx_queue_mapping) >=
1676 offsetof(struct sock, sk_dontcopy_end));
1677
1678 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1679
1680 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1681 prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1682
1683 #ifdef CONFIG_SECURITY_NETWORK
1684 nsk->sk_security = sptr;
1685 security_sk_clone(osk, nsk);
1686 #endif
1687 }
1688
sk_prot_alloc(struct proto * prot,gfp_t priority,int family)1689 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1690 int family)
1691 {
1692 struct sock *sk;
1693 struct kmem_cache *slab;
1694
1695 slab = prot->slab;
1696 if (slab != NULL) {
1697 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1698 if (!sk)
1699 return sk;
1700 if (want_init_on_alloc(priority))
1701 sk_prot_clear_nulls(sk, prot->obj_size);
1702 } else
1703 sk = kmalloc(prot->obj_size, priority);
1704
1705 if (sk != NULL) {
1706 if (security_sk_alloc(sk, family, priority))
1707 goto out_free;
1708
1709 if (!try_module_get(prot->owner))
1710 goto out_free_sec;
1711 }
1712
1713 return sk;
1714
1715 out_free_sec:
1716 security_sk_free(sk);
1717 out_free:
1718 if (slab != NULL)
1719 kmem_cache_free(slab, sk);
1720 else
1721 kfree(sk);
1722 return NULL;
1723 }
1724
sk_prot_free(struct proto * prot,struct sock * sk)1725 static void sk_prot_free(struct proto *prot, struct sock *sk)
1726 {
1727 struct kmem_cache *slab;
1728 struct module *owner;
1729
1730 owner = prot->owner;
1731 slab = prot->slab;
1732
1733 cgroup_sk_free(&sk->sk_cgrp_data);
1734 mem_cgroup_sk_free(sk);
1735 security_sk_free(sk);
1736 if (slab != NULL)
1737 kmem_cache_free(slab, sk);
1738 else
1739 kfree(sk);
1740 module_put(owner);
1741 }
1742
1743 /**
1744 * sk_alloc - All socket objects are allocated here
1745 * @net: the applicable net namespace
1746 * @family: protocol family
1747 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1748 * @prot: struct proto associated with this new sock instance
1749 * @kern: is this to be a kernel socket?
1750 */
sk_alloc(struct net * net,int family,gfp_t priority,struct proto * prot,int kern)1751 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1752 struct proto *prot, int kern)
1753 {
1754 struct sock *sk;
1755
1756 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1757 if (sk) {
1758 sk->sk_family = family;
1759 /*
1760 * See comment in struct sock definition to understand
1761 * why we need sk_prot_creator -acme
1762 */
1763 sk->sk_prot = sk->sk_prot_creator = prot;
1764 sk->sk_kern_sock = kern;
1765 sock_lock_init(sk);
1766 sk->sk_net_refcnt = kern ? 0 : 1;
1767 if (likely(sk->sk_net_refcnt)) {
1768 get_net(net);
1769 sock_inuse_add(net, 1);
1770 }
1771
1772 sock_net_set(sk, net);
1773 refcount_set(&sk->sk_wmem_alloc, 1);
1774
1775 mem_cgroup_sk_alloc(sk);
1776 cgroup_sk_alloc(&sk->sk_cgrp_data);
1777 sock_update_classid(&sk->sk_cgrp_data);
1778 sock_update_netprioidx(&sk->sk_cgrp_data);
1779 sk_tx_queue_clear(sk);
1780 }
1781
1782 return sk;
1783 }
1784 EXPORT_SYMBOL(sk_alloc);
1785
1786 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1787 * grace period. This is the case for UDP sockets and TCP listeners.
1788 */
__sk_destruct(struct rcu_head * head)1789 static void __sk_destruct(struct rcu_head *head)
1790 {
1791 struct sock *sk = container_of(head, struct sock, sk_rcu);
1792 struct sk_filter *filter;
1793
1794 if (sk->sk_destruct)
1795 sk->sk_destruct(sk);
1796
1797 filter = rcu_dereference_check(sk->sk_filter,
1798 refcount_read(&sk->sk_wmem_alloc) == 0);
1799 if (filter) {
1800 sk_filter_uncharge(sk, filter);
1801 RCU_INIT_POINTER(sk->sk_filter, NULL);
1802 }
1803
1804 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1805
1806 #ifdef CONFIG_BPF_SYSCALL
1807 bpf_sk_storage_free(sk);
1808 #endif
1809
1810 if (atomic_read(&sk->sk_omem_alloc))
1811 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1812 __func__, atomic_read(&sk->sk_omem_alloc));
1813
1814 if (sk->sk_frag.page) {
1815 put_page(sk->sk_frag.page);
1816 sk->sk_frag.page = NULL;
1817 }
1818
1819 if (sk->sk_peer_cred)
1820 put_cred(sk->sk_peer_cred);
1821 put_pid(sk->sk_peer_pid);
1822 if (likely(sk->sk_net_refcnt))
1823 put_net(sock_net(sk));
1824 sk_prot_free(sk->sk_prot_creator, sk);
1825 }
1826
sk_destruct(struct sock * sk)1827 void sk_destruct(struct sock *sk)
1828 {
1829 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
1830
1831 if (rcu_access_pointer(sk->sk_reuseport_cb)) {
1832 reuseport_detach_sock(sk);
1833 use_call_rcu = true;
1834 }
1835
1836 if (use_call_rcu)
1837 call_rcu(&sk->sk_rcu, __sk_destruct);
1838 else
1839 __sk_destruct(&sk->sk_rcu);
1840 }
1841
__sk_free(struct sock * sk)1842 static void __sk_free(struct sock *sk)
1843 {
1844 if (likely(sk->sk_net_refcnt))
1845 sock_inuse_add(sock_net(sk), -1);
1846
1847 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1848 sock_diag_broadcast_destroy(sk);
1849 else
1850 sk_destruct(sk);
1851 }
1852
sk_free(struct sock * sk)1853 void sk_free(struct sock *sk)
1854 {
1855 /*
1856 * We subtract one from sk_wmem_alloc and can know if
1857 * some packets are still in some tx queue.
1858 * If not null, sock_wfree() will call __sk_free(sk) later
1859 */
1860 if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1861 __sk_free(sk);
1862 }
1863 EXPORT_SYMBOL(sk_free);
1864
sk_init_common(struct sock * sk)1865 static void sk_init_common(struct sock *sk)
1866 {
1867 skb_queue_head_init(&sk->sk_receive_queue);
1868 skb_queue_head_init(&sk->sk_write_queue);
1869 skb_queue_head_init(&sk->sk_error_queue);
1870
1871 rwlock_init(&sk->sk_callback_lock);
1872 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1873 af_rlock_keys + sk->sk_family,
1874 af_family_rlock_key_strings[sk->sk_family]);
1875 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1876 af_wlock_keys + sk->sk_family,
1877 af_family_wlock_key_strings[sk->sk_family]);
1878 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1879 af_elock_keys + sk->sk_family,
1880 af_family_elock_key_strings[sk->sk_family]);
1881 lockdep_set_class_and_name(&sk->sk_callback_lock,
1882 af_callback_keys + sk->sk_family,
1883 af_family_clock_key_strings[sk->sk_family]);
1884 }
1885
1886 /**
1887 * sk_clone_lock - clone a socket, and lock its clone
1888 * @sk: the socket to clone
1889 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1890 *
1891 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1892 */
sk_clone_lock(const struct sock * sk,const gfp_t priority)1893 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1894 {
1895 struct proto *prot = READ_ONCE(sk->sk_prot);
1896 struct sk_filter *filter;
1897 bool is_charged = true;
1898 struct sock *newsk;
1899
1900 newsk = sk_prot_alloc(prot, priority, sk->sk_family);
1901 if (!newsk)
1902 goto out;
1903
1904 sock_copy(newsk, sk);
1905
1906 newsk->sk_prot_creator = prot;
1907
1908 /* SANITY */
1909 if (likely(newsk->sk_net_refcnt))
1910 get_net(sock_net(newsk));
1911 sk_node_init(&newsk->sk_node);
1912 sock_lock_init(newsk);
1913 bh_lock_sock(newsk);
1914 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1915 newsk->sk_backlog.len = 0;
1916
1917 atomic_set(&newsk->sk_rmem_alloc, 0);
1918
1919 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
1920 refcount_set(&newsk->sk_wmem_alloc, 1);
1921
1922 atomic_set(&newsk->sk_omem_alloc, 0);
1923 sk_init_common(newsk);
1924
1925 newsk->sk_dst_cache = NULL;
1926 newsk->sk_dst_pending_confirm = 0;
1927 newsk->sk_wmem_queued = 0;
1928 newsk->sk_forward_alloc = 0;
1929 atomic_set(&newsk->sk_drops, 0);
1930 newsk->sk_send_head = NULL;
1931 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1932 atomic_set(&newsk->sk_zckey, 0);
1933
1934 sock_reset_flag(newsk, SOCK_DONE);
1935
1936 /* sk->sk_memcg will be populated at accept() time */
1937 newsk->sk_memcg = NULL;
1938
1939 cgroup_sk_clone(&newsk->sk_cgrp_data);
1940
1941 rcu_read_lock();
1942 filter = rcu_dereference(sk->sk_filter);
1943 if (filter != NULL)
1944 /* though it's an empty new sock, the charging may fail
1945 * if sysctl_optmem_max was changed between creation of
1946 * original socket and cloning
1947 */
1948 is_charged = sk_filter_charge(newsk, filter);
1949 RCU_INIT_POINTER(newsk->sk_filter, filter);
1950 rcu_read_unlock();
1951
1952 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1953 /* We need to make sure that we don't uncharge the new
1954 * socket if we couldn't charge it in the first place
1955 * as otherwise we uncharge the parent's filter.
1956 */
1957 if (!is_charged)
1958 RCU_INIT_POINTER(newsk->sk_filter, NULL);
1959 sk_free_unlock_clone(newsk);
1960 newsk = NULL;
1961 goto out;
1962 }
1963 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1964
1965 if (bpf_sk_storage_clone(sk, newsk)) {
1966 sk_free_unlock_clone(newsk);
1967 newsk = NULL;
1968 goto out;
1969 }
1970
1971 /* Clear sk_user_data if parent had the pointer tagged
1972 * as not suitable for copying when cloning.
1973 */
1974 if (sk_user_data_is_nocopy(newsk))
1975 newsk->sk_user_data = NULL;
1976
1977 newsk->sk_err = 0;
1978 newsk->sk_err_soft = 0;
1979 newsk->sk_priority = 0;
1980 newsk->sk_incoming_cpu = raw_smp_processor_id();
1981 if (likely(newsk->sk_net_refcnt))
1982 sock_inuse_add(sock_net(newsk), 1);
1983
1984 /* Before updating sk_refcnt, we must commit prior changes to memory
1985 * (Documentation/RCU/rculist_nulls.rst for details)
1986 */
1987 smp_wmb();
1988 refcount_set(&newsk->sk_refcnt, 2);
1989
1990 /* Increment the counter in the same struct proto as the master
1991 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1992 * is the same as sk->sk_prot->socks, as this field was copied
1993 * with memcpy).
1994 *
1995 * This _changes_ the previous behaviour, where
1996 * tcp_create_openreq_child always was incrementing the
1997 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1998 * to be taken into account in all callers. -acme
1999 */
2000 sk_refcnt_debug_inc(newsk);
2001 sk_set_socket(newsk, NULL);
2002 sk_tx_queue_clear(newsk);
2003 RCU_INIT_POINTER(newsk->sk_wq, NULL);
2004
2005 if (newsk->sk_prot->sockets_allocated)
2006 sk_sockets_allocated_inc(newsk);
2007
2008 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2009 net_enable_timestamp();
2010 out:
2011 return newsk;
2012 }
2013 EXPORT_SYMBOL_GPL(sk_clone_lock);
2014
sk_free_unlock_clone(struct sock * sk)2015 void sk_free_unlock_clone(struct sock *sk)
2016 {
2017 /* It is still raw copy of parent, so invalidate
2018 * destructor and make plain sk_free() */
2019 sk->sk_destruct = NULL;
2020 bh_unlock_sock(sk);
2021 sk_free(sk);
2022 }
2023 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2024
sk_setup_caps(struct sock * sk,struct dst_entry * dst)2025 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2026 {
2027 u32 max_segs = 1;
2028
2029 sk_dst_set(sk, dst);
2030 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
2031 if (sk->sk_route_caps & NETIF_F_GSO)
2032 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2033 sk->sk_route_caps &= ~sk->sk_route_nocaps;
2034 if (sk_can_gso(sk)) {
2035 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2036 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2037 } else {
2038 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2039 sk->sk_gso_max_size = dst->dev->gso_max_size;
2040 max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
2041 }
2042 }
2043 sk->sk_gso_max_segs = max_segs;
2044 }
2045 EXPORT_SYMBOL_GPL(sk_setup_caps);
2046
2047 /*
2048 * Simple resource managers for sockets.
2049 */
2050
2051
2052 /*
2053 * Write buffer destructor automatically called from kfree_skb.
2054 */
sock_wfree(struct sk_buff * skb)2055 void sock_wfree(struct sk_buff *skb)
2056 {
2057 struct sock *sk = skb->sk;
2058 unsigned int len = skb->truesize;
2059
2060 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2061 /*
2062 * Keep a reference on sk_wmem_alloc, this will be released
2063 * after sk_write_space() call
2064 */
2065 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2066 sk->sk_write_space(sk);
2067 len = 1;
2068 }
2069 /*
2070 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2071 * could not do because of in-flight packets
2072 */
2073 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2074 __sk_free(sk);
2075 }
2076 EXPORT_SYMBOL(sock_wfree);
2077
2078 /* This variant of sock_wfree() is used by TCP,
2079 * since it sets SOCK_USE_WRITE_QUEUE.
2080 */
__sock_wfree(struct sk_buff * skb)2081 void __sock_wfree(struct sk_buff *skb)
2082 {
2083 struct sock *sk = skb->sk;
2084
2085 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2086 __sk_free(sk);
2087 }
2088
skb_set_owner_w(struct sk_buff * skb,struct sock * sk)2089 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2090 {
2091 skb_orphan(skb);
2092 skb->sk = sk;
2093 #ifdef CONFIG_INET
2094 if (unlikely(!sk_fullsock(sk))) {
2095 skb->destructor = sock_edemux;
2096 sock_hold(sk);
2097 return;
2098 }
2099 #endif
2100 skb->destructor = sock_wfree;
2101 skb_set_hash_from_sk(skb, sk);
2102 /*
2103 * We used to take a refcount on sk, but following operation
2104 * is enough to guarantee sk_free() wont free this sock until
2105 * all in-flight packets are completed
2106 */
2107 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2108 }
2109 EXPORT_SYMBOL(skb_set_owner_w);
2110
can_skb_orphan_partial(const struct sk_buff * skb)2111 static bool can_skb_orphan_partial(const struct sk_buff *skb)
2112 {
2113 #ifdef CONFIG_TLS_DEVICE
2114 /* Drivers depend on in-order delivery for crypto offload,
2115 * partial orphan breaks out-of-order-OK logic.
2116 */
2117 if (skb->decrypted)
2118 return false;
2119 #endif
2120 return (skb->destructor == sock_wfree ||
2121 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2122 }
2123
2124 /* This helper is used by netem, as it can hold packets in its
2125 * delay queue. We want to allow the owner socket to send more
2126 * packets, as if they were already TX completed by a typical driver.
2127 * But we also want to keep skb->sk set because some packet schedulers
2128 * rely on it (sch_fq for example).
2129 */
skb_orphan_partial(struct sk_buff * skb)2130 void skb_orphan_partial(struct sk_buff *skb)
2131 {
2132 if (skb_is_tcp_pure_ack(skb))
2133 return;
2134
2135 if (can_skb_orphan_partial(skb))
2136 skb_set_owner_sk_safe(skb, skb->sk);
2137 else
2138 skb_orphan(skb);
2139 }
2140 EXPORT_SYMBOL(skb_orphan_partial);
2141
2142 /*
2143 * Read buffer destructor automatically called from kfree_skb.
2144 */
sock_rfree(struct sk_buff * skb)2145 void sock_rfree(struct sk_buff *skb)
2146 {
2147 struct sock *sk = skb->sk;
2148 unsigned int len = skb->truesize;
2149
2150 atomic_sub(len, &sk->sk_rmem_alloc);
2151 sk_mem_uncharge(sk, len);
2152 }
2153 EXPORT_SYMBOL(sock_rfree);
2154
2155 /*
2156 * Buffer destructor for skbs that are not used directly in read or write
2157 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2158 */
sock_efree(struct sk_buff * skb)2159 void sock_efree(struct sk_buff *skb)
2160 {
2161 sock_put(skb->sk);
2162 }
2163 EXPORT_SYMBOL(sock_efree);
2164
2165 /* Buffer destructor for prefetch/receive path where reference count may
2166 * not be held, e.g. for listen sockets.
2167 */
2168 #ifdef CONFIG_INET
sock_pfree(struct sk_buff * skb)2169 void sock_pfree(struct sk_buff *skb)
2170 {
2171 if (sk_is_refcounted(skb->sk))
2172 sock_gen_put(skb->sk);
2173 }
2174 EXPORT_SYMBOL(sock_pfree);
2175 #endif /* CONFIG_INET */
2176
sock_i_uid(struct sock * sk)2177 kuid_t sock_i_uid(struct sock *sk)
2178 {
2179 kuid_t uid;
2180
2181 read_lock_bh(&sk->sk_callback_lock);
2182 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2183 read_unlock_bh(&sk->sk_callback_lock);
2184 return uid;
2185 }
2186 EXPORT_SYMBOL(sock_i_uid);
2187
sock_i_ino(struct sock * sk)2188 unsigned long sock_i_ino(struct sock *sk)
2189 {
2190 unsigned long ino;
2191
2192 read_lock_bh(&sk->sk_callback_lock);
2193 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2194 read_unlock_bh(&sk->sk_callback_lock);
2195 return ino;
2196 }
2197 EXPORT_SYMBOL(sock_i_ino);
2198
2199 /*
2200 * Allocate a skb from the socket's send buffer.
2201 */
sock_wmalloc(struct sock * sk,unsigned long size,int force,gfp_t priority)2202 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2203 gfp_t priority)
2204 {
2205 if (force ||
2206 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2207 struct sk_buff *skb = alloc_skb(size, priority);
2208
2209 if (skb) {
2210 skb_set_owner_w(skb, sk);
2211 return skb;
2212 }
2213 }
2214 return NULL;
2215 }
2216 EXPORT_SYMBOL(sock_wmalloc);
2217
sock_ofree(struct sk_buff * skb)2218 static void sock_ofree(struct sk_buff *skb)
2219 {
2220 struct sock *sk = skb->sk;
2221
2222 atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2223 }
2224
sock_omalloc(struct sock * sk,unsigned long size,gfp_t priority)2225 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2226 gfp_t priority)
2227 {
2228 struct sk_buff *skb;
2229
2230 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2231 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2232 sysctl_optmem_max)
2233 return NULL;
2234
2235 skb = alloc_skb(size, priority);
2236 if (!skb)
2237 return NULL;
2238
2239 atomic_add(skb->truesize, &sk->sk_omem_alloc);
2240 skb->sk = sk;
2241 skb->destructor = sock_ofree;
2242 return skb;
2243 }
2244
2245 /*
2246 * Allocate a memory block from the socket's option memory buffer.
2247 */
sock_kmalloc(struct sock * sk,int size,gfp_t priority)2248 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2249 {
2250 if ((unsigned int)size <= sysctl_optmem_max &&
2251 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2252 void *mem;
2253 /* First do the add, to avoid the race if kmalloc
2254 * might sleep.
2255 */
2256 atomic_add(size, &sk->sk_omem_alloc);
2257 mem = kmalloc(size, priority);
2258 if (mem)
2259 return mem;
2260 atomic_sub(size, &sk->sk_omem_alloc);
2261 }
2262 return NULL;
2263 }
2264 EXPORT_SYMBOL(sock_kmalloc);
2265
2266 /* Free an option memory block. Note, we actually want the inline
2267 * here as this allows gcc to detect the nullify and fold away the
2268 * condition entirely.
2269 */
__sock_kfree_s(struct sock * sk,void * mem,int size,const bool nullify)2270 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2271 const bool nullify)
2272 {
2273 if (WARN_ON_ONCE(!mem))
2274 return;
2275 if (nullify)
2276 kfree_sensitive(mem);
2277 else
2278 kfree(mem);
2279 atomic_sub(size, &sk->sk_omem_alloc);
2280 }
2281
sock_kfree_s(struct sock * sk,void * mem,int size)2282 void sock_kfree_s(struct sock *sk, void *mem, int size)
2283 {
2284 __sock_kfree_s(sk, mem, size, false);
2285 }
2286 EXPORT_SYMBOL(sock_kfree_s);
2287
sock_kzfree_s(struct sock * sk,void * mem,int size)2288 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2289 {
2290 __sock_kfree_s(sk, mem, size, true);
2291 }
2292 EXPORT_SYMBOL(sock_kzfree_s);
2293
2294 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2295 I think, these locks should be removed for datagram sockets.
2296 */
sock_wait_for_wmem(struct sock * sk,long timeo)2297 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2298 {
2299 DEFINE_WAIT(wait);
2300
2301 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2302 for (;;) {
2303 if (!timeo)
2304 break;
2305 if (signal_pending(current))
2306 break;
2307 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2308 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2309 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2310 break;
2311 if (sk->sk_shutdown & SEND_SHUTDOWN)
2312 break;
2313 if (sk->sk_err)
2314 break;
2315 timeo = schedule_timeout(timeo);
2316 }
2317 finish_wait(sk_sleep(sk), &wait);
2318 return timeo;
2319 }
2320
2321
2322 /*
2323 * Generic send/receive buffer handlers
2324 */
2325
sock_alloc_send_pskb(struct sock * sk,unsigned long header_len,unsigned long data_len,int noblock,int * errcode,int max_page_order)2326 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2327 unsigned long data_len, int noblock,
2328 int *errcode, int max_page_order)
2329 {
2330 struct sk_buff *skb;
2331 long timeo;
2332 int err;
2333
2334 timeo = sock_sndtimeo(sk, noblock);
2335 for (;;) {
2336 err = sock_error(sk);
2337 if (err != 0)
2338 goto failure;
2339
2340 err = -EPIPE;
2341 if (sk->sk_shutdown & SEND_SHUTDOWN)
2342 goto failure;
2343
2344 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2345 break;
2346
2347 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2348 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2349 err = -EAGAIN;
2350 if (!timeo)
2351 goto failure;
2352 if (signal_pending(current))
2353 goto interrupted;
2354 timeo = sock_wait_for_wmem(sk, timeo);
2355 }
2356 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2357 errcode, sk->sk_allocation);
2358 if (skb)
2359 skb_set_owner_w(skb, sk);
2360 return skb;
2361
2362 interrupted:
2363 err = sock_intr_errno(timeo);
2364 failure:
2365 *errcode = err;
2366 return NULL;
2367 }
2368 EXPORT_SYMBOL(sock_alloc_send_pskb);
2369
sock_alloc_send_skb(struct sock * sk,unsigned long size,int noblock,int * errcode)2370 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2371 int noblock, int *errcode)
2372 {
2373 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2374 }
2375 EXPORT_SYMBOL(sock_alloc_send_skb);
2376
__sock_cmsg_send(struct sock * sk,struct msghdr * msg,struct cmsghdr * cmsg,struct sockcm_cookie * sockc)2377 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2378 struct sockcm_cookie *sockc)
2379 {
2380 u32 tsflags;
2381
2382 switch (cmsg->cmsg_type) {
2383 case SO_MARK:
2384 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2385 return -EPERM;
2386 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2387 return -EINVAL;
2388 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2389 break;
2390 case SO_TIMESTAMPING_OLD:
2391 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2392 return -EINVAL;
2393
2394 tsflags = *(u32 *)CMSG_DATA(cmsg);
2395 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2396 return -EINVAL;
2397
2398 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2399 sockc->tsflags |= tsflags;
2400 break;
2401 case SCM_TXTIME:
2402 if (!sock_flag(sk, SOCK_TXTIME))
2403 return -EINVAL;
2404 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2405 return -EINVAL;
2406 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2407 break;
2408 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2409 case SCM_RIGHTS:
2410 case SCM_CREDENTIALS:
2411 break;
2412 default:
2413 return -EINVAL;
2414 }
2415 return 0;
2416 }
2417 EXPORT_SYMBOL(__sock_cmsg_send);
2418
sock_cmsg_send(struct sock * sk,struct msghdr * msg,struct sockcm_cookie * sockc)2419 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2420 struct sockcm_cookie *sockc)
2421 {
2422 struct cmsghdr *cmsg;
2423 int ret;
2424
2425 for_each_cmsghdr(cmsg, msg) {
2426 if (!CMSG_OK(msg, cmsg))
2427 return -EINVAL;
2428 if (cmsg->cmsg_level != SOL_SOCKET)
2429 continue;
2430 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2431 if (ret)
2432 return ret;
2433 }
2434 return 0;
2435 }
2436 EXPORT_SYMBOL(sock_cmsg_send);
2437
sk_enter_memory_pressure(struct sock * sk)2438 static void sk_enter_memory_pressure(struct sock *sk)
2439 {
2440 if (!sk->sk_prot->enter_memory_pressure)
2441 return;
2442
2443 sk->sk_prot->enter_memory_pressure(sk);
2444 }
2445
sk_leave_memory_pressure(struct sock * sk)2446 static void sk_leave_memory_pressure(struct sock *sk)
2447 {
2448 if (sk->sk_prot->leave_memory_pressure) {
2449 sk->sk_prot->leave_memory_pressure(sk);
2450 } else {
2451 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2452
2453 if (memory_pressure && READ_ONCE(*memory_pressure))
2454 WRITE_ONCE(*memory_pressure, 0);
2455 }
2456 }
2457
2458 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2459 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2460
2461 /**
2462 * skb_page_frag_refill - check that a page_frag contains enough room
2463 * @sz: minimum size of the fragment we want to get
2464 * @pfrag: pointer to page_frag
2465 * @gfp: priority for memory allocation
2466 *
2467 * Note: While this allocator tries to use high order pages, there is
2468 * no guarantee that allocations succeed. Therefore, @sz MUST be
2469 * less or equal than PAGE_SIZE.
2470 */
skb_page_frag_refill(unsigned int sz,struct page_frag * pfrag,gfp_t gfp)2471 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2472 {
2473 if (pfrag->page) {
2474 if (page_ref_count(pfrag->page) == 1) {
2475 pfrag->offset = 0;
2476 return true;
2477 }
2478 if (pfrag->offset + sz <= pfrag->size)
2479 return true;
2480 put_page(pfrag->page);
2481 }
2482
2483 pfrag->offset = 0;
2484 if (SKB_FRAG_PAGE_ORDER &&
2485 !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2486 /* Avoid direct reclaim but allow kswapd to wake */
2487 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2488 __GFP_COMP | __GFP_NOWARN |
2489 __GFP_NORETRY,
2490 SKB_FRAG_PAGE_ORDER);
2491 if (likely(pfrag->page)) {
2492 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2493 return true;
2494 }
2495 }
2496 pfrag->page = alloc_page(gfp);
2497 if (likely(pfrag->page)) {
2498 pfrag->size = PAGE_SIZE;
2499 return true;
2500 }
2501 return false;
2502 }
2503 EXPORT_SYMBOL(skb_page_frag_refill);
2504
sk_page_frag_refill(struct sock * sk,struct page_frag * pfrag)2505 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2506 {
2507 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2508 return true;
2509
2510 sk_enter_memory_pressure(sk);
2511 sk_stream_moderate_sndbuf(sk);
2512 return false;
2513 }
2514 EXPORT_SYMBOL(sk_page_frag_refill);
2515
__lock_sock(struct sock * sk)2516 void __lock_sock(struct sock *sk)
2517 __releases(&sk->sk_lock.slock)
2518 __acquires(&sk->sk_lock.slock)
2519 {
2520 DEFINE_WAIT(wait);
2521
2522 for (;;) {
2523 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2524 TASK_UNINTERRUPTIBLE);
2525 spin_unlock_bh(&sk->sk_lock.slock);
2526 schedule();
2527 spin_lock_bh(&sk->sk_lock.slock);
2528 if (!sock_owned_by_user(sk))
2529 break;
2530 }
2531 finish_wait(&sk->sk_lock.wq, &wait);
2532 }
2533
__release_sock(struct sock * sk)2534 void __release_sock(struct sock *sk)
2535 __releases(&sk->sk_lock.slock)
2536 __acquires(&sk->sk_lock.slock)
2537 {
2538 struct sk_buff *skb, *next;
2539
2540 while ((skb = sk->sk_backlog.head) != NULL) {
2541 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2542
2543 spin_unlock_bh(&sk->sk_lock.slock);
2544
2545 do {
2546 next = skb->next;
2547 prefetch(next);
2548 WARN_ON_ONCE(skb_dst_is_noref(skb));
2549 skb_mark_not_on_list(skb);
2550 sk_backlog_rcv(sk, skb);
2551
2552 cond_resched();
2553
2554 skb = next;
2555 } while (skb != NULL);
2556
2557 spin_lock_bh(&sk->sk_lock.slock);
2558 }
2559
2560 /*
2561 * Doing the zeroing here guarantee we can not loop forever
2562 * while a wild producer attempts to flood us.
2563 */
2564 sk->sk_backlog.len = 0;
2565 }
2566
__sk_flush_backlog(struct sock * sk)2567 void __sk_flush_backlog(struct sock *sk)
2568 {
2569 spin_lock_bh(&sk->sk_lock.slock);
2570 __release_sock(sk);
2571 spin_unlock_bh(&sk->sk_lock.slock);
2572 }
2573
2574 /**
2575 * sk_wait_data - wait for data to arrive at sk_receive_queue
2576 * @sk: sock to wait on
2577 * @timeo: for how long
2578 * @skb: last skb seen on sk_receive_queue
2579 *
2580 * Now socket state including sk->sk_err is changed only under lock,
2581 * hence we may omit checks after joining wait queue.
2582 * We check receive queue before schedule() only as optimization;
2583 * it is very likely that release_sock() added new data.
2584 */
sk_wait_data(struct sock * sk,long * timeo,const struct sk_buff * skb)2585 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2586 {
2587 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2588 int rc;
2589
2590 add_wait_queue(sk_sleep(sk), &wait);
2591 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2592 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2593 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2594 remove_wait_queue(sk_sleep(sk), &wait);
2595 return rc;
2596 }
2597 EXPORT_SYMBOL(sk_wait_data);
2598
2599 /**
2600 * __sk_mem_raise_allocated - increase memory_allocated
2601 * @sk: socket
2602 * @size: memory size to allocate
2603 * @amt: pages to allocate
2604 * @kind: allocation type
2605 *
2606 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2607 */
__sk_mem_raise_allocated(struct sock * sk,int size,int amt,int kind)2608 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2609 {
2610 struct proto *prot = sk->sk_prot;
2611 long allocated = sk_memory_allocated_add(sk, amt);
2612 bool charged = true;
2613
2614 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2615 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2616 goto suppress_allocation;
2617
2618 /* Under limit. */
2619 if (allocated <= sk_prot_mem_limits(sk, 0)) {
2620 sk_leave_memory_pressure(sk);
2621 return 1;
2622 }
2623
2624 /* Under pressure. */
2625 if (allocated > sk_prot_mem_limits(sk, 1))
2626 sk_enter_memory_pressure(sk);
2627
2628 /* Over hard limit. */
2629 if (allocated > sk_prot_mem_limits(sk, 2))
2630 goto suppress_allocation;
2631
2632 /* guarantee minimum buffer size under pressure */
2633 if (kind == SK_MEM_RECV) {
2634 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2635 return 1;
2636
2637 } else { /* SK_MEM_SEND */
2638 int wmem0 = sk_get_wmem0(sk, prot);
2639
2640 if (sk->sk_type == SOCK_STREAM) {
2641 if (sk->sk_wmem_queued < wmem0)
2642 return 1;
2643 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2644 return 1;
2645 }
2646 }
2647
2648 if (sk_has_memory_pressure(sk)) {
2649 u64 alloc;
2650
2651 if (!sk_under_memory_pressure(sk))
2652 return 1;
2653 alloc = sk_sockets_allocated_read_positive(sk);
2654 if (sk_prot_mem_limits(sk, 2) > alloc *
2655 sk_mem_pages(sk->sk_wmem_queued +
2656 atomic_read(&sk->sk_rmem_alloc) +
2657 sk->sk_forward_alloc))
2658 return 1;
2659 }
2660
2661 suppress_allocation:
2662
2663 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2664 sk_stream_moderate_sndbuf(sk);
2665
2666 /* Fail only if socket is _under_ its sndbuf.
2667 * In this case we cannot block, so that we have to fail.
2668 */
2669 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2670 return 1;
2671 }
2672
2673 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2674 trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2675
2676 sk_memory_allocated_sub(sk, amt);
2677
2678 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2679 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2680
2681 return 0;
2682 }
2683 EXPORT_SYMBOL(__sk_mem_raise_allocated);
2684
2685 /**
2686 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2687 * @sk: socket
2688 * @size: memory size to allocate
2689 * @kind: allocation type
2690 *
2691 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2692 * rmem allocation. This function assumes that protocols which have
2693 * memory_pressure use sk_wmem_queued as write buffer accounting.
2694 */
__sk_mem_schedule(struct sock * sk,int size,int kind)2695 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2696 {
2697 int ret, amt = sk_mem_pages(size);
2698
2699 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2700 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2701 if (!ret)
2702 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2703 return ret;
2704 }
2705 EXPORT_SYMBOL(__sk_mem_schedule);
2706
2707 /**
2708 * __sk_mem_reduce_allocated - reclaim memory_allocated
2709 * @sk: socket
2710 * @amount: number of quanta
2711 *
2712 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2713 */
__sk_mem_reduce_allocated(struct sock * sk,int amount)2714 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2715 {
2716 sk_memory_allocated_sub(sk, amount);
2717
2718 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2719 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2720
2721 if (sk_under_memory_pressure(sk) &&
2722 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2723 sk_leave_memory_pressure(sk);
2724 }
2725 EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2726
2727 /**
2728 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2729 * @sk: socket
2730 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2731 */
__sk_mem_reclaim(struct sock * sk,int amount)2732 void __sk_mem_reclaim(struct sock *sk, int amount)
2733 {
2734 amount >>= SK_MEM_QUANTUM_SHIFT;
2735 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2736 __sk_mem_reduce_allocated(sk, amount);
2737 }
2738 EXPORT_SYMBOL(__sk_mem_reclaim);
2739
sk_set_peek_off(struct sock * sk,int val)2740 int sk_set_peek_off(struct sock *sk, int val)
2741 {
2742 sk->sk_peek_off = val;
2743 return 0;
2744 }
2745 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2746
2747 /*
2748 * Set of default routines for initialising struct proto_ops when
2749 * the protocol does not support a particular function. In certain
2750 * cases where it makes no sense for a protocol to have a "do nothing"
2751 * function, some default processing is provided.
2752 */
2753
sock_no_bind(struct socket * sock,struct sockaddr * saddr,int len)2754 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2755 {
2756 return -EOPNOTSUPP;
2757 }
2758 EXPORT_SYMBOL(sock_no_bind);
2759
sock_no_connect(struct socket * sock,struct sockaddr * saddr,int len,int flags)2760 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2761 int len, int flags)
2762 {
2763 return -EOPNOTSUPP;
2764 }
2765 EXPORT_SYMBOL(sock_no_connect);
2766
sock_no_socketpair(struct socket * sock1,struct socket * sock2)2767 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2768 {
2769 return -EOPNOTSUPP;
2770 }
2771 EXPORT_SYMBOL(sock_no_socketpair);
2772
sock_no_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)2773 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2774 bool kern)
2775 {
2776 return -EOPNOTSUPP;
2777 }
2778 EXPORT_SYMBOL(sock_no_accept);
2779
sock_no_getname(struct socket * sock,struct sockaddr * saddr,int peer)2780 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2781 int peer)
2782 {
2783 return -EOPNOTSUPP;
2784 }
2785 EXPORT_SYMBOL(sock_no_getname);
2786
sock_no_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)2787 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2788 {
2789 return -EOPNOTSUPP;
2790 }
2791 EXPORT_SYMBOL(sock_no_ioctl);
2792
sock_no_listen(struct socket * sock,int backlog)2793 int sock_no_listen(struct socket *sock, int backlog)
2794 {
2795 return -EOPNOTSUPP;
2796 }
2797 EXPORT_SYMBOL(sock_no_listen);
2798
sock_no_shutdown(struct socket * sock,int how)2799 int sock_no_shutdown(struct socket *sock, int how)
2800 {
2801 return -EOPNOTSUPP;
2802 }
2803 EXPORT_SYMBOL(sock_no_shutdown);
2804
sock_no_sendmsg(struct socket * sock,struct msghdr * m,size_t len)2805 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2806 {
2807 return -EOPNOTSUPP;
2808 }
2809 EXPORT_SYMBOL(sock_no_sendmsg);
2810
sock_no_sendmsg_locked(struct sock * sk,struct msghdr * m,size_t len)2811 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2812 {
2813 return -EOPNOTSUPP;
2814 }
2815 EXPORT_SYMBOL(sock_no_sendmsg_locked);
2816
sock_no_recvmsg(struct socket * sock,struct msghdr * m,size_t len,int flags)2817 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2818 int flags)
2819 {
2820 return -EOPNOTSUPP;
2821 }
2822 EXPORT_SYMBOL(sock_no_recvmsg);
2823
sock_no_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)2824 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2825 {
2826 /* Mirror missing mmap method error code */
2827 return -ENODEV;
2828 }
2829 EXPORT_SYMBOL(sock_no_mmap);
2830
2831 /*
2832 * When a file is received (via SCM_RIGHTS, etc), we must bump the
2833 * various sock-based usage counts.
2834 */
__receive_sock(struct file * file)2835 void __receive_sock(struct file *file)
2836 {
2837 struct socket *sock;
2838
2839 sock = sock_from_file(file);
2840 if (sock) {
2841 sock_update_netprioidx(&sock->sk->sk_cgrp_data);
2842 sock_update_classid(&sock->sk->sk_cgrp_data);
2843 }
2844 }
2845
sock_no_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)2846 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2847 {
2848 ssize_t res;
2849 struct msghdr msg = {.msg_flags = flags};
2850 struct kvec iov;
2851 char *kaddr = kmap(page);
2852 iov.iov_base = kaddr + offset;
2853 iov.iov_len = size;
2854 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2855 kunmap(page);
2856 return res;
2857 }
2858 EXPORT_SYMBOL(sock_no_sendpage);
2859
sock_no_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)2860 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2861 int offset, size_t size, int flags)
2862 {
2863 ssize_t res;
2864 struct msghdr msg = {.msg_flags = flags};
2865 struct kvec iov;
2866 char *kaddr = kmap(page);
2867
2868 iov.iov_base = kaddr + offset;
2869 iov.iov_len = size;
2870 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2871 kunmap(page);
2872 return res;
2873 }
2874 EXPORT_SYMBOL(sock_no_sendpage_locked);
2875
2876 /*
2877 * Default Socket Callbacks
2878 */
2879
sock_def_wakeup(struct sock * sk)2880 static void sock_def_wakeup(struct sock *sk)
2881 {
2882 struct socket_wq *wq;
2883
2884 rcu_read_lock();
2885 wq = rcu_dereference(sk->sk_wq);
2886 if (skwq_has_sleeper(wq))
2887 wake_up_interruptible_all(&wq->wait);
2888 rcu_read_unlock();
2889 }
2890
sock_def_error_report(struct sock * sk)2891 static void sock_def_error_report(struct sock *sk)
2892 {
2893 struct socket_wq *wq;
2894
2895 rcu_read_lock();
2896 wq = rcu_dereference(sk->sk_wq);
2897 if (skwq_has_sleeper(wq))
2898 wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2899 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2900 rcu_read_unlock();
2901 }
2902
sock_def_readable(struct sock * sk)2903 void sock_def_readable(struct sock *sk)
2904 {
2905 struct socket_wq *wq;
2906
2907 rcu_read_lock();
2908 wq = rcu_dereference(sk->sk_wq);
2909 if (skwq_has_sleeper(wq))
2910 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2911 EPOLLRDNORM | EPOLLRDBAND);
2912 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2913 rcu_read_unlock();
2914 }
2915
sock_def_write_space(struct sock * sk)2916 static void sock_def_write_space(struct sock *sk)
2917 {
2918 struct socket_wq *wq;
2919
2920 rcu_read_lock();
2921
2922 /* Do not wake up a writer until he can make "significant"
2923 * progress. --DaveM
2924 */
2925 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
2926 wq = rcu_dereference(sk->sk_wq);
2927 if (skwq_has_sleeper(wq))
2928 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2929 EPOLLWRNORM | EPOLLWRBAND);
2930
2931 /* Should agree with poll, otherwise some programs break */
2932 if (sock_writeable(sk))
2933 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2934 }
2935
2936 rcu_read_unlock();
2937 }
2938
sock_def_destruct(struct sock * sk)2939 static void sock_def_destruct(struct sock *sk)
2940 {
2941 }
2942
sk_send_sigurg(struct sock * sk)2943 void sk_send_sigurg(struct sock *sk)
2944 {
2945 if (sk->sk_socket && sk->sk_socket->file)
2946 if (send_sigurg(&sk->sk_socket->file->f_owner))
2947 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2948 }
2949 EXPORT_SYMBOL(sk_send_sigurg);
2950
sk_reset_timer(struct sock * sk,struct timer_list * timer,unsigned long expires)2951 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2952 unsigned long expires)
2953 {
2954 if (!mod_timer(timer, expires))
2955 sock_hold(sk);
2956 }
2957 EXPORT_SYMBOL(sk_reset_timer);
2958
sk_stop_timer(struct sock * sk,struct timer_list * timer)2959 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2960 {
2961 if (del_timer(timer))
2962 __sock_put(sk);
2963 }
2964 EXPORT_SYMBOL(sk_stop_timer);
2965
sk_stop_timer_sync(struct sock * sk,struct timer_list * timer)2966 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
2967 {
2968 if (del_timer_sync(timer))
2969 __sock_put(sk);
2970 }
2971 EXPORT_SYMBOL(sk_stop_timer_sync);
2972
sock_init_data(struct socket * sock,struct sock * sk)2973 void sock_init_data(struct socket *sock, struct sock *sk)
2974 {
2975 sk_init_common(sk);
2976 sk->sk_send_head = NULL;
2977
2978 timer_setup(&sk->sk_timer, NULL, 0);
2979
2980 sk->sk_allocation = GFP_KERNEL;
2981 sk->sk_rcvbuf = sysctl_rmem_default;
2982 sk->sk_sndbuf = sysctl_wmem_default;
2983 sk->sk_state = TCP_CLOSE;
2984 sk_set_socket(sk, sock);
2985
2986 sock_set_flag(sk, SOCK_ZAPPED);
2987
2988 if (sock) {
2989 sk->sk_type = sock->type;
2990 RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
2991 sock->sk = sk;
2992 sk->sk_uid = SOCK_INODE(sock)->i_uid;
2993 } else {
2994 RCU_INIT_POINTER(sk->sk_wq, NULL);
2995 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
2996 }
2997
2998 rwlock_init(&sk->sk_callback_lock);
2999 if (sk->sk_kern_sock)
3000 lockdep_set_class_and_name(
3001 &sk->sk_callback_lock,
3002 af_kern_callback_keys + sk->sk_family,
3003 af_family_kern_clock_key_strings[sk->sk_family]);
3004 else
3005 lockdep_set_class_and_name(
3006 &sk->sk_callback_lock,
3007 af_callback_keys + sk->sk_family,
3008 af_family_clock_key_strings[sk->sk_family]);
3009
3010 sk->sk_state_change = sock_def_wakeup;
3011 sk->sk_data_ready = sock_def_readable;
3012 sk->sk_write_space = sock_def_write_space;
3013 sk->sk_error_report = sock_def_error_report;
3014 sk->sk_destruct = sock_def_destruct;
3015
3016 sk->sk_frag.page = NULL;
3017 sk->sk_frag.offset = 0;
3018 sk->sk_peek_off = -1;
3019
3020 sk->sk_peer_pid = NULL;
3021 sk->sk_peer_cred = NULL;
3022 sk->sk_write_pending = 0;
3023 sk->sk_rcvlowat = 1;
3024 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
3025 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
3026
3027 sk->sk_stamp = SK_DEFAULT_STAMP;
3028 #if BITS_PER_LONG==32
3029 seqlock_init(&sk->sk_stamp_seq);
3030 #endif
3031 atomic_set(&sk->sk_zckey, 0);
3032
3033 #ifdef CONFIG_NET_RX_BUSY_POLL
3034 sk->sk_napi_id = 0;
3035 sk->sk_ll_usec = sysctl_net_busy_read;
3036 #endif
3037
3038 sk->sk_max_pacing_rate = ~0UL;
3039 sk->sk_pacing_rate = ~0UL;
3040 WRITE_ONCE(sk->sk_pacing_shift, 10);
3041 sk->sk_incoming_cpu = -1;
3042
3043 sk_rx_queue_clear(sk);
3044 /*
3045 * Before updating sk_refcnt, we must commit prior changes to memory
3046 * (Documentation/RCU/rculist_nulls.rst for details)
3047 */
3048 smp_wmb();
3049 refcount_set(&sk->sk_refcnt, 1);
3050 atomic_set(&sk->sk_drops, 0);
3051 }
3052 EXPORT_SYMBOL(sock_init_data);
3053
lock_sock_nested(struct sock * sk,int subclass)3054 void lock_sock_nested(struct sock *sk, int subclass)
3055 {
3056 might_sleep();
3057 spin_lock_bh(&sk->sk_lock.slock);
3058 if (sk->sk_lock.owned)
3059 __lock_sock(sk);
3060 sk->sk_lock.owned = 1;
3061 spin_unlock(&sk->sk_lock.slock);
3062 /*
3063 * The sk_lock has mutex_lock() semantics here:
3064 */
3065 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3066 local_bh_enable();
3067 }
3068 EXPORT_SYMBOL(lock_sock_nested);
3069
release_sock(struct sock * sk)3070 void release_sock(struct sock *sk)
3071 {
3072 spin_lock_bh(&sk->sk_lock.slock);
3073 if (sk->sk_backlog.tail)
3074 __release_sock(sk);
3075
3076 /* Warning : release_cb() might need to release sk ownership,
3077 * ie call sock_release_ownership(sk) before us.
3078 */
3079 if (sk->sk_prot->release_cb)
3080 sk->sk_prot->release_cb(sk);
3081
3082 sock_release_ownership(sk);
3083 if (waitqueue_active(&sk->sk_lock.wq))
3084 wake_up(&sk->sk_lock.wq);
3085 spin_unlock_bh(&sk->sk_lock.slock);
3086 }
3087 EXPORT_SYMBOL(release_sock);
3088
3089 /**
3090 * lock_sock_fast - fast version of lock_sock
3091 * @sk: socket
3092 *
3093 * This version should be used for very small section, where process wont block
3094 * return false if fast path is taken:
3095 *
3096 * sk_lock.slock locked, owned = 0, BH disabled
3097 *
3098 * return true if slow path is taken:
3099 *
3100 * sk_lock.slock unlocked, owned = 1, BH enabled
3101 */
lock_sock_fast(struct sock * sk)3102 bool lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
3103 {
3104 might_sleep();
3105 spin_lock_bh(&sk->sk_lock.slock);
3106
3107 if (!sk->sk_lock.owned)
3108 /*
3109 * Note : We must disable BH
3110 */
3111 return false;
3112
3113 __lock_sock(sk);
3114 sk->sk_lock.owned = 1;
3115 spin_unlock(&sk->sk_lock.slock);
3116 /*
3117 * The sk_lock has mutex_lock() semantics here:
3118 */
3119 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
3120 __acquire(&sk->sk_lock.slock);
3121 local_bh_enable();
3122 return true;
3123 }
3124 EXPORT_SYMBOL(lock_sock_fast);
3125
sock_gettstamp(struct socket * sock,void __user * userstamp,bool timeval,bool time32)3126 int sock_gettstamp(struct socket *sock, void __user *userstamp,
3127 bool timeval, bool time32)
3128 {
3129 struct sock *sk = sock->sk;
3130 struct timespec64 ts;
3131
3132 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3133 ts = ktime_to_timespec64(sock_read_timestamp(sk));
3134 if (ts.tv_sec == -1)
3135 return -ENOENT;
3136 if (ts.tv_sec == 0) {
3137 ktime_t kt = ktime_get_real();
3138 sock_write_timestamp(sk, kt);
3139 ts = ktime_to_timespec64(kt);
3140 }
3141
3142 if (timeval)
3143 ts.tv_nsec /= 1000;
3144
3145 #ifdef CONFIG_COMPAT_32BIT_TIME
3146 if (time32)
3147 return put_old_timespec32(&ts, userstamp);
3148 #endif
3149 #ifdef CONFIG_SPARC64
3150 /* beware of padding in sparc64 timeval */
3151 if (timeval && !in_compat_syscall()) {
3152 struct __kernel_old_timeval __user tv = {
3153 .tv_sec = ts.tv_sec,
3154 .tv_usec = ts.tv_nsec,
3155 };
3156 if (copy_to_user(userstamp, &tv, sizeof(tv)))
3157 return -EFAULT;
3158 return 0;
3159 }
3160 #endif
3161 return put_timespec64(&ts, userstamp);
3162 }
3163 EXPORT_SYMBOL(sock_gettstamp);
3164
sock_enable_timestamp(struct sock * sk,enum sock_flags flag)3165 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3166 {
3167 if (!sock_flag(sk, flag)) {
3168 unsigned long previous_flags = sk->sk_flags;
3169
3170 sock_set_flag(sk, flag);
3171 /*
3172 * we just set one of the two flags which require net
3173 * time stamping, but time stamping might have been on
3174 * already because of the other one
3175 */
3176 if (sock_needs_netstamp(sk) &&
3177 !(previous_flags & SK_FLAGS_TIMESTAMP))
3178 net_enable_timestamp();
3179 }
3180 }
3181
sock_recv_errqueue(struct sock * sk,struct msghdr * msg,int len,int level,int type)3182 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3183 int level, int type)
3184 {
3185 struct sock_exterr_skb *serr;
3186 struct sk_buff *skb;
3187 int copied, err;
3188
3189 err = -EAGAIN;
3190 skb = sock_dequeue_err_skb(sk);
3191 if (skb == NULL)
3192 goto out;
3193
3194 copied = skb->len;
3195 if (copied > len) {
3196 msg->msg_flags |= MSG_TRUNC;
3197 copied = len;
3198 }
3199 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3200 if (err)
3201 goto out_free_skb;
3202
3203 sock_recv_timestamp(msg, sk, skb);
3204
3205 serr = SKB_EXT_ERR(skb);
3206 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3207
3208 msg->msg_flags |= MSG_ERRQUEUE;
3209 err = copied;
3210
3211 out_free_skb:
3212 kfree_skb(skb);
3213 out:
3214 return err;
3215 }
3216 EXPORT_SYMBOL(sock_recv_errqueue);
3217
3218 /*
3219 * Get a socket option on an socket.
3220 *
3221 * FIX: POSIX 1003.1g is very ambiguous here. It states that
3222 * asynchronous errors should be reported by getsockopt. We assume
3223 * this means if you specify SO_ERROR (otherwise whats the point of it).
3224 */
sock_common_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)3225 int sock_common_getsockopt(struct socket *sock, int level, int optname,
3226 char __user *optval, int __user *optlen)
3227 {
3228 struct sock *sk = sock->sk;
3229
3230 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3231 }
3232 EXPORT_SYMBOL(sock_common_getsockopt);
3233
sock_common_recvmsg(struct socket * sock,struct msghdr * msg,size_t size,int flags)3234 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3235 int flags)
3236 {
3237 struct sock *sk = sock->sk;
3238 int addr_len = 0;
3239 int err;
3240
3241 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3242 flags & ~MSG_DONTWAIT, &addr_len);
3243 if (err >= 0)
3244 msg->msg_namelen = addr_len;
3245 return err;
3246 }
3247 EXPORT_SYMBOL(sock_common_recvmsg);
3248
3249 /*
3250 * Set socket options on an inet socket.
3251 */
sock_common_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)3252 int sock_common_setsockopt(struct socket *sock, int level, int optname,
3253 sockptr_t optval, unsigned int optlen)
3254 {
3255 struct sock *sk = sock->sk;
3256
3257 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3258 }
3259 EXPORT_SYMBOL(sock_common_setsockopt);
3260
sk_common_release(struct sock * sk)3261 void sk_common_release(struct sock *sk)
3262 {
3263 if (sk->sk_prot->destroy)
3264 sk->sk_prot->destroy(sk);
3265
3266 /*
3267 * Observation: when sk_common_release is called, processes have
3268 * no access to socket. But net still has.
3269 * Step one, detach it from networking:
3270 *
3271 * A. Remove from hash tables.
3272 */
3273
3274 sk->sk_prot->unhash(sk);
3275
3276 /*
3277 * In this point socket cannot receive new packets, but it is possible
3278 * that some packets are in flight because some CPU runs receiver and
3279 * did hash table lookup before we unhashed socket. They will achieve
3280 * receive queue and will be purged by socket destructor.
3281 *
3282 * Also we still have packets pending on receive queue and probably,
3283 * our own packets waiting in device queues. sock_destroy will drain
3284 * receive queue, but transmitted packets will delay socket destruction
3285 * until the last reference will be released.
3286 */
3287
3288 sock_orphan(sk);
3289
3290 xfrm_sk_free_policy(sk);
3291
3292 sk_refcnt_debug_release(sk);
3293
3294 sock_put(sk);
3295 }
3296 EXPORT_SYMBOL(sk_common_release);
3297
sk_get_meminfo(const struct sock * sk,u32 * mem)3298 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3299 {
3300 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3301
3302 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3303 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3304 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3305 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3306 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3307 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3308 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3309 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3310 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3311 }
3312
3313 #ifdef CONFIG_PROC_FS
3314 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
3315 struct prot_inuse {
3316 int val[PROTO_INUSE_NR];
3317 };
3318
3319 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3320
sock_prot_inuse_add(struct net * net,struct proto * prot,int val)3321 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3322 {
3323 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3324 }
3325 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3326
sock_prot_inuse_get(struct net * net,struct proto * prot)3327 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3328 {
3329 int cpu, idx = prot->inuse_idx;
3330 int res = 0;
3331
3332 for_each_possible_cpu(cpu)
3333 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3334
3335 return res >= 0 ? res : 0;
3336 }
3337 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3338
sock_inuse_add(struct net * net,int val)3339 static void sock_inuse_add(struct net *net, int val)
3340 {
3341 this_cpu_add(*net->core.sock_inuse, val);
3342 }
3343
sock_inuse_get(struct net * net)3344 int sock_inuse_get(struct net *net)
3345 {
3346 int cpu, res = 0;
3347
3348 for_each_possible_cpu(cpu)
3349 res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3350
3351 return res;
3352 }
3353
3354 EXPORT_SYMBOL_GPL(sock_inuse_get);
3355
sock_inuse_init_net(struct net * net)3356 static int __net_init sock_inuse_init_net(struct net *net)
3357 {
3358 net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3359 if (net->core.prot_inuse == NULL)
3360 return -ENOMEM;
3361
3362 net->core.sock_inuse = alloc_percpu(int);
3363 if (net->core.sock_inuse == NULL)
3364 goto out;
3365
3366 return 0;
3367
3368 out:
3369 free_percpu(net->core.prot_inuse);
3370 return -ENOMEM;
3371 }
3372
sock_inuse_exit_net(struct net * net)3373 static void __net_exit sock_inuse_exit_net(struct net *net)
3374 {
3375 free_percpu(net->core.prot_inuse);
3376 free_percpu(net->core.sock_inuse);
3377 }
3378
3379 static struct pernet_operations net_inuse_ops = {
3380 .init = sock_inuse_init_net,
3381 .exit = sock_inuse_exit_net,
3382 };
3383
net_inuse_init(void)3384 static __init int net_inuse_init(void)
3385 {
3386 if (register_pernet_subsys(&net_inuse_ops))
3387 panic("Cannot initialize net inuse counters");
3388
3389 return 0;
3390 }
3391
3392 core_initcall(net_inuse_init);
3393
assign_proto_idx(struct proto * prot)3394 static int assign_proto_idx(struct proto *prot)
3395 {
3396 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3397
3398 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3399 pr_err("PROTO_INUSE_NR exhausted\n");
3400 return -ENOSPC;
3401 }
3402
3403 set_bit(prot->inuse_idx, proto_inuse_idx);
3404 return 0;
3405 }
3406
release_proto_idx(struct proto * prot)3407 static void release_proto_idx(struct proto *prot)
3408 {
3409 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3410 clear_bit(prot->inuse_idx, proto_inuse_idx);
3411 }
3412 #else
assign_proto_idx(struct proto * prot)3413 static inline int assign_proto_idx(struct proto *prot)
3414 {
3415 return 0;
3416 }
3417
release_proto_idx(struct proto * prot)3418 static inline void release_proto_idx(struct proto *prot)
3419 {
3420 }
3421
sock_inuse_add(struct net * net,int val)3422 static void sock_inuse_add(struct net *net, int val)
3423 {
3424 }
3425 #endif
3426
tw_prot_cleanup(struct timewait_sock_ops * twsk_prot)3427 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3428 {
3429 if (!twsk_prot)
3430 return;
3431 kfree(twsk_prot->twsk_slab_name);
3432 twsk_prot->twsk_slab_name = NULL;
3433 kmem_cache_destroy(twsk_prot->twsk_slab);
3434 twsk_prot->twsk_slab = NULL;
3435 }
3436
tw_prot_init(const struct proto * prot)3437 static int tw_prot_init(const struct proto *prot)
3438 {
3439 struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3440
3441 if (!twsk_prot)
3442 return 0;
3443
3444 twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3445 prot->name);
3446 if (!twsk_prot->twsk_slab_name)
3447 return -ENOMEM;
3448
3449 twsk_prot->twsk_slab =
3450 kmem_cache_create(twsk_prot->twsk_slab_name,
3451 twsk_prot->twsk_obj_size, 0,
3452 SLAB_ACCOUNT | prot->slab_flags,
3453 NULL);
3454 if (!twsk_prot->twsk_slab) {
3455 pr_crit("%s: Can't create timewait sock SLAB cache!\n",
3456 prot->name);
3457 return -ENOMEM;
3458 }
3459
3460 return 0;
3461 }
3462
req_prot_cleanup(struct request_sock_ops * rsk_prot)3463 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3464 {
3465 if (!rsk_prot)
3466 return;
3467 kfree(rsk_prot->slab_name);
3468 rsk_prot->slab_name = NULL;
3469 kmem_cache_destroy(rsk_prot->slab);
3470 rsk_prot->slab = NULL;
3471 }
3472
req_prot_init(const struct proto * prot)3473 static int req_prot_init(const struct proto *prot)
3474 {
3475 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3476
3477 if (!rsk_prot)
3478 return 0;
3479
3480 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3481 prot->name);
3482 if (!rsk_prot->slab_name)
3483 return -ENOMEM;
3484
3485 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3486 rsk_prot->obj_size, 0,
3487 SLAB_ACCOUNT | prot->slab_flags,
3488 NULL);
3489
3490 if (!rsk_prot->slab) {
3491 pr_crit("%s: Can't create request sock SLAB cache!\n",
3492 prot->name);
3493 return -ENOMEM;
3494 }
3495 return 0;
3496 }
3497
proto_register(struct proto * prot,int alloc_slab)3498 int proto_register(struct proto *prot, int alloc_slab)
3499 {
3500 int ret = -ENOBUFS;
3501
3502 if (alloc_slab) {
3503 prot->slab = kmem_cache_create_usercopy(prot->name,
3504 prot->obj_size, 0,
3505 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3506 prot->slab_flags,
3507 prot->useroffset, prot->usersize,
3508 NULL);
3509
3510 if (prot->slab == NULL) {
3511 pr_crit("%s: Can't create sock SLAB cache!\n",
3512 prot->name);
3513 goto out;
3514 }
3515
3516 if (req_prot_init(prot))
3517 goto out_free_request_sock_slab;
3518
3519 if (tw_prot_init(prot))
3520 goto out_free_timewait_sock_slab;
3521 }
3522
3523 mutex_lock(&proto_list_mutex);
3524 ret = assign_proto_idx(prot);
3525 if (ret) {
3526 mutex_unlock(&proto_list_mutex);
3527 goto out_free_timewait_sock_slab;
3528 }
3529 list_add(&prot->node, &proto_list);
3530 mutex_unlock(&proto_list_mutex);
3531 return ret;
3532
3533 out_free_timewait_sock_slab:
3534 if (alloc_slab)
3535 tw_prot_cleanup(prot->twsk_prot);
3536 out_free_request_sock_slab:
3537 if (alloc_slab) {
3538 req_prot_cleanup(prot->rsk_prot);
3539
3540 kmem_cache_destroy(prot->slab);
3541 prot->slab = NULL;
3542 }
3543 out:
3544 return ret;
3545 }
3546 EXPORT_SYMBOL(proto_register);
3547
proto_unregister(struct proto * prot)3548 void proto_unregister(struct proto *prot)
3549 {
3550 mutex_lock(&proto_list_mutex);
3551 release_proto_idx(prot);
3552 list_del(&prot->node);
3553 mutex_unlock(&proto_list_mutex);
3554
3555 kmem_cache_destroy(prot->slab);
3556 prot->slab = NULL;
3557
3558 req_prot_cleanup(prot->rsk_prot);
3559 tw_prot_cleanup(prot->twsk_prot);
3560 }
3561 EXPORT_SYMBOL(proto_unregister);
3562
sock_load_diag_module(int family,int protocol)3563 int sock_load_diag_module(int family, int protocol)
3564 {
3565 if (!protocol) {
3566 if (!sock_is_registered(family))
3567 return -ENOENT;
3568
3569 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3570 NETLINK_SOCK_DIAG, family);
3571 }
3572
3573 #ifdef CONFIG_INET
3574 if (family == AF_INET &&
3575 protocol != IPPROTO_RAW &&
3576 protocol < MAX_INET_PROTOS &&
3577 !rcu_access_pointer(inet_protos[protocol]))
3578 return -ENOENT;
3579 #endif
3580
3581 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3582 NETLINK_SOCK_DIAG, family, protocol);
3583 }
3584 EXPORT_SYMBOL(sock_load_diag_module);
3585
3586 #ifdef CONFIG_PROC_FS
proto_seq_start(struct seq_file * seq,loff_t * pos)3587 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3588 __acquires(proto_list_mutex)
3589 {
3590 mutex_lock(&proto_list_mutex);
3591 return seq_list_start_head(&proto_list, *pos);
3592 }
3593
proto_seq_next(struct seq_file * seq,void * v,loff_t * pos)3594 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3595 {
3596 return seq_list_next(v, &proto_list, pos);
3597 }
3598
proto_seq_stop(struct seq_file * seq,void * v)3599 static void proto_seq_stop(struct seq_file *seq, void *v)
3600 __releases(proto_list_mutex)
3601 {
3602 mutex_unlock(&proto_list_mutex);
3603 }
3604
proto_method_implemented(const void * method)3605 static char proto_method_implemented(const void *method)
3606 {
3607 return method == NULL ? 'n' : 'y';
3608 }
sock_prot_memory_allocated(struct proto * proto)3609 static long sock_prot_memory_allocated(struct proto *proto)
3610 {
3611 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3612 }
3613
sock_prot_memory_pressure(struct proto * proto)3614 static const char *sock_prot_memory_pressure(struct proto *proto)
3615 {
3616 return proto->memory_pressure != NULL ?
3617 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3618 }
3619
proto_seq_printf(struct seq_file * seq,struct proto * proto)3620 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3621 {
3622
3623 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3624 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3625 proto->name,
3626 proto->obj_size,
3627 sock_prot_inuse_get(seq_file_net(seq), proto),
3628 sock_prot_memory_allocated(proto),
3629 sock_prot_memory_pressure(proto),
3630 proto->max_header,
3631 proto->slab == NULL ? "no" : "yes",
3632 module_name(proto->owner),
3633 proto_method_implemented(proto->close),
3634 proto_method_implemented(proto->connect),
3635 proto_method_implemented(proto->disconnect),
3636 proto_method_implemented(proto->accept),
3637 proto_method_implemented(proto->ioctl),
3638 proto_method_implemented(proto->init),
3639 proto_method_implemented(proto->destroy),
3640 proto_method_implemented(proto->shutdown),
3641 proto_method_implemented(proto->setsockopt),
3642 proto_method_implemented(proto->getsockopt),
3643 proto_method_implemented(proto->sendmsg),
3644 proto_method_implemented(proto->recvmsg),
3645 proto_method_implemented(proto->sendpage),
3646 proto_method_implemented(proto->bind),
3647 proto_method_implemented(proto->backlog_rcv),
3648 proto_method_implemented(proto->hash),
3649 proto_method_implemented(proto->unhash),
3650 proto_method_implemented(proto->get_port),
3651 proto_method_implemented(proto->enter_memory_pressure));
3652 }
3653
proto_seq_show(struct seq_file * seq,void * v)3654 static int proto_seq_show(struct seq_file *seq, void *v)
3655 {
3656 if (v == &proto_list)
3657 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3658 "protocol",
3659 "size",
3660 "sockets",
3661 "memory",
3662 "press",
3663 "maxhdr",
3664 "slab",
3665 "module",
3666 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3667 else
3668 proto_seq_printf(seq, list_entry(v, struct proto, node));
3669 return 0;
3670 }
3671
3672 static const struct seq_operations proto_seq_ops = {
3673 .start = proto_seq_start,
3674 .next = proto_seq_next,
3675 .stop = proto_seq_stop,
3676 .show = proto_seq_show,
3677 };
3678
proto_init_net(struct net * net)3679 static __net_init int proto_init_net(struct net *net)
3680 {
3681 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3682 sizeof(struct seq_net_private)))
3683 return -ENOMEM;
3684
3685 return 0;
3686 }
3687
proto_exit_net(struct net * net)3688 static __net_exit void proto_exit_net(struct net *net)
3689 {
3690 remove_proc_entry("protocols", net->proc_net);
3691 }
3692
3693
3694 static __net_initdata struct pernet_operations proto_net_ops = {
3695 .init = proto_init_net,
3696 .exit = proto_exit_net,
3697 };
3698
proto_init(void)3699 static int __init proto_init(void)
3700 {
3701 return register_pernet_subsys(&proto_net_ops);
3702 }
3703
3704 subsys_initcall(proto_init);
3705
3706 #endif /* PROC_FS */
3707
3708 #ifdef CONFIG_NET_RX_BUSY_POLL
sk_busy_loop_end(void * p,unsigned long start_time)3709 bool sk_busy_loop_end(void *p, unsigned long start_time)
3710 {
3711 struct sock *sk = p;
3712
3713 return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3714 sk_busy_loop_timeout(sk, start_time);
3715 }
3716 EXPORT_SYMBOL(sk_busy_loop_end);
3717 #endif /* CONFIG_NET_RX_BUSY_POLL */
3718
sock_bind_add(struct sock * sk,struct sockaddr * addr,int addr_len)3719 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
3720 {
3721 if (!sk->sk_prot->bind_add)
3722 return -EOPNOTSUPP;
3723 return sk->sk_prot->bind_add(sk, addr, addr_len);
3724 }
3725 EXPORT_SYMBOL(sock_bind_add);
3726