1 /*
2  * This source code is a product of Sun Microsystems, Inc. and is provided
3  * for unrestricted use.  Users may copy or modify this source code without
4  * charge.
5  *
6  * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
7  * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
8  * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
9  *
10  * Sun source code is provided with no support and without any obligation on
11  * the part of Sun Microsystems, Inc. to assist in its use, correction,
12  * modification or enhancement.
13  *
14  * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
15  * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
16  * OR ANY PART THEREOF.
17  *
18  * In no event will Sun Microsystems, Inc. be liable for any lost revenue
19  * or profits or other special, indirect and consequential damages, even if
20  * Sun has been advised of the possibility of such damages.
21  *
22  * Sun Microsystems, Inc.
23  * 2550 Garcia Avenue
24  * Mountain View, California  94043
25  */
26 
27 /*
28  * g721.c
29  *
30  * Description:
31  *
32  * g721_encoder(), g721_decoder()
33  *
34  * These routines comprise an implementation of the CCITT G.721 ADPCM
35  * coding algorithm.  Essentially, this implementation is identical to
36  * the bit level description except for a few deviations which
37  * take advantage of work station attributes, such as hardware 2's
38  * complement arithmetic and large memory.  Specifically, certain time
39  * consuming operations such as multiplications are replaced
40  * with lookup tables and software 2's complement operations are
41  * replaced with hardware 2's complement.
42  *
43  * The deviation from the bit level specification (lookup tables)
44  * preserves the bit level performance specifications.
45  *
46  * As outlined in the G.721 Recommendation, the algorithm is broken
47  * down into modules.  Each section of code below is preceded by
48  * the name of the module which it is implementing.
49  *
50  */
51 #include "xa_g72x.h"
52 
53 #ifdef NOT_USED___WHY
54 static short qtab_721[7] = {-124, 80, 178, 246, 300, 349, 400};
55 #endif
56 /*
57  * Maps G.721 code word to reconstructed scale factor normalized log
58  * magnitude values.
59  */
60 static short	_dqlntab[16] = {-2048, 4, 135, 213, 273, 323, 373, 425,
61 				425, 373, 323, 273, 213, 135, 4, -2048};
62 
63 /* Maps G.721 code word to log of scale factor multiplier. */
64 static short	_witab[16] = {-12, 18, 41, 64, 112, 198, 355, 1122,
65 				1122, 355, 198, 112, 64, 41, 18, -12};
66 /*
67  * Maps G.721 code words to a set of values whose long and short
68  * term averages are computed and then compared to give an indication
69  * how stationary (steady state) the signal is.
70  */
71 static short	_fitab[16] = {0, 0, 0, 0x200, 0x200, 0x200, 0x600, 0xE00,
72 				0xE00, 0x600, 0x200, 0x200, 0x200, 0, 0, 0};
73 
74 
75 extern int g72x_predictor_zero();
76 extern int g72x_predictor_pole();
77 extern int g72x_step_size();
78 extern int g72x_reconstruct();
79 extern int g72x_update();
80 
81 
82 /*
83  * g721_decoder()
84  *
85  * Description:
86  *
87  * Decodes a 4-bit code of G.721 encoded data of i and
88  * returns the resulting linear PCM, A-law or u-law value.
89  * return -1 for unknown out_coding value.
90  */
g721_decoder(i,out_coding,state_ptr)91 int g721_decoder(i,out_coding,state_ptr)
92 int		i;
93 int		out_coding;
94 struct g72x_state *state_ptr;
95 {
96 	short		sezi, sei, sez, se;	/* ACCUM */
97 	short		y;			/* MIX */
98 	short		sr;			/* ADDB */
99 	short		dq;
100 	short		dqsez;
101 
102 	i &= 0x0f;			/* mask to get proper bits */
103 	sezi = g72x_predictor_zero(state_ptr);
104 	sez = sezi >> 1;
105 	sei = sezi + g72x_predictor_pole(state_ptr);
106 	se = sei >> 1;			/* se = estimated signal */
107 
108 	y = g72x_step_size(state_ptr);	/* dynamic quantizer step size */
109 
110 	dq = g72x_reconstruct(i & 0x08, _dqlntab[i], y); /* quantized diff. */
111 
112 	sr = (dq < 0) ? (se - (dq & 0x3FFF)) : se + dq;	/* reconst. signal */
113 
114 	dqsez = sr - se + sez;			/* pole prediction diff. */
115 
116 	g72x_update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
117 
118 	return (sr << 2);	/* sr was 14-bit dynamic range */
119 }
120