1 /*
2  * The crypt_blowfish homepage is:
3  *
4  *	http://www.openwall.com/crypt/
5  *
6  * This code comes from John the Ripper password cracker, with reentrant
7  * and crypt(3) interfaces added, but optimizations specific to password
8  * cracking removed.
9  *
10  * Written by Solar Designer <solar at openwall.com> in 1998-2014.
11  * No copyright is claimed, and the software is hereby placed in the public
12  * domain.  In case this attempt to disclaim copyright and place the software
13  * in the public domain is deemed null and void, then the software is
14  * Copyright (c) 1998-2014 Solar Designer and it is hereby released to the
15  * general public under the following terms:
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted.
19  *
20  * There's ABSOLUTELY NO WARRANTY, express or implied.
21  *
22  * It is my intent that you should be able to use this on your system,
23  * as part of a software package, or anywhere else to improve security,
24  * ensure compatibility, or for any other purpose.  I would appreciate
25  * it if you give credit where it is due and keep your modifications in
26  * the public domain as well, but I don't require that in order to let
27  * you place this code and any modifications you make under a license
28  * of your choice.
29  *
30  * This implementation is fully compatible with OpenBSD's bcrypt.c for prefix
31  * "$2b$", originally by Niels Provos <provos at citi.umich.edu>, and it uses
32  * some of his ideas.  The password hashing algorithm was designed by David
33  * Mazieres <dm at lcs.mit.edu>.  For information on the level of
34  * compatibility for bcrypt hash prefixes other than "$2b$", please refer to
35  * the comments in BF_set_key() below and to the included crypt(3) man page.
36  *
37  * There's a paper on the algorithm that explains its design decisions:
38  *
39  *	http://www.usenix.org/events/usenix99/provos.html
40  *
41  * Some of the tricks in BF_ROUND might be inspired by Eric Young's
42  * Blowfish library (I can't be sure if I would think of something if I
43  * hadn't seen his code).
44  */
45 
46 #include <stdlib.h>
47 #include <string.h>
48 
49 #include <errno.h>
50 #ifndef __set_errno
51 #define __set_errno(val) errno = (val)
52 #endif
53 
54 /* Just to make sure the prototypes match the actual definitions */
55 #include "crypt_blowfish.h"
56 
57 #if defined(__i386__) || defined(__x86_64__) || defined(__alpha__) || defined(__hppa__)
58 #define BF_SCALE			1
59 #else
60 #define BF_SCALE			0
61 #endif
62 
63 typedef unsigned int BF_word;
64 typedef signed int BF_word_signed;
65 
66 /* Number of Blowfish rounds, this is also hardcoded into a few places */
67 #define BF_N				16
68 
69 typedef BF_word BF_key[BF_N + 2];
70 
71 typedef struct {
72 	BF_word S[4][0x100];
73 	BF_key P;
74 } BF_ctx;
75 
76 /*
77  * Magic IV for 64 Blowfish encryptions that we do at the end.
78  * The string is "OrpheanBeholderScryDoubt" on big-endian.
79  */
80 static BF_word BF_magic_w[6] = {
81 	0x4F727068, 0x65616E42, 0x65686F6C,
82 	0x64657253, 0x63727944, 0x6F756274
83 };
84 
85 /*
86  * P-box and S-box tables initialized with digits of Pi.
87  */
88 static BF_ctx BF_init_state = {
89 	{
90 		{
91 			0xd1310ba6, 0x98dfb5ac, 0x2ffd72db, 0xd01adfb7,
92 			0xb8e1afed, 0x6a267e96, 0xba7c9045, 0xf12c7f99,
93 			0x24a19947, 0xb3916cf7, 0x0801f2e2, 0x858efc16,
94 			0x636920d8, 0x71574e69, 0xa458fea3, 0xf4933d7e,
95 			0x0d95748f, 0x728eb658, 0x718bcd58, 0x82154aee,
96 			0x7b54a41d, 0xc25a59b5, 0x9c30d539, 0x2af26013,
97 			0xc5d1b023, 0x286085f0, 0xca417918, 0xb8db38ef,
98 			0x8e79dcb0, 0x603a180e, 0x6c9e0e8b, 0xb01e8a3e,
99 			0xd71577c1, 0xbd314b27, 0x78af2fda, 0x55605c60,
100 			0xe65525f3, 0xaa55ab94, 0x57489862, 0x63e81440,
101 			0x55ca396a, 0x2aab10b6, 0xb4cc5c34, 0x1141e8ce,
102 			0xa15486af, 0x7c72e993, 0xb3ee1411, 0x636fbc2a,
103 			0x2ba9c55d, 0x741831f6, 0xce5c3e16, 0x9b87931e,
104 			0xafd6ba33, 0x6c24cf5c, 0x7a325381, 0x28958677,
105 			0x3b8f4898, 0x6b4bb9af, 0xc4bfe81b, 0x66282193,
106 			0x61d809cc, 0xfb21a991, 0x487cac60, 0x5dec8032,
107 			0xef845d5d, 0xe98575b1, 0xdc262302, 0xeb651b88,
108 			0x23893e81, 0xd396acc5, 0x0f6d6ff3, 0x83f44239,
109 			0x2e0b4482, 0xa4842004, 0x69c8f04a, 0x9e1f9b5e,
110 			0x21c66842, 0xf6e96c9a, 0x670c9c61, 0xabd388f0,
111 			0x6a51a0d2, 0xd8542f68, 0x960fa728, 0xab5133a3,
112 			0x6eef0b6c, 0x137a3be4, 0xba3bf050, 0x7efb2a98,
113 			0xa1f1651d, 0x39af0176, 0x66ca593e, 0x82430e88,
114 			0x8cee8619, 0x456f9fb4, 0x7d84a5c3, 0x3b8b5ebe,
115 			0xe06f75d8, 0x85c12073, 0x401a449f, 0x56c16aa6,
116 			0x4ed3aa62, 0x363f7706, 0x1bfedf72, 0x429b023d,
117 			0x37d0d724, 0xd00a1248, 0xdb0fead3, 0x49f1c09b,
118 			0x075372c9, 0x80991b7b, 0x25d479d8, 0xf6e8def7,
119 			0xe3fe501a, 0xb6794c3b, 0x976ce0bd, 0x04c006ba,
120 			0xc1a94fb6, 0x409f60c4, 0x5e5c9ec2, 0x196a2463,
121 			0x68fb6faf, 0x3e6c53b5, 0x1339b2eb, 0x3b52ec6f,
122 			0x6dfc511f, 0x9b30952c, 0xcc814544, 0xaf5ebd09,
123 			0xbee3d004, 0xde334afd, 0x660f2807, 0x192e4bb3,
124 			0xc0cba857, 0x45c8740f, 0xd20b5f39, 0xb9d3fbdb,
125 			0x5579c0bd, 0x1a60320a, 0xd6a100c6, 0x402c7279,
126 			0x679f25fe, 0xfb1fa3cc, 0x8ea5e9f8, 0xdb3222f8,
127 			0x3c7516df, 0xfd616b15, 0x2f501ec8, 0xad0552ab,
128 			0x323db5fa, 0xfd238760, 0x53317b48, 0x3e00df82,
129 			0x9e5c57bb, 0xca6f8ca0, 0x1a87562e, 0xdf1769db,
130 			0xd542a8f6, 0x287effc3, 0xac6732c6, 0x8c4f5573,
131 			0x695b27b0, 0xbbca58c8, 0xe1ffa35d, 0xb8f011a0,
132 			0x10fa3d98, 0xfd2183b8, 0x4afcb56c, 0x2dd1d35b,
133 			0x9a53e479, 0xb6f84565, 0xd28e49bc, 0x4bfb9790,
134 			0xe1ddf2da, 0xa4cb7e33, 0x62fb1341, 0xcee4c6e8,
135 			0xef20cada, 0x36774c01, 0xd07e9efe, 0x2bf11fb4,
136 			0x95dbda4d, 0xae909198, 0xeaad8e71, 0x6b93d5a0,
137 			0xd08ed1d0, 0xafc725e0, 0x8e3c5b2f, 0x8e7594b7,
138 			0x8ff6e2fb, 0xf2122b64, 0x8888b812, 0x900df01c,
139 			0x4fad5ea0, 0x688fc31c, 0xd1cff191, 0xb3a8c1ad,
140 			0x2f2f2218, 0xbe0e1777, 0xea752dfe, 0x8b021fa1,
141 			0xe5a0cc0f, 0xb56f74e8, 0x18acf3d6, 0xce89e299,
142 			0xb4a84fe0, 0xfd13e0b7, 0x7cc43b81, 0xd2ada8d9,
143 			0x165fa266, 0x80957705, 0x93cc7314, 0x211a1477,
144 			0xe6ad2065, 0x77b5fa86, 0xc75442f5, 0xfb9d35cf,
145 			0xebcdaf0c, 0x7b3e89a0, 0xd6411bd3, 0xae1e7e49,
146 			0x00250e2d, 0x2071b35e, 0x226800bb, 0x57b8e0af,
147 			0x2464369b, 0xf009b91e, 0x5563911d, 0x59dfa6aa,
148 			0x78c14389, 0xd95a537f, 0x207d5ba2, 0x02e5b9c5,
149 			0x83260376, 0x6295cfa9, 0x11c81968, 0x4e734a41,
150 			0xb3472dca, 0x7b14a94a, 0x1b510052, 0x9a532915,
151 			0xd60f573f, 0xbc9bc6e4, 0x2b60a476, 0x81e67400,
152 			0x08ba6fb5, 0x571be91f, 0xf296ec6b, 0x2a0dd915,
153 			0xb6636521, 0xe7b9f9b6, 0xff34052e, 0xc5855664,
154 			0x53b02d5d, 0xa99f8fa1, 0x08ba4799, 0x6e85076a
155 		}, {
156 			0x4b7a70e9, 0xb5b32944, 0xdb75092e, 0xc4192623,
157 			0xad6ea6b0, 0x49a7df7d, 0x9cee60b8, 0x8fedb266,
158 			0xecaa8c71, 0x699a17ff, 0x5664526c, 0xc2b19ee1,
159 			0x193602a5, 0x75094c29, 0xa0591340, 0xe4183a3e,
160 			0x3f54989a, 0x5b429d65, 0x6b8fe4d6, 0x99f73fd6,
161 			0xa1d29c07, 0xefe830f5, 0x4d2d38e6, 0xf0255dc1,
162 			0x4cdd2086, 0x8470eb26, 0x6382e9c6, 0x021ecc5e,
163 			0x09686b3f, 0x3ebaefc9, 0x3c971814, 0x6b6a70a1,
164 			0x687f3584, 0x52a0e286, 0xb79c5305, 0xaa500737,
165 			0x3e07841c, 0x7fdeae5c, 0x8e7d44ec, 0x5716f2b8,
166 			0xb03ada37, 0xf0500c0d, 0xf01c1f04, 0x0200b3ff,
167 			0xae0cf51a, 0x3cb574b2, 0x25837a58, 0xdc0921bd,
168 			0xd19113f9, 0x7ca92ff6, 0x94324773, 0x22f54701,
169 			0x3ae5e581, 0x37c2dadc, 0xc8b57634, 0x9af3dda7,
170 			0xa9446146, 0x0fd0030e, 0xecc8c73e, 0xa4751e41,
171 			0xe238cd99, 0x3bea0e2f, 0x3280bba1, 0x183eb331,
172 			0x4e548b38, 0x4f6db908, 0x6f420d03, 0xf60a04bf,
173 			0x2cb81290, 0x24977c79, 0x5679b072, 0xbcaf89af,
174 			0xde9a771f, 0xd9930810, 0xb38bae12, 0xdccf3f2e,
175 			0x5512721f, 0x2e6b7124, 0x501adde6, 0x9f84cd87,
176 			0x7a584718, 0x7408da17, 0xbc9f9abc, 0xe94b7d8c,
177 			0xec7aec3a, 0xdb851dfa, 0x63094366, 0xc464c3d2,
178 			0xef1c1847, 0x3215d908, 0xdd433b37, 0x24c2ba16,
179 			0x12a14d43, 0x2a65c451, 0x50940002, 0x133ae4dd,
180 			0x71dff89e, 0x10314e55, 0x81ac77d6, 0x5f11199b,
181 			0x043556f1, 0xd7a3c76b, 0x3c11183b, 0x5924a509,
182 			0xf28fe6ed, 0x97f1fbfa, 0x9ebabf2c, 0x1e153c6e,
183 			0x86e34570, 0xeae96fb1, 0x860e5e0a, 0x5a3e2ab3,
184 			0x771fe71c, 0x4e3d06fa, 0x2965dcb9, 0x99e71d0f,
185 			0x803e89d6, 0x5266c825, 0x2e4cc978, 0x9c10b36a,
186 			0xc6150eba, 0x94e2ea78, 0xa5fc3c53, 0x1e0a2df4,
187 			0xf2f74ea7, 0x361d2b3d, 0x1939260f, 0x19c27960,
188 			0x5223a708, 0xf71312b6, 0xebadfe6e, 0xeac31f66,
189 			0xe3bc4595, 0xa67bc883, 0xb17f37d1, 0x018cff28,
190 			0xc332ddef, 0xbe6c5aa5, 0x65582185, 0x68ab9802,
191 			0xeecea50f, 0xdb2f953b, 0x2aef7dad, 0x5b6e2f84,
192 			0x1521b628, 0x29076170, 0xecdd4775, 0x619f1510,
193 			0x13cca830, 0xeb61bd96, 0x0334fe1e, 0xaa0363cf,
194 			0xb5735c90, 0x4c70a239, 0xd59e9e0b, 0xcbaade14,
195 			0xeecc86bc, 0x60622ca7, 0x9cab5cab, 0xb2f3846e,
196 			0x648b1eaf, 0x19bdf0ca, 0xa02369b9, 0x655abb50,
197 			0x40685a32, 0x3c2ab4b3, 0x319ee9d5, 0xc021b8f7,
198 			0x9b540b19, 0x875fa099, 0x95f7997e, 0x623d7da8,
199 			0xf837889a, 0x97e32d77, 0x11ed935f, 0x16681281,
200 			0x0e358829, 0xc7e61fd6, 0x96dedfa1, 0x7858ba99,
201 			0x57f584a5, 0x1b227263, 0x9b83c3ff, 0x1ac24696,
202 			0xcdb30aeb, 0x532e3054, 0x8fd948e4, 0x6dbc3128,
203 			0x58ebf2ef, 0x34c6ffea, 0xfe28ed61, 0xee7c3c73,
204 			0x5d4a14d9, 0xe864b7e3, 0x42105d14, 0x203e13e0,
205 			0x45eee2b6, 0xa3aaabea, 0xdb6c4f15, 0xfacb4fd0,
206 			0xc742f442, 0xef6abbb5, 0x654f3b1d, 0x41cd2105,
207 			0xd81e799e, 0x86854dc7, 0xe44b476a, 0x3d816250,
208 			0xcf62a1f2, 0x5b8d2646, 0xfc8883a0, 0xc1c7b6a3,
209 			0x7f1524c3, 0x69cb7492, 0x47848a0b, 0x5692b285,
210 			0x095bbf00, 0xad19489d, 0x1462b174, 0x23820e00,
211 			0x58428d2a, 0x0c55f5ea, 0x1dadf43e, 0x233f7061,
212 			0x3372f092, 0x8d937e41, 0xd65fecf1, 0x6c223bdb,
213 			0x7cde3759, 0xcbee7460, 0x4085f2a7, 0xce77326e,
214 			0xa6078084, 0x19f8509e, 0xe8efd855, 0x61d99735,
215 			0xa969a7aa, 0xc50c06c2, 0x5a04abfc, 0x800bcadc,
216 			0x9e447a2e, 0xc3453484, 0xfdd56705, 0x0e1e9ec9,
217 			0xdb73dbd3, 0x105588cd, 0x675fda79, 0xe3674340,
218 			0xc5c43465, 0x713e38d8, 0x3d28f89e, 0xf16dff20,
219 			0x153e21e7, 0x8fb03d4a, 0xe6e39f2b, 0xdb83adf7
220 		}, {
221 			0xe93d5a68, 0x948140f7, 0xf64c261c, 0x94692934,
222 			0x411520f7, 0x7602d4f7, 0xbcf46b2e, 0xd4a20068,
223 			0xd4082471, 0x3320f46a, 0x43b7d4b7, 0x500061af,
224 			0x1e39f62e, 0x97244546, 0x14214f74, 0xbf8b8840,
225 			0x4d95fc1d, 0x96b591af, 0x70f4ddd3, 0x66a02f45,
226 			0xbfbc09ec, 0x03bd9785, 0x7fac6dd0, 0x31cb8504,
227 			0x96eb27b3, 0x55fd3941, 0xda2547e6, 0xabca0a9a,
228 			0x28507825, 0x530429f4, 0x0a2c86da, 0xe9b66dfb,
229 			0x68dc1462, 0xd7486900, 0x680ec0a4, 0x27a18dee,
230 			0x4f3ffea2, 0xe887ad8c, 0xb58ce006, 0x7af4d6b6,
231 			0xaace1e7c, 0xd3375fec, 0xce78a399, 0x406b2a42,
232 			0x20fe9e35, 0xd9f385b9, 0xee39d7ab, 0x3b124e8b,
233 			0x1dc9faf7, 0x4b6d1856, 0x26a36631, 0xeae397b2,
234 			0x3a6efa74, 0xdd5b4332, 0x6841e7f7, 0xca7820fb,
235 			0xfb0af54e, 0xd8feb397, 0x454056ac, 0xba489527,
236 			0x55533a3a, 0x20838d87, 0xfe6ba9b7, 0xd096954b,
237 			0x55a867bc, 0xa1159a58, 0xcca92963, 0x99e1db33,
238 			0xa62a4a56, 0x3f3125f9, 0x5ef47e1c, 0x9029317c,
239 			0xfdf8e802, 0x04272f70, 0x80bb155c, 0x05282ce3,
240 			0x95c11548, 0xe4c66d22, 0x48c1133f, 0xc70f86dc,
241 			0x07f9c9ee, 0x41041f0f, 0x404779a4, 0x5d886e17,
242 			0x325f51eb, 0xd59bc0d1, 0xf2bcc18f, 0x41113564,
243 			0x257b7834, 0x602a9c60, 0xdff8e8a3, 0x1f636c1b,
244 			0x0e12b4c2, 0x02e1329e, 0xaf664fd1, 0xcad18115,
245 			0x6b2395e0, 0x333e92e1, 0x3b240b62, 0xeebeb922,
246 			0x85b2a20e, 0xe6ba0d99, 0xde720c8c, 0x2da2f728,
247 			0xd0127845, 0x95b794fd, 0x647d0862, 0xe7ccf5f0,
248 			0x5449a36f, 0x877d48fa, 0xc39dfd27, 0xf33e8d1e,
249 			0x0a476341, 0x992eff74, 0x3a6f6eab, 0xf4f8fd37,
250 			0xa812dc60, 0xa1ebddf8, 0x991be14c, 0xdb6e6b0d,
251 			0xc67b5510, 0x6d672c37, 0x2765d43b, 0xdcd0e804,
252 			0xf1290dc7, 0xcc00ffa3, 0xb5390f92, 0x690fed0b,
253 			0x667b9ffb, 0xcedb7d9c, 0xa091cf0b, 0xd9155ea3,
254 			0xbb132f88, 0x515bad24, 0x7b9479bf, 0x763bd6eb,
255 			0x37392eb3, 0xcc115979, 0x8026e297, 0xf42e312d,
256 			0x6842ada7, 0xc66a2b3b, 0x12754ccc, 0x782ef11c,
257 			0x6a124237, 0xb79251e7, 0x06a1bbe6, 0x4bfb6350,
258 			0x1a6b1018, 0x11caedfa, 0x3d25bdd8, 0xe2e1c3c9,
259 			0x44421659, 0x0a121386, 0xd90cec6e, 0xd5abea2a,
260 			0x64af674e, 0xda86a85f, 0xbebfe988, 0x64e4c3fe,
261 			0x9dbc8057, 0xf0f7c086, 0x60787bf8, 0x6003604d,
262 			0xd1fd8346, 0xf6381fb0, 0x7745ae04, 0xd736fccc,
263 			0x83426b33, 0xf01eab71, 0xb0804187, 0x3c005e5f,
264 			0x77a057be, 0xbde8ae24, 0x55464299, 0xbf582e61,
265 			0x4e58f48f, 0xf2ddfda2, 0xf474ef38, 0x8789bdc2,
266 			0x5366f9c3, 0xc8b38e74, 0xb475f255, 0x46fcd9b9,
267 			0x7aeb2661, 0x8b1ddf84, 0x846a0e79, 0x915f95e2,
268 			0x466e598e, 0x20b45770, 0x8cd55591, 0xc902de4c,
269 			0xb90bace1, 0xbb8205d0, 0x11a86248, 0x7574a99e,
270 			0xb77f19b6, 0xe0a9dc09, 0x662d09a1, 0xc4324633,
271 			0xe85a1f02, 0x09f0be8c, 0x4a99a025, 0x1d6efe10,
272 			0x1ab93d1d, 0x0ba5a4df, 0xa186f20f, 0x2868f169,
273 			0xdcb7da83, 0x573906fe, 0xa1e2ce9b, 0x4fcd7f52,
274 			0x50115e01, 0xa70683fa, 0xa002b5c4, 0x0de6d027,
275 			0x9af88c27, 0x773f8641, 0xc3604c06, 0x61a806b5,
276 			0xf0177a28, 0xc0f586e0, 0x006058aa, 0x30dc7d62,
277 			0x11e69ed7, 0x2338ea63, 0x53c2dd94, 0xc2c21634,
278 			0xbbcbee56, 0x90bcb6de, 0xebfc7da1, 0xce591d76,
279 			0x6f05e409, 0x4b7c0188, 0x39720a3d, 0x7c927c24,
280 			0x86e3725f, 0x724d9db9, 0x1ac15bb4, 0xd39eb8fc,
281 			0xed545578, 0x08fca5b5, 0xd83d7cd3, 0x4dad0fc4,
282 			0x1e50ef5e, 0xb161e6f8, 0xa28514d9, 0x6c51133c,
283 			0x6fd5c7e7, 0x56e14ec4, 0x362abfce, 0xddc6c837,
284 			0xd79a3234, 0x92638212, 0x670efa8e, 0x406000e0
285 		}, {
286 			0x3a39ce37, 0xd3faf5cf, 0xabc27737, 0x5ac52d1b,
287 			0x5cb0679e, 0x4fa33742, 0xd3822740, 0x99bc9bbe,
288 			0xd5118e9d, 0xbf0f7315, 0xd62d1c7e, 0xc700c47b,
289 			0xb78c1b6b, 0x21a19045, 0xb26eb1be, 0x6a366eb4,
290 			0x5748ab2f, 0xbc946e79, 0xc6a376d2, 0x6549c2c8,
291 			0x530ff8ee, 0x468dde7d, 0xd5730a1d, 0x4cd04dc6,
292 			0x2939bbdb, 0xa9ba4650, 0xac9526e8, 0xbe5ee304,
293 			0xa1fad5f0, 0x6a2d519a, 0x63ef8ce2, 0x9a86ee22,
294 			0xc089c2b8, 0x43242ef6, 0xa51e03aa, 0x9cf2d0a4,
295 			0x83c061ba, 0x9be96a4d, 0x8fe51550, 0xba645bd6,
296 			0x2826a2f9, 0xa73a3ae1, 0x4ba99586, 0xef5562e9,
297 			0xc72fefd3, 0xf752f7da, 0x3f046f69, 0x77fa0a59,
298 			0x80e4a915, 0x87b08601, 0x9b09e6ad, 0x3b3ee593,
299 			0xe990fd5a, 0x9e34d797, 0x2cf0b7d9, 0x022b8b51,
300 			0x96d5ac3a, 0x017da67d, 0xd1cf3ed6, 0x7c7d2d28,
301 			0x1f9f25cf, 0xadf2b89b, 0x5ad6b472, 0x5a88f54c,
302 			0xe029ac71, 0xe019a5e6, 0x47b0acfd, 0xed93fa9b,
303 			0xe8d3c48d, 0x283b57cc, 0xf8d56629, 0x79132e28,
304 			0x785f0191, 0xed756055, 0xf7960e44, 0xe3d35e8c,
305 			0x15056dd4, 0x88f46dba, 0x03a16125, 0x0564f0bd,
306 			0xc3eb9e15, 0x3c9057a2, 0x97271aec, 0xa93a072a,
307 			0x1b3f6d9b, 0x1e6321f5, 0xf59c66fb, 0x26dcf319,
308 			0x7533d928, 0xb155fdf5, 0x03563482, 0x8aba3cbb,
309 			0x28517711, 0xc20ad9f8, 0xabcc5167, 0xccad925f,
310 			0x4de81751, 0x3830dc8e, 0x379d5862, 0x9320f991,
311 			0xea7a90c2, 0xfb3e7bce, 0x5121ce64, 0x774fbe32,
312 			0xa8b6e37e, 0xc3293d46, 0x48de5369, 0x6413e680,
313 			0xa2ae0810, 0xdd6db224, 0x69852dfd, 0x09072166,
314 			0xb39a460a, 0x6445c0dd, 0x586cdecf, 0x1c20c8ae,
315 			0x5bbef7dd, 0x1b588d40, 0xccd2017f, 0x6bb4e3bb,
316 			0xdda26a7e, 0x3a59ff45, 0x3e350a44, 0xbcb4cdd5,
317 			0x72eacea8, 0xfa6484bb, 0x8d6612ae, 0xbf3c6f47,
318 			0xd29be463, 0x542f5d9e, 0xaec2771b, 0xf64e6370,
319 			0x740e0d8d, 0xe75b1357, 0xf8721671, 0xaf537d5d,
320 			0x4040cb08, 0x4eb4e2cc, 0x34d2466a, 0x0115af84,
321 			0xe1b00428, 0x95983a1d, 0x06b89fb4, 0xce6ea048,
322 			0x6f3f3b82, 0x3520ab82, 0x011a1d4b, 0x277227f8,
323 			0x611560b1, 0xe7933fdc, 0xbb3a792b, 0x344525bd,
324 			0xa08839e1, 0x51ce794b, 0x2f32c9b7, 0xa01fbac9,
325 			0xe01cc87e, 0xbcc7d1f6, 0xcf0111c3, 0xa1e8aac7,
326 			0x1a908749, 0xd44fbd9a, 0xd0dadecb, 0xd50ada38,
327 			0x0339c32a, 0xc6913667, 0x8df9317c, 0xe0b12b4f,
328 			0xf79e59b7, 0x43f5bb3a, 0xf2d519ff, 0x27d9459c,
329 			0xbf97222c, 0x15e6fc2a, 0x0f91fc71, 0x9b941525,
330 			0xfae59361, 0xceb69ceb, 0xc2a86459, 0x12baa8d1,
331 			0xb6c1075e, 0xe3056a0c, 0x10d25065, 0xcb03a442,
332 			0xe0ec6e0e, 0x1698db3b, 0x4c98a0be, 0x3278e964,
333 			0x9f1f9532, 0xe0d392df, 0xd3a0342b, 0x8971f21e,
334 			0x1b0a7441, 0x4ba3348c, 0xc5be7120, 0xc37632d8,
335 			0xdf359f8d, 0x9b992f2e, 0xe60b6f47, 0x0fe3f11d,
336 			0xe54cda54, 0x1edad891, 0xce6279cf, 0xcd3e7e6f,
337 			0x1618b166, 0xfd2c1d05, 0x848fd2c5, 0xf6fb2299,
338 			0xf523f357, 0xa6327623, 0x93a83531, 0x56cccd02,
339 			0xacf08162, 0x5a75ebb5, 0x6e163697, 0x88d273cc,
340 			0xde966292, 0x81b949d0, 0x4c50901b, 0x71c65614,
341 			0xe6c6c7bd, 0x327a140a, 0x45e1d006, 0xc3f27b9a,
342 			0xc9aa53fd, 0x62a80f00, 0xbb25bfe2, 0x35bdd2f6,
343 			0x71126905, 0xb2040222, 0xb6cbcf7c, 0xcd769c2b,
344 			0x53113ec0, 0x1640e3d3, 0x38abbd60, 0x2547adf0,
345 			0xba38209c, 0xf746ce76, 0x77afa1c5, 0x20756060,
346 			0x85cbfe4e, 0x8ae88dd8, 0x7aaaf9b0, 0x4cf9aa7e,
347 			0x1948c25c, 0x02fb8a8c, 0x01c36ae4, 0xd6ebe1f9,
348 			0x90d4f869, 0xa65cdea0, 0x3f09252d, 0xc208e69f,
349 			0xb74e6132, 0xce77e25b, 0x578fdfe3, 0x3ac372e6
350 		}
351 	}, {
352 		0x243f6a88, 0x85a308d3, 0x13198a2e, 0x03707344,
353 		0xa4093822, 0x299f31d0, 0x082efa98, 0xec4e6c89,
354 		0x452821e6, 0x38d01377, 0xbe5466cf, 0x34e90c6c,
355 		0xc0ac29b7, 0xc97c50dd, 0x3f84d5b5, 0xb5470917,
356 		0x9216d5d9, 0x8979fb1b
357 	}
358 };
359 
360 static unsigned char BF_itoa64[64 + 1] =
361 	"./ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789";
362 
363 static unsigned char BF_atoi64[0x60] = {
364 	64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 0, 1,
365 	54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 64, 64, 64, 64, 64,
366 	64, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
367 	17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 64, 64, 64, 64, 64,
368 	64, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,
369 	43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 64, 64, 64, 64, 64
370 };
371 
372 #define BF_safe_atoi64(dst, src) \
373 { \
374 	tmp = (unsigned char)(src); \
375 	if ((unsigned int)(tmp -= 0x20) >= 0x60) return -1; \
376 	tmp = BF_atoi64[tmp]; \
377 	if (tmp > 63) return -1; \
378 	(dst) = tmp; \
379 }
380 
BF_decode(BF_word * dst,const char * src,int size)381 static int BF_decode(BF_word *dst, const char *src, int size)
382 {
383 	unsigned char *dptr = (unsigned char *)dst;
384 	unsigned char *end = dptr + size;
385 	const unsigned char *sptr = (const unsigned char *)src;
386 	unsigned int tmp, c1, c2, c3, c4;
387 
388 	do {
389 		BF_safe_atoi64(c1, *sptr++);
390 		BF_safe_atoi64(c2, *sptr++);
391 		*dptr++ = (c1 << 2) | ((c2 & 0x30) >> 4);
392 		if (dptr >= end) break;
393 
394 		BF_safe_atoi64(c3, *sptr++);
395 		*dptr++ = ((c2 & 0x0F) << 4) | ((c3 & 0x3C) >> 2);
396 		if (dptr >= end) break;
397 
398 		BF_safe_atoi64(c4, *sptr++);
399 		*dptr++ = ((c3 & 0x03) << 6) | c4;
400 	} while (dptr < end);
401 
402 	return 0;
403 }
404 
BF_encode(char * dst,const BF_word * src,int size)405 static void BF_encode(char *dst, const BF_word *src, int size)
406 {
407 	const unsigned char *sptr = (const unsigned char *)src;
408 	const unsigned char *end = sptr + size;
409 	unsigned char *dptr = (unsigned char *)dst;
410 	unsigned int c1, c2;
411 
412 	do {
413 		c1 = *sptr++;
414 		*dptr++ = BF_itoa64[c1 >> 2];
415 		c1 = (c1 & 0x03) << 4;
416 		if (sptr >= end) {
417 			*dptr++ = BF_itoa64[c1];
418 			break;
419 		}
420 
421 		c2 = *sptr++;
422 		c1 |= c2 >> 4;
423 		*dptr++ = BF_itoa64[c1];
424 		c1 = (c2 & 0x0f) << 2;
425 		if (sptr >= end) {
426 			*dptr++ = BF_itoa64[c1];
427 			break;
428 		}
429 
430 		c2 = *sptr++;
431 		c1 |= c2 >> 6;
432 		*dptr++ = BF_itoa64[c1];
433 		*dptr++ = BF_itoa64[c2 & 0x3f];
434 	} while (sptr < end);
435 }
436 
BF_swap(BF_word * x,int count)437 static void BF_swap(BF_word *x, int count)
438 {
439 	static int endianness_check = 1;
440 	char *is_little_endian = (char *)&endianness_check;
441 	BF_word tmp;
442 
443 	if (*is_little_endian)
444 	do {
445 		tmp = *x;
446 		tmp = (tmp << 16) | (tmp >> 16);
447 		*x++ = ((tmp & 0x00FF00FF) << 8) | ((tmp >> 8) & 0x00FF00FF);
448 	} while (--count);
449 }
450 
451 #if BF_SCALE
452 /* Architectures which can shift addresses left by 2 bits with no extra cost */
453 #define BF_ROUND(L, R, N) \
454 	tmp1 = L & 0xFF; \
455 	tmp2 = L >> 8; \
456 	tmp2 &= 0xFF; \
457 	tmp3 = L >> 16; \
458 	tmp3 &= 0xFF; \
459 	tmp4 = L >> 24; \
460 	tmp1 = data.ctx.S[3][tmp1]; \
461 	tmp2 = data.ctx.S[2][tmp2]; \
462 	tmp3 = data.ctx.S[1][tmp3]; \
463 	tmp3 += data.ctx.S[0][tmp4]; \
464 	tmp3 ^= tmp2; \
465 	R ^= data.ctx.P[N + 1]; \
466 	tmp3 += tmp1; \
467 	R ^= tmp3;
468 #else
469 /* Architectures with no complicated addressing modes supported */
470 #define BF_INDEX(S, i) \
471 	(*((BF_word *)(((unsigned char *)S) + (i))))
472 #define BF_ROUND(L, R, N) \
473 	tmp1 = L & 0xFF; \
474 	tmp1 <<= 2; \
475 	tmp2 = L >> 6; \
476 	tmp2 &= 0x3FC; \
477 	tmp3 = L >> 14; \
478 	tmp3 &= 0x3FC; \
479 	tmp4 = L >> 22; \
480 	tmp4 &= 0x3FC; \
481 	tmp1 = BF_INDEX(data.ctx.S[3], tmp1); \
482 	tmp2 = BF_INDEX(data.ctx.S[2], tmp2); \
483 	tmp3 = BF_INDEX(data.ctx.S[1], tmp3); \
484 	tmp3 += BF_INDEX(data.ctx.S[0], tmp4); \
485 	tmp3 ^= tmp2; \
486 	R ^= data.ctx.P[N + 1]; \
487 	tmp3 += tmp1; \
488 	R ^= tmp3;
489 #endif
490 
491 /*
492  * Encrypt one block, BF_N is hardcoded here.
493  */
494 #define BF_ENCRYPT \
495 	L ^= data.ctx.P[0]; \
496 	BF_ROUND(L, R, 0); \
497 	BF_ROUND(R, L, 1); \
498 	BF_ROUND(L, R, 2); \
499 	BF_ROUND(R, L, 3); \
500 	BF_ROUND(L, R, 4); \
501 	BF_ROUND(R, L, 5); \
502 	BF_ROUND(L, R, 6); \
503 	BF_ROUND(R, L, 7); \
504 	BF_ROUND(L, R, 8); \
505 	BF_ROUND(R, L, 9); \
506 	BF_ROUND(L, R, 10); \
507 	BF_ROUND(R, L, 11); \
508 	BF_ROUND(L, R, 12); \
509 	BF_ROUND(R, L, 13); \
510 	BF_ROUND(L, R, 14); \
511 	BF_ROUND(R, L, 15); \
512 	tmp4 = R; \
513 	R = L; \
514 	L = tmp4 ^ data.ctx.P[BF_N + 1];
515 
516 #define BF_body() \
517 	L = R = 0; \
518 	ptr = data.ctx.P; \
519 	do { \
520 		ptr += 2; \
521 		BF_ENCRYPT; \
522 		*(ptr - 2) = L; \
523 		*(ptr - 1) = R; \
524 	} while (ptr < &data.ctx.P[BF_N + 2]); \
525 \
526 	ptr = data.ctx.S[0]; \
527 	do { \
528 		ptr += 2; \
529 		BF_ENCRYPT; \
530 		*(ptr - 2) = L; \
531 		*(ptr - 1) = R; \
532 	} while (ptr < &data.ctx.S[3][0xFF]);
533 
BF_set_key(const char * key,BF_key expanded,BF_key initial,unsigned char flags)534 static void BF_set_key(const char *key, BF_key expanded, BF_key initial,
535     unsigned char flags)
536 {
537 	const char *ptr = key;
538 	unsigned int bug, i, j;
539 	BF_word safety, sign, diff, tmp[2];
540 
541 /*
542  * There was a sign extension bug in older revisions of this function.  While
543  * we would have liked to simply fix the bug and move on, we have to provide
544  * a backwards compatibility feature (essentially the bug) for some systems and
545  * a safety measure for some others.  The latter is needed because for certain
546  * multiple inputs to the buggy algorithm there exist easily found inputs to
547  * the correct algorithm that produce the same hash.  Thus, we optionally
548  * deviate from the correct algorithm just enough to avoid such collisions.
549  * While the bug itself affected the majority of passwords containing
550  * characters with the 8th bit set (although only a percentage of those in a
551  * collision-producing way), the anti-collision safety measure affects
552  * only a subset of passwords containing the '\xff' character (not even all of
553  * those passwords, just some of them).  This character is not found in valid
554  * UTF-8 sequences and is rarely used in popular 8-bit character encodings.
555  * Thus, the safety measure is unlikely to cause much annoyance, and is a
556  * reasonable tradeoff to use when authenticating against existing hashes that
557  * are not reliably known to have been computed with the correct algorithm.
558  *
559  * We use an approach that tries to minimize side-channel leaks of password
560  * information - that is, we mostly use fixed-cost bitwise operations instead
561  * of branches or table lookups.  (One conditional branch based on password
562  * length remains.  It is not part of the bug aftermath, though, and is
563  * difficult and possibly unreasonable to avoid given the use of C strings by
564  * the caller, which results in similar timing leaks anyway.)
565  *
566  * For actual implementation, we set an array index in the variable "bug"
567  * (0 means no bug, 1 means sign extension bug emulation) and a flag in the
568  * variable "safety" (bit 16 is set when the safety measure is requested).
569  * Valid combinations of settings are:
570  *
571  * Prefix "$2a$": bug = 0, safety = 0x10000
572  * Prefix "$2b$": bug = 0, safety = 0
573  * Prefix "$2x$": bug = 1, safety = 0
574  * Prefix "$2y$": bug = 0, safety = 0
575  */
576 	bug = (unsigned int)flags & 1;
577 	safety = ((BF_word)flags & 2) << 15;
578 
579 	sign = diff = 0;
580 
581 	for (i = 0; i < BF_N + 2; i++) {
582 		tmp[0] = tmp[1] = 0;
583 		for (j = 0; j < 4; j++) {
584 			tmp[0] <<= 8;
585 			tmp[0] |= (unsigned char)*ptr; /* correct */
586 			tmp[1] <<= 8;
587 			tmp[1] |= (BF_word_signed)(signed char)*ptr; /* bug */
588 /*
589  * Sign extension in the first char has no effect - nothing to overwrite yet,
590  * and those extra 24 bits will be fully shifted out of the 32-bit word.  For
591  * chars 2, 3, 4 in each four-char block, we set bit 7 of "sign" if sign
592  * extension in tmp[1] occurs.  Once this flag is set, it remains set.
593  */
594 			if (j)
595 				sign |= tmp[1] & 0x80;
596 			if (!*ptr)
597 				ptr = key;
598 			else
599 				ptr++;
600 		}
601 		diff |= tmp[0] ^ tmp[1]; /* Non-zero on any differences */
602 
603 		expanded[i] = tmp[bug];
604 		initial[i] = BF_init_state.P[i] ^ tmp[bug];
605 	}
606 
607 /*
608  * At this point, "diff" is zero iff the correct and buggy algorithms produced
609  * exactly the same result.  If so and if "sign" is non-zero, which indicates
610  * that there was a non-benign sign extension, this means that we have a
611  * collision between the correctly computed hash for this password and a set of
612  * passwords that could be supplied to the buggy algorithm.  Our safety measure
613  * is meant to protect from such many-buggy to one-correct collisions, by
614  * deviating from the correct algorithm in such cases.  Let's check for this.
615  */
616 	diff |= diff >> 16; /* still zero iff exact match */
617 	diff &= 0xffff; /* ditto */
618 	diff += 0xffff; /* bit 16 set iff "diff" was non-zero (on non-match) */
619 	sign <<= 9; /* move the non-benign sign extension flag to bit 16 */
620 	sign &= ~diff & safety; /* action needed? */
621 
622 /*
623  * If we have determined that we need to deviate from the correct algorithm,
624  * flip bit 16 in initial expanded key.  (The choice of 16 is arbitrary, but
625  * let's stick to it now.  It came out of the approach we used above, and it's
626  * not any worse than any other choice we could make.)
627  *
628  * It is crucial that we don't do the same to the expanded key used in the main
629  * Eksblowfish loop.  By doing it to only one of these two, we deviate from a
630  * state that could be directly specified by a password to the buggy algorithm
631  * (and to the fully correct one as well, but that's a side-effect).
632  */
633 	initial[0] ^= sign;
634 }
635 
636 static const unsigned char flags_by_subtype[26] =
637 	{2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
638 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 0};
639 
BF_crypt(const char * key,const char * setting,char * output,int size,BF_word min)640 static char *BF_crypt(const char *key, const char *setting,
641 	char *output, int size,
642 	BF_word min)
643 {
644 	struct {
645 		BF_ctx ctx;
646 		BF_key expanded_key;
647 		union {
648 			BF_word salt[4];
649 			BF_word output[6];
650 		} binary;
651 	} data;
652 	BF_word L, R;
653 	BF_word tmp1, tmp2, tmp3, tmp4;
654 	BF_word *ptr;
655 	BF_word count;
656 	int i;
657 
658 	if (size < 7 + 22 + 31 + 1) {
659 		__set_errno(ERANGE);
660 		return NULL;
661 	}
662 
663 	if (setting[0] != '$' ||
664 	    setting[1] != '2' ||
665 	    setting[2] < 'a' || setting[2] > 'z' ||
666 	    !flags_by_subtype[(unsigned int)(unsigned char)setting[2] - 'a'] ||
667 	    setting[3] != '$' ||
668 	    setting[4] < '0' || setting[4] > '3' ||
669 	    setting[5] < '0' || setting[5] > '9' ||
670 	    (setting[4] == '3' && setting[5] > '1') ||
671 	    setting[6] != '$') {
672 		__set_errno(EINVAL);
673 		return NULL;
674 	}
675 
676 	count = (BF_word)1 << ((setting[4] - '0') * 10 + (setting[5] - '0'));
677 	if (count < min || BF_decode(data.binary.salt, &setting[7], 16)) {
678 		__set_errno(EINVAL);
679 		return NULL;
680 	}
681 	BF_swap(data.binary.salt, 4);
682 
683 	BF_set_key(key, data.expanded_key, data.ctx.P,
684 	    flags_by_subtype[(unsigned int)(unsigned char)setting[2] - 'a']);
685 
686 	memcpy(data.ctx.S, BF_init_state.S, sizeof(data.ctx.S));
687 
688 	L = R = 0;
689 	for (i = 0; i < BF_N + 2; i += 2) {
690 		L ^= data.binary.salt[i & 2];
691 		R ^= data.binary.salt[(i & 2) + 1];
692 		BF_ENCRYPT;
693 		data.ctx.P[i] = L;
694 		data.ctx.P[i + 1] = R;
695 	}
696 
697 	ptr = data.ctx.S[0];
698 	do {
699 		ptr += 4;
700 		L ^= data.binary.salt[(BF_N + 2) & 3];
701 		R ^= data.binary.salt[(BF_N + 3) & 3];
702 		BF_ENCRYPT;
703 		*(ptr - 4) = L;
704 		*(ptr - 3) = R;
705 
706 		L ^= data.binary.salt[(BF_N + 4) & 3];
707 		R ^= data.binary.salt[(BF_N + 5) & 3];
708 		BF_ENCRYPT;
709 		*(ptr - 2) = L;
710 		*(ptr - 1) = R;
711 	} while (ptr < &data.ctx.S[3][0xFF]);
712 
713 	do {
714 		int done;
715 
716 		for (i = 0; i < BF_N + 2; i += 2) {
717 			data.ctx.P[i] ^= data.expanded_key[i];
718 			data.ctx.P[i + 1] ^= data.expanded_key[i + 1];
719 		}
720 
721 		done = 0;
722 		do {
723 			BF_body();
724 			if (done)
725 				break;
726 			done = 1;
727 
728 			tmp1 = data.binary.salt[0];
729 			tmp2 = data.binary.salt[1];
730 			tmp3 = data.binary.salt[2];
731 			tmp4 = data.binary.salt[3];
732 			for (i = 0; i < BF_N; i += 4) {
733 				data.ctx.P[i] ^= tmp1;
734 				data.ctx.P[i + 1] ^= tmp2;
735 				data.ctx.P[i + 2] ^= tmp3;
736 				data.ctx.P[i + 3] ^= tmp4;
737 			}
738 			data.ctx.P[16] ^= tmp1;
739 			data.ctx.P[17] ^= tmp2;
740 		} while (1);
741 	} while (--count);
742 
743 	for (i = 0; i < 6; i += 2) {
744 		L = BF_magic_w[i];
745 		R = BF_magic_w[i + 1];
746 
747 		count = 64;
748 		do {
749 			BF_ENCRYPT;
750 		} while (--count);
751 
752 		data.binary.output[i] = L;
753 		data.binary.output[i + 1] = R;
754 	}
755 
756 	memcpy(output, setting, 7 + 22 - 1);
757 	output[7 + 22 - 1] = BF_itoa64[(int)
758 		BF_atoi64[(int)setting[7 + 22 - 1] - 0x20] & 0x30];
759 
760 /* This has to be bug-compatible with the original implementation, so
761  * only encode 23 of the 24 bytes. :-) */
762 	BF_swap(data.binary.output, 6);
763 	BF_encode(&output[7 + 22], data.binary.output, 23);
764 	output[7 + 22 + 31] = '\0';
765 
766 	return output;
767 }
768 
_crypt_output_magic(const char * setting,char * output,int size)769 int _crypt_output_magic(const char *setting, char *output, int size)
770 {
771 	if (size < 3)
772 		return -1;
773 
774 	output[0] = '*';
775 	output[1] = '0';
776 	output[2] = '\0';
777 
778 	if (setting[0] == '*' && setting[1] == '0')
779 		output[1] = '1';
780 
781 	return 0;
782 }
783 
784 /*
785  * Please preserve the runtime self-test.  It serves two purposes at once:
786  *
787  * 1. We really can't afford the risk of producing incompatible hashes e.g.
788  * when there's something like gcc bug 26587 again, whereas an application or
789  * library integrating this code might not also integrate our external tests or
790  * it might not run them after every build.  Even if it does, the miscompile
791  * might only occur on the production build, but not on a testing build (such
792  * as because of different optimization settings).  It is painful to recover
793  * from incorrectly-computed hashes - merely fixing whatever broke is not
794  * enough.  Thus, a proactive measure like this self-test is needed.
795  *
796  * 2. We don't want to leave sensitive data from our actual password hash
797  * computation on the stack or in registers.  Previous revisions of the code
798  * would do explicit cleanups, but simply running the self-test after hash
799  * computation is more reliable.
800  *
801  * The performance cost of this quick self-test is around 0.6% at the "$2a$08"
802  * setting.
803  */
_crypt_blowfish_rn(const char * key,const char * setting,char * output,int size)804 char *_crypt_blowfish_rn(const char *key, const char *setting,
805 	char *output, int size)
806 {
807 	const char *test_key = "8b \xd0\xc1\xd2\xcf\xcc\xd8";
808 	const char *test_setting = "$2a$00$abcdefghijklmnopqrstuu";
809 	static const char * const test_hashes[2] =
810 		{"i1D709vfamulimlGcq0qq3UvuUasvEa\0\x55", /* 'a', 'b', 'y' */
811 		"VUrPmXD6q/nVSSp7pNDhCR9071IfIRe\0\x55"}; /* 'x' */
812 	const char *test_hash = test_hashes[0];
813 	char *retval;
814 	const char *p;
815 	int save_errno, ok;
816 	struct {
817 		char s[7 + 22 + 1];
818 		char o[7 + 22 + 31 + 1 + 1 + 1];
819 	} buf;
820 
821 /* Hash the supplied password */
822 	_crypt_output_magic(setting, output, size);
823 	retval = BF_crypt(key, setting, output, size, 16);
824 	save_errno = errno;
825 
826 /*
827  * Do a quick self-test.  It is important that we make both calls to BF_crypt()
828  * from the same scope such that they likely use the same stack locations,
829  * which makes the second call overwrite the first call's sensitive data on the
830  * stack and makes it more likely that any alignment related issues would be
831  * detected by the self-test.
832  */
833 	memcpy(buf.s, test_setting, sizeof(buf.s));
834 	if (retval) {
835 		unsigned int flags = flags_by_subtype[
836 		    (unsigned int)(unsigned char)setting[2] - 'a'];
837 		test_hash = test_hashes[flags & 1];
838 		buf.s[2] = setting[2];
839 	}
840 	memset(buf.o, 0x55, sizeof(buf.o));
841 	buf.o[sizeof(buf.o) - 1] = 0;
842 	p = BF_crypt(test_key, buf.s, buf.o, sizeof(buf.o) - (1 + 1), 1);
843 
844 	ok = (p == buf.o &&
845 	    !memcmp(p, buf.s, 7 + 22) &&
846 	    !memcmp(p + (7 + 22), test_hash, 31 + 1 + 1 + 1));
847 
848 	{
849 		const char *k = "\xff\xa3" "34" "\xff\xff\xff\xa3" "345";
850 		BF_key ae, ai, ye, yi;
851 		BF_set_key(k, ae, ai, 2); /* $2a$ */
852 		BF_set_key(k, ye, yi, 4); /* $2y$ */
853 		ai[0] ^= 0x10000; /* undo the safety (for comparison) */
854 		ok = ok && ai[0] == 0xdb9c59bc && ye[17] == 0x33343500 &&
855 		    !memcmp(ae, ye, sizeof(ae)) &&
856 		    !memcmp(ai, yi, sizeof(ai));
857 	}
858 
859 	__set_errno(save_errno);
860 	if (ok)
861 		return retval;
862 
863 /* Should not happen */
864 	_crypt_output_magic(setting, output, size);
865 	__set_errno(EINVAL); /* pretend we don't support this hash type */
866 	return NULL;
867 }
868 
_crypt_gensalt_blowfish_rn(const char * prefix,unsigned long count,const char * input,int size,char * output,int output_size)869 char *_crypt_gensalt_blowfish_rn(const char *prefix, unsigned long count,
870 	const char *input, int size, char *output, int output_size)
871 {
872 	if (size < 16 || output_size < 7 + 22 + 1 ||
873 	    (count && (count < 4 || count > 31)) ||
874 	    prefix[0] != '$' || prefix[1] != '2' ||
875 	    (prefix[2] != 'a' && prefix[2] != 'b' && prefix[2] != 'y')) {
876 		if (output_size > 0) output[0] = '\0';
877 		__set_errno((output_size < 7 + 22 + 1) ? ERANGE : EINVAL);
878 		return NULL;
879 	}
880 
881 	if (!count) count = 5;
882 
883 	output[0] = '$';
884 	output[1] = '2';
885 	output[2] = prefix[2];
886 	output[3] = '$';
887 	output[4] = '0' + count / 10;
888 	output[5] = '0' + count % 10;
889 	output[6] = '$';
890 
891 	BF_encode(&output[7], (const BF_word *)input, 16);
892 	output[7 + 22] = '\0';
893 
894 	return output;
895 }
896 
897 unsigned char _crypt_itoa64[64 + 1] =
898 	"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
899 
_crypt_gensalt_traditional_rn(const char * prefix,unsigned long count,const char * input,int size,char * output,int output_size)900 char *_crypt_gensalt_traditional_rn(const char *prefix, unsigned long count,
901 	const char *input, int size, char *output, int output_size)
902 {
903 	(void) prefix;
904 
905 	if (size < 2 || output_size < 2 + 1 || (count && count != 25)) {
906 		if (output_size > 0) output[0] = '\0';
907 		__set_errno((output_size < 2 + 1) ? ERANGE : EINVAL);
908 		return NULL;
909 	}
910 
911 	output[0] = _crypt_itoa64[(unsigned int)input[0] & 0x3f];
912 	output[1] = _crypt_itoa64[(unsigned int)input[1] & 0x3f];
913 	output[2] = '\0';
914 
915 	return output;
916 }
917 
_crypt_gensalt_extended_rn(const char * prefix,unsigned long count,const char * input,int size,char * output,int output_size)918 char *_crypt_gensalt_extended_rn(const char *prefix, unsigned long count,
919 	const char *input, int size, char *output, int output_size)
920 {
921 	unsigned long value;
922 
923 	(void) prefix;
924 
925 /* Even iteration counts make it easier to detect weak DES keys from a look
926  * at the hash, so they should be avoided */
927 	if (size < 3 || output_size < 1 + 4 + 4 + 1 ||
928 	    (count && (count > 0xffffff || !(count & 1)))) {
929 		if (output_size > 0) output[0] = '\0';
930 		__set_errno((output_size < 1 + 4 + 4 + 1) ? ERANGE : EINVAL);
931 		return NULL;
932 	}
933 
934 	if (!count) count = 725;
935 
936 	output[0] = '_';
937 	output[1] = _crypt_itoa64[count & 0x3f];
938 	output[2] = _crypt_itoa64[(count >> 6) & 0x3f];
939 	output[3] = _crypt_itoa64[(count >> 12) & 0x3f];
940 	output[4] = _crypt_itoa64[(count >> 18) & 0x3f];
941 	value = (unsigned long)(unsigned char)input[0] |
942 		((unsigned long)(unsigned char)input[1] << 8) |
943 		((unsigned long)(unsigned char)input[2] << 16);
944 	output[5] = _crypt_itoa64[value & 0x3f];
945 	output[6] = _crypt_itoa64[(value >> 6) & 0x3f];
946 	output[7] = _crypt_itoa64[(value >> 12) & 0x3f];
947 	output[8] = _crypt_itoa64[(value >> 18) & 0x3f];
948 	output[9] = '\0';
949 
950 	return output;
951 }
952 
_crypt_gensalt_md5_rn(const char * prefix,unsigned long count,const char * input,int size,char * output,int output_size)953 char *_crypt_gensalt_md5_rn(const char *prefix, unsigned long count,
954 	const char *input, int size, char *output, int output_size)
955 {
956 	unsigned long value;
957 
958 	(void) prefix;
959 
960 	if (size < 3 || output_size < 3 + 4 + 1 || (count && count != 1000)) {
961 		if (output_size > 0) output[0] = '\0';
962 		__set_errno((output_size < 3 + 4 + 1) ? ERANGE : EINVAL);
963 		return NULL;
964 	}
965 
966 	output[0] = '$';
967 	output[1] = '1';
968 	output[2] = '$';
969 	value = (unsigned long)(unsigned char)input[0] |
970 		((unsigned long)(unsigned char)input[1] << 8) |
971 		((unsigned long)(unsigned char)input[2] << 16);
972 	output[3] = _crypt_itoa64[value & 0x3f];
973 	output[4] = _crypt_itoa64[(value >> 6) & 0x3f];
974 	output[5] = _crypt_itoa64[(value >> 12) & 0x3f];
975 	output[6] = _crypt_itoa64[(value >> 18) & 0x3f];
976 	output[7] = '\0';
977 
978 	if (size >= 6 && output_size >= 3 + 4 + 4 + 1) {
979 		value = (unsigned long)(unsigned char)input[3] |
980 			((unsigned long)(unsigned char)input[4] << 8) |
981 			((unsigned long)(unsigned char)input[5] << 16);
982 		output[7] = _crypt_itoa64[value & 0x3f];
983 		output[8] = _crypt_itoa64[(value >> 6) & 0x3f];
984 		output[9] = _crypt_itoa64[(value >> 12) & 0x3f];
985 		output[10] = _crypt_itoa64[(value >> 18) & 0x3f];
986 		output[11] = '\0';
987 	}
988 
989 	return output;
990 }
991 
992 #define CRYPT_OUTPUT_SIZE		(7 + 22 + 31 + 1)
993 #define CRYPT_GENSALT_OUTPUT_SIZE	(7 + 22 + 1)
994 
_crypt_data_alloc(void ** data,int * size,int need)995 static int _crypt_data_alloc(void **data, int *size, int need)
996 {
997 	void *updated;
998 
999 	if (*data && *size >= need) return 0;
1000 
1001 	updated = realloc(*data, need);
1002 
1003 	if (!updated) {
1004 #ifndef __GLIBC__
1005 		/* realloc(3) on glibc sets errno, so we don't need to bother */
1006 		__set_errno(ENOMEM);
1007 #endif
1008 		return -1;
1009 	}
1010 
1011 	*data = updated;
1012 	*size = need;
1013 
1014 	return 0;
1015 }
1016 
_crypt_retval_magic(char * retval,const char * setting,char * output,int size)1017 static char *_crypt_retval_magic(char *retval, const char *setting,
1018 	char *output, int size)
1019 {
1020 	if (retval)
1021 		return retval;
1022 
1023 	if (_crypt_output_magic(setting, output, size))
1024 		return NULL; /* shouldn't happen */
1025 
1026 	return output;
1027 }
1028 
1029 #if defined(__GLIBC__) && defined(_LIBC)
1030 /*
1031  * Applications may re-use the same instance of struct crypt_data without
1032  * resetting the initialized field in order to let crypt_r() skip some of
1033  * its initialization code.  Thus, it is important that our multiple hashing
1034  * algorithms either don't conflict with each other in their use of the
1035  * data area or reset the initialized field themselves whenever required.
1036  * Currently, the hashing algorithms simply have no conflicts: the first
1037  * field of struct crypt_data is the 128-byte large DES key schedule which
1038  * __des_crypt_r() calculates each time it is called while the two other
1039  * hashing algorithms use less than 128 bytes of the data area.
1040  */
1041 
__crypt_rn(__const char * key,__const char * setting,void * data,int size)1042 char *__crypt_rn(__const char *key, __const char *setting,
1043 	void *data, int size)
1044 {
1045 	if (setting[0] == '$' && setting[1] == '2')
1046 		return _crypt_blowfish_rn(key, setting, (char *)data, size);
1047 	if (setting[0] == '$' && setting[1] == '1')
1048 		return __md5_crypt_r(key, setting, (char *)data, size);
1049 	if (setting[0] == '$' || setting[0] == '_') {
1050 		__set_errno(EINVAL);
1051 		return NULL;
1052 	}
1053 	if (size >= sizeof(struct crypt_data))
1054 		return __des_crypt_r(key, setting, (struct crypt_data *)data);
1055 	__set_errno(ERANGE);
1056 	return NULL;
1057 }
1058 
__crypt_ra(__const char * key,__const char * setting,void ** data,int * size)1059 char *__crypt_ra(__const char *key, __const char *setting,
1060 	void **data, int *size)
1061 {
1062 	if (setting[0] == '$' && setting[1] == '2') {
1063 		if (_crypt_data_alloc(data, size, CRYPT_OUTPUT_SIZE))
1064 			return NULL;
1065 		return _crypt_blowfish_rn(key, setting, (char *)*data, *size);
1066 	}
1067 	if (setting[0] == '$' && setting[1] == '1') {
1068 		if (_crypt_data_alloc(data, size, CRYPT_OUTPUT_SIZE))
1069 			return NULL;
1070 		return __md5_crypt_r(key, setting, (char *)*data, *size);
1071 	}
1072 	if (setting[0] == '$' || setting[0] == '_') {
1073 		__set_errno(EINVAL);
1074 		return NULL;
1075 	}
1076 	if (_crypt_data_alloc(data, size, sizeof(struct crypt_data)))
1077 		return NULL;
1078 	return __des_crypt_r(key, setting, (struct crypt_data *)*data);
1079 }
1080 
__crypt_r(__const char * key,__const char * setting,struct crypt_data * data)1081 char *__crypt_r(__const char *key, __const char *setting,
1082 	struct crypt_data *data)
1083 {
1084 	return _crypt_retval_magic(
1085 		__crypt_rn(key, setting, data, sizeof(*data)),
1086 		setting, (char *)data, sizeof(*data));
1087 }
1088 
__crypt(__const char * key,__const char * setting)1089 char *__crypt(__const char *key, __const char *setting)
1090 {
1091 	return _crypt_retval_magic(
1092 		__crypt_rn(key, setting, &_ufc_foobar, sizeof(_ufc_foobar)),
1093 		setting, (char *)&_ufc_foobar, sizeof(_ufc_foobar));
1094 }
1095 #else
crypt_rn(const char * key,const char * setting,void * data,int size)1096 char *crypt_rn(const char *key, const char *setting, void *data, int size)
1097 {
1098 	return _crypt_blowfish_rn(key, setting, (char *)data, size);
1099 }
1100 
crypt_ra(const char * key,const char * setting,void ** data,int * size)1101 char *crypt_ra(const char *key, const char *setting,
1102 	void **data, int *size)
1103 {
1104 	if (_crypt_data_alloc(data, size, CRYPT_OUTPUT_SIZE))
1105 		return NULL;
1106 	return _crypt_blowfish_rn(key, setting, (char *)*data, *size);
1107 }
1108 
_crypt_r(const char * key,const char * setting,void * data)1109 char *_crypt_r(const char *key, const char *setting, void *data)
1110 {
1111 	return _crypt_retval_magic(
1112 		crypt_rn(key, setting, data, CRYPT_OUTPUT_SIZE),
1113 		setting, (char *)data, CRYPT_OUTPUT_SIZE);
1114 }
1115 
bcrypt(const char * key,const char * setting)1116 char *bcrypt(const char *key, const char *setting)
1117 {
1118 	static char output[CRYPT_OUTPUT_SIZE];
1119 
1120 	return _crypt_retval_magic(
1121 		crypt_rn(key, setting, output, sizeof(output)),
1122 		setting, output, sizeof(output));
1123 }
1124 
1125 #define __crypt_gensalt_rn crypt_gensalt_rn
1126 #define __crypt_gensalt_ra crypt_gensalt_ra
1127 #define __crypt_gensalt bcrypt_gensalt
1128 #endif
1129 
__crypt_gensalt_rn(const char * prefix,unsigned long count,const char * input,int size,char * output,int output_size)1130 char *__crypt_gensalt_rn(const char *prefix, unsigned long count,
1131 	const char *input, int size, char *output, int output_size)
1132 {
1133 	char *(*use)(const char *_prefix, unsigned long _count,
1134 		const char *_input, int _size,
1135 		char *_output, int _output_size);
1136 
1137 	/* This may be supported on some platforms in the future */
1138 	if (!input) {
1139 		__set_errno(EINVAL);
1140 		return NULL;
1141 	}
1142 
1143 	if (!strncmp(prefix, "$2a$", 4) || !strncmp(prefix, "$2b$", 4) ||
1144 	    !strncmp(prefix, "$2y$", 4))
1145 		use = _crypt_gensalt_blowfish_rn;
1146 	else
1147 	if (!strncmp(prefix, "$1$", 3))
1148 		use = _crypt_gensalt_md5_rn;
1149 	else
1150 	if (prefix[0] == '_')
1151 		use = _crypt_gensalt_extended_rn;
1152 	else
1153 	if (!prefix[0] ||
1154 	    (prefix[0] && prefix[1] &&
1155 	    memchr(_crypt_itoa64, prefix[0], 64) &&
1156 	    memchr(_crypt_itoa64, prefix[1], 64)))
1157 		use = _crypt_gensalt_traditional_rn;
1158 	else {
1159 		__set_errno(EINVAL);
1160 		return NULL;
1161 	}
1162 
1163 	return use(prefix, count, input, size, output, output_size);
1164 }
1165 
__crypt_gensalt_ra(const char * prefix,unsigned long count,const char * input,int size)1166 char *__crypt_gensalt_ra(const char *prefix, unsigned long count,
1167 	const char *input, int size)
1168 {
1169 	char output[CRYPT_GENSALT_OUTPUT_SIZE];
1170 	char *retval;
1171 
1172 	retval = __crypt_gensalt_rn(prefix, count,
1173 		input, size, output, sizeof(output));
1174 
1175 	if (retval) {
1176 		retval = strdup(retval);
1177 #ifndef __GLIBC__
1178 		/* strdup(3) on glibc sets errno, so we don't need to bother */
1179 		if (!retval)
1180 			__set_errno(ENOMEM);
1181 #endif
1182 	}
1183 
1184 	return retval;
1185 }
1186 
__crypt_gensalt(const char * prefix,unsigned long count,const char * input,int size)1187 char *__crypt_gensalt(const char *prefix, unsigned long count,
1188 	const char *input, int size)
1189 {
1190 	static char output[CRYPT_GENSALT_OUTPUT_SIZE];
1191 
1192 	return __crypt_gensalt_rn(prefix, count,
1193 		input, size, output, sizeof(output));
1194 }
1195