1 /*
2  *  Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include "modules/audio_processing/aec3/suppression_gain.h"
12 
13 #include <math.h>
14 #include <stddef.h>
15 #include <algorithm>
16 #include <numeric>
17 
18 #include "modules/audio_processing/aec3/moving_average.h"
19 #include "modules/audio_processing/aec3/vector_math.h"
20 #include "modules/audio_processing/logging/apm_data_dumper.h"
21 #include "rtc_base/atomicops.h"
22 #include "rtc_base/checks.h"
23 
24 namespace webrtc {
25 namespace {
26 
27 // Adjust the gains according to the presence of known external filters.
AdjustForExternalFilters(std::array<float,kFftLengthBy2Plus1> * gain)28 void AdjustForExternalFilters(std::array<float, kFftLengthBy2Plus1>* gain) {
29   // Limit the low frequency gains to avoid the impact of the high-pass filter
30   // on the lower-frequency gain influencing the overall achieved gain.
31   (*gain)[0] = (*gain)[1] = std::min((*gain)[1], (*gain)[2]);
32 
33   // Limit the high frequency gains to avoid the impact of the anti-aliasing
34   // filter on the upper-frequency gains influencing the overall achieved
35   // gain. TODO(peah): Update this when new anti-aliasing filters are
36   // implemented.
37   constexpr size_t kAntiAliasingImpactLimit = (64 * 2000) / 8000;
38   const float min_upper_gain = (*gain)[kAntiAliasingImpactLimit];
39   std::for_each(
40       gain->begin() + kAntiAliasingImpactLimit, gain->end() - 1,
41       [min_upper_gain](float& a) { a = std::min(a, min_upper_gain); });
42   (*gain)[kFftLengthBy2] = (*gain)[kFftLengthBy2Minus1];
43 }
44 
45 // Scales the echo according to assessed audibility at the other end.
WeightEchoForAudibility(const EchoCanceller3Config & config,rtc::ArrayView<const float> echo,rtc::ArrayView<float> weighted_echo)46 void WeightEchoForAudibility(const EchoCanceller3Config& config,
47                              rtc::ArrayView<const float> echo,
48                              rtc::ArrayView<float> weighted_echo) {
49   RTC_DCHECK_EQ(kFftLengthBy2Plus1, echo.size());
50   RTC_DCHECK_EQ(kFftLengthBy2Plus1, weighted_echo.size());
51 
52   auto weigh = [](float threshold, float normalizer, size_t begin, size_t end,
53                   rtc::ArrayView<const float> echo,
54                   rtc::ArrayView<float> weighted_echo) {
55     for (size_t k = begin; k < end; ++k) {
56       if (echo[k] < threshold) {
57         float tmp = (threshold - echo[k]) * normalizer;
58         weighted_echo[k] = echo[k] * std::max(0.f, 1.f - tmp * tmp);
59       } else {
60         weighted_echo[k] = echo[k];
61       }
62     }
63   };
64 
65   float threshold = config.echo_audibility.floor_power *
66                     config.echo_audibility.audibility_threshold_lf;
67   float normalizer = 1.f / (threshold - config.echo_audibility.floor_power);
68   weigh(threshold, normalizer, 0, 3, echo, weighted_echo);
69 
70   threshold = config.echo_audibility.floor_power *
71               config.echo_audibility.audibility_threshold_mf;
72   normalizer = 1.f / (threshold - config.echo_audibility.floor_power);
73   weigh(threshold, normalizer, 3, 7, echo, weighted_echo);
74 
75   threshold = config.echo_audibility.floor_power *
76               config.echo_audibility.audibility_threshold_hf;
77   normalizer = 1.f / (threshold - config.echo_audibility.floor_power);
78   weigh(threshold, normalizer, 7, kFftLengthBy2Plus1, echo, weighted_echo);
79 }
80 
81 // TODO(peah): Make adaptive to take the actual filter error into account.
82 constexpr size_t kUpperAccurateBandPlus1 = 29;
83 
84 // Limits the gain in the frequencies for which the adaptive filter has not
85 // converged. Currently, these frequencies are not hardcoded to the frequencies
86 // which are typically not excited by speech.
87 // TODO(peah): Make adaptive to take the actual filter error into account.
AdjustNonConvergedFrequencies(std::array<float,kFftLengthBy2Plus1> * gain)88 void AdjustNonConvergedFrequencies(
89     std::array<float, kFftLengthBy2Plus1>* gain) {
90   constexpr float oneByBandsInSum =
91       1 / static_cast<float>(kUpperAccurateBandPlus1 - 20);
92   const float hf_gain_bound =
93       std::accumulate(gain->begin() + 20,
94                       gain->begin() + kUpperAccurateBandPlus1, 0.f) *
95       oneByBandsInSum;
96 
97   std::for_each(gain->begin() + kUpperAccurateBandPlus1, gain->end(),
98                 [hf_gain_bound](float& a) { a = std::min(a, hf_gain_bound); });
99 }
100 
101 }  // namespace
102 
103 int SuppressionGain::instance_count_ = 0;
104 
UpperBandsGain(const std::array<float,kFftLengthBy2Plus1> & echo_spectrum,const std::array<float,kFftLengthBy2Plus1> & comfort_noise_spectrum,const absl::optional<int> & narrow_peak_band,bool saturated_echo,const std::vector<std::vector<float>> & render,const std::array<float,kFftLengthBy2Plus1> & low_band_gain) const105 float SuppressionGain::UpperBandsGain(
106     const std::array<float, kFftLengthBy2Plus1>& echo_spectrum,
107     const std::array<float, kFftLengthBy2Plus1>& comfort_noise_spectrum,
108     const absl::optional<int>& narrow_peak_band,
109     bool saturated_echo,
110     const std::vector<std::vector<float>>& render,
111     const std::array<float, kFftLengthBy2Plus1>& low_band_gain) const {
112   RTC_DCHECK_LT(0, render.size());
113   if (render.size() == 1) {
114     return 1.f;
115   }
116 
117   if (narrow_peak_band &&
118       (*narrow_peak_band > static_cast<int>(kFftLengthBy2Plus1 - 10))) {
119     return 0.001f;
120   }
121 
122   constexpr size_t kLowBandGainLimit = kFftLengthBy2 / 2;
123   const float gain_below_8_khz = *std::min_element(
124       low_band_gain.begin() + kLowBandGainLimit, low_band_gain.end());
125 
126   // Always attenuate the upper bands when there is saturated echo.
127   if (saturated_echo) {
128     return std::min(0.001f, gain_below_8_khz);
129   }
130 
131   // Compute the upper and lower band energies.
132   const auto sum_of_squares = [](float a, float b) { return a + b * b; };
133   const float low_band_energy =
134       std::accumulate(render[0].begin(), render[0].end(), 0.f, sum_of_squares);
135   float high_band_energy = 0.f;
136   for (size_t k = 1; k < render.size(); ++k) {
137     const float energy = std::accumulate(render[k].begin(), render[k].end(),
138                                          0.f, sum_of_squares);
139     high_band_energy = std::max(high_band_energy, energy);
140   }
141 
142   // If there is more power in the lower frequencies than the upper frequencies,
143   // or if the power in upper frequencies is low, do not bound the gain in the
144   // upper bands.
145   float anti_howling_gain;
146   constexpr float kThreshold = kBlockSize * 10.f * 10.f / 4.f;
147   if (high_band_energy < std::max(low_band_energy, kThreshold)) {
148     anti_howling_gain = 1.f;
149   } else {
150     // In all other cases, bound the gain for upper frequencies.
151     RTC_DCHECK_LE(low_band_energy, high_band_energy);
152     RTC_DCHECK_NE(0.f, high_band_energy);
153     anti_howling_gain = 0.01f * sqrtf(low_band_energy / high_band_energy);
154   }
155 
156   // Bound the upper gain during significant echo activity.
157   auto low_frequency_energy = [](rtc::ArrayView<const float> spectrum) {
158     RTC_DCHECK_LE(16, spectrum.size());
159     return std::accumulate(spectrum.begin() + 1, spectrum.begin() + 16, 0.f);
160   };
161   const float echo_sum = low_frequency_energy(echo_spectrum);
162   const float noise_sum = low_frequency_energy(comfort_noise_spectrum);
163   const auto& cfg = config_.suppressor.high_bands_suppression;
164   float gain_bound = 1.f;
165   if (echo_sum > cfg.enr_threshold * noise_sum &&
166       !dominant_nearend_detector_.IsNearendState()) {
167     gain_bound = cfg.max_gain_during_echo;
168   }
169 
170   // Choose the gain as the minimum of the lower and upper gains.
171   return std::min(std::min(gain_below_8_khz, anti_howling_gain), gain_bound);
172 }
173 
174 // Computes the gain to reduce the echo to a non audible level.
GainToNoAudibleEcho(const std::array<float,kFftLengthBy2Plus1> & nearend,const std::array<float,kFftLengthBy2Plus1> & echo,const std::array<float,kFftLengthBy2Plus1> & masker,const std::array<float,kFftLengthBy2Plus1> & min_gain,const std::array<float,kFftLengthBy2Plus1> & max_gain,std::array<float,kFftLengthBy2Plus1> * gain) const175 void SuppressionGain::GainToNoAudibleEcho(
176     const std::array<float, kFftLengthBy2Plus1>& nearend,
177     const std::array<float, kFftLengthBy2Plus1>& echo,
178     const std::array<float, kFftLengthBy2Plus1>& masker,
179     const std::array<float, kFftLengthBy2Plus1>& min_gain,
180     const std::array<float, kFftLengthBy2Plus1>& max_gain,
181     std::array<float, kFftLengthBy2Plus1>* gain) const {
182   const auto& p = dominant_nearend_detector_.IsNearendState() ? nearend_params_
183                                                               : normal_params_;
184   for (size_t k = 0; k < gain->size(); ++k) {
185     float enr = echo[k] / (nearend[k] + 1.f);  // Echo-to-nearend ratio.
186     float emr = echo[k] / (masker[k] + 1.f);   // Echo-to-masker (noise) ratio.
187     float g = 1.0f;
188     if (enr > p.enr_transparent_[k] && emr > p.emr_transparent_[k]) {
189       g = (p.enr_suppress_[k] - enr) /
190           (p.enr_suppress_[k] - p.enr_transparent_[k]);
191       g = std::max(g, p.emr_transparent_[k] / emr);
192     }
193     (*gain)[k] = std::max(std::min(g, max_gain[k]), min_gain[k]);
194   }
195 }
196 
197 // Compute the minimum gain as the attenuating gain to put the signal just
198 // above the zero sample values.
GetMinGain(rtc::ArrayView<const float> suppressor_input,rtc::ArrayView<const float> weighted_residual_echo,bool low_noise_render,bool saturated_echo,rtc::ArrayView<float> min_gain) const199 void SuppressionGain::GetMinGain(
200     rtc::ArrayView<const float> suppressor_input,
201     rtc::ArrayView<const float> weighted_residual_echo,
202     bool low_noise_render,
203     bool saturated_echo,
204     rtc::ArrayView<float> min_gain) const {
205   if (!saturated_echo) {
206     const float min_echo_power =
207         low_noise_render ? config_.echo_audibility.low_render_limit
208                          : config_.echo_audibility.normal_render_limit;
209 
210     for (size_t k = 0; k < suppressor_input.size(); ++k) {
211       const float denom =
212           std::min(suppressor_input[k], weighted_residual_echo[k]);
213       min_gain[k] = denom > 0.f ? min_echo_power / denom : 1.f;
214       min_gain[k] = std::min(min_gain[k], 1.f);
215     }
216     for (size_t k = 0; k < 6; ++k) {
217       const auto& dec = dominant_nearend_detector_.IsNearendState()
218                             ? nearend_params_.max_dec_factor_lf
219                             : normal_params_.max_dec_factor_lf;
220 
221       // Make sure the gains of the low frequencies do not decrease too
222       // quickly after strong nearend.
223       if (last_nearend_[k] > last_echo_[k]) {
224         min_gain[k] = std::max(min_gain[k], last_gain_[k] * dec);
225         min_gain[k] = std::min(min_gain[k], 1.f);
226       }
227     }
228   } else {
229     std::fill(min_gain.begin(), min_gain.end(), 0.f);
230   }
231 }
232 
233 // Compute the maximum gain by limiting the gain increase from the previous
234 // gain.
GetMaxGain(rtc::ArrayView<float> max_gain) const235 void SuppressionGain::GetMaxGain(rtc::ArrayView<float> max_gain) const {
236   const auto& inc = dominant_nearend_detector_.IsNearendState()
237                         ? nearend_params_.max_inc_factor
238                         : normal_params_.max_inc_factor;
239   const auto& floor = config_.suppressor.floor_first_increase;
240   for (size_t k = 0; k < max_gain.size(); ++k) {
241     max_gain[k] = std::min(std::max(last_gain_[k] * inc, floor), 1.f);
242   }
243 }
244 
245 // TODO(peah): Add further optimizations, in particular for the divisions.
LowerBandGain(bool low_noise_render,const AecState & aec_state,const std::array<float,kFftLengthBy2Plus1> & suppressor_input,const std::array<float,kFftLengthBy2Plus1> & nearend,const std::array<float,kFftLengthBy2Plus1> & residual_echo,const std::array<float,kFftLengthBy2Plus1> & comfort_noise,std::array<float,kFftLengthBy2Plus1> * gain)246 void SuppressionGain::LowerBandGain(
247     bool low_noise_render,
248     const AecState& aec_state,
249     const std::array<float, kFftLengthBy2Plus1>& suppressor_input,
250     const std::array<float, kFftLengthBy2Plus1>& nearend,
251     const std::array<float, kFftLengthBy2Plus1>& residual_echo,
252     const std::array<float, kFftLengthBy2Plus1>& comfort_noise,
253     std::array<float, kFftLengthBy2Plus1>* gain) {
254   const bool saturated_echo = aec_state.SaturatedEcho();
255 
256   // Weight echo power in terms of audibility. // Precompute 1/weighted echo
257   // (note that when the echo is zero, the precomputed value is never used).
258   std::array<float, kFftLengthBy2Plus1> weighted_residual_echo;
259   WeightEchoForAudibility(config_, residual_echo, weighted_residual_echo);
260 
261   std::array<float, kFftLengthBy2Plus1> min_gain;
262   GetMinGain(suppressor_input, weighted_residual_echo, low_noise_render,
263              saturated_echo, min_gain);
264 
265   std::array<float, kFftLengthBy2Plus1> max_gain;
266   GetMaxGain(max_gain);
267 
268     GainToNoAudibleEcho(nearend, weighted_residual_echo, comfort_noise,
269                         min_gain, max_gain, gain);
270     AdjustForExternalFilters(gain);
271 
272   // Adjust the gain for frequencies which have not yet converged.
273   AdjustNonConvergedFrequencies(gain);
274 
275   // Store data required for the gain computation of the next block.
276   std::copy(nearend.begin(), nearend.end(), last_nearend_.begin());
277   std::copy(weighted_residual_echo.begin(), weighted_residual_echo.end(),
278             last_echo_.begin());
279   std::copy(gain->begin(), gain->end(), last_gain_.begin());
280   aec3::VectorMath(optimization_).Sqrt(*gain);
281 
282   // Debug outputs for the purpose of development and analysis.
283   data_dumper_->DumpRaw("aec3_suppressor_min_gain", min_gain);
284   data_dumper_->DumpRaw("aec3_suppressor_max_gain", max_gain);
285   data_dumper_->DumpRaw("aec3_dominant_nearend",
286                         dominant_nearend_detector_.IsNearendState());
287 }
288 
SuppressionGain(const EchoCanceller3Config & config,Aec3Optimization optimization,int sample_rate_hz)289 SuppressionGain::SuppressionGain(const EchoCanceller3Config& config,
290                                  Aec3Optimization optimization,
291                                  int sample_rate_hz)
292     : data_dumper_(
293           new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))),
294       optimization_(optimization),
295       config_(config),
296       state_change_duration_blocks_(
297           static_cast<int>(config_.filter.config_change_duration_blocks)),
298       moving_average_(kFftLengthBy2Plus1,
299                       config.suppressor.nearend_average_blocks),
300       nearend_params_(config_.suppressor.nearend_tuning),
301       normal_params_(config_.suppressor.normal_tuning),
302       dominant_nearend_detector_(
303           config_.suppressor.dominant_nearend_detection) {
304   RTC_DCHECK_LT(0, state_change_duration_blocks_);
305   one_by_state_change_duration_blocks_ = 1.f / state_change_duration_blocks_;
306   last_gain_.fill(1.f);
307   last_nearend_.fill(0.f);
308   last_echo_.fill(0.f);
309 }
310 
311 SuppressionGain::~SuppressionGain() = default;
312 
GetGain(const std::array<float,kFftLengthBy2Plus1> & suppressor_input_spectrum,const std::array<float,kFftLengthBy2Plus1> & nearend_spectrum,const std::array<float,kFftLengthBy2Plus1> & echo_spectrum,const std::array<float,kFftLengthBy2Plus1> & residual_echo_spectrum,const std::array<float,kFftLengthBy2Plus1> & comfort_noise_spectrum,const FftData & linear_aec_fft,const FftData & capture_fft,const RenderSignalAnalyzer & render_signal_analyzer,const AecState & aec_state,const std::vector<std::vector<float>> & render,float * high_bands_gain,std::array<float,kFftLengthBy2Plus1> * low_band_gain)313 void SuppressionGain::GetGain(
314     const std::array<float, kFftLengthBy2Plus1>& suppressor_input_spectrum,
315     const std::array<float, kFftLengthBy2Plus1>& nearend_spectrum,
316     const std::array<float, kFftLengthBy2Plus1>& echo_spectrum,
317     const std::array<float, kFftLengthBy2Plus1>& residual_echo_spectrum,
318     const std::array<float, kFftLengthBy2Plus1>& comfort_noise_spectrum,
319     const FftData& linear_aec_fft,
320     const FftData& capture_fft,
321     const RenderSignalAnalyzer& render_signal_analyzer,
322     const AecState& aec_state,
323     const std::vector<std::vector<float>>& render,
324     float* high_bands_gain,
325     std::array<float, kFftLengthBy2Plus1>* low_band_gain) {
326   RTC_DCHECK(high_bands_gain);
327   RTC_DCHECK(low_band_gain);
328   const auto& cfg = config_.suppressor;
329 
330   if (cfg.enforce_transparent) {
331     low_band_gain->fill(1.f);
332     *high_bands_gain = cfg.enforce_empty_higher_bands ? 0.f : 1.f;
333     return;
334   }
335 
336   std::array<float, kFftLengthBy2Plus1> nearend_average;
337   moving_average_.Average(nearend_spectrum, nearend_average);
338 
339   // Update the state selection.
340   dominant_nearend_detector_.Update(nearend_spectrum, residual_echo_spectrum,
341                                     comfort_noise_spectrum, initial_state_);
342 
343   // Compute gain for the lower band.
344   bool low_noise_render = low_render_detector_.Detect(render);
345   LowerBandGain(low_noise_render, aec_state, suppressor_input_spectrum,
346                 nearend_average, residual_echo_spectrum, comfort_noise_spectrum,
347                 low_band_gain);
348 
349   // Limit the gain of the lower bands during start up and after resets.
350   const float gain_upper_bound = aec_state.SuppressionGainLimit();
351   if (gain_upper_bound < 1.f) {
352     for (size_t k = 0; k < low_band_gain->size(); ++k) {
353       (*low_band_gain)[k] = std::min((*low_band_gain)[k], gain_upper_bound);
354     }
355   }
356 
357   // Compute the gain for the upper bands.
358   const absl::optional<int> narrow_peak_band =
359       render_signal_analyzer.NarrowPeakBand();
360 
361   *high_bands_gain =
362       UpperBandsGain(echo_spectrum, comfort_noise_spectrum, narrow_peak_band,
363                      aec_state.SaturatedEcho(), render, *low_band_gain);
364   if (cfg.enforce_empty_higher_bands) {
365     *high_bands_gain = 0.f;
366   }
367 }
368 
SetInitialState(bool state)369 void SuppressionGain::SetInitialState(bool state) {
370   initial_state_ = state;
371   if (state) {
372     initial_state_change_counter_ = state_change_duration_blocks_;
373   } else {
374     initial_state_change_counter_ = 0;
375   }
376 }
377 
378 // Detects when the render signal can be considered to have low power and
379 // consist of stationary noise.
Detect(const std::vector<std::vector<float>> & render)380 bool SuppressionGain::LowNoiseRenderDetector::Detect(
381     const std::vector<std::vector<float>>& render) {
382   float x2_sum = 0.f;
383   float x2_max = 0.f;
384   for (auto x_k : render[0]) {
385     const float x2 = x_k * x_k;
386     x2_sum += x2;
387     x2_max = std::max(x2_max, x2);
388   }
389 
390   constexpr float kThreshold = 50.f * 50.f * 64.f;
391   const bool low_noise_render =
392       average_power_ < kThreshold && x2_max < 3 * average_power_;
393   average_power_ = average_power_ * 0.9f + x2_sum * 0.1f;
394   return low_noise_render;
395 }
396 
DominantNearendDetector(const EchoCanceller3Config::Suppressor::DominantNearendDetection config)397 SuppressionGain::DominantNearendDetector::DominantNearendDetector(
398     const EchoCanceller3Config::Suppressor::DominantNearendDetection config)
399     : enr_threshold_(config.enr_threshold),
400       enr_exit_threshold_(config.enr_exit_threshold),
401       snr_threshold_(config.snr_threshold),
402       hold_duration_(config.hold_duration),
403       trigger_threshold_(config.trigger_threshold),
404       use_during_initial_phase_(config.use_during_initial_phase) {}
405 
Update(rtc::ArrayView<const float> nearend_spectrum,rtc::ArrayView<const float> residual_echo_spectrum,rtc::ArrayView<const float> comfort_noise_spectrum,bool initial_state)406 void SuppressionGain::DominantNearendDetector::Update(
407     rtc::ArrayView<const float> nearend_spectrum,
408     rtc::ArrayView<const float> residual_echo_spectrum,
409     rtc::ArrayView<const float> comfort_noise_spectrum,
410     bool initial_state) {
411   auto low_frequency_energy = [](rtc::ArrayView<const float> spectrum) {
412     RTC_DCHECK_LE(16, spectrum.size());
413     return std::accumulate(spectrum.begin() + 1, spectrum.begin() + 16, 0.f);
414   };
415   const float ne_sum = low_frequency_energy(nearend_spectrum);
416   const float echo_sum = low_frequency_energy(residual_echo_spectrum);
417   const float noise_sum = low_frequency_energy(comfort_noise_spectrum);
418 
419   // Detect strong active nearend if the nearend is sufficiently stronger than
420   // the echo and the nearend noise.
421   if ((!initial_state || use_during_initial_phase_) &&
422       ne_sum > enr_threshold_ * echo_sum &&
423       ne_sum > snr_threshold_ * noise_sum) {
424     if (++trigger_counter_ >= trigger_threshold_) {
425       // After a period of strong active nearend activity, flag nearend mode.
426       hold_counter_ = hold_duration_;
427       trigger_counter_ = trigger_threshold_;
428     }
429   } else {
430     // Forget previously detected strong active nearend activity.
431     trigger_counter_ = std::max(0, trigger_counter_ - 1);
432   }
433 
434   // Exit nearend-state early at strong echo.
435   if (ne_sum < enr_exit_threshold_ * echo_sum &&
436       echo_sum > snr_threshold_ * noise_sum) {
437     hold_counter_ = 0;
438   }
439 
440   // Remain in any nearend mode for a certain duration.
441   hold_counter_ = std::max(0, hold_counter_ - 1);
442   nearend_state_ = hold_counter_ > 0;
443 }
444 
GainParameters(const EchoCanceller3Config::Suppressor::Tuning & tuning)445 SuppressionGain::GainParameters::GainParameters(
446     const EchoCanceller3Config::Suppressor::Tuning& tuning)
447     : max_inc_factor(tuning.max_inc_factor),
448       max_dec_factor_lf(tuning.max_dec_factor_lf) {
449   // Compute per-band masking thresholds.
450   constexpr size_t kLastLfBand = 5;
451   constexpr size_t kFirstHfBand = 8;
452   RTC_DCHECK_LT(kLastLfBand, kFirstHfBand);
453   auto& lf = tuning.mask_lf;
454   auto& hf = tuning.mask_hf;
455   RTC_DCHECK_LT(lf.enr_transparent, lf.enr_suppress);
456   RTC_DCHECK_LT(hf.enr_transparent, hf.enr_suppress);
457   for (size_t k = 0; k < kFftLengthBy2Plus1; k++) {
458     float a;
459     if (k <= kLastLfBand) {
460       a = 0.f;
461     } else if (k < kFirstHfBand) {
462       a = (k - kLastLfBand) / static_cast<float>(kFirstHfBand - kLastLfBand);
463     } else {
464       a = 1.f;
465     }
466     enr_transparent_[k] = (1 - a) * lf.enr_transparent + a * hf.enr_transparent;
467     enr_suppress_[k] = (1 - a) * lf.enr_suppress + a * hf.enr_suppress;
468     emr_transparent_[k] = (1 - a) * lf.emr_transparent + a * hf.emr_transparent;
469   }
470 }
471 
472 }  // namespace webrtc
473