1 /*
2  *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include "modules/video_coding/session_info.h"
12 
13 #include <assert.h>
14 #include <string.h>
15 
16 #include <vector>
17 
18 #include "absl/types/variant.h"
19 #include "modules/include/module_common_types.h"
20 #include "modules/include/module_common_types_public.h"
21 #include "modules/video_coding/codecs/interface/common_constants.h"
22 #include "modules/video_coding/codecs/vp8/include/vp8_globals.h"
23 #include "modules/video_coding/jitter_buffer_common.h"
24 #include "modules/video_coding/packet.h"
25 #include "rtc_base/logging.h"
26 
27 namespace webrtc {
28 
29 namespace {
30 
BufferToUWord16(const uint8_t * dataBuffer)31 uint16_t BufferToUWord16(const uint8_t* dataBuffer) {
32   return (dataBuffer[0] << 8) | dataBuffer[1];
33 }
34 
35 }  // namespace
36 
VCMSessionInfo()37 VCMSessionInfo::VCMSessionInfo()
38     : complete_(false),
39       frame_type_(VideoFrameType::kVideoFrameDelta),
40       packets_(),
41       empty_seq_num_low_(-1),
42       empty_seq_num_high_(-1),
43       first_packet_seq_num_(-1),
44       last_packet_seq_num_(-1) {}
45 
~VCMSessionInfo()46 VCMSessionInfo::~VCMSessionInfo() {}
47 
UpdateDataPointers(const uint8_t * old_base_ptr,const uint8_t * new_base_ptr)48 void VCMSessionInfo::UpdateDataPointers(const uint8_t* old_base_ptr,
49                                         const uint8_t* new_base_ptr) {
50   for (PacketIterator it = packets_.begin(); it != packets_.end(); ++it)
51     if ((*it).dataPtr != NULL) {
52       assert(old_base_ptr != NULL && new_base_ptr != NULL);
53       (*it).dataPtr = new_base_ptr + ((*it).dataPtr - old_base_ptr);
54     }
55 }
56 
LowSequenceNumber() const57 int VCMSessionInfo::LowSequenceNumber() const {
58   if (packets_.empty())
59     return empty_seq_num_low_;
60   return packets_.front().seqNum;
61 }
62 
HighSequenceNumber() const63 int VCMSessionInfo::HighSequenceNumber() const {
64   if (packets_.empty())
65     return empty_seq_num_high_;
66   if (empty_seq_num_high_ == -1)
67     return packets_.back().seqNum;
68   return LatestSequenceNumber(packets_.back().seqNum, empty_seq_num_high_);
69 }
70 
PictureId() const71 int VCMSessionInfo::PictureId() const {
72   if (packets_.empty())
73     return kNoPictureId;
74   if (packets_.front().video_header.codec == kVideoCodecVP8) {
75     return absl::get<RTPVideoHeaderVP8>(
76                packets_.front().video_header.video_type_header)
77         .pictureId;
78   } else if (packets_.front().video_header.codec == kVideoCodecVP9) {
79     return absl::get<RTPVideoHeaderVP9>(
80                packets_.front().video_header.video_type_header)
81         .picture_id;
82   } else {
83     return kNoPictureId;
84   }
85 }
86 
TemporalId() const87 int VCMSessionInfo::TemporalId() const {
88   if (packets_.empty())
89     return kNoTemporalIdx;
90   if (packets_.front().video_header.codec == kVideoCodecVP8) {
91     return absl::get<RTPVideoHeaderVP8>(
92                packets_.front().video_header.video_type_header)
93         .temporalIdx;
94   } else if (packets_.front().video_header.codec == kVideoCodecVP9) {
95     return absl::get<RTPVideoHeaderVP9>(
96                packets_.front().video_header.video_type_header)
97         .temporal_idx;
98   } else {
99     return kNoTemporalIdx;
100   }
101 }
102 
LayerSync() const103 bool VCMSessionInfo::LayerSync() const {
104   if (packets_.empty())
105     return false;
106   if (packets_.front().video_header.codec == kVideoCodecVP8) {
107     return absl::get<RTPVideoHeaderVP8>(
108                packets_.front().video_header.video_type_header)
109         .layerSync;
110   } else if (packets_.front().video_header.codec == kVideoCodecVP9) {
111     return absl::get<RTPVideoHeaderVP9>(
112                packets_.front().video_header.video_type_header)
113         .temporal_up_switch;
114   } else {
115     return false;
116   }
117 }
118 
Tl0PicId() const119 int VCMSessionInfo::Tl0PicId() const {
120   if (packets_.empty())
121     return kNoTl0PicIdx;
122   if (packets_.front().video_header.codec == kVideoCodecVP8) {
123     return absl::get<RTPVideoHeaderVP8>(
124                packets_.front().video_header.video_type_header)
125         .tl0PicIdx;
126   } else if (packets_.front().video_header.codec == kVideoCodecVP9) {
127     return absl::get<RTPVideoHeaderVP9>(
128                packets_.front().video_header.video_type_header)
129         .tl0_pic_idx;
130   } else {
131     return kNoTl0PicIdx;
132   }
133 }
134 
GetNaluInfos() const135 std::vector<NaluInfo> VCMSessionInfo::GetNaluInfos() const {
136   if (packets_.empty() ||
137       packets_.front().video_header.codec != kVideoCodecH264)
138     return std::vector<NaluInfo>();
139   std::vector<NaluInfo> nalu_infos;
140   for (const VCMPacket& packet : packets_) {
141     const auto& h264 =
142         absl::get<RTPVideoHeaderH264>(packet.video_header.video_type_header);
143     for (size_t i = 0; i < h264.nalus_length; ++i) {
144       nalu_infos.push_back(h264.nalus[i]);
145     }
146   }
147   return nalu_infos;
148 }
149 #ifndef DISABLE_H265
GetH265NaluInfos() const150 std::vector<H265NaluInfo> VCMSessionInfo::GetH265NaluInfos() const {
151   if (packets_.empty() || packets_.front().video_header.codec != kVideoCodecH265)
152     return std::vector<H265NaluInfo>();
153   std::vector<H265NaluInfo> nalu_infos;
154   for (const VCMPacket& packet : packets_) {
155     const auto& h265 =
156         absl::get<RTPVideoHeaderH265>(packet.video_header.video_type_header);
157     for (size_t i = 0; i < h265.nalus_length; ++i) {
158       nalu_infos.push_back(h265.nalus[i]);
159     }
160   }
161   return nalu_infos;
162 }
163 #endif
164 
SetGofInfo(const GofInfoVP9 & gof_info,size_t idx)165 void VCMSessionInfo::SetGofInfo(const GofInfoVP9& gof_info, size_t idx) {
166   if (packets_.empty())
167     return;
168 
169   auto* vp9_header = absl::get_if<RTPVideoHeaderVP9>(
170       &packets_.front().video_header.video_type_header);
171   if (!vp9_header || vp9_header->flexible_mode)
172     return;
173 
174   vp9_header->temporal_idx = gof_info.temporal_idx[idx];
175   vp9_header->temporal_up_switch = gof_info.temporal_up_switch[idx];
176   vp9_header->num_ref_pics = gof_info.num_ref_pics[idx];
177   for (uint8_t i = 0; i < gof_info.num_ref_pics[idx]; ++i) {
178     vp9_header->pid_diff[i] = gof_info.pid_diff[idx][i];
179   }
180 }
181 
Reset()182 void VCMSessionInfo::Reset() {
183   complete_ = false;
184   frame_type_ = VideoFrameType::kVideoFrameDelta;
185   packets_.clear();
186   empty_seq_num_low_ = -1;
187   empty_seq_num_high_ = -1;
188   first_packet_seq_num_ = -1;
189   last_packet_seq_num_ = -1;
190 }
191 
SessionLength() const192 size_t VCMSessionInfo::SessionLength() const {
193   size_t length = 0;
194   for (PacketIteratorConst it = packets_.begin(); it != packets_.end(); ++it)
195     length += (*it).sizeBytes;
196   return length;
197 }
198 
NumPackets() const199 int VCMSessionInfo::NumPackets() const {
200   return packets_.size();
201 }
202 
InsertBuffer(uint8_t * frame_buffer,PacketIterator packet_it)203 size_t VCMSessionInfo::InsertBuffer(uint8_t* frame_buffer,
204                                     PacketIterator packet_it) {
205   VCMPacket& packet = *packet_it;
206   PacketIterator it;
207 
208   // Calculate the offset into the frame buffer for this packet.
209   size_t offset = 0;
210   for (it = packets_.begin(); it != packet_it; ++it)
211     offset += (*it).sizeBytes;
212 
213   // Set the data pointer to pointing to the start of this packet in the
214   // frame buffer.
215   const uint8_t* packet_buffer = packet.dataPtr;
216   packet.dataPtr = frame_buffer + offset;
217 
218   // We handle H.264 STAP-A packets in a special way as we need to remove the
219   // two length bytes between each NAL unit, and potentially add start codes.
220   // TODO(pbos): Remove H264 parsing from this step and use a fragmentation
221   // header supplied by the H264 depacketizer.
222   const size_t kH264NALHeaderLengthInBytes = 1;
223 #ifndef DISABLE_H265
224   const size_t kH265NALHeaderLengthInBytes = 2;
225   const auto* h265 =
226       absl::get_if<RTPVideoHeaderH265>(&packet.video_header.video_type_header);
227 #endif
228   const size_t kLengthFieldLength = 2;
229   const auto* h264 =
230       absl::get_if<RTPVideoHeaderH264>(&packet.video_header.video_type_header);
231   if (h264 && h264->packetization_type == kH264StapA) {
232     size_t required_length = 0;
233     const uint8_t* nalu_ptr = packet_buffer + kH264NALHeaderLengthInBytes;
234     while (nalu_ptr < packet_buffer + packet.sizeBytes) {
235       size_t length = BufferToUWord16(nalu_ptr);
236       required_length +=
237           length + (packet.insertStartCode ? kH264StartCodeLengthBytes : 0);
238       nalu_ptr += kLengthFieldLength + length;
239     }
240     ShiftSubsequentPackets(packet_it, required_length);
241     nalu_ptr = packet_buffer + kH264NALHeaderLengthInBytes;
242     uint8_t* frame_buffer_ptr = frame_buffer + offset;
243     while (nalu_ptr < packet_buffer + packet.sizeBytes) {
244       size_t length = BufferToUWord16(nalu_ptr);
245       nalu_ptr += kLengthFieldLength;
246       frame_buffer_ptr += Insert(nalu_ptr, length, packet.insertStartCode,
247                                  const_cast<uint8_t*>(frame_buffer_ptr));
248       nalu_ptr += length;
249     }
250     packet.sizeBytes = required_length;
251     return packet.sizeBytes;
252   }
253 #ifndef DISABLE_H265
254   else if (h265 && h265->packetization_type == kH265AP) {
255     // Similar to H264, for H265 aggregation packets, we rely on jitter buffer
256     // to remove the two length bytes between each NAL unit, and potentially add
257     // start codes.
258     size_t required_length = 0;
259     const uint8_t* nalu_ptr =
260         packet_buffer + kH265NALHeaderLengthInBytes;  // skip payloadhdr
261     while (nalu_ptr < packet_buffer + packet.sizeBytes) {
262       size_t length = BufferToUWord16(nalu_ptr);
263       required_length +=
264           length + (packet.insertStartCode ? kH265StartCodeLengthBytes : 0);
265       nalu_ptr += kLengthFieldLength + length;
266     }
267     ShiftSubsequentPackets(packet_it, required_length);
268     nalu_ptr = packet_buffer + kH265NALHeaderLengthInBytes;
269     uint8_t* frame_buffer_ptr = frame_buffer + offset;
270     while (nalu_ptr < packet_buffer + packet.sizeBytes) {
271       size_t length = BufferToUWord16(nalu_ptr);
272       nalu_ptr += kLengthFieldLength;
273       // since H265 shares the same start code as H264, use the same Insert
274       // function to handle start code.
275       frame_buffer_ptr += Insert(nalu_ptr, length, packet.insertStartCode,
276                                  const_cast<uint8_t*>(frame_buffer_ptr));
277       nalu_ptr += length;
278     }
279     packet.sizeBytes = required_length;
280     return packet.sizeBytes;
281   }
282 #endif
283   ShiftSubsequentPackets(
284       packet_it, packet.sizeBytes +
285                      (packet.insertStartCode ? kH264StartCodeLengthBytes : 0));
286 
287   packet.sizeBytes =
288       Insert(packet_buffer, packet.sizeBytes, packet.insertStartCode,
289              const_cast<uint8_t*>(packet.dataPtr));
290   return packet.sizeBytes;
291 }
292 
Insert(const uint8_t * buffer,size_t length,bool insert_start_code,uint8_t * frame_buffer)293 size_t VCMSessionInfo::Insert(const uint8_t* buffer,
294                               size_t length,
295                               bool insert_start_code,
296                               uint8_t* frame_buffer) {
297   if (insert_start_code) {
298     const unsigned char startCode[] = {0, 0, 0, 1};
299     memcpy(frame_buffer, startCode, kH264StartCodeLengthBytes);
300   }
301   memcpy(frame_buffer + (insert_start_code ? kH264StartCodeLengthBytes : 0),
302          buffer, length);
303   length += (insert_start_code ? kH264StartCodeLengthBytes : 0);
304 
305   return length;
306 }
307 
ShiftSubsequentPackets(PacketIterator it,int steps_to_shift)308 void VCMSessionInfo::ShiftSubsequentPackets(PacketIterator it,
309                                             int steps_to_shift) {
310   ++it;
311   if (it == packets_.end())
312     return;
313   uint8_t* first_packet_ptr = const_cast<uint8_t*>((*it).dataPtr);
314   int shift_length = 0;
315   // Calculate the total move length and move the data pointers in advance.
316   for (; it != packets_.end(); ++it) {
317     shift_length += (*it).sizeBytes;
318     if ((*it).dataPtr != NULL)
319       (*it).dataPtr += steps_to_shift;
320   }
321   memmove(first_packet_ptr + steps_to_shift, first_packet_ptr, shift_length);
322 }
323 
UpdateCompleteSession()324 void VCMSessionInfo::UpdateCompleteSession() {
325   if (HaveFirstPacket() && HaveLastPacket()) {
326     // Do we have all the packets in this session?
327     bool complete_session = true;
328     PacketIterator it = packets_.begin();
329     PacketIterator prev_it = it;
330     ++it;
331     for (; it != packets_.end(); ++it) {
332       if (!InSequence(it, prev_it)) {
333         complete_session = false;
334         break;
335       }
336       prev_it = it;
337     }
338     complete_ = complete_session;
339   }
340 }
341 
complete() const342 bool VCMSessionInfo::complete() const {
343   return complete_;
344 }
345 
346 // Find the end of the NAL unit which the packet pointed to by |packet_it|
347 // belongs to. Returns an iterator to the last packet of the frame if the end
348 // of the NAL unit wasn't found.
FindNaluEnd(PacketIterator packet_it) const349 VCMSessionInfo::PacketIterator VCMSessionInfo::FindNaluEnd(
350     PacketIterator packet_it) const {
351   if ((*packet_it).completeNALU == kNaluEnd ||
352       (*packet_it).completeNALU == kNaluComplete) {
353     return packet_it;
354   }
355   // Find the end of the NAL unit.
356   for (; packet_it != packets_.end(); ++packet_it) {
357     if (((*packet_it).completeNALU == kNaluComplete &&
358          (*packet_it).sizeBytes > 0) ||
359         // Found next NALU.
360         (*packet_it).completeNALU == kNaluStart)
361       return --packet_it;
362     if ((*packet_it).completeNALU == kNaluEnd)
363       return packet_it;
364   }
365   // The end wasn't found.
366   return --packet_it;
367 }
368 
DeletePacketData(PacketIterator start,PacketIterator end)369 size_t VCMSessionInfo::DeletePacketData(PacketIterator start,
370                                         PacketIterator end) {
371   size_t bytes_to_delete = 0;  // The number of bytes to delete.
372   PacketIterator packet_after_end = end;
373   ++packet_after_end;
374 
375   // Get the number of bytes to delete.
376   // Clear the size of these packets.
377   for (PacketIterator it = start; it != packet_after_end; ++it) {
378     bytes_to_delete += (*it).sizeBytes;
379     (*it).sizeBytes = 0;
380     (*it).dataPtr = NULL;
381   }
382   if (bytes_to_delete > 0)
383     ShiftSubsequentPackets(end, -static_cast<int>(bytes_to_delete));
384   return bytes_to_delete;
385 }
386 
FindNextPartitionBeginning(PacketIterator it) const387 VCMSessionInfo::PacketIterator VCMSessionInfo::FindNextPartitionBeginning(
388     PacketIterator it) const {
389   while (it != packets_.end()) {
390     if (absl::get<RTPVideoHeaderVP8>((*it).video_header.video_type_header)
391             .beginningOfPartition) {
392       return it;
393     }
394     ++it;
395   }
396   return it;
397 }
398 
FindPartitionEnd(PacketIterator it) const399 VCMSessionInfo::PacketIterator VCMSessionInfo::FindPartitionEnd(
400     PacketIterator it) const {
401   assert((*it).codec() == kVideoCodecVP8);
402   PacketIterator prev_it = it;
403   const int partition_id =
404       absl::get<RTPVideoHeaderVP8>((*it).video_header.video_type_header)
405           .partitionId;
406   while (it != packets_.end()) {
407     bool beginning =
408         absl::get<RTPVideoHeaderVP8>((*it).video_header.video_type_header)
409             .beginningOfPartition;
410     int current_partition_id =
411         absl::get<RTPVideoHeaderVP8>((*it).video_header.video_type_header)
412             .partitionId;
413     bool packet_loss_found = (!beginning && !InSequence(it, prev_it));
414     if (packet_loss_found ||
415         (beginning && current_partition_id != partition_id)) {
416       // Missing packet, the previous packet was the last in sequence.
417       return prev_it;
418     }
419     prev_it = it;
420     ++it;
421   }
422   return prev_it;
423 }
424 
InSequence(const PacketIterator & packet_it,const PacketIterator & prev_packet_it)425 bool VCMSessionInfo::InSequence(const PacketIterator& packet_it,
426                                 const PacketIterator& prev_packet_it) {
427   // If the two iterators are pointing to the same packet they are considered
428   // to be in sequence.
429   return (packet_it == prev_packet_it ||
430           (static_cast<uint16_t>((*prev_packet_it).seqNum + 1) ==
431            (*packet_it).seqNum));
432 }
433 
MakeDecodable()434 size_t VCMSessionInfo::MakeDecodable() {
435   size_t return_length = 0;
436   if (packets_.empty()) {
437     return 0;
438   }
439   PacketIterator it = packets_.begin();
440   // Make sure we remove the first NAL unit if it's not decodable.
441   if ((*it).completeNALU == kNaluIncomplete || (*it).completeNALU == kNaluEnd) {
442     PacketIterator nalu_end = FindNaluEnd(it);
443     return_length += DeletePacketData(it, nalu_end);
444     it = nalu_end;
445   }
446   PacketIterator prev_it = it;
447   // Take care of the rest of the NAL units.
448   for (; it != packets_.end(); ++it) {
449     bool start_of_nalu = ((*it).completeNALU == kNaluStart ||
450                           (*it).completeNALU == kNaluComplete);
451     if (!start_of_nalu && !InSequence(it, prev_it)) {
452       // Found a sequence number gap due to packet loss.
453       PacketIterator nalu_end = FindNaluEnd(it);
454       return_length += DeletePacketData(it, nalu_end);
455       it = nalu_end;
456     }
457     prev_it = it;
458   }
459   return return_length;
460 }
461 
HaveFirstPacket() const462 bool VCMSessionInfo::HaveFirstPacket() const {
463   return !packets_.empty() && (first_packet_seq_num_ != -1);
464 }
465 
HaveLastPacket() const466 bool VCMSessionInfo::HaveLastPacket() const {
467   return !packets_.empty() && (last_packet_seq_num_ != -1);
468 }
469 
InsertPacket(const VCMPacket & packet,uint8_t * frame_buffer,const FrameData & frame_data)470 int VCMSessionInfo::InsertPacket(const VCMPacket& packet,
471                                  uint8_t* frame_buffer,
472                                  const FrameData& frame_data) {
473   if (packet.video_header.frame_type == VideoFrameType::kEmptyFrame) {
474     // Update sequence number of an empty packet.
475     // Only media packets are inserted into the packet list.
476     InformOfEmptyPacket(packet.seqNum);
477     return 0;
478   }
479 
480   if (packets_.size() == kMaxPacketsInSession) {
481     RTC_LOG(LS_ERROR) << "Max number of packets per frame has been reached.";
482     return -1;
483   }
484 
485   // Find the position of this packet in the packet list in sequence number
486   // order and insert it. Loop over the list in reverse order.
487   ReversePacketIterator rit = packets_.rbegin();
488   for (; rit != packets_.rend(); ++rit)
489     if (LatestSequenceNumber(packet.seqNum, (*rit).seqNum) == packet.seqNum)
490       break;
491 
492   // Check for duplicate packets.
493   if (rit != packets_.rend() && (*rit).seqNum == packet.seqNum &&
494       (*rit).sizeBytes > 0)
495     return -2;
496 
497   if (packet.codec() == kVideoCodecH264) {
498     frame_type_ = packet.video_header.frame_type;
499     if (packet.is_first_packet_in_frame() &&
500         (first_packet_seq_num_ == -1 ||
501          IsNewerSequenceNumber(first_packet_seq_num_, packet.seqNum))) {
502       first_packet_seq_num_ = packet.seqNum;
503     }
504     if (packet.markerBit &&
505         (last_packet_seq_num_ == -1 ||
506          IsNewerSequenceNumber(packet.seqNum, last_packet_seq_num_))) {
507       last_packet_seq_num_ = packet.seqNum;
508     }
509 #ifndef DISABLE_H265
510   } else if (packet.codec() == kVideoCodecH265) {
511     frame_type_ = packet.video_header.frame_type;
512     if (packet.is_first_packet_in_frame() &&
513         (first_packet_seq_num_ == -1 ||
514          IsNewerSequenceNumber(first_packet_seq_num_, packet.seqNum))) {
515       first_packet_seq_num_ = packet.seqNum;
516     }
517     if (packet.markerBit &&
518         (last_packet_seq_num_ == -1 ||
519          IsNewerSequenceNumber(packet.seqNum, last_packet_seq_num_))) {
520       last_packet_seq_num_ = packet.seqNum;
521     }
522 #else
523   } else {
524 #endif
525     // Only insert media packets between first and last packets (when
526     // available).
527     // Placing check here, as to properly account for duplicate packets.
528     // Check if this is first packet (only valid for some codecs)
529     // Should only be set for one packet per session.
530     if (packet.is_first_packet_in_frame() && first_packet_seq_num_ == -1) {
531       // The first packet in a frame signals the frame type.
532       frame_type_ = packet.video_header.frame_type;
533       // Store the sequence number for the first packet.
534       first_packet_seq_num_ = static_cast<int>(packet.seqNum);
535     } else if (first_packet_seq_num_ != -1 &&
536                IsNewerSequenceNumber(first_packet_seq_num_, packet.seqNum)) {
537       RTC_LOG(LS_WARNING)
538           << "Received packet with a sequence number which is out "
539              "of frame boundaries";
540       return -3;
541     } else if (frame_type_ == VideoFrameType::kEmptyFrame &&
542                packet.video_header.frame_type != VideoFrameType::kEmptyFrame) {
543       // Update the frame type with the type of the first media packet.
544       // TODO(mikhal): Can this trigger?
545       frame_type_ = packet.video_header.frame_type;
546     }
547 
548     // Track the marker bit, should only be set for one packet per session.
549     if (packet.markerBit && last_packet_seq_num_ == -1) {
550       last_packet_seq_num_ = static_cast<int>(packet.seqNum);
551     } else if (last_packet_seq_num_ != -1 &&
552                IsNewerSequenceNumber(packet.seqNum, last_packet_seq_num_)) {
553       RTC_LOG(LS_WARNING)
554           << "Received packet with a sequence number which is out "
555              "of frame boundaries";
556       return -3;
557     }
558   }
559 
560   // The insert operation invalidates the iterator |rit|.
561   PacketIterator packet_list_it = packets_.insert(rit.base(), packet);
562 
563   size_t returnLength = InsertBuffer(frame_buffer, packet_list_it);
564   UpdateCompleteSession();
565 
566   return static_cast<int>(returnLength);
567 }
568 
InformOfEmptyPacket(uint16_t seq_num)569 void VCMSessionInfo::InformOfEmptyPacket(uint16_t seq_num) {
570   // Empty packets may be FEC or filler packets. They are sequential and
571   // follow the data packets, therefore, we should only keep track of the high
572   // and low sequence numbers and may assume that the packets in between are
573   // empty packets belonging to the same frame (timestamp).
574   if (empty_seq_num_high_ == -1)
575     empty_seq_num_high_ = seq_num;
576   else
577     empty_seq_num_high_ = LatestSequenceNumber(seq_num, empty_seq_num_high_);
578   if (empty_seq_num_low_ == -1 ||
579       IsNewerSequenceNumber(empty_seq_num_low_, seq_num))
580     empty_seq_num_low_ = seq_num;
581 }
582 
583 }  // namespace webrtc
584