1 /*
2  *  Copyright 2004 The WebRTC Project Authors. All rights reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include "p2p/client/basic_port_allocator.h"
12 
13 #include <algorithm>
14 #include <functional>
15 #include <set>
16 #include <string>
17 #include <utility>
18 #include <vector>
19 
20 #include "absl/algorithm/container.h"
21 #include "p2p/base/basic_packet_socket_factory.h"
22 #include "p2p/base/port.h"
23 #include "p2p/base/stun_port.h"
24 #include "p2p/base/tcp_port.h"
25 #include "p2p/base/turn_port.h"
26 #include "p2p/base/udp_port.h"
27 #include "rtc_base/checks.h"
28 #include "rtc_base/helpers.h"
29 #include "rtc_base/logging.h"
30 #include "system_wrappers/include/field_trial.h"
31 #include "system_wrappers/include/metrics.h"
32 
33 using rtc::CreateRandomId;
34 
35 namespace cricket {
36 namespace {
37 
38 enum {
39   MSG_CONFIG_START,
40   MSG_CONFIG_READY,
41   MSG_ALLOCATE,
42   MSG_ALLOCATION_PHASE,
43   MSG_SEQUENCEOBJECTS_CREATED,
44   MSG_CONFIG_STOP,
45 };
46 
47 const int PHASE_UDP = 0;
48 const int PHASE_RELAY = 1;
49 const int PHASE_TCP = 2;
50 
51 const int kNumPhases = 3;
52 
53 // Gets protocol priority: UDP > TCP > SSLTCP == TLS.
GetProtocolPriority(cricket::ProtocolType protocol)54 int GetProtocolPriority(cricket::ProtocolType protocol) {
55   switch (protocol) {
56     case cricket::PROTO_UDP:
57       return 2;
58     case cricket::PROTO_TCP:
59       return 1;
60     case cricket::PROTO_SSLTCP:
61     case cricket::PROTO_TLS:
62       return 0;
63     default:
64       RTC_NOTREACHED();
65       return 0;
66   }
67 }
68 // Gets address family priority:  IPv6 > IPv4 > Unspecified.
GetAddressFamilyPriority(int ip_family)69 int GetAddressFamilyPriority(int ip_family) {
70   switch (ip_family) {
71     case AF_INET6:
72       return 2;
73     case AF_INET:
74       return 1;
75     default:
76       RTC_NOTREACHED();
77       return 0;
78   }
79 }
80 
81 // Returns positive if a is better, negative if b is better, and 0 otherwise.
ComparePort(const cricket::Port * a,const cricket::Port * b)82 int ComparePort(const cricket::Port* a, const cricket::Port* b) {
83   int a_protocol = GetProtocolPriority(a->GetProtocol());
84   int b_protocol = GetProtocolPriority(b->GetProtocol());
85   int cmp_protocol = a_protocol - b_protocol;
86   if (cmp_protocol != 0) {
87     return cmp_protocol;
88   }
89 
90   int a_family = GetAddressFamilyPriority(a->Network()->GetBestIP().family());
91   int b_family = GetAddressFamilyPriority(b->Network()->GetBestIP().family());
92   return a_family - b_family;
93 }
94 
95 struct NetworkFilter {
96   using Predicate = std::function<bool(rtc::Network*)>;
NetworkFiltercricket::__anon544c0a2e0111::NetworkFilter97   NetworkFilter(Predicate pred, const std::string& description)
98       : predRemain([pred](rtc::Network* network) { return !pred(network); }),
99         description(description) {}
100   Predicate predRemain;
101   const std::string description;
102 };
103 
104 using NetworkList = rtc::NetworkManager::NetworkList;
FilterNetworks(NetworkList * networks,NetworkFilter filter)105 void FilterNetworks(NetworkList* networks, NetworkFilter filter) {
106   auto start_to_remove =
107       std::partition(networks->begin(), networks->end(), filter.predRemain);
108   if (start_to_remove == networks->end()) {
109     return;
110   }
111   RTC_LOG(INFO) << "Filtered out " << filter.description << " networks:";
112   for (auto it = start_to_remove; it != networks->end(); ++it) {
113     RTC_LOG(INFO) << (*it)->ToString();
114   }
115   networks->erase(start_to_remove, networks->end());
116 }
117 
IsAllowedByCandidateFilter(const Candidate & c,uint32_t filter)118 bool IsAllowedByCandidateFilter(const Candidate& c, uint32_t filter) {
119   // When binding to any address, before sending packets out, the getsockname
120   // returns all 0s, but after sending packets, it'll be the NIC used to
121   // send. All 0s is not a valid ICE candidate address and should be filtered
122   // out.
123   if (c.address().IsAnyIP()) {
124     return false;
125   }
126 
127   if (c.type() == RELAY_PORT_TYPE) {
128     return ((filter & CF_RELAY) != 0);
129   } else if (c.type() == STUN_PORT_TYPE) {
130     return ((filter & CF_REFLEXIVE) != 0);
131   } else if (c.type() == LOCAL_PORT_TYPE) {
132     if ((filter & CF_REFLEXIVE) && !c.address().IsPrivateIP()) {
133       // We allow host candidates if the filter allows server-reflexive
134       // candidates and the candidate is a public IP. Because we don't generate
135       // server-reflexive candidates if they have the same IP as the host
136       // candidate (i.e. when the host candidate is a public IP), filtering to
137       // only server-reflexive candidates won't work right when the host
138       // candidates have public IPs.
139       return true;
140     }
141 
142     return ((filter & CF_HOST) != 0);
143   }
144   return false;
145 }
146 
147 }  // namespace
148 
149 const uint32_t DISABLE_ALL_PHASES =
150     PORTALLOCATOR_DISABLE_UDP | PORTALLOCATOR_DISABLE_TCP |
151     PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY;
152 
153 // BasicPortAllocator
BasicPortAllocator(rtc::NetworkManager * network_manager,rtc::PacketSocketFactory * socket_factory,webrtc::TurnCustomizer * customizer,RelayPortFactoryInterface * relay_port_factory)154 BasicPortAllocator::BasicPortAllocator(
155     rtc::NetworkManager* network_manager,
156     rtc::PacketSocketFactory* socket_factory,
157     webrtc::TurnCustomizer* customizer,
158     RelayPortFactoryInterface* relay_port_factory)
159     : network_manager_(network_manager), socket_factory_(socket_factory) {
160   InitRelayPortFactory(relay_port_factory);
161   RTC_DCHECK(relay_port_factory_ != nullptr);
162   RTC_DCHECK(network_manager_ != nullptr);
163   RTC_DCHECK(socket_factory_ != nullptr);
164   SetConfiguration(ServerAddresses(), std::vector<RelayServerConfig>(), 0,
165                    webrtc::NO_PRUNE, customizer);
166 }
167 
BasicPortAllocator(rtc::NetworkManager * network_manager)168 BasicPortAllocator::BasicPortAllocator(rtc::NetworkManager* network_manager)
169     : network_manager_(network_manager), socket_factory_(nullptr) {
170   InitRelayPortFactory(nullptr);
171   RTC_DCHECK(relay_port_factory_ != nullptr);
172   RTC_DCHECK(network_manager_ != nullptr);
173 }
174 
BasicPortAllocator(rtc::NetworkManager * network_manager,const ServerAddresses & stun_servers)175 BasicPortAllocator::BasicPortAllocator(rtc::NetworkManager* network_manager,
176                                        const ServerAddresses& stun_servers)
177     : BasicPortAllocator(network_manager,
178                          /*socket_factory=*/nullptr,
179                          stun_servers) {}
180 
BasicPortAllocator(rtc::NetworkManager * network_manager,rtc::PacketSocketFactory * socket_factory,const ServerAddresses & stun_servers)181 BasicPortAllocator::BasicPortAllocator(rtc::NetworkManager* network_manager,
182                                        rtc::PacketSocketFactory* socket_factory,
183                                        const ServerAddresses& stun_servers)
184     : network_manager_(network_manager), socket_factory_(socket_factory) {
185   InitRelayPortFactory(nullptr);
186   RTC_DCHECK(relay_port_factory_ != nullptr);
187   SetConfiguration(stun_servers, std::vector<RelayServerConfig>(), 0,
188                    webrtc::NO_PRUNE, nullptr);
189 }
190 
OnIceRegathering(PortAllocatorSession * session,IceRegatheringReason reason)191 void BasicPortAllocator::OnIceRegathering(PortAllocatorSession* session,
192                                           IceRegatheringReason reason) {
193   // If the session has not been taken by an active channel, do not report the
194   // metric.
195   for (auto& allocator_session : pooled_sessions()) {
196     if (allocator_session.get() == session) {
197       return;
198     }
199   }
200 
201   RTC_HISTOGRAM_ENUMERATION("WebRTC.PeerConnection.IceRegatheringReason",
202                             static_cast<int>(reason),
203                             static_cast<int>(IceRegatheringReason::MAX_VALUE));
204 }
205 
~BasicPortAllocator()206 BasicPortAllocator::~BasicPortAllocator() {
207   CheckRunOnValidThreadIfInitialized();
208   // Our created port allocator sessions depend on us, so destroy our remaining
209   // pooled sessions before anything else.
210   DiscardCandidatePool();
211 }
212 
SetNetworkIgnoreMask(int network_ignore_mask)213 void BasicPortAllocator::SetNetworkIgnoreMask(int network_ignore_mask) {
214   // TODO(phoglund): implement support for other types than loopback.
215   // See https://code.google.com/p/webrtc/issues/detail?id=4288.
216   // Then remove set_network_ignore_list from NetworkManager.
217   CheckRunOnValidThreadIfInitialized();
218   network_ignore_mask_ = network_ignore_mask;
219 }
220 
CreateSessionInternal(const std::string & content_name,int component,const std::string & ice_ufrag,const std::string & ice_pwd)221 PortAllocatorSession* BasicPortAllocator::CreateSessionInternal(
222     const std::string& content_name,
223     int component,
224     const std::string& ice_ufrag,
225     const std::string& ice_pwd) {
226   CheckRunOnValidThreadAndInitialized();
227   PortAllocatorSession* session = new BasicPortAllocatorSession(
228       this, content_name, component, ice_ufrag, ice_pwd);
229   session->SignalIceRegathering.connect(this,
230                                         &BasicPortAllocator::OnIceRegathering);
231   return session;
232 }
233 
AddTurnServer(const RelayServerConfig & turn_server)234 void BasicPortAllocator::AddTurnServer(const RelayServerConfig& turn_server) {
235   CheckRunOnValidThreadAndInitialized();
236   std::vector<RelayServerConfig> new_turn_servers = turn_servers();
237   new_turn_servers.push_back(turn_server);
238   SetConfiguration(stun_servers(), new_turn_servers, candidate_pool_size(),
239                    turn_port_prune_policy(), turn_customizer());
240 }
241 
InitRelayPortFactory(RelayPortFactoryInterface * relay_port_factory)242 void BasicPortAllocator::InitRelayPortFactory(
243     RelayPortFactoryInterface* relay_port_factory) {
244   if (relay_port_factory != nullptr) {
245     relay_port_factory_ = relay_port_factory;
246   } else {
247     default_relay_port_factory_.reset(new TurnPortFactory());
248     relay_port_factory_ = default_relay_port_factory_.get();
249   }
250 }
251 
252 // BasicPortAllocatorSession
BasicPortAllocatorSession(BasicPortAllocator * allocator,const std::string & content_name,int component,const std::string & ice_ufrag,const std::string & ice_pwd)253 BasicPortAllocatorSession::BasicPortAllocatorSession(
254     BasicPortAllocator* allocator,
255     const std::string& content_name,
256     int component,
257     const std::string& ice_ufrag,
258     const std::string& ice_pwd)
259     : PortAllocatorSession(content_name,
260                            component,
261                            ice_ufrag,
262                            ice_pwd,
263                            allocator->flags()),
264       allocator_(allocator),
265       network_thread_(rtc::Thread::Current()),
266       socket_factory_(allocator->socket_factory()),
267       allocation_started_(false),
268       network_manager_started_(false),
269       allocation_sequences_created_(false),
270       turn_port_prune_policy_(allocator->turn_port_prune_policy()) {
271   allocator_->network_manager()->SignalNetworksChanged.connect(
272       this, &BasicPortAllocatorSession::OnNetworksChanged);
273   allocator_->network_manager()->StartUpdating();
274 }
275 
~BasicPortAllocatorSession()276 BasicPortAllocatorSession::~BasicPortAllocatorSession() {
277   RTC_DCHECK_RUN_ON(network_thread_);
278   allocator_->network_manager()->StopUpdating();
279   if (network_thread_ != NULL)
280     network_thread_->Clear(this);
281 
282   for (uint32_t i = 0; i < sequences_.size(); ++i) {
283     // AllocationSequence should clear it's map entry for turn ports before
284     // ports are destroyed.
285     sequences_[i]->Clear();
286   }
287 
288   std::vector<PortData>::iterator it;
289   for (it = ports_.begin(); it != ports_.end(); it++)
290     delete it->port();
291 
292   for (uint32_t i = 0; i < configs_.size(); ++i)
293     delete configs_[i];
294 
295   for (uint32_t i = 0; i < sequences_.size(); ++i)
296     delete sequences_[i];
297 }
298 
allocator()299 BasicPortAllocator* BasicPortAllocatorSession::allocator() {
300   RTC_DCHECK_RUN_ON(network_thread_);
301   return allocator_;
302 }
303 
SetCandidateFilter(uint32_t filter)304 void BasicPortAllocatorSession::SetCandidateFilter(uint32_t filter) {
305   RTC_DCHECK_RUN_ON(network_thread_);
306   if (filter == candidate_filter_) {
307     return;
308   }
309   uint32_t prev_filter = candidate_filter_;
310   candidate_filter_ = filter;
311   for (PortData& port_data : ports_) {
312     if (port_data.error() || port_data.pruned()) {
313       continue;
314     }
315     PortData::State cur_state = port_data.state();
316     bool found_signalable_candidate = false;
317     bool found_pairable_candidate = false;
318     cricket::Port* port = port_data.port();
319     for (const auto& c : port->Candidates()) {
320       if (!IsStopped() && !IsAllowedByCandidateFilter(c, prev_filter) &&
321           IsAllowedByCandidateFilter(c, filter)) {
322         // This candidate was not signaled because of not matching the previous
323         // filter (see OnCandidateReady below). Let the Port to fire the signal
324         // again.
325         //
326         // Note that
327         //  1) we would need the Port to enter the state of in-progress of
328         //     gathering to have candidates signaled;
329         //
330         //  2) firing the signal would also let the session set the port ready
331         //     if needed, so that we could form candidate pairs with candidates
332         //     from this port;
333         //
334         //  *  See again OnCandidateReady below for 1) and 2).
335         //
336         //  3) we only try to resurface candidates if we have not stopped
337         //     getting ports, which is always true for the continual gathering.
338         if (!found_signalable_candidate) {
339           found_signalable_candidate = true;
340           port_data.set_state(PortData::STATE_INPROGRESS);
341         }
342         port->SignalCandidateReady(port, c);
343       }
344 
345       if (CandidatePairable(c, port)) {
346         found_pairable_candidate = true;
347       }
348     }
349     // Restore the previous state.
350     port_data.set_state(cur_state);
351     // Setting a filter may cause a ready port to become non-ready
352     // if it no longer has any pairable candidates.
353     //
354     // Note that we only set for the negative case here, since a port would be
355     // set to have pairable candidates when it signals a ready candidate, which
356     // requires the port is still in the progress of gathering/surfacing
357     // candidates, and would be done in the firing of the signal above.
358     if (!found_pairable_candidate) {
359       port_data.set_has_pairable_candidate(false);
360     }
361   }
362 }
363 
StartGettingPorts()364 void BasicPortAllocatorSession::StartGettingPorts() {
365   RTC_DCHECK_RUN_ON(network_thread_);
366   state_ = SessionState::GATHERING;
367   if (!socket_factory_) {
368     owned_socket_factory_.reset(
369         new rtc::BasicPacketSocketFactory(network_thread_));
370     socket_factory_ = owned_socket_factory_.get();
371   }
372 
373   network_thread_->Post(RTC_FROM_HERE, this, MSG_CONFIG_START);
374 
375   RTC_LOG(LS_INFO) << "Start getting ports with turn_port_prune_policy "
376                    << turn_port_prune_policy_;
377 }
378 
StopGettingPorts()379 void BasicPortAllocatorSession::StopGettingPorts() {
380   RTC_DCHECK_RUN_ON(network_thread_);
381   ClearGettingPorts();
382   // Note: this must be called after ClearGettingPorts because both may set the
383   // session state and we should set the state to STOPPED.
384   state_ = SessionState::STOPPED;
385 }
386 
ClearGettingPorts()387 void BasicPortAllocatorSession::ClearGettingPorts() {
388   RTC_DCHECK_RUN_ON(network_thread_);
389   network_thread_->Clear(this, MSG_ALLOCATE);
390   for (uint32_t i = 0; i < sequences_.size(); ++i) {
391     sequences_[i]->Stop();
392   }
393   network_thread_->Post(RTC_FROM_HERE, this, MSG_CONFIG_STOP);
394   state_ = SessionState::CLEARED;
395 }
396 
IsGettingPorts()397 bool BasicPortAllocatorSession::IsGettingPorts() {
398   RTC_DCHECK_RUN_ON(network_thread_);
399   return state_ == SessionState::GATHERING;
400 }
401 
IsCleared() const402 bool BasicPortAllocatorSession::IsCleared() const {
403   RTC_DCHECK_RUN_ON(network_thread_);
404   return state_ == SessionState::CLEARED;
405 }
406 
IsStopped() const407 bool BasicPortAllocatorSession::IsStopped() const {
408   RTC_DCHECK_RUN_ON(network_thread_);
409   return state_ == SessionState::STOPPED;
410 }
411 
GetFailedNetworks()412 std::vector<rtc::Network*> BasicPortAllocatorSession::GetFailedNetworks() {
413   RTC_DCHECK_RUN_ON(network_thread_);
414 
415   std::vector<rtc::Network*> networks = GetNetworks();
416 
417   // A network interface may have both IPv4 and IPv6 networks. Only if
418   // neither of the networks has any connections, the network interface
419   // is considered failed and need to be regathered on.
420   std::set<std::string> networks_with_connection;
421   for (const PortData& data : ports_) {
422     Port* port = data.port();
423     if (!port->connections().empty()) {
424       networks_with_connection.insert(port->Network()->name());
425     }
426   }
427 
428   networks.erase(
429       std::remove_if(networks.begin(), networks.end(),
430                      [networks_with_connection](rtc::Network* network) {
431                        // If a network does not have any connection, it is
432                        // considered failed.
433                        return networks_with_connection.find(network->name()) !=
434                               networks_with_connection.end();
435                      }),
436       networks.end());
437   return networks;
438 }
439 
RegatherOnFailedNetworks()440 void BasicPortAllocatorSession::RegatherOnFailedNetworks() {
441   RTC_DCHECK_RUN_ON(network_thread_);
442 
443   // Find the list of networks that have no connection.
444   std::vector<rtc::Network*> failed_networks = GetFailedNetworks();
445   if (failed_networks.empty()) {
446     return;
447   }
448 
449   RTC_LOG(LS_INFO) << "Regather candidates on failed networks";
450 
451   // Mark a sequence as "network failed" if its network is in the list of failed
452   // networks, so that it won't be considered as equivalent when the session
453   // regathers ports and candidates.
454   for (AllocationSequence* sequence : sequences_) {
455     if (!sequence->network_failed() &&
456         absl::c_linear_search(failed_networks, sequence->network())) {
457       sequence->set_network_failed();
458     }
459   }
460 
461   bool disable_equivalent_phases = true;
462   Regather(failed_networks, disable_equivalent_phases,
463            IceRegatheringReason::NETWORK_FAILURE);
464 }
465 
Regather(const std::vector<rtc::Network * > & networks,bool disable_equivalent_phases,IceRegatheringReason reason)466 void BasicPortAllocatorSession::Regather(
467     const std::vector<rtc::Network*>& networks,
468     bool disable_equivalent_phases,
469     IceRegatheringReason reason) {
470   RTC_DCHECK_RUN_ON(network_thread_);
471   // Remove ports from being used locally and send signaling to remove
472   // the candidates on the remote side.
473   std::vector<PortData*> ports_to_prune = GetUnprunedPorts(networks);
474   if (!ports_to_prune.empty()) {
475     RTC_LOG(LS_INFO) << "Prune " << ports_to_prune.size() << " ports";
476     PrunePortsAndRemoveCandidates(ports_to_prune);
477   }
478 
479   if (allocation_started_ && network_manager_started_ && !IsStopped()) {
480     SignalIceRegathering(this, reason);
481 
482     DoAllocate(disable_equivalent_phases);
483   }
484 }
485 
GetCandidateStatsFromReadyPorts(CandidateStatsList * candidate_stats_list) const486 void BasicPortAllocatorSession::GetCandidateStatsFromReadyPorts(
487     CandidateStatsList* candidate_stats_list) const {
488   auto ports = ReadyPorts();
489   for (auto* port : ports) {
490     auto candidates = port->Candidates();
491     for (const auto& candidate : candidates) {
492       CandidateStats candidate_stats(allocator_->SanitizeCandidate(candidate));
493       port->GetStunStats(&candidate_stats.stun_stats);
494       candidate_stats_list->push_back(std::move(candidate_stats));
495     }
496   }
497 }
498 
SetStunKeepaliveIntervalForReadyPorts(const absl::optional<int> & stun_keepalive_interval)499 void BasicPortAllocatorSession::SetStunKeepaliveIntervalForReadyPorts(
500     const absl::optional<int>& stun_keepalive_interval) {
501   RTC_DCHECK_RUN_ON(network_thread_);
502   auto ports = ReadyPorts();
503   for (PortInterface* port : ports) {
504     // The port type and protocol can be used to identify different subclasses
505     // of Port in the current implementation. Note that a TCPPort has the type
506     // LOCAL_PORT_TYPE but uses the protocol PROTO_TCP.
507     if (port->Type() == STUN_PORT_TYPE ||
508         (port->Type() == LOCAL_PORT_TYPE && port->GetProtocol() == PROTO_UDP)) {
509       static_cast<UDPPort*>(port)->set_stun_keepalive_delay(
510           stun_keepalive_interval);
511     }
512   }
513 }
514 
ReadyPorts() const515 std::vector<PortInterface*> BasicPortAllocatorSession::ReadyPorts() const {
516   RTC_DCHECK_RUN_ON(network_thread_);
517   std::vector<PortInterface*> ret;
518   for (const PortData& data : ports_) {
519     if (data.ready()) {
520       ret.push_back(data.port());
521     }
522   }
523   return ret;
524 }
525 
ReadyCandidates() const526 std::vector<Candidate> BasicPortAllocatorSession::ReadyCandidates() const {
527   RTC_DCHECK_RUN_ON(network_thread_);
528   std::vector<Candidate> candidates;
529   for (const PortData& data : ports_) {
530     if (!data.ready()) {
531       continue;
532     }
533     GetCandidatesFromPort(data, &candidates);
534   }
535   return candidates;
536 }
537 
GetCandidatesFromPort(const PortData & data,std::vector<Candidate> * candidates) const538 void BasicPortAllocatorSession::GetCandidatesFromPort(
539     const PortData& data,
540     std::vector<Candidate>* candidates) const {
541   RTC_DCHECK_RUN_ON(network_thread_);
542   RTC_CHECK(candidates != nullptr);
543   for (const Candidate& candidate : data.port()->Candidates()) {
544     if (!CheckCandidateFilter(candidate)) {
545       continue;
546     }
547     candidates->push_back(allocator_->SanitizeCandidate(candidate));
548   }
549 }
550 
MdnsObfuscationEnabled() const551 bool BasicPortAllocator::MdnsObfuscationEnabled() const {
552   return network_manager()->GetMdnsResponder() != nullptr;
553 }
554 
CandidatesAllocationDone() const555 bool BasicPortAllocatorSession::CandidatesAllocationDone() const {
556   RTC_DCHECK_RUN_ON(network_thread_);
557   // Done only if all required AllocationSequence objects
558   // are created.
559   if (!allocation_sequences_created_) {
560     return false;
561   }
562 
563   // Check that all port allocation sequences are complete (not running).
564   if (absl::c_any_of(sequences_, [](const AllocationSequence* sequence) {
565         return sequence->state() == AllocationSequence::kRunning;
566       })) {
567     return false;
568   }
569 
570   // If all allocated ports are no longer gathering, session must have got all
571   // expected candidates. Session will trigger candidates allocation complete
572   // signal.
573   return absl::c_none_of(
574       ports_, [](const PortData& port) { return port.inprogress(); });
575 }
576 
OnMessage(rtc::Message * message)577 void BasicPortAllocatorSession::OnMessage(rtc::Message* message) {
578   switch (message->message_id) {
579     case MSG_CONFIG_START:
580       GetPortConfigurations();
581       break;
582     case MSG_CONFIG_READY:
583       OnConfigReady(static_cast<PortConfiguration*>(message->pdata));
584       break;
585     case MSG_ALLOCATE:
586       OnAllocate();
587       break;
588     case MSG_SEQUENCEOBJECTS_CREATED:
589       OnAllocationSequenceObjectsCreated();
590       break;
591     case MSG_CONFIG_STOP:
592       OnConfigStop();
593       break;
594     default:
595       RTC_NOTREACHED();
596   }
597 }
598 
UpdateIceParametersInternal()599 void BasicPortAllocatorSession::UpdateIceParametersInternal() {
600   RTC_DCHECK_RUN_ON(network_thread_);
601   for (PortData& port : ports_) {
602     port.port()->set_content_name(content_name());
603     port.port()->SetIceParameters(component(), ice_ufrag(), ice_pwd());
604   }
605 }
606 
GetPortConfigurations()607 void BasicPortAllocatorSession::GetPortConfigurations() {
608   RTC_DCHECK_RUN_ON(network_thread_);
609 
610   PortConfiguration* config =
611       new PortConfiguration(allocator_->stun_servers(), username(), password());
612 
613   for (const RelayServerConfig& turn_server : allocator_->turn_servers()) {
614     config->AddRelay(turn_server);
615   }
616   ConfigReady(config);
617 }
618 
ConfigReady(PortConfiguration * config)619 void BasicPortAllocatorSession::ConfigReady(PortConfiguration* config) {
620   RTC_DCHECK_RUN_ON(network_thread_);
621   network_thread_->Post(RTC_FROM_HERE, this, MSG_CONFIG_READY, config);
622 }
623 
624 // Adds a configuration to the list.
OnConfigReady(PortConfiguration * config)625 void BasicPortAllocatorSession::OnConfigReady(PortConfiguration* config) {
626   RTC_DCHECK_RUN_ON(network_thread_);
627   if (config) {
628     configs_.push_back(config);
629   }
630 
631   AllocatePorts();
632 }
633 
OnConfigStop()634 void BasicPortAllocatorSession::OnConfigStop() {
635   RTC_DCHECK_RUN_ON(network_thread_);
636 
637   // If any of the allocated ports have not completed the candidates allocation,
638   // mark those as error. Since session doesn't need any new candidates
639   // at this stage of the allocation, it's safe to discard any new candidates.
640   bool send_signal = false;
641   for (std::vector<PortData>::iterator it = ports_.begin(); it != ports_.end();
642        ++it) {
643     if (it->inprogress()) {
644       // Updating port state to error, which didn't finish allocating candidates
645       // yet.
646       it->set_state(PortData::STATE_ERROR);
647       send_signal = true;
648     }
649   }
650 
651   // Did we stop any running sequences?
652   for (std::vector<AllocationSequence*>::iterator it = sequences_.begin();
653        it != sequences_.end() && !send_signal; ++it) {
654     if ((*it)->state() == AllocationSequence::kStopped) {
655       send_signal = true;
656     }
657   }
658 
659   // If we stopped anything that was running, send a done signal now.
660   if (send_signal) {
661     MaybeSignalCandidatesAllocationDone();
662   }
663 }
664 
AllocatePorts()665 void BasicPortAllocatorSession::AllocatePorts() {
666   RTC_DCHECK_RUN_ON(network_thread_);
667   network_thread_->Post(RTC_FROM_HERE, this, MSG_ALLOCATE);
668 }
669 
OnAllocate()670 void BasicPortAllocatorSession::OnAllocate() {
671   RTC_DCHECK_RUN_ON(network_thread_);
672 
673   if (network_manager_started_ && !IsStopped()) {
674     bool disable_equivalent_phases = true;
675     DoAllocate(disable_equivalent_phases);
676   }
677 
678   allocation_started_ = true;
679 }
680 
GetNetworks()681 std::vector<rtc::Network*> BasicPortAllocatorSession::GetNetworks() {
682   RTC_DCHECK_RUN_ON(network_thread_);
683   std::vector<rtc::Network*> networks;
684   rtc::NetworkManager* network_manager = allocator_->network_manager();
685   RTC_DCHECK(network_manager != nullptr);
686   // If the network permission state is BLOCKED, we just act as if the flag has
687   // been passed in.
688   if (network_manager->enumeration_permission() ==
689       rtc::NetworkManager::ENUMERATION_BLOCKED) {
690     set_flags(flags() | PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION);
691   }
692   // If the adapter enumeration is disabled, we'll just bind to any address
693   // instead of specific NIC. This is to ensure the same routing for http
694   // traffic by OS is also used here to avoid any local or public IP leakage
695   // during stun process.
696   if (flags() & PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION) {
697     network_manager->GetAnyAddressNetworks(&networks);
698   } else {
699     network_manager->GetNetworks(&networks);
700     // If network enumeration fails, use the ANY address as a fallback, so we
701     // can at least try gathering candidates using the default route chosen by
702     // the OS. Or, if the PORTALLOCATOR_ENABLE_ANY_ADDRESS_PORTS flag is
703     // set, we'll use ANY address candidates either way.
704     if (networks.empty() || flags() & PORTALLOCATOR_ENABLE_ANY_ADDRESS_PORTS) {
705       network_manager->GetAnyAddressNetworks(&networks);
706     }
707   }
708   // Filter out link-local networks if needed.
709   if (flags() & PORTALLOCATOR_DISABLE_LINK_LOCAL_NETWORKS) {
710     NetworkFilter link_local_filter(
711         [](rtc::Network* network) { return IPIsLinkLocal(network->prefix()); },
712         "link-local");
713     FilterNetworks(&networks, link_local_filter);
714   }
715   // Do some more filtering, depending on the network ignore mask and "disable
716   // costly networks" flag.
717   NetworkFilter ignored_filter(
718       [this](rtc::Network* network) {
719         return allocator_->network_ignore_mask() & network->type();
720       },
721       "ignored");
722   FilterNetworks(&networks, ignored_filter);
723   if (flags() & PORTALLOCATOR_DISABLE_COSTLY_NETWORKS) {
724     uint16_t lowest_cost = rtc::kNetworkCostMax;
725     for (rtc::Network* network : networks) {
726       // Don't determine the lowest cost from a link-local network.
727       // On iOS, a device connected to the computer will get a link-local
728       // network for communicating with the computer, however this network can't
729       // be used to connect to a peer outside the network.
730       if (rtc::IPIsLinkLocal(network->GetBestIP())) {
731         continue;
732       }
733       lowest_cost = std::min<uint16_t>(lowest_cost, network->GetCost());
734     }
735     NetworkFilter costly_filter(
736         [lowest_cost](rtc::Network* network) {
737           return network->GetCost() > lowest_cost + rtc::kNetworkCostLow;
738         },
739         "costly");
740     FilterNetworks(&networks, costly_filter);
741   }
742   // Lastly, if we have a limit for the number of IPv6 network interfaces (by
743   // default, it's 5), remove networks to ensure that limit is satisfied.
744   //
745   // TODO(deadbeef): Instead of just taking the first N arbitrary IPv6
746   // networks, we could try to choose a set that's "most likely to work". It's
747   // hard to define what that means though; it's not just "lowest cost".
748   // Alternatively, we could just focus on making our ICE pinging logic smarter
749   // such that this filtering isn't necessary in the first place.
750   int ipv6_networks = 0;
751   for (auto it = networks.begin(); it != networks.end();) {
752     if ((*it)->prefix().family() == AF_INET6) {
753       if (ipv6_networks >= allocator_->max_ipv6_networks()) {
754         it = networks.erase(it);
755         continue;
756       } else {
757         ++ipv6_networks;
758       }
759     }
760     ++it;
761   }
762   return networks;
763 }
764 
765 // For each network, see if we have a sequence that covers it already.  If not,
766 // create a new sequence to create the appropriate ports.
DoAllocate(bool disable_equivalent)767 void BasicPortAllocatorSession::DoAllocate(bool disable_equivalent) {
768   RTC_DCHECK_RUN_ON(network_thread_);
769   bool done_signal_needed = false;
770   std::vector<rtc::Network*> networks = GetNetworks();
771   if (networks.empty()) {
772     RTC_LOG(LS_WARNING)
773         << "Machine has no networks; no ports will be allocated";
774     done_signal_needed = true;
775   } else {
776     RTC_LOG(LS_INFO) << "Allocate ports on " << networks.size() << " networks";
777     PortConfiguration* config = configs_.empty() ? nullptr : configs_.back();
778     for (uint32_t i = 0; i < networks.size(); ++i) {
779       uint32_t sequence_flags = flags();
780       if ((sequence_flags & DISABLE_ALL_PHASES) == DISABLE_ALL_PHASES) {
781         // If all the ports are disabled we should just fire the allocation
782         // done event and return.
783         done_signal_needed = true;
784         break;
785       }
786 
787       if (!config || config->relays.empty()) {
788         // No relay ports specified in this config.
789         sequence_flags |= PORTALLOCATOR_DISABLE_RELAY;
790       }
791 
792       if (!(sequence_flags & PORTALLOCATOR_ENABLE_IPV6) &&
793           networks[i]->GetBestIP().family() == AF_INET6) {
794         // Skip IPv6 networks unless the flag's been set.
795         continue;
796       }
797 
798       if (!(sequence_flags & PORTALLOCATOR_ENABLE_IPV6_ON_WIFI) &&
799           networks[i]->GetBestIP().family() == AF_INET6 &&
800           networks[i]->type() == rtc::ADAPTER_TYPE_WIFI) {
801         // Skip IPv6 Wi-Fi networks unless the flag's been set.
802         continue;
803       }
804 
805       if (disable_equivalent) {
806         // Disable phases that would only create ports equivalent to
807         // ones that we have already made.
808         DisableEquivalentPhases(networks[i], config, &sequence_flags);
809 
810         if ((sequence_flags & DISABLE_ALL_PHASES) == DISABLE_ALL_PHASES) {
811           // New AllocationSequence would have nothing to do, so don't make it.
812           continue;
813         }
814       }
815 
816       AllocationSequence* sequence =
817           new AllocationSequence(this, networks[i], config, sequence_flags);
818       sequence->SignalPortAllocationComplete.connect(
819           this, &BasicPortAllocatorSession::OnPortAllocationComplete);
820       sequence->Init();
821       sequence->Start();
822       sequences_.push_back(sequence);
823       done_signal_needed = true;
824     }
825   }
826   if (done_signal_needed) {
827     network_thread_->Post(RTC_FROM_HERE, this, MSG_SEQUENCEOBJECTS_CREATED);
828   }
829 }
830 
OnNetworksChanged()831 void BasicPortAllocatorSession::OnNetworksChanged() {
832   RTC_DCHECK_RUN_ON(network_thread_);
833   std::vector<rtc::Network*> networks = GetNetworks();
834   std::vector<rtc::Network*> failed_networks;
835   for (AllocationSequence* sequence : sequences_) {
836     // Mark the sequence as "network failed" if its network is not in
837     // |networks|.
838     if (!sequence->network_failed() &&
839         !absl::c_linear_search(networks, sequence->network())) {
840       sequence->OnNetworkFailed();
841       failed_networks.push_back(sequence->network());
842     }
843   }
844   std::vector<PortData*> ports_to_prune = GetUnprunedPorts(failed_networks);
845   if (!ports_to_prune.empty()) {
846     RTC_LOG(LS_INFO) << "Prune " << ports_to_prune.size()
847                      << " ports because their networks were gone";
848     PrunePortsAndRemoveCandidates(ports_to_prune);
849   }
850 
851   if (allocation_started_ && !IsStopped()) {
852     if (network_manager_started_) {
853       // If the network manager has started, it must be regathering.
854       SignalIceRegathering(this, IceRegatheringReason::NETWORK_CHANGE);
855     }
856     bool disable_equivalent_phases = true;
857     DoAllocate(disable_equivalent_phases);
858   }
859 
860   if (!network_manager_started_) {
861     RTC_LOG(LS_INFO) << "Network manager has started";
862     network_manager_started_ = true;
863   }
864 }
865 
DisableEquivalentPhases(rtc::Network * network,PortConfiguration * config,uint32_t * flags)866 void BasicPortAllocatorSession::DisableEquivalentPhases(
867     rtc::Network* network,
868     PortConfiguration* config,
869     uint32_t* flags) {
870   RTC_DCHECK_RUN_ON(network_thread_);
871   for (uint32_t i = 0; i < sequences_.size() &&
872                        (*flags & DISABLE_ALL_PHASES) != DISABLE_ALL_PHASES;
873        ++i) {
874     sequences_[i]->DisableEquivalentPhases(network, config, flags);
875   }
876 }
877 
AddAllocatedPort(Port * port,AllocationSequence * seq,bool prepare_address)878 void BasicPortAllocatorSession::AddAllocatedPort(Port* port,
879                                                  AllocationSequence* seq,
880                                                  bool prepare_address) {
881   RTC_DCHECK_RUN_ON(network_thread_);
882   if (!port)
883     return;
884 
885   RTC_LOG(LS_INFO) << "Adding allocated port for " << content_name();
886   port->set_content_name(content_name());
887   port->set_component(component());
888   port->set_generation(generation());
889   if (allocator_->proxy().type != rtc::PROXY_NONE)
890     port->set_proxy(allocator_->user_agent(), allocator_->proxy());
891   port->set_send_retransmit_count_attribute(
892       (flags() & PORTALLOCATOR_ENABLE_STUN_RETRANSMIT_ATTRIBUTE) != 0);
893 
894   PortData data(port, seq);
895   ports_.push_back(data);
896 
897   port->SignalCandidateReady.connect(
898       this, &BasicPortAllocatorSession::OnCandidateReady);
899   port->SignalCandidateError.connect(
900       this, &BasicPortAllocatorSession::OnCandidateError);
901   port->SignalPortComplete.connect(this,
902                                    &BasicPortAllocatorSession::OnPortComplete);
903   port->SubscribePortDestroyed(
904       [this](PortInterface* port) { OnPortDestroyed(port); });
905 
906   port->SignalPortError.connect(this, &BasicPortAllocatorSession::OnPortError);
907   RTC_LOG(LS_INFO) << port->ToString() << ": Added port to allocator";
908 
909   if (prepare_address)
910     port->PrepareAddress();
911 }
912 
OnAllocationSequenceObjectsCreated()913 void BasicPortAllocatorSession::OnAllocationSequenceObjectsCreated() {
914   RTC_DCHECK_RUN_ON(network_thread_);
915   allocation_sequences_created_ = true;
916   // Send candidate allocation complete signal if we have no sequences.
917   MaybeSignalCandidatesAllocationDone();
918 }
919 
OnCandidateReady(Port * port,const Candidate & c)920 void BasicPortAllocatorSession::OnCandidateReady(Port* port,
921                                                  const Candidate& c) {
922   RTC_DCHECK_RUN_ON(network_thread_);
923   PortData* data = FindPort(port);
924   RTC_DCHECK(data != NULL);
925   RTC_LOG(LS_INFO) << port->ToString()
926                    << ": Gathered candidate: " << c.ToSensitiveString();
927   // Discarding any candidate signal if port allocation status is
928   // already done with gathering.
929   if (!data->inprogress()) {
930     RTC_LOG(LS_WARNING)
931         << "Discarding candidate because port is already done gathering.";
932     return;
933   }
934 
935   // Mark that the port has a pairable candidate, either because we have a
936   // usable candidate from the port, or simply because the port is bound to the
937   // any address and therefore has no host candidate. This will trigger the port
938   // to start creating candidate pairs (connections) and issue connectivity
939   // checks. If port has already been marked as having a pairable candidate,
940   // do nothing here.
941   // Note: We should check whether any candidates may become ready after this
942   // because there we will check whether the candidate is generated by the ready
943   // ports, which may include this port.
944   bool pruned = false;
945   if (CandidatePairable(c, port) && !data->has_pairable_candidate()) {
946     data->set_has_pairable_candidate(true);
947 
948     if (port->Type() == RELAY_PORT_TYPE) {
949       if (turn_port_prune_policy_ == webrtc::KEEP_FIRST_READY) {
950         pruned = PruneNewlyPairableTurnPort(data);
951       } else if (turn_port_prune_policy_ == webrtc::PRUNE_BASED_ON_PRIORITY) {
952         pruned = PruneTurnPorts(port);
953       }
954     }
955 
956     // If the current port is not pruned yet, SignalPortReady.
957     if (!data->pruned()) {
958       RTC_LOG(LS_INFO) << port->ToString() << ": Port ready.";
959       SignalPortReady(this, port);
960       port->KeepAliveUntilPruned();
961     }
962   }
963 
964   if (data->ready() && CheckCandidateFilter(c)) {
965     std::vector<Candidate> candidates;
966     candidates.push_back(allocator_->SanitizeCandidate(c));
967     SignalCandidatesReady(this, candidates);
968   } else {
969     RTC_LOG(LS_INFO) << "Discarding candidate because it doesn't match filter.";
970   }
971 
972   // If we have pruned any port, maybe need to signal port allocation done.
973   if (pruned) {
974     MaybeSignalCandidatesAllocationDone();
975   }
976 }
977 
OnCandidateError(Port * port,const IceCandidateErrorEvent & event)978 void BasicPortAllocatorSession::OnCandidateError(
979     Port* port,
980     const IceCandidateErrorEvent& event) {
981   RTC_DCHECK_RUN_ON(network_thread_);
982   RTC_DCHECK(FindPort(port));
983   if (event.address.empty()) {
984     candidate_error_events_.push_back(event);
985   } else {
986     SignalCandidateError(this, event);
987   }
988 }
989 
GetBestTurnPortForNetwork(const std::string & network_name) const990 Port* BasicPortAllocatorSession::GetBestTurnPortForNetwork(
991     const std::string& network_name) const {
992   RTC_DCHECK_RUN_ON(network_thread_);
993   Port* best_turn_port = nullptr;
994   for (const PortData& data : ports_) {
995     if (data.port()->Network()->name() == network_name &&
996         data.port()->Type() == RELAY_PORT_TYPE && data.ready() &&
997         (!best_turn_port || ComparePort(data.port(), best_turn_port) > 0)) {
998       best_turn_port = data.port();
999     }
1000   }
1001   return best_turn_port;
1002 }
1003 
PruneNewlyPairableTurnPort(PortData * newly_pairable_port_data)1004 bool BasicPortAllocatorSession::PruneNewlyPairableTurnPort(
1005     PortData* newly_pairable_port_data) {
1006   RTC_DCHECK_RUN_ON(network_thread_);
1007   RTC_DCHECK(newly_pairable_port_data->port()->Type() == RELAY_PORT_TYPE);
1008   // If an existing turn port is ready on the same network, prune the newly
1009   // pairable port.
1010   const std::string& network_name =
1011       newly_pairable_port_data->port()->Network()->name();
1012 
1013   for (PortData& data : ports_) {
1014     if (data.port()->Network()->name() == network_name &&
1015         data.port()->Type() == RELAY_PORT_TYPE && data.ready() &&
1016         &data != newly_pairable_port_data) {
1017       RTC_LOG(LS_INFO) << "Port pruned: "
1018                        << newly_pairable_port_data->port()->ToString();
1019       newly_pairable_port_data->Prune();
1020       return true;
1021     }
1022   }
1023   return false;
1024 }
1025 
PruneTurnPorts(Port * newly_pairable_turn_port)1026 bool BasicPortAllocatorSession::PruneTurnPorts(Port* newly_pairable_turn_port) {
1027   RTC_DCHECK_RUN_ON(network_thread_);
1028   // Note: We determine the same network based only on their network names. So
1029   // if an IPv4 address and an IPv6 address have the same network name, they
1030   // are considered the same network here.
1031   const std::string& network_name = newly_pairable_turn_port->Network()->name();
1032   Port* best_turn_port = GetBestTurnPortForNetwork(network_name);
1033   // |port| is already in the list of ports, so the best port cannot be nullptr.
1034   RTC_CHECK(best_turn_port != nullptr);
1035 
1036   bool pruned = false;
1037   std::vector<PortData*> ports_to_prune;
1038   for (PortData& data : ports_) {
1039     if (data.port()->Network()->name() == network_name &&
1040         data.port()->Type() == RELAY_PORT_TYPE && !data.pruned() &&
1041         ComparePort(data.port(), best_turn_port) < 0) {
1042       pruned = true;
1043       if (data.port() != newly_pairable_turn_port) {
1044         // These ports will be pruned in PrunePortsAndRemoveCandidates.
1045         ports_to_prune.push_back(&data);
1046       } else {
1047         data.Prune();
1048       }
1049     }
1050   }
1051 
1052   if (!ports_to_prune.empty()) {
1053     RTC_LOG(LS_INFO) << "Prune " << ports_to_prune.size()
1054                      << " low-priority TURN ports";
1055     PrunePortsAndRemoveCandidates(ports_to_prune);
1056   }
1057   return pruned;
1058 }
1059 
PruneAllPorts()1060 void BasicPortAllocatorSession::PruneAllPorts() {
1061   RTC_DCHECK_RUN_ON(network_thread_);
1062   for (PortData& data : ports_) {
1063     data.Prune();
1064   }
1065 }
1066 
OnPortComplete(Port * port)1067 void BasicPortAllocatorSession::OnPortComplete(Port* port) {
1068   RTC_DCHECK_RUN_ON(network_thread_);
1069   RTC_LOG(LS_INFO) << port->ToString()
1070                    << ": Port completed gathering candidates.";
1071   PortData* data = FindPort(port);
1072   RTC_DCHECK(data != NULL);
1073 
1074   // Ignore any late signals.
1075   if (!data->inprogress()) {
1076     return;
1077   }
1078 
1079   // Moving to COMPLETE state.
1080   data->set_state(PortData::STATE_COMPLETE);
1081   // Send candidate allocation complete signal if this was the last port.
1082   MaybeSignalCandidatesAllocationDone();
1083 }
1084 
OnPortError(Port * port)1085 void BasicPortAllocatorSession::OnPortError(Port* port) {
1086   RTC_DCHECK_RUN_ON(network_thread_);
1087   RTC_LOG(LS_INFO) << port->ToString()
1088                    << ": Port encountered error while gathering candidates.";
1089   PortData* data = FindPort(port);
1090   RTC_DCHECK(data != NULL);
1091   // We might have already given up on this port and stopped it.
1092   if (!data->inprogress()) {
1093     return;
1094   }
1095 
1096   // SignalAddressError is currently sent from StunPort/TurnPort.
1097   // But this signal itself is generic.
1098   data->set_state(PortData::STATE_ERROR);
1099   // Send candidate allocation complete signal if this was the last port.
1100   MaybeSignalCandidatesAllocationDone();
1101 }
1102 
CheckCandidateFilter(const Candidate & c) const1103 bool BasicPortAllocatorSession::CheckCandidateFilter(const Candidate& c) const {
1104   RTC_DCHECK_RUN_ON(network_thread_);
1105 
1106   return IsAllowedByCandidateFilter(c, candidate_filter_);
1107 }
1108 
CandidatePairable(const Candidate & c,const Port * port) const1109 bool BasicPortAllocatorSession::CandidatePairable(const Candidate& c,
1110                                                   const Port* port) const {
1111   RTC_DCHECK_RUN_ON(network_thread_);
1112 
1113   bool candidate_signalable = CheckCandidateFilter(c);
1114 
1115   // When device enumeration is disabled (to prevent non-default IP addresses
1116   // from leaking), we ping from some local candidates even though we don't
1117   // signal them. However, if host candidates are also disabled (for example, to
1118   // prevent even default IP addresses from leaking), we still don't want to
1119   // ping from them, even if device enumeration is disabled.  Thus, we check for
1120   // both device enumeration and host candidates being disabled.
1121   bool network_enumeration_disabled = c.address().IsAnyIP();
1122   bool can_ping_from_candidate =
1123       (port->SharedSocket() || c.protocol() == TCP_PROTOCOL_NAME);
1124   bool host_candidates_disabled = !(candidate_filter_ & CF_HOST);
1125 
1126   return candidate_signalable ||
1127          (network_enumeration_disabled && can_ping_from_candidate &&
1128           !host_candidates_disabled);
1129 }
1130 
OnPortAllocationComplete(AllocationSequence * seq)1131 void BasicPortAllocatorSession::OnPortAllocationComplete(
1132     AllocationSequence* seq) {
1133   RTC_DCHECK_RUN_ON(network_thread_);
1134   // Send candidate allocation complete signal if all ports are done.
1135   MaybeSignalCandidatesAllocationDone();
1136 }
1137 
MaybeSignalCandidatesAllocationDone()1138 void BasicPortAllocatorSession::MaybeSignalCandidatesAllocationDone() {
1139   RTC_DCHECK_RUN_ON(network_thread_);
1140   if (CandidatesAllocationDone()) {
1141     if (pooled()) {
1142       RTC_LOG(LS_INFO) << "All candidates gathered for pooled session.";
1143     } else {
1144       RTC_LOG(LS_INFO) << "All candidates gathered for " << content_name()
1145                        << ":" << component() << ":" << generation();
1146     }
1147     for (const auto& event : candidate_error_events_) {
1148       SignalCandidateError(this, event);
1149     }
1150     candidate_error_events_.clear();
1151     SignalCandidatesAllocationDone(this);
1152   }
1153 }
1154 
OnPortDestroyed(PortInterface * port)1155 void BasicPortAllocatorSession::OnPortDestroyed(PortInterface* port) {
1156   RTC_DCHECK_RUN_ON(network_thread_);
1157   for (std::vector<PortData>::iterator iter = ports_.begin();
1158        iter != ports_.end(); ++iter) {
1159     if (port == iter->port()) {
1160       ports_.erase(iter);
1161       RTC_LOG(LS_INFO) << port->ToString() << ": Removed port from allocator ("
1162                        << static_cast<int>(ports_.size()) << " remaining)";
1163       return;
1164     }
1165   }
1166   RTC_NOTREACHED();
1167 }
1168 
FindPort(Port * port)1169 BasicPortAllocatorSession::PortData* BasicPortAllocatorSession::FindPort(
1170     Port* port) {
1171   RTC_DCHECK_RUN_ON(network_thread_);
1172   for (std::vector<PortData>::iterator it = ports_.begin(); it != ports_.end();
1173        ++it) {
1174     if (it->port() == port) {
1175       return &*it;
1176     }
1177   }
1178   return NULL;
1179 }
1180 
1181 std::vector<BasicPortAllocatorSession::PortData*>
GetUnprunedPorts(const std::vector<rtc::Network * > & networks)1182 BasicPortAllocatorSession::GetUnprunedPorts(
1183     const std::vector<rtc::Network*>& networks) {
1184   RTC_DCHECK_RUN_ON(network_thread_);
1185   std::vector<PortData*> unpruned_ports;
1186   for (PortData& port : ports_) {
1187     if (!port.pruned() &&
1188         absl::c_linear_search(networks, port.sequence()->network())) {
1189       unpruned_ports.push_back(&port);
1190     }
1191   }
1192   return unpruned_ports;
1193 }
1194 
PrunePortsAndRemoveCandidates(const std::vector<PortData * > & port_data_list)1195 void BasicPortAllocatorSession::PrunePortsAndRemoveCandidates(
1196     const std::vector<PortData*>& port_data_list) {
1197   RTC_DCHECK_RUN_ON(network_thread_);
1198   std::vector<PortInterface*> pruned_ports;
1199   std::vector<Candidate> removed_candidates;
1200   for (PortData* data : port_data_list) {
1201     // Prune the port so that it may be destroyed.
1202     data->Prune();
1203     pruned_ports.push_back(data->port());
1204     if (data->has_pairable_candidate()) {
1205       GetCandidatesFromPort(*data, &removed_candidates);
1206       // Mark the port as having no pairable candidates so that its candidates
1207       // won't be removed multiple times.
1208       data->set_has_pairable_candidate(false);
1209     }
1210   }
1211   if (!pruned_ports.empty()) {
1212     SignalPortsPruned(this, pruned_ports);
1213   }
1214   if (!removed_candidates.empty()) {
1215     RTC_LOG(LS_INFO) << "Removed " << removed_candidates.size()
1216                      << " candidates";
1217     SignalCandidatesRemoved(this, removed_candidates);
1218   }
1219 }
1220 
1221 // AllocationSequence
1222 
AllocationSequence(BasicPortAllocatorSession * session,rtc::Network * network,PortConfiguration * config,uint32_t flags)1223 AllocationSequence::AllocationSequence(BasicPortAllocatorSession* session,
1224                                        rtc::Network* network,
1225                                        PortConfiguration* config,
1226                                        uint32_t flags)
1227     : session_(session),
1228       network_(network),
1229       config_(config),
1230       state_(kInit),
1231       flags_(flags),
1232       udp_socket_(),
1233       udp_port_(NULL),
1234       phase_(0) {}
1235 
Init()1236 void AllocationSequence::Init() {
1237   if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET)) {
1238     udp_socket_.reset(session_->socket_factory()->CreateUdpSocket(
1239         rtc::SocketAddress(network_->GetBestIP(), 0),
1240         session_->allocator()->min_port(), session_->allocator()->max_port()));
1241     if (udp_socket_) {
1242       udp_socket_->SignalReadPacket.connect(this,
1243                                             &AllocationSequence::OnReadPacket);
1244     }
1245     // Continuing if |udp_socket_| is NULL, as local TCP and RelayPort using TCP
1246     // are next available options to setup a communication channel.
1247   }
1248 }
1249 
Clear()1250 void AllocationSequence::Clear() {
1251   udp_port_ = NULL;
1252   relay_ports_.clear();
1253 }
1254 
OnNetworkFailed()1255 void AllocationSequence::OnNetworkFailed() {
1256   RTC_DCHECK(!network_failed_);
1257   network_failed_ = true;
1258   // Stop the allocation sequence if its network failed.
1259   Stop();
1260 }
1261 
~AllocationSequence()1262 AllocationSequence::~AllocationSequence() {
1263   session_->network_thread()->Clear(this);
1264 }
1265 
DisableEquivalentPhases(rtc::Network * network,PortConfiguration * config,uint32_t * flags)1266 void AllocationSequence::DisableEquivalentPhases(rtc::Network* network,
1267                                                  PortConfiguration* config,
1268                                                  uint32_t* flags) {
1269   if (network_failed_) {
1270     // If the network of this allocation sequence has ever become failed,
1271     // it won't be equivalent to the new network.
1272     return;
1273   }
1274 
1275   if (!((network == network_) && (previous_best_ip_ == network->GetBestIP()))) {
1276     // Different network setup; nothing is equivalent.
1277     return;
1278   }
1279 
1280   // Else turn off the stuff that we've already got covered.
1281 
1282   // Every config implicitly specifies local, so turn that off right away if we
1283   // already have a port of the corresponding type. Look for a port that
1284   // matches this AllocationSequence's network, is the right protocol, and
1285   // hasn't encountered an error.
1286   // TODO(deadbeef): This doesn't take into account that there may be another
1287   // AllocationSequence that's ABOUT to allocate a UDP port, but hasn't yet.
1288   // This can happen if, say, there's a network change event right before an
1289   // application-triggered ICE restart. Hopefully this problem will just go
1290   // away if we get rid of the gathering "phases" though, which is planned.
1291   //
1292   //
1293   // PORTALLOCATOR_DISABLE_UDP is used to disable a Port from gathering the host
1294   // candidate (and srflx candidate if Port::SharedSocket()), and we do not want
1295   // to disable the gathering of these candidates just becaue of an existing
1296   // Port over PROTO_UDP, namely a TurnPort over UDP.
1297   if (absl::c_any_of(session_->ports_,
1298                      [this](const BasicPortAllocatorSession::PortData& p) {
1299                        return !p.pruned() && p.port()->Network() == network_ &&
1300                               p.port()->GetProtocol() == PROTO_UDP &&
1301                               p.port()->Type() == LOCAL_PORT_TYPE && !p.error();
1302                      })) {
1303     *flags |= PORTALLOCATOR_DISABLE_UDP;
1304   }
1305   // Similarly we need to check both the protocol used by an existing Port and
1306   // its type.
1307   if (absl::c_any_of(session_->ports_,
1308                      [this](const BasicPortAllocatorSession::PortData& p) {
1309                        return !p.pruned() && p.port()->Network() == network_ &&
1310                               p.port()->GetProtocol() == PROTO_TCP &&
1311                               p.port()->Type() == LOCAL_PORT_TYPE && !p.error();
1312                      })) {
1313     *flags |= PORTALLOCATOR_DISABLE_TCP;
1314   }
1315 
1316   if (config_ && config) {
1317     // We need to regather srflx candidates if either of the following
1318     // conditions occurs:
1319     //  1. The STUN servers are different from the previous gathering.
1320     //  2. We will regather host candidates, hence possibly inducing new NAT
1321     //     bindings.
1322     if (config_->StunServers() == config->StunServers() &&
1323         (*flags & PORTALLOCATOR_DISABLE_UDP)) {
1324       // Already got this STUN servers covered.
1325       *flags |= PORTALLOCATOR_DISABLE_STUN;
1326     }
1327     if (!config_->relays.empty()) {
1328       // Already got relays covered.
1329       // NOTE: This will even skip a _different_ set of relay servers if we
1330       // were to be given one, but that never happens in our codebase. Should
1331       // probably get rid of the list in PortConfiguration and just keep a
1332       // single relay server in each one.
1333       *flags |= PORTALLOCATOR_DISABLE_RELAY;
1334     }
1335   }
1336 }
1337 
Start()1338 void AllocationSequence::Start() {
1339   state_ = kRunning;
1340   session_->network_thread()->Post(RTC_FROM_HERE, this, MSG_ALLOCATION_PHASE);
1341   // Take a snapshot of the best IP, so that when DisableEquivalentPhases is
1342   // called next time, we enable all phases if the best IP has since changed.
1343   previous_best_ip_ = network_->GetBestIP();
1344 }
1345 
Stop()1346 void AllocationSequence::Stop() {
1347   // If the port is completed, don't set it to stopped.
1348   if (state_ == kRunning) {
1349     state_ = kStopped;
1350     session_->network_thread()->Clear(this, MSG_ALLOCATION_PHASE);
1351   }
1352 }
1353 
OnMessage(rtc::Message * msg)1354 void AllocationSequence::OnMessage(rtc::Message* msg) {
1355   RTC_DCHECK(rtc::Thread::Current() == session_->network_thread());
1356   RTC_DCHECK(msg->message_id == MSG_ALLOCATION_PHASE);
1357 
1358   const char* const PHASE_NAMES[kNumPhases] = {"Udp", "Relay", "Tcp"};
1359 
1360   // Perform all of the phases in the current step.
1361   RTC_LOG(LS_INFO) << network_->ToString()
1362                    << ": Allocation Phase=" << PHASE_NAMES[phase_];
1363 
1364   switch (phase_) {
1365     case PHASE_UDP:
1366       CreateUDPPorts();
1367       CreateStunPorts();
1368       break;
1369 
1370     case PHASE_RELAY:
1371       CreateRelayPorts();
1372       break;
1373 
1374     case PHASE_TCP:
1375       CreateTCPPorts();
1376       state_ = kCompleted;
1377       break;
1378 
1379     default:
1380       RTC_NOTREACHED();
1381   }
1382 
1383   if (state() == kRunning) {
1384     ++phase_;
1385     session_->network_thread()->PostDelayed(RTC_FROM_HERE,
1386                                             session_->allocator()->step_delay(),
1387                                             this, MSG_ALLOCATION_PHASE);
1388   } else {
1389     // If all phases in AllocationSequence are completed, no allocation
1390     // steps needed further. Canceling  pending signal.
1391     session_->network_thread()->Clear(this, MSG_ALLOCATION_PHASE);
1392     SignalPortAllocationComplete(this);
1393   }
1394 }
1395 
CreateUDPPorts()1396 void AllocationSequence::CreateUDPPorts() {
1397   if (IsFlagSet(PORTALLOCATOR_DISABLE_UDP)) {
1398     RTC_LOG(LS_VERBOSE) << "AllocationSequence: UDP ports disabled, skipping.";
1399     return;
1400   }
1401 
1402   // TODO(mallinath) - Remove UDPPort creating socket after shared socket
1403   // is enabled completely.
1404   std::unique_ptr<UDPPort> port;
1405   bool emit_local_candidate_for_anyaddress =
1406       !IsFlagSet(PORTALLOCATOR_DISABLE_DEFAULT_LOCAL_CANDIDATE);
1407   if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET) && udp_socket_) {
1408     port = UDPPort::Create(
1409         session_->network_thread(), session_->socket_factory(), network_,
1410         udp_socket_.get(), session_->username(), session_->password(),
1411         session_->allocator()->origin(), emit_local_candidate_for_anyaddress,
1412         session_->allocator()->stun_candidate_keepalive_interval());
1413   } else {
1414     port = UDPPort::Create(
1415         session_->network_thread(), session_->socket_factory(), network_,
1416         session_->allocator()->min_port(), session_->allocator()->max_port(),
1417         session_->username(), session_->password(),
1418         session_->allocator()->origin(), emit_local_candidate_for_anyaddress,
1419         session_->allocator()->stun_candidate_keepalive_interval());
1420   }
1421 
1422   if (port) {
1423     // If shared socket is enabled, STUN candidate will be allocated by the
1424     // UDPPort.
1425     if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET)) {
1426       udp_port_ = port.get();
1427       port->SubscribePortDestroyed(
1428           [this](PortInterface* port) { OnPortDestroyed(port); });
1429 
1430       // If STUN is not disabled, setting stun server address to port.
1431       if (!IsFlagSet(PORTALLOCATOR_DISABLE_STUN)) {
1432         if (config_ && !config_->StunServers().empty()) {
1433           RTC_LOG(LS_INFO)
1434               << "AllocationSequence: UDPPort will be handling the "
1435                  "STUN candidate generation.";
1436           port->set_server_addresses(config_->StunServers());
1437         }
1438       }
1439     }
1440 
1441     session_->AddAllocatedPort(port.release(), this, true);
1442   }
1443 }
1444 
CreateTCPPorts()1445 void AllocationSequence::CreateTCPPorts() {
1446   if (IsFlagSet(PORTALLOCATOR_DISABLE_TCP)) {
1447     RTC_LOG(LS_VERBOSE) << "AllocationSequence: TCP ports disabled, skipping.";
1448     return;
1449   }
1450 
1451   std::unique_ptr<Port> port = TCPPort::Create(
1452       session_->network_thread(), session_->socket_factory(), network_,
1453       session_->allocator()->min_port(), session_->allocator()->max_port(),
1454       session_->username(), session_->password(),
1455       session_->allocator()->allow_tcp_listen());
1456   if (port) {
1457     session_->AddAllocatedPort(port.release(), this, true);
1458     // Since TCPPort is not created using shared socket, |port| will not be
1459     // added to the dequeue.
1460   }
1461 }
1462 
CreateStunPorts()1463 void AllocationSequence::CreateStunPorts() {
1464   if (IsFlagSet(PORTALLOCATOR_DISABLE_STUN)) {
1465     RTC_LOG(LS_VERBOSE) << "AllocationSequence: STUN ports disabled, skipping.";
1466     return;
1467   }
1468 
1469   if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET)) {
1470     return;
1471   }
1472 
1473   if (!(config_ && !config_->StunServers().empty())) {
1474     RTC_LOG(LS_WARNING)
1475         << "AllocationSequence: No STUN server configured, skipping.";
1476     return;
1477   }
1478 
1479   std::unique_ptr<StunPort> port = StunPort::Create(
1480       session_->network_thread(), session_->socket_factory(), network_,
1481       session_->allocator()->min_port(), session_->allocator()->max_port(),
1482       session_->username(), session_->password(), config_->StunServers(),
1483       session_->allocator()->origin(),
1484       session_->allocator()->stun_candidate_keepalive_interval());
1485   if (port) {
1486     session_->AddAllocatedPort(port.release(), this, true);
1487     // Since StunPort is not created using shared socket, |port| will not be
1488     // added to the dequeue.
1489   }
1490 }
1491 
CreateRelayPorts()1492 void AllocationSequence::CreateRelayPorts() {
1493   if (IsFlagSet(PORTALLOCATOR_DISABLE_RELAY)) {
1494     RTC_LOG(LS_VERBOSE)
1495         << "AllocationSequence: Relay ports disabled, skipping.";
1496     return;
1497   }
1498 
1499   // If BasicPortAllocatorSession::OnAllocate left relay ports enabled then we
1500   // ought to have a relay list for them here.
1501   RTC_DCHECK(config_);
1502   RTC_DCHECK(!config_->relays.empty());
1503   if (!(config_ && !config_->relays.empty())) {
1504     RTC_LOG(LS_WARNING)
1505         << "AllocationSequence: No relay server configured, skipping.";
1506     return;
1507   }
1508 
1509   for (RelayServerConfig& relay : config_->relays) {
1510     CreateTurnPort(relay);
1511   }
1512 }
1513 
CreateTurnPort(const RelayServerConfig & config)1514 void AllocationSequence::CreateTurnPort(const RelayServerConfig& config) {
1515   PortList::const_iterator relay_port;
1516   for (relay_port = config.ports.begin(); relay_port != config.ports.end();
1517        ++relay_port) {
1518     // Skip UDP connections to relay servers if it's disallowed.
1519     if (IsFlagSet(PORTALLOCATOR_DISABLE_UDP_RELAY) &&
1520         relay_port->proto == PROTO_UDP) {
1521       continue;
1522     }
1523 
1524     // Do not create a port if the server address family is known and does
1525     // not match the local IP address family.
1526     int server_ip_family = relay_port->address.ipaddr().family();
1527     int local_ip_family = network_->GetBestIP().family();
1528     if (server_ip_family != AF_UNSPEC && server_ip_family != local_ip_family) {
1529       RTC_LOG(LS_INFO)
1530           << "Server and local address families are not compatible. "
1531              "Server address: "
1532           << relay_port->address.ipaddr().ToSensitiveString()
1533           << " Local address: " << network_->GetBestIP().ToSensitiveString();
1534       continue;
1535     }
1536 
1537     CreateRelayPortArgs args;
1538     args.network_thread = session_->network_thread();
1539     args.socket_factory = session_->socket_factory();
1540     args.network = network_;
1541     args.username = session_->username();
1542     args.password = session_->password();
1543     args.server_address = &(*relay_port);
1544     args.config = &config;
1545     args.origin = session_->allocator()->origin();
1546     args.turn_customizer = session_->allocator()->turn_customizer();
1547 
1548     std::unique_ptr<cricket::Port> port;
1549     // Shared socket mode must be enabled only for UDP based ports. Hence
1550     // don't pass shared socket for ports which will create TCP sockets.
1551     // TODO(mallinath) - Enable shared socket mode for TURN ports. Disabled
1552     // due to webrtc bug https://code.google.com/p/webrtc/issues/detail?id=3537
1553     if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET) &&
1554         relay_port->proto == PROTO_UDP && udp_socket_) {
1555       port = session_->allocator()->relay_port_factory()->Create(
1556           args, udp_socket_.get());
1557 
1558       if (!port) {
1559         RTC_LOG(LS_WARNING) << "Failed to create relay port with "
1560                             << args.server_address->address.ToSensitiveString();
1561         continue;
1562       }
1563 
1564       relay_ports_.push_back(port.get());
1565       // Listen to the port destroyed signal, to allow AllocationSequence to
1566       // remove the entry from it's map.
1567       port->SubscribePortDestroyed(
1568           [this](PortInterface* port) { OnPortDestroyed(port); });
1569 
1570     } else {
1571       port = session_->allocator()->relay_port_factory()->Create(
1572           args, session_->allocator()->min_port(),
1573           session_->allocator()->max_port());
1574 
1575       if (!port) {
1576         RTC_LOG(LS_WARNING) << "Failed to create relay port with "
1577                             << args.server_address->address.ToSensitiveString();
1578         continue;
1579       }
1580     }
1581     RTC_DCHECK(port != NULL);
1582     session_->AddAllocatedPort(port.release(), this, true);
1583   }
1584 }
1585 
OnReadPacket(rtc::AsyncPacketSocket * socket,const char * data,size_t size,const rtc::SocketAddress & remote_addr,const int64_t & packet_time_us)1586 void AllocationSequence::OnReadPacket(rtc::AsyncPacketSocket* socket,
1587                                       const char* data,
1588                                       size_t size,
1589                                       const rtc::SocketAddress& remote_addr,
1590                                       const int64_t& packet_time_us) {
1591   RTC_DCHECK(socket == udp_socket_.get());
1592 
1593   bool turn_port_found = false;
1594 
1595   // Try to find the TurnPort that matches the remote address. Note that the
1596   // message could be a STUN binding response if the TURN server is also used as
1597   // a STUN server. We don't want to parse every message here to check if it is
1598   // a STUN binding response, so we pass the message to TurnPort regardless of
1599   // the message type. The TurnPort will just ignore the message since it will
1600   // not find any request by transaction ID.
1601   for (auto* port : relay_ports_) {
1602     if (port->CanHandleIncomingPacketsFrom(remote_addr)) {
1603       if (port->HandleIncomingPacket(socket, data, size, remote_addr,
1604                                      packet_time_us)) {
1605         return;
1606       }
1607       turn_port_found = true;
1608     }
1609   }
1610 
1611   if (udp_port_) {
1612     const ServerAddresses& stun_servers = udp_port_->server_addresses();
1613 
1614     // Pass the packet to the UdpPort if there is no matching TurnPort, or if
1615     // the TURN server is also a STUN server.
1616     if (!turn_port_found ||
1617         stun_servers.find(remote_addr) != stun_servers.end()) {
1618       RTC_DCHECK(udp_port_->SharedSocket());
1619       udp_port_->HandleIncomingPacket(socket, data, size, remote_addr,
1620                                       packet_time_us);
1621     }
1622   }
1623 }
1624 
OnPortDestroyed(PortInterface * port)1625 void AllocationSequence::OnPortDestroyed(PortInterface* port) {
1626   if (udp_port_ == port) {
1627     udp_port_ = NULL;
1628     return;
1629   }
1630 
1631   auto it = absl::c_find(relay_ports_, port);
1632   if (it != relay_ports_.end()) {
1633     relay_ports_.erase(it);
1634   } else {
1635     RTC_LOG(LS_ERROR) << "Unexpected OnPortDestroyed for nonexistent port.";
1636     RTC_NOTREACHED();
1637   }
1638 }
1639 
1640 // PortConfiguration
PortConfiguration(const rtc::SocketAddress & stun_address,const std::string & username,const std::string & password)1641 PortConfiguration::PortConfiguration(const rtc::SocketAddress& stun_address,
1642                                      const std::string& username,
1643                                      const std::string& password)
1644     : stun_address(stun_address), username(username), password(password) {
1645   if (!stun_address.IsNil())
1646     stun_servers.insert(stun_address);
1647 }
1648 
PortConfiguration(const ServerAddresses & stun_servers,const std::string & username,const std::string & password)1649 PortConfiguration::PortConfiguration(const ServerAddresses& stun_servers,
1650                                      const std::string& username,
1651                                      const std::string& password)
1652     : stun_servers(stun_servers), username(username), password(password) {
1653   if (!stun_servers.empty())
1654     stun_address = *(stun_servers.begin());
1655   // Note that this won't change once the config is initialized.
1656   use_turn_server_as_stun_server_disabled =
1657       webrtc::field_trial::IsDisabled("WebRTC-UseTurnServerAsStunServer");
1658 }
1659 
1660 PortConfiguration::~PortConfiguration() = default;
1661 
StunServers()1662 ServerAddresses PortConfiguration::StunServers() {
1663   if (!stun_address.IsNil() &&
1664       stun_servers.find(stun_address) == stun_servers.end()) {
1665     stun_servers.insert(stun_address);
1666   }
1667 
1668   if (!stun_servers.empty() && use_turn_server_as_stun_server_disabled) {
1669     return stun_servers;
1670   }
1671 
1672   // Every UDP TURN server should also be used as a STUN server if
1673   // use_turn_server_as_stun_server is not disabled or the stun servers are
1674   // empty.
1675   ServerAddresses turn_servers = GetRelayServerAddresses(PROTO_UDP);
1676   for (const rtc::SocketAddress& turn_server : turn_servers) {
1677     if (stun_servers.find(turn_server) == stun_servers.end()) {
1678       stun_servers.insert(turn_server);
1679     }
1680   }
1681   return stun_servers;
1682 }
1683 
AddRelay(const RelayServerConfig & config)1684 void PortConfiguration::AddRelay(const RelayServerConfig& config) {
1685   relays.push_back(config);
1686 }
1687 
SupportsProtocol(const RelayServerConfig & relay,ProtocolType type) const1688 bool PortConfiguration::SupportsProtocol(const RelayServerConfig& relay,
1689                                          ProtocolType type) const {
1690   PortList::const_iterator relay_port;
1691   for (relay_port = relay.ports.begin(); relay_port != relay.ports.end();
1692        ++relay_port) {
1693     if (relay_port->proto == type)
1694       return true;
1695   }
1696   return false;
1697 }
1698 
SupportsProtocol(ProtocolType type) const1699 bool PortConfiguration::SupportsProtocol(ProtocolType type) const {
1700   for (size_t i = 0; i < relays.size(); ++i) {
1701     if (SupportsProtocol(relays[i], type))
1702       return true;
1703   }
1704   return false;
1705 }
1706 
GetRelayServerAddresses(ProtocolType type) const1707 ServerAddresses PortConfiguration::GetRelayServerAddresses(
1708     ProtocolType type) const {
1709   ServerAddresses servers;
1710   for (size_t i = 0; i < relays.size(); ++i) {
1711     if (SupportsProtocol(relays[i], type)) {
1712       servers.insert(relays[i].ports.front().address);
1713     }
1714   }
1715   return servers;
1716 }
1717 
1718 }  // namespace cricket
1719