1// Copyright 2018 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package impl
6
7import (
8	"fmt"
9	"reflect"
10	"strings"
11	"sync"
12
13	"google.golang.org/protobuf/internal/descopts"
14	ptag "google.golang.org/protobuf/internal/encoding/tag"
15	"google.golang.org/protobuf/internal/errors"
16	"google.golang.org/protobuf/internal/filedesc"
17	"google.golang.org/protobuf/internal/strs"
18	"google.golang.org/protobuf/reflect/protoreflect"
19	pref "google.golang.org/protobuf/reflect/protoreflect"
20	"google.golang.org/protobuf/runtime/protoiface"
21	piface "google.golang.org/protobuf/runtime/protoiface"
22)
23
24// legacyWrapMessage wraps v as a protoreflect.Message,
25// where v must be a *struct kind and not implement the v2 API already.
26func legacyWrapMessage(v reflect.Value) pref.Message {
27	typ := v.Type()
28	if typ.Kind() != reflect.Ptr || typ.Elem().Kind() != reflect.Struct {
29		return aberrantMessage{v: v}
30	}
31	mt := legacyLoadMessageInfo(typ, "")
32	return mt.MessageOf(v.Interface())
33}
34
35var legacyMessageTypeCache sync.Map // map[reflect.Type]*MessageInfo
36
37// legacyLoadMessageInfo dynamically loads a *MessageInfo for t,
38// where t must be a *struct kind and not implement the v2 API already.
39// The provided name is used if it cannot be determined from the message.
40func legacyLoadMessageInfo(t reflect.Type, name pref.FullName) *MessageInfo {
41	// Fast-path: check if a MessageInfo is cached for this concrete type.
42	if mt, ok := legacyMessageTypeCache.Load(t); ok {
43		return mt.(*MessageInfo)
44	}
45
46	// Slow-path: derive message descriptor and initialize MessageInfo.
47	mi := &MessageInfo{
48		Desc:          legacyLoadMessageDesc(t, name),
49		GoReflectType: t,
50	}
51
52	v := reflect.Zero(t).Interface()
53	if _, ok := v.(legacyMarshaler); ok {
54		mi.methods.Marshal = legacyMarshal
55
56		// We have no way to tell whether the type's Marshal method
57		// supports deterministic serialization or not, but this
58		// preserves the v1 implementation's behavior of always
59		// calling Marshal methods when present.
60		mi.methods.Flags |= piface.SupportMarshalDeterministic
61	}
62	if _, ok := v.(legacyUnmarshaler); ok {
63		mi.methods.Unmarshal = legacyUnmarshal
64	}
65	if _, ok := v.(legacyMerger); ok {
66		mi.methods.Merge = legacyMerge
67	}
68
69	if mi, ok := legacyMessageTypeCache.LoadOrStore(t, mi); ok {
70		return mi.(*MessageInfo)
71	}
72	return mi
73}
74
75var legacyMessageDescCache sync.Map // map[reflect.Type]protoreflect.MessageDescriptor
76
77// LegacyLoadMessageDesc returns an MessageDescriptor derived from the Go type,
78// which must be a *struct kind and not implement the v2 API already.
79//
80// This is exported for testing purposes.
81func LegacyLoadMessageDesc(t reflect.Type) pref.MessageDescriptor {
82	return legacyLoadMessageDesc(t, "")
83}
84func legacyLoadMessageDesc(t reflect.Type, name pref.FullName) pref.MessageDescriptor {
85	// Fast-path: check if a MessageDescriptor is cached for this concrete type.
86	if mi, ok := legacyMessageDescCache.Load(t); ok {
87		return mi.(pref.MessageDescriptor)
88	}
89
90	// Slow-path: initialize MessageDescriptor from the raw descriptor.
91	mv := reflect.Zero(t).Interface()
92	if _, ok := mv.(pref.ProtoMessage); ok {
93		panic(fmt.Sprintf("%v already implements proto.Message", t))
94	}
95	mdV1, ok := mv.(messageV1)
96	if !ok {
97		return aberrantLoadMessageDesc(t, name)
98	}
99
100	// If this is a dynamic message type where there isn't a 1-1 mapping between
101	// Go and protobuf types, calling the Descriptor method on the zero value of
102	// the message type isn't likely to work. If it panics, swallow the panic and
103	// continue as if the Descriptor method wasn't present.
104	b, idxs := func() ([]byte, []int) {
105		defer func() {
106			recover()
107		}()
108		return mdV1.Descriptor()
109	}()
110	if b == nil {
111		return aberrantLoadMessageDesc(t, name)
112	}
113
114	// If the Go type has no fields, then this might be a proto3 empty message
115	// from before the size cache was added. If there are any fields, check to
116	// see that at least one of them looks like something we generated.
117	if nfield := t.Elem().NumField(); nfield > 0 {
118		hasProtoField := false
119		for i := 0; i < nfield; i++ {
120			f := t.Elem().Field(i)
121			if f.Tag.Get("protobuf") != "" || f.Tag.Get("protobuf_oneof") != "" || strings.HasPrefix(f.Name, "XXX_") {
122				hasProtoField = true
123				break
124			}
125		}
126		if !hasProtoField {
127			return aberrantLoadMessageDesc(t, name)
128		}
129	}
130
131	md := legacyLoadFileDesc(b).Messages().Get(idxs[0])
132	for _, i := range idxs[1:] {
133		md = md.Messages().Get(i)
134	}
135	if name != "" && md.FullName() != name {
136		panic(fmt.Sprintf("mismatching message name: got %v, want %v", md.FullName(), name))
137	}
138	if md, ok := legacyMessageDescCache.LoadOrStore(t, md); ok {
139		return md.(protoreflect.MessageDescriptor)
140	}
141	return md
142}
143
144var (
145	aberrantMessageDescLock  sync.Mutex
146	aberrantMessageDescCache map[reflect.Type]protoreflect.MessageDescriptor
147)
148
149// aberrantLoadMessageDesc returns an MessageDescriptor derived from the Go type,
150// which must not implement protoreflect.ProtoMessage or messageV1.
151//
152// This is a best-effort derivation of the message descriptor using the protobuf
153// tags on the struct fields.
154func aberrantLoadMessageDesc(t reflect.Type, name pref.FullName) pref.MessageDescriptor {
155	aberrantMessageDescLock.Lock()
156	defer aberrantMessageDescLock.Unlock()
157	if aberrantMessageDescCache == nil {
158		aberrantMessageDescCache = make(map[reflect.Type]protoreflect.MessageDescriptor)
159	}
160	return aberrantLoadMessageDescReentrant(t, name)
161}
162func aberrantLoadMessageDescReentrant(t reflect.Type, name pref.FullName) pref.MessageDescriptor {
163	// Fast-path: check if an MessageDescriptor is cached for this concrete type.
164	if md, ok := aberrantMessageDescCache[t]; ok {
165		return md
166	}
167
168	// Slow-path: construct a descriptor from the Go struct type (best-effort).
169	// Cache the MessageDescriptor early on so that we can resolve internal
170	// cyclic references.
171	md := &filedesc.Message{L2: new(filedesc.MessageL2)}
172	md.L0.FullName = aberrantDeriveMessageName(t, name)
173	md.L0.ParentFile = filedesc.SurrogateProto2
174	aberrantMessageDescCache[t] = md
175
176	if t.Kind() != reflect.Ptr || t.Elem().Kind() != reflect.Struct {
177		return md
178	}
179
180	// Try to determine if the message is using proto3 by checking scalars.
181	for i := 0; i < t.Elem().NumField(); i++ {
182		f := t.Elem().Field(i)
183		if tag := f.Tag.Get("protobuf"); tag != "" {
184			switch f.Type.Kind() {
185			case reflect.Bool, reflect.Int32, reflect.Int64, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.String:
186				md.L0.ParentFile = filedesc.SurrogateProto3
187			}
188			for _, s := range strings.Split(tag, ",") {
189				if s == "proto3" {
190					md.L0.ParentFile = filedesc.SurrogateProto3
191				}
192			}
193		}
194	}
195
196	// Obtain a list of oneof wrapper types.
197	var oneofWrappers []reflect.Type
198	for _, method := range []string{"XXX_OneofFuncs", "XXX_OneofWrappers"} {
199		if fn, ok := t.MethodByName(method); ok {
200			for _, v := range fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))}) {
201				if vs, ok := v.Interface().([]interface{}); ok {
202					for _, v := range vs {
203						oneofWrappers = append(oneofWrappers, reflect.TypeOf(v))
204					}
205				}
206			}
207		}
208	}
209
210	// Obtain a list of the extension ranges.
211	if fn, ok := t.MethodByName("ExtensionRangeArray"); ok {
212		vs := fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))})[0]
213		for i := 0; i < vs.Len(); i++ {
214			v := vs.Index(i)
215			md.L2.ExtensionRanges.List = append(md.L2.ExtensionRanges.List, [2]pref.FieldNumber{
216				pref.FieldNumber(v.FieldByName("Start").Int()),
217				pref.FieldNumber(v.FieldByName("End").Int() + 1),
218			})
219			md.L2.ExtensionRangeOptions = append(md.L2.ExtensionRangeOptions, nil)
220		}
221	}
222
223	// Derive the message fields by inspecting the struct fields.
224	for i := 0; i < t.Elem().NumField(); i++ {
225		f := t.Elem().Field(i)
226		if tag := f.Tag.Get("protobuf"); tag != "" {
227			tagKey := f.Tag.Get("protobuf_key")
228			tagVal := f.Tag.Get("protobuf_val")
229			aberrantAppendField(md, f.Type, tag, tagKey, tagVal)
230		}
231		if tag := f.Tag.Get("protobuf_oneof"); tag != "" {
232			n := len(md.L2.Oneofs.List)
233			md.L2.Oneofs.List = append(md.L2.Oneofs.List, filedesc.Oneof{})
234			od := &md.L2.Oneofs.List[n]
235			od.L0.FullName = md.FullName().Append(pref.Name(tag))
236			od.L0.ParentFile = md.L0.ParentFile
237			od.L0.Parent = md
238			od.L0.Index = n
239
240			for _, t := range oneofWrappers {
241				if t.Implements(f.Type) {
242					f := t.Elem().Field(0)
243					if tag := f.Tag.Get("protobuf"); tag != "" {
244						aberrantAppendField(md, f.Type, tag, "", "")
245						fd := &md.L2.Fields.List[len(md.L2.Fields.List)-1]
246						fd.L1.ContainingOneof = od
247						od.L1.Fields.List = append(od.L1.Fields.List, fd)
248					}
249				}
250			}
251		}
252	}
253
254	return md
255}
256
257func aberrantDeriveMessageName(t reflect.Type, name pref.FullName) pref.FullName {
258	if name.IsValid() {
259		return name
260	}
261	func() {
262		defer func() { recover() }() // swallow possible nil panics
263		if m, ok := reflect.Zero(t).Interface().(interface{ XXX_MessageName() string }); ok {
264			name = pref.FullName(m.XXX_MessageName())
265		}
266	}()
267	if name.IsValid() {
268		return name
269	}
270	if t.Kind() == reflect.Ptr {
271		t = t.Elem()
272	}
273	return AberrantDeriveFullName(t)
274}
275
276func aberrantAppendField(md *filedesc.Message, goType reflect.Type, tag, tagKey, tagVal string) {
277	t := goType
278	isOptional := t.Kind() == reflect.Ptr && t.Elem().Kind() != reflect.Struct
279	isRepeated := t.Kind() == reflect.Slice && t.Elem().Kind() != reflect.Uint8
280	if isOptional || isRepeated {
281		t = t.Elem()
282	}
283	fd := ptag.Unmarshal(tag, t, placeholderEnumValues{}).(*filedesc.Field)
284
285	// Append field descriptor to the message.
286	n := len(md.L2.Fields.List)
287	md.L2.Fields.List = append(md.L2.Fields.List, *fd)
288	fd = &md.L2.Fields.List[n]
289	fd.L0.FullName = md.FullName().Append(fd.Name())
290	fd.L0.ParentFile = md.L0.ParentFile
291	fd.L0.Parent = md
292	fd.L0.Index = n
293
294	if fd.L1.IsWeak || fd.L1.HasPacked {
295		fd.L1.Options = func() pref.ProtoMessage {
296			opts := descopts.Field.ProtoReflect().New()
297			if fd.L1.IsWeak {
298				opts.Set(opts.Descriptor().Fields().ByName("weak"), protoreflect.ValueOfBool(true))
299			}
300			if fd.L1.HasPacked {
301				opts.Set(opts.Descriptor().Fields().ByName("packed"), protoreflect.ValueOfBool(fd.L1.IsPacked))
302			}
303			return opts.Interface()
304		}
305	}
306
307	// Populate Enum and Message.
308	if fd.Enum() == nil && fd.Kind() == pref.EnumKind {
309		switch v := reflect.Zero(t).Interface().(type) {
310		case pref.Enum:
311			fd.L1.Enum = v.Descriptor()
312		default:
313			fd.L1.Enum = LegacyLoadEnumDesc(t)
314		}
315	}
316	if fd.Message() == nil && (fd.Kind() == pref.MessageKind || fd.Kind() == pref.GroupKind) {
317		switch v := reflect.Zero(t).Interface().(type) {
318		case pref.ProtoMessage:
319			fd.L1.Message = v.ProtoReflect().Descriptor()
320		case messageV1:
321			fd.L1.Message = LegacyLoadMessageDesc(t)
322		default:
323			if t.Kind() == reflect.Map {
324				n := len(md.L1.Messages.List)
325				md.L1.Messages.List = append(md.L1.Messages.List, filedesc.Message{L2: new(filedesc.MessageL2)})
326				md2 := &md.L1.Messages.List[n]
327				md2.L0.FullName = md.FullName().Append(pref.Name(strs.MapEntryName(string(fd.Name()))))
328				md2.L0.ParentFile = md.L0.ParentFile
329				md2.L0.Parent = md
330				md2.L0.Index = n
331
332				md2.L1.IsMapEntry = true
333				md2.L2.Options = func() pref.ProtoMessage {
334					opts := descopts.Message.ProtoReflect().New()
335					opts.Set(opts.Descriptor().Fields().ByName("map_entry"), protoreflect.ValueOfBool(true))
336					return opts.Interface()
337				}
338
339				aberrantAppendField(md2, t.Key(), tagKey, "", "")
340				aberrantAppendField(md2, t.Elem(), tagVal, "", "")
341
342				fd.L1.Message = md2
343				break
344			}
345			fd.L1.Message = aberrantLoadMessageDescReentrant(t, "")
346		}
347	}
348}
349
350type placeholderEnumValues struct {
351	protoreflect.EnumValueDescriptors
352}
353
354func (placeholderEnumValues) ByNumber(n pref.EnumNumber) pref.EnumValueDescriptor {
355	return filedesc.PlaceholderEnumValue(pref.FullName(fmt.Sprintf("UNKNOWN_%d", n)))
356}
357
358// legacyMarshaler is the proto.Marshaler interface superseded by protoiface.Methoder.
359type legacyMarshaler interface {
360	Marshal() ([]byte, error)
361}
362
363// legacyUnmarshaler is the proto.Unmarshaler interface superseded by protoiface.Methoder.
364type legacyUnmarshaler interface {
365	Unmarshal([]byte) error
366}
367
368// legacyMerger is the proto.Merger interface superseded by protoiface.Methoder.
369type legacyMerger interface {
370	Merge(protoiface.MessageV1)
371}
372
373var legacyProtoMethods = &piface.Methods{
374	Marshal:   legacyMarshal,
375	Unmarshal: legacyUnmarshal,
376	Merge:     legacyMerge,
377
378	// We have no way to tell whether the type's Marshal method
379	// supports deterministic serialization or not, but this
380	// preserves the v1 implementation's behavior of always
381	// calling Marshal methods when present.
382	Flags: piface.SupportMarshalDeterministic,
383}
384
385func legacyMarshal(in piface.MarshalInput) (piface.MarshalOutput, error) {
386	v := in.Message.(unwrapper).protoUnwrap()
387	marshaler, ok := v.(legacyMarshaler)
388	if !ok {
389		return piface.MarshalOutput{}, errors.New("%T does not implement Marshal", v)
390	}
391	out, err := marshaler.Marshal()
392	if in.Buf != nil {
393		out = append(in.Buf, out...)
394	}
395	return piface.MarshalOutput{
396		Buf: out,
397	}, err
398}
399
400func legacyUnmarshal(in piface.UnmarshalInput) (piface.UnmarshalOutput, error) {
401	v := in.Message.(unwrapper).protoUnwrap()
402	unmarshaler, ok := v.(legacyUnmarshaler)
403	if !ok {
404		return piface.UnmarshalOutput{}, errors.New("%T does not implement Marshal", v)
405	}
406	return piface.UnmarshalOutput{}, unmarshaler.Unmarshal(in.Buf)
407}
408
409func legacyMerge(in piface.MergeInput) piface.MergeOutput {
410	dstv := in.Destination.(unwrapper).protoUnwrap()
411	merger, ok := dstv.(legacyMerger)
412	if !ok {
413		return piface.MergeOutput{}
414	}
415	merger.Merge(Export{}.ProtoMessageV1Of(in.Source))
416	return piface.MergeOutput{Flags: piface.MergeComplete}
417}
418
419// aberrantMessageType implements MessageType for all types other than pointer-to-struct.
420type aberrantMessageType struct {
421	t reflect.Type
422}
423
424func (mt aberrantMessageType) New() pref.Message {
425	return aberrantMessage{reflect.Zero(mt.t)}
426}
427func (mt aberrantMessageType) Zero() pref.Message {
428	return aberrantMessage{reflect.Zero(mt.t)}
429}
430func (mt aberrantMessageType) GoType() reflect.Type {
431	return mt.t
432}
433func (mt aberrantMessageType) Descriptor() pref.MessageDescriptor {
434	return LegacyLoadMessageDesc(mt.t)
435}
436
437// aberrantMessage implements Message for all types other than pointer-to-struct.
438//
439// When the underlying type implements legacyMarshaler or legacyUnmarshaler,
440// the aberrant Message can be marshaled or unmarshaled. Otherwise, there is
441// not much that can be done with values of this type.
442type aberrantMessage struct {
443	v reflect.Value
444}
445
446func (m aberrantMessage) ProtoReflect() pref.Message {
447	return m
448}
449
450func (m aberrantMessage) Descriptor() pref.MessageDescriptor {
451	return LegacyLoadMessageDesc(m.v.Type())
452}
453func (m aberrantMessage) Type() pref.MessageType {
454	return aberrantMessageType{m.v.Type()}
455}
456func (m aberrantMessage) New() pref.Message {
457	return aberrantMessage{reflect.Zero(m.v.Type())}
458}
459func (m aberrantMessage) Interface() pref.ProtoMessage {
460	return m
461}
462func (m aberrantMessage) Range(f func(pref.FieldDescriptor, pref.Value) bool) {
463}
464func (m aberrantMessage) Has(pref.FieldDescriptor) bool {
465	panic("invalid field descriptor")
466}
467func (m aberrantMessage) Clear(pref.FieldDescriptor) {
468	panic("invalid field descriptor")
469}
470func (m aberrantMessage) Get(pref.FieldDescriptor) pref.Value {
471	panic("invalid field descriptor")
472}
473func (m aberrantMessage) Set(pref.FieldDescriptor, pref.Value) {
474	panic("invalid field descriptor")
475}
476func (m aberrantMessage) Mutable(pref.FieldDescriptor) pref.Value {
477	panic("invalid field descriptor")
478}
479func (m aberrantMessage) NewField(pref.FieldDescriptor) pref.Value {
480	panic("invalid field descriptor")
481}
482func (m aberrantMessage) WhichOneof(pref.OneofDescriptor) pref.FieldDescriptor {
483	panic("invalid oneof descriptor")
484}
485func (m aberrantMessage) GetUnknown() pref.RawFields {
486	return nil
487}
488func (m aberrantMessage) SetUnknown(pref.RawFields) {
489	// SetUnknown discards its input on messages which don't support unknown field storage.
490}
491func (m aberrantMessage) IsValid() bool {
492	// An invalid message is a read-only, empty message. Since we don't know anything
493	// about the alleged contents of this message, we can't say with confidence that
494	// it is invalid in this sense. Therefore, report it as valid.
495	return true
496}
497func (m aberrantMessage) ProtoMethods() *piface.Methods {
498	return legacyProtoMethods
499}
500func (m aberrantMessage) protoUnwrap() interface{} {
501	return m.v.Interface()
502}
503