1// Copyright 2011 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5package template 6 7import ( 8 "bytes" 9 "fmt" 10 "io" 11 "reflect" 12 "runtime" 13 "sort" 14 "strings" 15 16 "github.com/alecthomas/template/parse" 17) 18 19// state represents the state of an execution. It's not part of the 20// template so that multiple executions of the same template 21// can execute in parallel. 22type state struct { 23 tmpl *Template 24 wr io.Writer 25 node parse.Node // current node, for errors 26 vars []variable // push-down stack of variable values. 27} 28 29// variable holds the dynamic value of a variable such as $, $x etc. 30type variable struct { 31 name string 32 value reflect.Value 33} 34 35// push pushes a new variable on the stack. 36func (s *state) push(name string, value reflect.Value) { 37 s.vars = append(s.vars, variable{name, value}) 38} 39 40// mark returns the length of the variable stack. 41func (s *state) mark() int { 42 return len(s.vars) 43} 44 45// pop pops the variable stack up to the mark. 46func (s *state) pop(mark int) { 47 s.vars = s.vars[0:mark] 48} 49 50// setVar overwrites the top-nth variable on the stack. Used by range iterations. 51func (s *state) setVar(n int, value reflect.Value) { 52 s.vars[len(s.vars)-n].value = value 53} 54 55// varValue returns the value of the named variable. 56func (s *state) varValue(name string) reflect.Value { 57 for i := s.mark() - 1; i >= 0; i-- { 58 if s.vars[i].name == name { 59 return s.vars[i].value 60 } 61 } 62 s.errorf("undefined variable: %s", name) 63 return zero 64} 65 66var zero reflect.Value 67 68// at marks the state to be on node n, for error reporting. 69func (s *state) at(node parse.Node) { 70 s.node = node 71} 72 73// doublePercent returns the string with %'s replaced by %%, if necessary, 74// so it can be used safely inside a Printf format string. 75func doublePercent(str string) string { 76 if strings.Contains(str, "%") { 77 str = strings.Replace(str, "%", "%%", -1) 78 } 79 return str 80} 81 82// errorf formats the error and terminates processing. 83func (s *state) errorf(format string, args ...interface{}) { 84 name := doublePercent(s.tmpl.Name()) 85 if s.node == nil { 86 format = fmt.Sprintf("template: %s: %s", name, format) 87 } else { 88 location, context := s.tmpl.ErrorContext(s.node) 89 format = fmt.Sprintf("template: %s: executing %q at <%s>: %s", location, name, doublePercent(context), format) 90 } 91 panic(fmt.Errorf(format, args...)) 92} 93 94// errRecover is the handler that turns panics into returns from the top 95// level of Parse. 96func errRecover(errp *error) { 97 e := recover() 98 if e != nil { 99 switch err := e.(type) { 100 case runtime.Error: 101 panic(e) 102 case error: 103 *errp = err 104 default: 105 panic(e) 106 } 107 } 108} 109 110// ExecuteTemplate applies the template associated with t that has the given name 111// to the specified data object and writes the output to wr. 112// If an error occurs executing the template or writing its output, 113// execution stops, but partial results may already have been written to 114// the output writer. 115// A template may be executed safely in parallel. 116func (t *Template) ExecuteTemplate(wr io.Writer, name string, data interface{}) error { 117 tmpl := t.tmpl[name] 118 if tmpl == nil { 119 return fmt.Errorf("template: no template %q associated with template %q", name, t.name) 120 } 121 return tmpl.Execute(wr, data) 122} 123 124// Execute applies a parsed template to the specified data object, 125// and writes the output to wr. 126// If an error occurs executing the template or writing its output, 127// execution stops, but partial results may already have been written to 128// the output writer. 129// A template may be executed safely in parallel. 130func (t *Template) Execute(wr io.Writer, data interface{}) (err error) { 131 defer errRecover(&err) 132 value := reflect.ValueOf(data) 133 state := &state{ 134 tmpl: t, 135 wr: wr, 136 vars: []variable{{"$", value}}, 137 } 138 t.init() 139 if t.Tree == nil || t.Root == nil { 140 var b bytes.Buffer 141 for name, tmpl := range t.tmpl { 142 if tmpl.Tree == nil || tmpl.Root == nil { 143 continue 144 } 145 if b.Len() > 0 { 146 b.WriteString(", ") 147 } 148 fmt.Fprintf(&b, "%q", name) 149 } 150 var s string 151 if b.Len() > 0 { 152 s = "; defined templates are: " + b.String() 153 } 154 state.errorf("%q is an incomplete or empty template%s", t.Name(), s) 155 } 156 state.walk(value, t.Root) 157 return 158} 159 160// Walk functions step through the major pieces of the template structure, 161// generating output as they go. 162func (s *state) walk(dot reflect.Value, node parse.Node) { 163 s.at(node) 164 switch node := node.(type) { 165 case *parse.ActionNode: 166 // Do not pop variables so they persist until next end. 167 // Also, if the action declares variables, don't print the result. 168 val := s.evalPipeline(dot, node.Pipe) 169 if len(node.Pipe.Decl) == 0 { 170 s.printValue(node, val) 171 } 172 case *parse.IfNode: 173 s.walkIfOrWith(parse.NodeIf, dot, node.Pipe, node.List, node.ElseList) 174 case *parse.ListNode: 175 for _, node := range node.Nodes { 176 s.walk(dot, node) 177 } 178 case *parse.RangeNode: 179 s.walkRange(dot, node) 180 case *parse.TemplateNode: 181 s.walkTemplate(dot, node) 182 case *parse.TextNode: 183 if _, err := s.wr.Write(node.Text); err != nil { 184 s.errorf("%s", err) 185 } 186 case *parse.WithNode: 187 s.walkIfOrWith(parse.NodeWith, dot, node.Pipe, node.List, node.ElseList) 188 default: 189 s.errorf("unknown node: %s", node) 190 } 191} 192 193// walkIfOrWith walks an 'if' or 'with' node. The two control structures 194// are identical in behavior except that 'with' sets dot. 195func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) { 196 defer s.pop(s.mark()) 197 val := s.evalPipeline(dot, pipe) 198 truth, ok := isTrue(val) 199 if !ok { 200 s.errorf("if/with can't use %v", val) 201 } 202 if truth { 203 if typ == parse.NodeWith { 204 s.walk(val, list) 205 } else { 206 s.walk(dot, list) 207 } 208 } else if elseList != nil { 209 s.walk(dot, elseList) 210 } 211} 212 213// isTrue reports whether the value is 'true', in the sense of not the zero of its type, 214// and whether the value has a meaningful truth value. 215func isTrue(val reflect.Value) (truth, ok bool) { 216 if !val.IsValid() { 217 // Something like var x interface{}, never set. It's a form of nil. 218 return false, true 219 } 220 switch val.Kind() { 221 case reflect.Array, reflect.Map, reflect.Slice, reflect.String: 222 truth = val.Len() > 0 223 case reflect.Bool: 224 truth = val.Bool() 225 case reflect.Complex64, reflect.Complex128: 226 truth = val.Complex() != 0 227 case reflect.Chan, reflect.Func, reflect.Ptr, reflect.Interface: 228 truth = !val.IsNil() 229 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 230 truth = val.Int() != 0 231 case reflect.Float32, reflect.Float64: 232 truth = val.Float() != 0 233 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 234 truth = val.Uint() != 0 235 case reflect.Struct: 236 truth = true // Struct values are always true. 237 default: 238 return 239 } 240 return truth, true 241} 242 243func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) { 244 s.at(r) 245 defer s.pop(s.mark()) 246 val, _ := indirect(s.evalPipeline(dot, r.Pipe)) 247 // mark top of stack before any variables in the body are pushed. 248 mark := s.mark() 249 oneIteration := func(index, elem reflect.Value) { 250 // Set top var (lexically the second if there are two) to the element. 251 if len(r.Pipe.Decl) > 0 { 252 s.setVar(1, elem) 253 } 254 // Set next var (lexically the first if there are two) to the index. 255 if len(r.Pipe.Decl) > 1 { 256 s.setVar(2, index) 257 } 258 s.walk(elem, r.List) 259 s.pop(mark) 260 } 261 switch val.Kind() { 262 case reflect.Array, reflect.Slice: 263 if val.Len() == 0 { 264 break 265 } 266 for i := 0; i < val.Len(); i++ { 267 oneIteration(reflect.ValueOf(i), val.Index(i)) 268 } 269 return 270 case reflect.Map: 271 if val.Len() == 0 { 272 break 273 } 274 for _, key := range sortKeys(val.MapKeys()) { 275 oneIteration(key, val.MapIndex(key)) 276 } 277 return 278 case reflect.Chan: 279 if val.IsNil() { 280 break 281 } 282 i := 0 283 for ; ; i++ { 284 elem, ok := val.Recv() 285 if !ok { 286 break 287 } 288 oneIteration(reflect.ValueOf(i), elem) 289 } 290 if i == 0 { 291 break 292 } 293 return 294 case reflect.Invalid: 295 break // An invalid value is likely a nil map, etc. and acts like an empty map. 296 default: 297 s.errorf("range can't iterate over %v", val) 298 } 299 if r.ElseList != nil { 300 s.walk(dot, r.ElseList) 301 } 302} 303 304func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) { 305 s.at(t) 306 tmpl := s.tmpl.tmpl[t.Name] 307 if tmpl == nil { 308 s.errorf("template %q not defined", t.Name) 309 } 310 // Variables declared by the pipeline persist. 311 dot = s.evalPipeline(dot, t.Pipe) 312 newState := *s 313 newState.tmpl = tmpl 314 // No dynamic scoping: template invocations inherit no variables. 315 newState.vars = []variable{{"$", dot}} 316 newState.walk(dot, tmpl.Root) 317} 318 319// Eval functions evaluate pipelines, commands, and their elements and extract 320// values from the data structure by examining fields, calling methods, and so on. 321// The printing of those values happens only through walk functions. 322 323// evalPipeline returns the value acquired by evaluating a pipeline. If the 324// pipeline has a variable declaration, the variable will be pushed on the 325// stack. Callers should therefore pop the stack after they are finished 326// executing commands depending on the pipeline value. 327func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) { 328 if pipe == nil { 329 return 330 } 331 s.at(pipe) 332 for _, cmd := range pipe.Cmds { 333 value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg. 334 // If the object has type interface{}, dig down one level to the thing inside. 335 if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 { 336 value = reflect.ValueOf(value.Interface()) // lovely! 337 } 338 } 339 for _, variable := range pipe.Decl { 340 s.push(variable.Ident[0], value) 341 } 342 return value 343} 344 345func (s *state) notAFunction(args []parse.Node, final reflect.Value) { 346 if len(args) > 1 || final.IsValid() { 347 s.errorf("can't give argument to non-function %s", args[0]) 348 } 349} 350 351func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value { 352 firstWord := cmd.Args[0] 353 switch n := firstWord.(type) { 354 case *parse.FieldNode: 355 return s.evalFieldNode(dot, n, cmd.Args, final) 356 case *parse.ChainNode: 357 return s.evalChainNode(dot, n, cmd.Args, final) 358 case *parse.IdentifierNode: 359 // Must be a function. 360 return s.evalFunction(dot, n, cmd, cmd.Args, final) 361 case *parse.PipeNode: 362 // Parenthesized pipeline. The arguments are all inside the pipeline; final is ignored. 363 return s.evalPipeline(dot, n) 364 case *parse.VariableNode: 365 return s.evalVariableNode(dot, n, cmd.Args, final) 366 } 367 s.at(firstWord) 368 s.notAFunction(cmd.Args, final) 369 switch word := firstWord.(type) { 370 case *parse.BoolNode: 371 return reflect.ValueOf(word.True) 372 case *parse.DotNode: 373 return dot 374 case *parse.NilNode: 375 s.errorf("nil is not a command") 376 case *parse.NumberNode: 377 return s.idealConstant(word) 378 case *parse.StringNode: 379 return reflect.ValueOf(word.Text) 380 } 381 s.errorf("can't evaluate command %q", firstWord) 382 panic("not reached") 383} 384 385// idealConstant is called to return the value of a number in a context where 386// we don't know the type. In that case, the syntax of the number tells us 387// its type, and we use Go rules to resolve. Note there is no such thing as 388// a uint ideal constant in this situation - the value must be of int type. 389func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value { 390 // These are ideal constants but we don't know the type 391 // and we have no context. (If it was a method argument, 392 // we'd know what we need.) The syntax guides us to some extent. 393 s.at(constant) 394 switch { 395 case constant.IsComplex: 396 return reflect.ValueOf(constant.Complex128) // incontrovertible. 397 case constant.IsFloat && !isHexConstant(constant.Text) && strings.IndexAny(constant.Text, ".eE") >= 0: 398 return reflect.ValueOf(constant.Float64) 399 case constant.IsInt: 400 n := int(constant.Int64) 401 if int64(n) != constant.Int64 { 402 s.errorf("%s overflows int", constant.Text) 403 } 404 return reflect.ValueOf(n) 405 case constant.IsUint: 406 s.errorf("%s overflows int", constant.Text) 407 } 408 return zero 409} 410 411func isHexConstant(s string) bool { 412 return len(s) > 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X') 413} 414 415func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value { 416 s.at(field) 417 return s.evalFieldChain(dot, dot, field, field.Ident, args, final) 418} 419 420func (s *state) evalChainNode(dot reflect.Value, chain *parse.ChainNode, args []parse.Node, final reflect.Value) reflect.Value { 421 s.at(chain) 422 // (pipe).Field1.Field2 has pipe as .Node, fields as .Field. Eval the pipeline, then the fields. 423 pipe := s.evalArg(dot, nil, chain.Node) 424 if len(chain.Field) == 0 { 425 s.errorf("internal error: no fields in evalChainNode") 426 } 427 return s.evalFieldChain(dot, pipe, chain, chain.Field, args, final) 428} 429 430func (s *state) evalVariableNode(dot reflect.Value, variable *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value { 431 // $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields. 432 s.at(variable) 433 value := s.varValue(variable.Ident[0]) 434 if len(variable.Ident) == 1 { 435 s.notAFunction(args, final) 436 return value 437 } 438 return s.evalFieldChain(dot, value, variable, variable.Ident[1:], args, final) 439} 440 441// evalFieldChain evaluates .X.Y.Z possibly followed by arguments. 442// dot is the environment in which to evaluate arguments, while 443// receiver is the value being walked along the chain. 444func (s *state) evalFieldChain(dot, receiver reflect.Value, node parse.Node, ident []string, args []parse.Node, final reflect.Value) reflect.Value { 445 n := len(ident) 446 for i := 0; i < n-1; i++ { 447 receiver = s.evalField(dot, ident[i], node, nil, zero, receiver) 448 } 449 // Now if it's a method, it gets the arguments. 450 return s.evalField(dot, ident[n-1], node, args, final, receiver) 451} 452 453func (s *state) evalFunction(dot reflect.Value, node *parse.IdentifierNode, cmd parse.Node, args []parse.Node, final reflect.Value) reflect.Value { 454 s.at(node) 455 name := node.Ident 456 function, ok := findFunction(name, s.tmpl) 457 if !ok { 458 s.errorf("%q is not a defined function", name) 459 } 460 return s.evalCall(dot, function, cmd, name, args, final) 461} 462 463// evalField evaluates an expression like (.Field) or (.Field arg1 arg2). 464// The 'final' argument represents the return value from the preceding 465// value of the pipeline, if any. 466func (s *state) evalField(dot reflect.Value, fieldName string, node parse.Node, args []parse.Node, final, receiver reflect.Value) reflect.Value { 467 if !receiver.IsValid() { 468 return zero 469 } 470 typ := receiver.Type() 471 receiver, _ = indirect(receiver) 472 // Unless it's an interface, need to get to a value of type *T to guarantee 473 // we see all methods of T and *T. 474 ptr := receiver 475 if ptr.Kind() != reflect.Interface && ptr.CanAddr() { 476 ptr = ptr.Addr() 477 } 478 if method := ptr.MethodByName(fieldName); method.IsValid() { 479 return s.evalCall(dot, method, node, fieldName, args, final) 480 } 481 hasArgs := len(args) > 1 || final.IsValid() 482 // It's not a method; must be a field of a struct or an element of a map. The receiver must not be nil. 483 receiver, isNil := indirect(receiver) 484 if isNil { 485 s.errorf("nil pointer evaluating %s.%s", typ, fieldName) 486 } 487 switch receiver.Kind() { 488 case reflect.Struct: 489 tField, ok := receiver.Type().FieldByName(fieldName) 490 if ok { 491 field := receiver.FieldByIndex(tField.Index) 492 if tField.PkgPath != "" { // field is unexported 493 s.errorf("%s is an unexported field of struct type %s", fieldName, typ) 494 } 495 // If it's a function, we must call it. 496 if hasArgs { 497 s.errorf("%s has arguments but cannot be invoked as function", fieldName) 498 } 499 return field 500 } 501 s.errorf("%s is not a field of struct type %s", fieldName, typ) 502 case reflect.Map: 503 // If it's a map, attempt to use the field name as a key. 504 nameVal := reflect.ValueOf(fieldName) 505 if nameVal.Type().AssignableTo(receiver.Type().Key()) { 506 if hasArgs { 507 s.errorf("%s is not a method but has arguments", fieldName) 508 } 509 return receiver.MapIndex(nameVal) 510 } 511 } 512 s.errorf("can't evaluate field %s in type %s", fieldName, typ) 513 panic("not reached") 514} 515 516var ( 517 errorType = reflect.TypeOf((*error)(nil)).Elem() 518 fmtStringerType = reflect.TypeOf((*fmt.Stringer)(nil)).Elem() 519) 520 521// evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so 522// it looks just like a function call. The arg list, if non-nil, includes (in the manner of the shell), arg[0] 523// as the function itself. 524func (s *state) evalCall(dot, fun reflect.Value, node parse.Node, name string, args []parse.Node, final reflect.Value) reflect.Value { 525 if args != nil { 526 args = args[1:] // Zeroth arg is function name/node; not passed to function. 527 } 528 typ := fun.Type() 529 numIn := len(args) 530 if final.IsValid() { 531 numIn++ 532 } 533 numFixed := len(args) 534 if typ.IsVariadic() { 535 numFixed = typ.NumIn() - 1 // last arg is the variadic one. 536 if numIn < numFixed { 537 s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args)) 538 } 539 } else if numIn < typ.NumIn()-1 || !typ.IsVariadic() && numIn != typ.NumIn() { 540 s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), len(args)) 541 } 542 if !goodFunc(typ) { 543 // TODO: This could still be a confusing error; maybe goodFunc should provide info. 544 s.errorf("can't call method/function %q with %d results", name, typ.NumOut()) 545 } 546 // Build the arg list. 547 argv := make([]reflect.Value, numIn) 548 // Args must be evaluated. Fixed args first. 549 i := 0 550 for ; i < numFixed && i < len(args); i++ { 551 argv[i] = s.evalArg(dot, typ.In(i), args[i]) 552 } 553 // Now the ... args. 554 if typ.IsVariadic() { 555 argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice. 556 for ; i < len(args); i++ { 557 argv[i] = s.evalArg(dot, argType, args[i]) 558 } 559 } 560 // Add final value if necessary. 561 if final.IsValid() { 562 t := typ.In(typ.NumIn() - 1) 563 if typ.IsVariadic() { 564 t = t.Elem() 565 } 566 argv[i] = s.validateType(final, t) 567 } 568 result := fun.Call(argv) 569 // If we have an error that is not nil, stop execution and return that error to the caller. 570 if len(result) == 2 && !result[1].IsNil() { 571 s.at(node) 572 s.errorf("error calling %s: %s", name, result[1].Interface().(error)) 573 } 574 return result[0] 575} 576 577// canBeNil reports whether an untyped nil can be assigned to the type. See reflect.Zero. 578func canBeNil(typ reflect.Type) bool { 579 switch typ.Kind() { 580 case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice: 581 return true 582 } 583 return false 584} 585 586// validateType guarantees that the value is valid and assignable to the type. 587func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value { 588 if !value.IsValid() { 589 if typ == nil || canBeNil(typ) { 590 // An untyped nil interface{}. Accept as a proper nil value. 591 return reflect.Zero(typ) 592 } 593 s.errorf("invalid value; expected %s", typ) 594 } 595 if typ != nil && !value.Type().AssignableTo(typ) { 596 if value.Kind() == reflect.Interface && !value.IsNil() { 597 value = value.Elem() 598 if value.Type().AssignableTo(typ) { 599 return value 600 } 601 // fallthrough 602 } 603 // Does one dereference or indirection work? We could do more, as we 604 // do with method receivers, but that gets messy and method receivers 605 // are much more constrained, so it makes more sense there than here. 606 // Besides, one is almost always all you need. 607 switch { 608 case value.Kind() == reflect.Ptr && value.Type().Elem().AssignableTo(typ): 609 value = value.Elem() 610 if !value.IsValid() { 611 s.errorf("dereference of nil pointer of type %s", typ) 612 } 613 case reflect.PtrTo(value.Type()).AssignableTo(typ) && value.CanAddr(): 614 value = value.Addr() 615 default: 616 s.errorf("wrong type for value; expected %s; got %s", typ, value.Type()) 617 } 618 } 619 return value 620} 621 622func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value { 623 s.at(n) 624 switch arg := n.(type) { 625 case *parse.DotNode: 626 return s.validateType(dot, typ) 627 case *parse.NilNode: 628 if canBeNil(typ) { 629 return reflect.Zero(typ) 630 } 631 s.errorf("cannot assign nil to %s", typ) 632 case *parse.FieldNode: 633 return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, zero), typ) 634 case *parse.VariableNode: 635 return s.validateType(s.evalVariableNode(dot, arg, nil, zero), typ) 636 case *parse.PipeNode: 637 return s.validateType(s.evalPipeline(dot, arg), typ) 638 case *parse.IdentifierNode: 639 return s.evalFunction(dot, arg, arg, nil, zero) 640 case *parse.ChainNode: 641 return s.validateType(s.evalChainNode(dot, arg, nil, zero), typ) 642 } 643 switch typ.Kind() { 644 case reflect.Bool: 645 return s.evalBool(typ, n) 646 case reflect.Complex64, reflect.Complex128: 647 return s.evalComplex(typ, n) 648 case reflect.Float32, reflect.Float64: 649 return s.evalFloat(typ, n) 650 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 651 return s.evalInteger(typ, n) 652 case reflect.Interface: 653 if typ.NumMethod() == 0 { 654 return s.evalEmptyInterface(dot, n) 655 } 656 case reflect.String: 657 return s.evalString(typ, n) 658 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 659 return s.evalUnsignedInteger(typ, n) 660 } 661 s.errorf("can't handle %s for arg of type %s", n, typ) 662 panic("not reached") 663} 664 665func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value { 666 s.at(n) 667 if n, ok := n.(*parse.BoolNode); ok { 668 value := reflect.New(typ).Elem() 669 value.SetBool(n.True) 670 return value 671 } 672 s.errorf("expected bool; found %s", n) 673 panic("not reached") 674} 675 676func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value { 677 s.at(n) 678 if n, ok := n.(*parse.StringNode); ok { 679 value := reflect.New(typ).Elem() 680 value.SetString(n.Text) 681 return value 682 } 683 s.errorf("expected string; found %s", n) 684 panic("not reached") 685} 686 687func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value { 688 s.at(n) 689 if n, ok := n.(*parse.NumberNode); ok && n.IsInt { 690 value := reflect.New(typ).Elem() 691 value.SetInt(n.Int64) 692 return value 693 } 694 s.errorf("expected integer; found %s", n) 695 panic("not reached") 696} 697 698func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value { 699 s.at(n) 700 if n, ok := n.(*parse.NumberNode); ok && n.IsUint { 701 value := reflect.New(typ).Elem() 702 value.SetUint(n.Uint64) 703 return value 704 } 705 s.errorf("expected unsigned integer; found %s", n) 706 panic("not reached") 707} 708 709func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value { 710 s.at(n) 711 if n, ok := n.(*parse.NumberNode); ok && n.IsFloat { 712 value := reflect.New(typ).Elem() 713 value.SetFloat(n.Float64) 714 return value 715 } 716 s.errorf("expected float; found %s", n) 717 panic("not reached") 718} 719 720func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value { 721 if n, ok := n.(*parse.NumberNode); ok && n.IsComplex { 722 value := reflect.New(typ).Elem() 723 value.SetComplex(n.Complex128) 724 return value 725 } 726 s.errorf("expected complex; found %s", n) 727 panic("not reached") 728} 729 730func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value { 731 s.at(n) 732 switch n := n.(type) { 733 case *parse.BoolNode: 734 return reflect.ValueOf(n.True) 735 case *parse.DotNode: 736 return dot 737 case *parse.FieldNode: 738 return s.evalFieldNode(dot, n, nil, zero) 739 case *parse.IdentifierNode: 740 return s.evalFunction(dot, n, n, nil, zero) 741 case *parse.NilNode: 742 // NilNode is handled in evalArg, the only place that calls here. 743 s.errorf("evalEmptyInterface: nil (can't happen)") 744 case *parse.NumberNode: 745 return s.idealConstant(n) 746 case *parse.StringNode: 747 return reflect.ValueOf(n.Text) 748 case *parse.VariableNode: 749 return s.evalVariableNode(dot, n, nil, zero) 750 case *parse.PipeNode: 751 return s.evalPipeline(dot, n) 752 } 753 s.errorf("can't handle assignment of %s to empty interface argument", n) 754 panic("not reached") 755} 756 757// indirect returns the item at the end of indirection, and a bool to indicate if it's nil. 758// We indirect through pointers and empty interfaces (only) because 759// non-empty interfaces have methods we might need. 760func indirect(v reflect.Value) (rv reflect.Value, isNil bool) { 761 for ; v.Kind() == reflect.Ptr || v.Kind() == reflect.Interface; v = v.Elem() { 762 if v.IsNil() { 763 return v, true 764 } 765 if v.Kind() == reflect.Interface && v.NumMethod() > 0 { 766 break 767 } 768 } 769 return v, false 770} 771 772// printValue writes the textual representation of the value to the output of 773// the template. 774func (s *state) printValue(n parse.Node, v reflect.Value) { 775 s.at(n) 776 iface, ok := printableValue(v) 777 if !ok { 778 s.errorf("can't print %s of type %s", n, v.Type()) 779 } 780 fmt.Fprint(s.wr, iface) 781} 782 783// printableValue returns the, possibly indirected, interface value inside v that 784// is best for a call to formatted printer. 785func printableValue(v reflect.Value) (interface{}, bool) { 786 if v.Kind() == reflect.Ptr { 787 v, _ = indirect(v) // fmt.Fprint handles nil. 788 } 789 if !v.IsValid() { 790 return "<no value>", true 791 } 792 793 if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) { 794 if v.CanAddr() && (reflect.PtrTo(v.Type()).Implements(errorType) || reflect.PtrTo(v.Type()).Implements(fmtStringerType)) { 795 v = v.Addr() 796 } else { 797 switch v.Kind() { 798 case reflect.Chan, reflect.Func: 799 return nil, false 800 } 801 } 802 } 803 return v.Interface(), true 804} 805 806// Types to help sort the keys in a map for reproducible output. 807 808type rvs []reflect.Value 809 810func (x rvs) Len() int { return len(x) } 811func (x rvs) Swap(i, j int) { x[i], x[j] = x[j], x[i] } 812 813type rvInts struct{ rvs } 814 815func (x rvInts) Less(i, j int) bool { return x.rvs[i].Int() < x.rvs[j].Int() } 816 817type rvUints struct{ rvs } 818 819func (x rvUints) Less(i, j int) bool { return x.rvs[i].Uint() < x.rvs[j].Uint() } 820 821type rvFloats struct{ rvs } 822 823func (x rvFloats) Less(i, j int) bool { return x.rvs[i].Float() < x.rvs[j].Float() } 824 825type rvStrings struct{ rvs } 826 827func (x rvStrings) Less(i, j int) bool { return x.rvs[i].String() < x.rvs[j].String() } 828 829// sortKeys sorts (if it can) the slice of reflect.Values, which is a slice of map keys. 830func sortKeys(v []reflect.Value) []reflect.Value { 831 if len(v) <= 1 { 832 return v 833 } 834 switch v[0].Kind() { 835 case reflect.Float32, reflect.Float64: 836 sort.Sort(rvFloats{v}) 837 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 838 sort.Sort(rvInts{v}) 839 case reflect.String: 840 sort.Sort(rvStrings{v}) 841 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 842 sort.Sort(rvUints{v}) 843 } 844 return v 845} 846