1 // Copyright (c) 2014-2020 The Bitcoin Core developers
2 // Distributed under the MIT software license, see the accompanying
3 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
4 
5 #include <hash.h>
6 #include <test/util/setup_common.h>
7 #include <util/serfloat.h>
8 #include <serialize.h>
9 #include <streams.h>
10 
11 #include <boost/test/unit_test.hpp>
12 
13 #include <cmath>
14 #include <limits>
15 
16 BOOST_FIXTURE_TEST_SUITE(serfloat_tests, BasicTestingSetup)
17 
18 namespace {
19 
TestDouble(double f)20 uint64_t TestDouble(double f) {
21     uint64_t i = EncodeDouble(f);
22     double f2 = DecodeDouble(i);
23     if (std::isnan(f)) {
24         // NaN is not guaranteed to round-trip exactly.
25         BOOST_CHECK(std::isnan(f2));
26     } else {
27         // Everything else is.
28         BOOST_CHECK(!std::isnan(f2));
29         uint64_t i2 = EncodeDouble(f2);
30         BOOST_CHECK_EQUAL(f, f2);
31         BOOST_CHECK_EQUAL(i, i2);
32     }
33     return i;
34 }
35 
36 } // namespace
37 
BOOST_AUTO_TEST_CASE(double_serfloat_tests)38 BOOST_AUTO_TEST_CASE(double_serfloat_tests) {
39     BOOST_CHECK_EQUAL(TestDouble(0.0), 0U);
40     BOOST_CHECK_EQUAL(TestDouble(-0.0), 0x8000000000000000);
41     BOOST_CHECK_EQUAL(TestDouble(std::numeric_limits<double>::infinity()), 0x7ff0000000000000U);
42     BOOST_CHECK_EQUAL(TestDouble(-std::numeric_limits<double>::infinity()), 0xfff0000000000000);
43     BOOST_CHECK_EQUAL(TestDouble(0.5), 0x3fe0000000000000ULL);
44     BOOST_CHECK_EQUAL(TestDouble(1.0), 0x3ff0000000000000ULL);
45     BOOST_CHECK_EQUAL(TestDouble(2.0), 0x4000000000000000ULL);
46     BOOST_CHECK_EQUAL(TestDouble(4.0), 0x4010000000000000ULL);
47     BOOST_CHECK_EQUAL(TestDouble(785.066650390625), 0x4088888880000000ULL);
48 
49     // Roundtrip test on IEC559-compatible systems
50     if (std::numeric_limits<double>::is_iec559) {
51         BOOST_CHECK_EQUAL(sizeof(double), 8U);
52         BOOST_CHECK_EQUAL(sizeof(uint64_t), 8U);
53         // Test extreme values
54         TestDouble(std::numeric_limits<double>::min());
55         TestDouble(-std::numeric_limits<double>::min());
56         TestDouble(std::numeric_limits<double>::max());
57         TestDouble(-std::numeric_limits<double>::max());
58         TestDouble(std::numeric_limits<double>::lowest());
59         TestDouble(-std::numeric_limits<double>::lowest());
60         TestDouble(std::numeric_limits<double>::quiet_NaN());
61         TestDouble(-std::numeric_limits<double>::quiet_NaN());
62         TestDouble(std::numeric_limits<double>::signaling_NaN());
63         TestDouble(-std::numeric_limits<double>::signaling_NaN());
64         TestDouble(std::numeric_limits<double>::denorm_min());
65         TestDouble(-std::numeric_limits<double>::denorm_min());
66         // Test exact encoding: on currently supported platforms, EncodeDouble
67         // should produce exactly the same as the in-memory representation for non-NaN.
68         for (int j = 0; j < 1000; ++j) {
69             // Iterate over 9 specific bits exhaustively; the others are chosen randomly.
70             // These specific bits are the sign bit, and the 2 top and bottom bits of
71             // exponent and mantissa in the IEEE754 binary64 format.
72             for (int x = 0; x < 512; ++x) {
73                 uint64_t v = InsecureRandBits(64);
74                 v &= ~(uint64_t{1} << 0);
75                 if (x & 1) v |= (uint64_t{1} << 0);
76                 v &= ~(uint64_t{1} << 1);
77                 if (x & 2) v |= (uint64_t{1} << 1);
78                 v &= ~(uint64_t{1} << 50);
79                 if (x & 4) v |= (uint64_t{1} << 50);
80                 v &= ~(uint64_t{1} << 51);
81                 if (x & 8) v |= (uint64_t{1} << 51);
82                 v &= ~(uint64_t{1} << 52);
83                 if (x & 16) v |= (uint64_t{1} << 52);
84                 v &= ~(uint64_t{1} << 53);
85                 if (x & 32) v |= (uint64_t{1} << 53);
86                 v &= ~(uint64_t{1} << 61);
87                 if (x & 64) v |= (uint64_t{1} << 61);
88                 v &= ~(uint64_t{1} << 62);
89                 if (x & 128) v |= (uint64_t{1} << 62);
90                 v &= ~(uint64_t{1} << 63);
91                 if (x & 256) v |= (uint64_t{1} << 63);
92                 double f;
93                 memcpy(&f, &v, 8);
94                 uint64_t v2 = TestDouble(f);
95                 if (!std::isnan(f)) BOOST_CHECK_EQUAL(v, v2);
96             }
97         }
98     }
99 }
100 
101 /*
102 Python code to generate the below hashes:
103 
104     def reversed_hex(x):
105         return binascii.hexlify(''.join(reversed(x)))
106     def dsha256(x):
107         return hashlib.sha256(hashlib.sha256(x).digest()).digest()
108 
109     reversed_hex(dsha256(''.join(struct.pack('<d', x) for x in range(0,1000)))) == '43d0c82591953c4eafe114590d392676a01585d25b25d433557f0d7878b23f96'
110 */
BOOST_AUTO_TEST_CASE(doubles)111 BOOST_AUTO_TEST_CASE(doubles)
112 {
113     CDataStream ss(SER_DISK, 0);
114     // encode
115     for (int i = 0; i < 1000; i++) {
116         ss << EncodeDouble(i);
117     }
118     BOOST_CHECK(Hash(ss) == uint256S("43d0c82591953c4eafe114590d392676a01585d25b25d433557f0d7878b23f96"));
119 
120     // decode
121     for (int i = 0; i < 1000; i++) {
122         uint64_t val;
123         ss >> val;
124         double j = DecodeDouble(val);
125         BOOST_CHECK_MESSAGE(i == j, "decoded:" << j << " expected:" << i);
126     }
127 }
128 
129 BOOST_AUTO_TEST_SUITE_END()
130