1 /***********************************************************************
2  * Copyright (c) 2014 Pieter Wuille                                    *
3  * Distributed under the MIT software license, see the accompanying    *
4  * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5  ***********************************************************************/
6 
7 #ifndef SECP256K1_SCALAR_H
8 #define SECP256K1_SCALAR_H
9 
10 #include "util.h"
11 
12 #if defined HAVE_CONFIG_H
13 #include "libsecp256k1-config.h"
14 #endif
15 
16 #if defined(EXHAUSTIVE_TEST_ORDER)
17 #include "scalar_low.h"
18 #elif defined(SECP256K1_WIDEMUL_INT128)
19 #include "scalar_4x64.h"
20 #elif defined(SECP256K1_WIDEMUL_INT64)
21 #include "scalar_8x32.h"
22 #else
23 #error "Please select wide multiplication implementation"
24 #endif
25 
26 /** Clear a scalar to prevent the leak of sensitive data. */
27 static void secp256k1_scalar_clear(secp256k1_scalar *r);
28 
29 /** Access bits from a scalar. All requested bits must belong to the same 32-bit limb. */
30 static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count);
31 
32 /** Access bits from a scalar. Not constant time. */
33 static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count);
34 
35 /** Set a scalar from a big endian byte array. The scalar will be reduced modulo group order `n`.
36  * In:      bin:        pointer to a 32-byte array.
37  * Out:     r:          scalar to be set.
38  *          overflow:   non-zero if the scalar was bigger or equal to `n` before reduction, zero otherwise (can be NULL).
39  */
40 static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *bin, int *overflow);
41 
42 /** Set a scalar from a big endian byte array and returns 1 if it is a valid
43  *  seckey and 0 otherwise. */
44 static int secp256k1_scalar_set_b32_seckey(secp256k1_scalar *r, const unsigned char *bin);
45 
46 /** Set a scalar to an unsigned integer. */
47 static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v);
48 
49 /** Convert a scalar to a byte array. */
50 static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a);
51 
52 /** Add two scalars together (modulo the group order). Returns whether it overflowed. */
53 static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b);
54 
55 /** Conditionally add a power of two to a scalar. The result is not allowed to overflow. */
56 static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag);
57 
58 /** Multiply two scalars (modulo the group order). */
59 static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b);
60 
61 /** Shift a scalar right by some amount strictly between 0 and 16, returning
62  *  the low bits that were shifted off */
63 static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n);
64 
65 /** Compute the inverse of a scalar (modulo the group order). */
66 static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *a);
67 
68 /** Compute the inverse of a scalar (modulo the group order), without constant-time guarantee. */
69 static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *a);
70 
71 /** Compute the complement of a scalar (modulo the group order). */
72 static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a);
73 
74 /** Check whether a scalar equals zero. */
75 static int secp256k1_scalar_is_zero(const secp256k1_scalar *a);
76 
77 /** Check whether a scalar equals one. */
78 static int secp256k1_scalar_is_one(const secp256k1_scalar *a);
79 
80 /** Check whether a scalar, considered as an nonnegative integer, is even. */
81 static int secp256k1_scalar_is_even(const secp256k1_scalar *a);
82 
83 /** Check whether a scalar is higher than the group order divided by 2. */
84 static int secp256k1_scalar_is_high(const secp256k1_scalar *a);
85 
86 /** Conditionally negate a number, in constant time.
87  * Returns -1 if the number was negated, 1 otherwise */
88 static int secp256k1_scalar_cond_negate(secp256k1_scalar *a, int flag);
89 
90 /** Compare two scalars. */
91 static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b);
92 
93 /** Find r1 and r2 such that r1+r2*2^128 = k. */
94 static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k);
95 /** Find r1 and r2 such that r1+r2*lambda = k,
96  * where r1 and r2 or their negations are maximum 128 bits long (see secp256k1_ge_mul_lambda). */
97 static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k);
98 
99 /** Multiply a and b (without taking the modulus!), divide by 2**shift, and round to the nearest integer. Shift must be at least 256. */
100 static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift);
101 
102 /** If flag is true, set *r equal to *a; otherwise leave it. Constant-time.  Both *r and *a must be initialized.*/
103 static void secp256k1_scalar_cmov(secp256k1_scalar *r, const secp256k1_scalar *a, int flag);
104 
105 #endif /* SECP256K1_SCALAR_H */
106