1 // Copyright (c) 2009-2010 Satoshi Nakamoto
2 // Copyright (c) 2009-2020 The Bitcoin Core developers
3 // Distributed under the MIT software license, see the accompanying
4 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
5 
6 #ifndef BITCOIN_SERIALIZE_H
7 #define BITCOIN_SERIALIZE_H
8 
9 #include <compat/endian.h>
10 
11 #include <algorithm>
12 #include <cstdint>
13 #include <cstring>
14 #include <ios>
15 #include <limits>
16 #include <map>
17 #include <memory>
18 #include <set>
19 #include <string>
20 #include <string.h>
21 #include <utility>
22 #include <vector>
23 
24 #include <prevector.h>
25 #include <span.h>
26 
27 /**
28  * The maximum size of a serialized object in bytes or number of elements
29  * (for eg vectors) when the size is encoded as CompactSize.
30  */
31 static constexpr uint64_t MAX_SIZE = 0x02000000;
main(void)32 
33 /** Maximum amount of memory (in bytes) to allocate at once when deserializing vectors. */
34 static const unsigned int MAX_VECTOR_ALLOCATE = 5000000;
35 
36 /**
37  * Dummy data type to identify deserializing constructors.
38  *
39  * By convention, a constructor of a type T with signature
40  *
41  *   template <typename Stream> T::T(deserialize_type, Stream& s)
42  *
43  * is a deserializing constructor, which builds the type by
44  * deserializing it from s. If T contains const fields, this
45  * is likely the only way to do so.
46  */
47 struct deserialize_type {};
48 constexpr deserialize_type deserialize {};
49 
50 //! Safely convert odd char pointer types to standard ones.
51 inline char* CharCast(char* c) { return c; }
52 inline char* CharCast(unsigned char* c) { return (char*)c; }
53 inline const char* CharCast(const char* c) { return c; }
54 inline const char* CharCast(const unsigned char* c) { return (const char*)c; }
55 
56 /*
57  * Lowest-level serialization and conversion.
58  * @note Sizes of these types are verified in the tests
59  */
60 template<typename Stream> inline void ser_writedata8(Stream &s, uint8_t obj)
61 {
62     s.write((char*)&obj, 1);
63 }
64 template<typename Stream> inline void ser_writedata16(Stream &s, uint16_t obj)
run_tests(secp256k1_context * ctx,unsigned char * key)65 {
66     obj = htole16(obj);
67     s.write((char*)&obj, 2);
68 }
69 template<typename Stream> inline void ser_writedata16be(Stream &s, uint16_t obj)
70 {
71     obj = htobe16(obj);
72     s.write((char*)&obj, 2);
73 }
74 template<typename Stream> inline void ser_writedata32(Stream &s, uint32_t obj)
75 {
76     obj = htole32(obj);
77     s.write((char*)&obj, 4);
78 }
79 template<typename Stream> inline void ser_writedata32be(Stream &s, uint32_t obj)
80 {
81     obj = htobe32(obj);
82     s.write((char*)&obj, 4);
83 }
84 template<typename Stream> inline void ser_writedata64(Stream &s, uint64_t obj)
85 {
86     obj = htole64(obj);
87     s.write((char*)&obj, 8);
88 }
89 template<typename Stream> inline uint8_t ser_readdata8(Stream &s)
90 {
91     uint8_t obj;
92     s.read((char*)&obj, 1);
93     return obj;
94 }
95 template<typename Stream> inline uint16_t ser_readdata16(Stream &s)
96 {
97     uint16_t obj;
98     s.read((char*)&obj, 2);
99     return le16toh(obj);
100 }
101 template<typename Stream> inline uint16_t ser_readdata16be(Stream &s)
102 {
103     uint16_t obj;
104     s.read((char*)&obj, 2);
105     return be16toh(obj);
106 }
107 template<typename Stream> inline uint32_t ser_readdata32(Stream &s)
108 {
109     uint32_t obj;
110     s.read((char*)&obj, 4);
111     return le32toh(obj);
112 }
113 template<typename Stream> inline uint32_t ser_readdata32be(Stream &s)
114 {
115     uint32_t obj;
116     s.read((char*)&obj, 4);
117     return be32toh(obj);
118 }
119 template<typename Stream> inline uint64_t ser_readdata64(Stream &s)
120 {
121     uint64_t obj;
122     s.read((char*)&obj, 8);
123     return le64toh(obj);
124 }
125 
126 
127 /////////////////////////////////////////////////////////////////
128 //
129 // Templates for serializing to anything that looks like a stream,
130 // i.e. anything that supports .read(char*, size_t) and .write(char*, size_t)
131 //
132 
133 class CSizeComputer;
134 
135 enum
136 {
137     // primary actions
138     SER_NETWORK         = (1 << 0),
139     SER_DISK            = (1 << 1),
140     SER_GETHASH         = (1 << 2),
141 };
142 
143 //! Convert the reference base type to X, without changing constness or reference type.
144 template<typename X> X& ReadWriteAsHelper(X& x) { return x; }
145 template<typename X> const X& ReadWriteAsHelper(const X& x) { return x; }
146 
147 #define READWRITE(...) (::SerReadWriteMany(s, ser_action, __VA_ARGS__))
148 #define READWRITEAS(type, obj) (::SerReadWriteMany(s, ser_action, ReadWriteAsHelper<type>(obj)))
149 #define SER_READ(obj, code) ::SerRead(s, ser_action, obj, [&](Stream& s, typename std::remove_const<Type>::type& obj) { code; })
150 #define SER_WRITE(obj, code) ::SerWrite(s, ser_action, obj, [&](Stream& s, const Type& obj) { code; })
151 
152 /**
153  * Implement the Ser and Unser methods needed for implementing a formatter (see Using below).
154  *
155  * Both Ser and Unser are delegated to a single static method SerializationOps, which is polymorphic
156  * in the serialized/deserialized type (allowing it to be const when serializing, and non-const when
157  * deserializing).
158  *
159  * Example use:
160  *   struct FooFormatter {
161  *     FORMATTER_METHODS(Class, obj) { READWRITE(obj.val1, VARINT(obj.val2)); }
162  *   }
163  *   would define a class FooFormatter that defines a serialization of Class objects consisting
164  *   of serializing its val1 member using the default serialization, and its val2 member using
165  *   VARINT serialization. That FooFormatter can then be used in statements like
166  *   READWRITE(Using<FooFormatter>(obj.bla)).
167  */
168 #define FORMATTER_METHODS(cls, obj) \
169     template<typename Stream> \
170     static void Ser(Stream& s, const cls& obj) { SerializationOps(obj, s, CSerActionSerialize()); } \
171     template<typename Stream> \
172     static void Unser(Stream& s, cls& obj) { SerializationOps(obj, s, CSerActionUnserialize()); } \
173     template<typename Stream, typename Type, typename Operation> \
174     static inline void SerializationOps(Type& obj, Stream& s, Operation ser_action) \
175 
176 /**
177  * Implement the Serialize and Unserialize methods by delegating to a single templated
178  * static method that takes the to-be-(de)serialized object as a parameter. This approach
179  * has the advantage that the constness of the object becomes a template parameter, and
180  * thus allows a single implementation that sees the object as const for serializing
181  * and non-const for deserializing, without casts.
182  */
183 #define SERIALIZE_METHODS(cls, obj)                                                 \
184     template<typename Stream>                                                       \
185     void Serialize(Stream& s) const                                                 \
186     {                                                                               \
187         static_assert(std::is_same<const cls&, decltype(*this)>::value, "Serialize type mismatch"); \
188         Ser(s, *this);                                                              \
189     }                                                                               \
190     template<typename Stream>                                                       \
191     void Unserialize(Stream& s)                                                     \
192     {                                                                               \
193         static_assert(std::is_same<cls&, decltype(*this)>::value, "Unserialize type mismatch"); \
194         Unser(s, *this);                                                            \
195     }                                                                               \
196     FORMATTER_METHODS(cls, obj)
197 
198 #ifndef CHAR_EQUALS_INT8
199 template<typename Stream> inline void Serialize(Stream& s, char a    ) { ser_writedata8(s, a); } // TODO Get rid of bare char
200 #endif
201 template<typename Stream> inline void Serialize(Stream& s, int8_t a  ) { ser_writedata8(s, a); }
202 template<typename Stream> inline void Serialize(Stream& s, uint8_t a ) { ser_writedata8(s, a); }
203 template<typename Stream> inline void Serialize(Stream& s, int16_t a ) { ser_writedata16(s, a); }
204 template<typename Stream> inline void Serialize(Stream& s, uint16_t a) { ser_writedata16(s, a); }
205 template<typename Stream> inline void Serialize(Stream& s, int32_t a ) { ser_writedata32(s, a); }
206 template<typename Stream> inline void Serialize(Stream& s, uint32_t a) { ser_writedata32(s, a); }
207 template<typename Stream> inline void Serialize(Stream& s, int64_t a ) { ser_writedata64(s, a); }
208 template<typename Stream> inline void Serialize(Stream& s, uint64_t a) { ser_writedata64(s, a); }
209 template<typename Stream, int N> inline void Serialize(Stream& s, const char (&a)[N]) { s.write(a, N); }
210 template<typename Stream, int N> inline void Serialize(Stream& s, const unsigned char (&a)[N]) { s.write(CharCast(a), N); }
211 template<typename Stream> inline void Serialize(Stream& s, const Span<const unsigned char>& span) { s.write(CharCast(span.data()), span.size()); }
212 template<typename Stream> inline void Serialize(Stream& s, const Span<unsigned char>& span) { s.write(CharCast(span.data()), span.size()); }
213 
214 #ifndef CHAR_EQUALS_INT8
215 template<typename Stream> inline void Unserialize(Stream& s, char& a    ) { a = ser_readdata8(s); } // TODO Get rid of bare char
216 #endif
217 template<typename Stream> inline void Unserialize(Stream& s, int8_t& a  ) { a = ser_readdata8(s); }
218 template<typename Stream> inline void Unserialize(Stream& s, uint8_t& a ) { a = ser_readdata8(s); }
219 template<typename Stream> inline void Unserialize(Stream& s, int16_t& a ) { a = ser_readdata16(s); }
220 template<typename Stream> inline void Unserialize(Stream& s, uint16_t& a) { a = ser_readdata16(s); }
221 template<typename Stream> inline void Unserialize(Stream& s, int32_t& a ) { a = ser_readdata32(s); }
222 template<typename Stream> inline void Unserialize(Stream& s, uint32_t& a) { a = ser_readdata32(s); }
223 template<typename Stream> inline void Unserialize(Stream& s, int64_t& a ) { a = ser_readdata64(s); }
224 template<typename Stream> inline void Unserialize(Stream& s, uint64_t& a) { a = ser_readdata64(s); }
225 template<typename Stream, int N> inline void Unserialize(Stream& s, char (&a)[N]) { s.read(a, N); }
226 template<typename Stream, int N> inline void Unserialize(Stream& s, unsigned char (&a)[N]) { s.read(CharCast(a), N); }
227 template<typename Stream> inline void Unserialize(Stream& s, Span<unsigned char>& span) { s.read(CharCast(span.data()), span.size()); }
228 
229 template <typename Stream> inline void Serialize(Stream& s, bool a) { uint8_t f = a; ser_writedata8(s, f); }
230 template <typename Stream> inline void Unserialize(Stream& s, bool& a) { uint8_t f = ser_readdata8(s); a = f; }
231 
232 
233 /**
234  * Compact Size
235  * size <  253        -- 1 byte
236  * size <= USHRT_MAX  -- 3 bytes  (253 + 2 bytes)
237  * size <= UINT_MAX   -- 5 bytes  (254 + 4 bytes)
238  * size >  UINT_MAX   -- 9 bytes  (255 + 8 bytes)
239  */
240 inline unsigned int GetSizeOfCompactSize(uint64_t nSize)
241 {
242     if (nSize < 253)             return sizeof(unsigned char);
243     else if (nSize <= std::numeric_limits<uint16_t>::max()) return sizeof(unsigned char) + sizeof(uint16_t);
244     else if (nSize <= std::numeric_limits<unsigned int>::max())  return sizeof(unsigned char) + sizeof(unsigned int);
245     else                         return sizeof(unsigned char) + sizeof(uint64_t);
246 }
247 
248 inline void WriteCompactSize(CSizeComputer& os, uint64_t nSize);
249 
250 template<typename Stream>
251 void WriteCompactSize(Stream& os, uint64_t nSize)
252 {
253     if (nSize < 253)
254     {
255         ser_writedata8(os, nSize);
256     }
257     else if (nSize <= std::numeric_limits<uint16_t>::max())
258     {
259         ser_writedata8(os, 253);
260         ser_writedata16(os, nSize);
261     }
262     else if (nSize <= std::numeric_limits<unsigned int>::max())
263     {
264         ser_writedata8(os, 254);
265         ser_writedata32(os, nSize);
266     }
267     else
268     {
269         ser_writedata8(os, 255);
270         ser_writedata64(os, nSize);
271     }
272     return;
273 }
274 
275 /**
276  * Decode a CompactSize-encoded variable-length integer.
277  *
278  * As these are primarily used to encode the size of vector-like serializations, by default a range
279  * check is performed. When used as a generic number encoding, range_check should be set to false.
280  */
281 template<typename Stream>
282 uint64_t ReadCompactSize(Stream& is, bool range_check = true)
283 {
284     uint8_t chSize = ser_readdata8(is);
285     uint64_t nSizeRet = 0;
286     if (chSize < 253)
287     {
288         nSizeRet = chSize;
289     }
290     else if (chSize == 253)
291     {
292         nSizeRet = ser_readdata16(is);
293         if (nSizeRet < 253)
294             throw std::ios_base::failure("non-canonical ReadCompactSize()");
295     }
296     else if (chSize == 254)
297     {
298         nSizeRet = ser_readdata32(is);
299         if (nSizeRet < 0x10000u)
300             throw std::ios_base::failure("non-canonical ReadCompactSize()");
301     }
302     else
303     {
304         nSizeRet = ser_readdata64(is);
305         if (nSizeRet < 0x100000000ULL)
306             throw std::ios_base::failure("non-canonical ReadCompactSize()");
307     }
308     if (range_check && nSizeRet > MAX_SIZE) {
309         throw std::ios_base::failure("ReadCompactSize(): size too large");
310     }
311     return nSizeRet;
312 }
313 
314 /**
315  * Variable-length integers: bytes are a MSB base-128 encoding of the number.
316  * The high bit in each byte signifies whether another digit follows. To make
317  * sure the encoding is one-to-one, one is subtracted from all but the last digit.
318  * Thus, the byte sequence a[] with length len, where all but the last byte
319  * has bit 128 set, encodes the number:
320  *
321  *  (a[len-1] & 0x7F) + sum(i=1..len-1, 128^i*((a[len-i-1] & 0x7F)+1))
322  *
323  * Properties:
324  * * Very small (0-127: 1 byte, 128-16511: 2 bytes, 16512-2113663: 3 bytes)
325  * * Every integer has exactly one encoding
326  * * Encoding does not depend on size of original integer type
327  * * No redundancy: every (infinite) byte sequence corresponds to a list
328  *   of encoded integers.
329  *
330  * 0:         [0x00]  256:        [0x81 0x00]
331  * 1:         [0x01]  16383:      [0xFE 0x7F]
332  * 127:       [0x7F]  16384:      [0xFF 0x00]
333  * 128:  [0x80 0x00]  16511:      [0xFF 0x7F]
334  * 255:  [0x80 0x7F]  65535: [0x82 0xFE 0x7F]
335  * 2^32:           [0x8E 0xFE 0xFE 0xFF 0x00]
336  */
337 
338 /**
339  * Mode for encoding VarInts.
340  *
341  * Currently there is no support for signed encodings. The default mode will not
342  * compile with signed values, and the legacy "nonnegative signed" mode will
343  * accept signed values, but improperly encode and decode them if they are
344  * negative. In the future, the DEFAULT mode could be extended to support
345  * negative numbers in a backwards compatible way, and additional modes could be
346  * added to support different varint formats (e.g. zigzag encoding).
347  */
348 enum class VarIntMode { DEFAULT, NONNEGATIVE_SIGNED };
349 
350 template <VarIntMode Mode, typename I>
351 struct CheckVarIntMode {
352     constexpr CheckVarIntMode()
353     {
354         static_assert(Mode != VarIntMode::DEFAULT || std::is_unsigned<I>::value, "Unsigned type required with mode DEFAULT.");
355         static_assert(Mode != VarIntMode::NONNEGATIVE_SIGNED || std::is_signed<I>::value, "Signed type required with mode NONNEGATIVE_SIGNED.");
356     }
357 };
358 
359 template<VarIntMode Mode, typename I>
360 inline unsigned int GetSizeOfVarInt(I n)
361 {
362     CheckVarIntMode<Mode, I>();
363     int nRet = 0;
364     while(true) {
365         nRet++;
366         if (n <= 0x7F)
367             break;
368         n = (n >> 7) - 1;
369     }
370     return nRet;
371 }
372 
373 template<typename I>
374 inline void WriteVarInt(CSizeComputer& os, I n);
375 
376 template<typename Stream, VarIntMode Mode, typename I>
377 void WriteVarInt(Stream& os, I n)
378 {
379     CheckVarIntMode<Mode, I>();
380     unsigned char tmp[(sizeof(n)*8+6)/7];
381     int len=0;
382     while(true) {
383         tmp[len] = (n & 0x7F) | (len ? 0x80 : 0x00);
384         if (n <= 0x7F)
385             break;
386         n = (n >> 7) - 1;
387         len++;
388     }
389     do {
390         ser_writedata8(os, tmp[len]);
391     } while(len--);
392 }
393 
394 template<typename Stream, VarIntMode Mode, typename I>
395 I ReadVarInt(Stream& is)
396 {
397     CheckVarIntMode<Mode, I>();
398     I n = 0;
399     while(true) {
400         unsigned char chData = ser_readdata8(is);
401         if (n > (std::numeric_limits<I>::max() >> 7)) {
402            throw std::ios_base::failure("ReadVarInt(): size too large");
403         }
404         n = (n << 7) | (chData & 0x7F);
405         if (chData & 0x80) {
406             if (n == std::numeric_limits<I>::max()) {
407                 throw std::ios_base::failure("ReadVarInt(): size too large");
408             }
409             n++;
410         } else {
411             return n;
412         }
413     }
414 }
415 
416 /** Simple wrapper class to serialize objects using a formatter; used by Using(). */
417 template<typename Formatter, typename T>
418 class Wrapper
419 {
420     static_assert(std::is_lvalue_reference<T>::value, "Wrapper needs an lvalue reference type T");
421 protected:
422     T m_object;
423 public:
424     explicit Wrapper(T obj) : m_object(obj) {}
425     template<typename Stream> void Serialize(Stream &s) const { Formatter().Ser(s, m_object); }
426     template<typename Stream> void Unserialize(Stream &s) { Formatter().Unser(s, m_object); }
427 };
428 
429 /** Cause serialization/deserialization of an object to be done using a specified formatter class.
430  *
431  * To use this, you need a class Formatter that has public functions Ser(stream, const object&) for
432  * serialization, and Unser(stream, object&) for deserialization. Serialization routines (inside
433  * READWRITE, or directly with << and >> operators), can then use Using<Formatter>(object).
434  *
435  * This works by constructing a Wrapper<Formatter, T>-wrapped version of object, where T is
436  * const during serialization, and non-const during deserialization, which maintains const
437  * correctness.
438  */
439 template<typename Formatter, typename T>
440 static inline Wrapper<Formatter, T&> Using(T&& t) { return Wrapper<Formatter, T&>(t); }
441 
442 #define VARINT_MODE(obj, mode) Using<VarIntFormatter<mode>>(obj)
443 #define VARINT(obj) Using<VarIntFormatter<VarIntMode::DEFAULT>>(obj)
444 #define COMPACTSIZE(obj) Using<CompactSizeFormatter<true>>(obj)
445 #define LIMITED_STRING(obj,n) Using<LimitedStringFormatter<n>>(obj)
446 
447 /** Serialization wrapper class for integers in VarInt format. */
448 template<VarIntMode Mode>
449 struct VarIntFormatter
450 {
451     template<typename Stream, typename I> void Ser(Stream &s, I v)
452     {
453         WriteVarInt<Stream,Mode,typename std::remove_cv<I>::type>(s, v);
454     }
455 
456     template<typename Stream, typename I> void Unser(Stream& s, I& v)
457     {
458         v = ReadVarInt<Stream,Mode,typename std::remove_cv<I>::type>(s);
459     }
460 };
461 
462 /** Serialization wrapper class for custom integers and enums.
463  *
464  * It permits specifying the serialized size (1 to 8 bytes) and endianness.
465  *
466  * Use the big endian mode for values that are stored in memory in native
467  * byte order, but serialized in big endian notation. This is only intended
468  * to implement serializers that are compatible with existing formats, and
469  * its use is not recommended for new data structures.
470  */
471 template<int Bytes, bool BigEndian = false>
472 struct CustomUintFormatter
473 {
474     static_assert(Bytes > 0 && Bytes <= 8, "CustomUintFormatter Bytes out of range");
475     static constexpr uint64_t MAX = 0xffffffffffffffff >> (8 * (8 - Bytes));
476 
477     template <typename Stream, typename I> void Ser(Stream& s, I v)
478     {
479         if (v < 0 || v > MAX) throw std::ios_base::failure("CustomUintFormatter value out of range");
480         if (BigEndian) {
481             uint64_t raw = htobe64(v);
482             s.write(((const char*)&raw) + 8 - Bytes, Bytes);
483         } else {
484             uint64_t raw = htole64(v);
485             s.write((const char*)&raw, Bytes);
486         }
487     }
488 
489     template <typename Stream, typename I> void Unser(Stream& s, I& v)
490     {
491         using U = typename std::conditional<std::is_enum<I>::value, std::underlying_type<I>, std::common_type<I>>::type::type;
492         static_assert(std::numeric_limits<U>::max() >= MAX && std::numeric_limits<U>::min() <= 0, "Assigned type too small");
493         uint64_t raw = 0;
494         if (BigEndian) {
495             s.read(((char*)&raw) + 8 - Bytes, Bytes);
496             v = static_cast<I>(be64toh(raw));
497         } else {
498             s.read((char*)&raw, Bytes);
499             v = static_cast<I>(le64toh(raw));
500         }
501     }
502 };
503 
504 template<int Bytes> using BigEndianFormatter = CustomUintFormatter<Bytes, true>;
505 
506 /** Formatter for integers in CompactSize format. */
507 template<bool RangeCheck>
508 struct CompactSizeFormatter
509 {
510     template<typename Stream, typename I>
511     void Unser(Stream& s, I& v)
512     {
513         uint64_t n = ReadCompactSize<Stream>(s, RangeCheck);
514         if (n < std::numeric_limits<I>::min() || n > std::numeric_limits<I>::max()) {
515             throw std::ios_base::failure("CompactSize exceeds limit of type");
516         }
517         v = n;
518     }
519 
520     template<typename Stream, typename I>
521     void Ser(Stream& s, I v)
522     {
523         static_assert(std::is_unsigned<I>::value, "CompactSize only supported for unsigned integers");
524         static_assert(std::numeric_limits<I>::max() <= std::numeric_limits<uint64_t>::max(), "CompactSize only supports 64-bit integers and below");
525 
526         WriteCompactSize<Stream>(s, v);
527     }
528 };
529 
530 template<size_t Limit>
531 struct LimitedStringFormatter
532 {
533     template<typename Stream>
534     void Unser(Stream& s, std::string& v)
535     {
536         size_t size = ReadCompactSize(s);
537         if (size > Limit) {
538             throw std::ios_base::failure("String length limit exceeded");
539         }
540         v.resize(size);
541         if (size != 0) s.read((char*)v.data(), size);
542     }
543 
544     template<typename Stream>
545     void Ser(Stream& s, const std::string& v)
546     {
547         s << v;
548     }
549 };
550 
551 /** Formatter to serialize/deserialize vector elements using another formatter
552  *
553  * Example:
554  *   struct X {
555  *     std::vector<uint64_t> v;
556  *     SERIALIZE_METHODS(X, obj) { READWRITE(Using<VectorFormatter<VarInt>>(obj.v)); }
557  *   };
558  * will define a struct that contains a vector of uint64_t, which is serialized
559  * as a vector of VarInt-encoded integers.
560  *
561  * V is not required to be an std::vector type. It works for any class that
562  * exposes a value_type, size, reserve, emplace_back, back, and const iterators.
563  */
564 template<class Formatter>
565 struct VectorFormatter
566 {
567     template<typename Stream, typename V>
568     void Ser(Stream& s, const V& v)
569     {
570         Formatter formatter;
571         WriteCompactSize(s, v.size());
572         for (const typename V::value_type& elem : v) {
573             formatter.Ser(s, elem);
574         }
575     }
576 
577     template<typename Stream, typename V>
578     void Unser(Stream& s, V& v)
579     {
580         Formatter formatter;
581         v.clear();
582         size_t size = ReadCompactSize(s);
583         size_t allocated = 0;
584         while (allocated < size) {
585             // For DoS prevention, do not blindly allocate as much as the stream claims to contain.
586             // Instead, allocate in 5MiB batches, so that an attacker actually needs to provide
587             // X MiB of data to make us allocate X+5 Mib.
588             static_assert(sizeof(typename V::value_type) <= MAX_VECTOR_ALLOCATE, "Vector element size too large");
589             allocated = std::min(size, allocated + MAX_VECTOR_ALLOCATE / sizeof(typename V::value_type));
590             v.reserve(allocated);
591             while (v.size() < allocated) {
592                 v.emplace_back();
593                 formatter.Unser(s, v.back());
594             }
595         }
596     };
597 };
598 
599 /**
600  * Forward declarations
601  */
602 
603 /**
604  *  string
605  */
606 template<typename Stream, typename C> void Serialize(Stream& os, const std::basic_string<C>& str);
607 template<typename Stream, typename C> void Unserialize(Stream& is, std::basic_string<C>& str);
608 
609 /**
610  * prevector
611  * prevectors of unsigned char are a special case and are intended to be serialized as a single opaque blob.
612  */
613 template<typename Stream, unsigned int N, typename T> void Serialize_impl(Stream& os, const prevector<N, T>& v, const unsigned char&);
614 template<typename Stream, unsigned int N, typename T, typename V> void Serialize_impl(Stream& os, const prevector<N, T>& v, const V&);
615 template<typename Stream, unsigned int N, typename T> inline void Serialize(Stream& os, const prevector<N, T>& v);
616 template<typename Stream, unsigned int N, typename T> void Unserialize_impl(Stream& is, prevector<N, T>& v, const unsigned char&);
617 template<typename Stream, unsigned int N, typename T, typename V> void Unserialize_impl(Stream& is, prevector<N, T>& v, const V&);
618 template<typename Stream, unsigned int N, typename T> inline void Unserialize(Stream& is, prevector<N, T>& v);
619 
620 /**
621  * vector
622  * vectors of unsigned char are a special case and are intended to be serialized as a single opaque blob.
623  */
624 template<typename Stream, typename T, typename A> void Serialize_impl(Stream& os, const std::vector<T, A>& v, const unsigned char&);
625 template<typename Stream, typename T, typename A> void Serialize_impl(Stream& os, const std::vector<T, A>& v, const bool&);
626 template<typename Stream, typename T, typename A, typename V> void Serialize_impl(Stream& os, const std::vector<T, A>& v, const V&);
627 template<typename Stream, typename T, typename A> inline void Serialize(Stream& os, const std::vector<T, A>& v);
628 template<typename Stream, typename T, typename A> void Unserialize_impl(Stream& is, std::vector<T, A>& v, const unsigned char&);
629 template<typename Stream, typename T, typename A, typename V> void Unserialize_impl(Stream& is, std::vector<T, A>& v, const V&);
630 template<typename Stream, typename T, typename A> inline void Unserialize(Stream& is, std::vector<T, A>& v);
631 
632 /**
633  * pair
634  */
635 template<typename Stream, typename K, typename T> void Serialize(Stream& os, const std::pair<K, T>& item);
636 template<typename Stream, typename K, typename T> void Unserialize(Stream& is, std::pair<K, T>& item);
637 
638 /**
639  * map
640  */
641 template<typename Stream, typename K, typename T, typename Pred, typename A> void Serialize(Stream& os, const std::map<K, T, Pred, A>& m);
642 template<typename Stream, typename K, typename T, typename Pred, typename A> void Unserialize(Stream& is, std::map<K, T, Pred, A>& m);
643 
644 /**
645  * set
646  */
647 template<typename Stream, typename K, typename Pred, typename A> void Serialize(Stream& os, const std::set<K, Pred, A>& m);
648 template<typename Stream, typename K, typename Pred, typename A> void Unserialize(Stream& is, std::set<K, Pred, A>& m);
649 
650 /**
651  * shared_ptr
652  */
653 template<typename Stream, typename T> void Serialize(Stream& os, const std::shared_ptr<const T>& p);
654 template<typename Stream, typename T> void Unserialize(Stream& os, std::shared_ptr<const T>& p);
655 
656 /**
657  * unique_ptr
658  */
659 template<typename Stream, typename T> void Serialize(Stream& os, const std::unique_ptr<const T>& p);
660 template<typename Stream, typename T> void Unserialize(Stream& os, std::unique_ptr<const T>& p);
661 
662 
663 
664 /**
665  * If none of the specialized versions above matched, default to calling member function.
666  */
667 template<typename Stream, typename T>
668 inline void Serialize(Stream& os, const T& a)
669 {
670     a.Serialize(os);
671 }
672 
673 template<typename Stream, typename T>
674 inline void Unserialize(Stream& is, T&& a)
675 {
676     a.Unserialize(is);
677 }
678 
679 /** Default formatter. Serializes objects as themselves.
680  *
681  * The vector/prevector serialization code passes this to VectorFormatter
682  * to enable reusing that logic. It shouldn't be needed elsewhere.
683  */
684 struct DefaultFormatter
685 {
686     template<typename Stream, typename T>
687     static void Ser(Stream& s, const T& t) { Serialize(s, t); }
688 
689     template<typename Stream, typename T>
690     static void Unser(Stream& s, T& t) { Unserialize(s, t); }
691 };
692 
693 
694 
695 
696 
697 /**
698  * string
699  */
700 template<typename Stream, typename C>
701 void Serialize(Stream& os, const std::basic_string<C>& str)
702 {
703     WriteCompactSize(os, str.size());
704     if (!str.empty())
705         os.write((char*)str.data(), str.size() * sizeof(C));
706 }
707 
708 template<typename Stream, typename C>
709 void Unserialize(Stream& is, std::basic_string<C>& str)
710 {
711     unsigned int nSize = ReadCompactSize(is);
712     str.resize(nSize);
713     if (nSize != 0)
714         is.read((char*)str.data(), nSize * sizeof(C));
715 }
716 
717 
718 
719 /**
720  * prevector
721  */
722 template<typename Stream, unsigned int N, typename T>
723 void Serialize_impl(Stream& os, const prevector<N, T>& v, const unsigned char&)
724 {
725     WriteCompactSize(os, v.size());
726     if (!v.empty())
727         os.write((char*)v.data(), v.size() * sizeof(T));
728 }
729 
730 template<typename Stream, unsigned int N, typename T, typename V>
731 void Serialize_impl(Stream& os, const prevector<N, T>& v, const V&)
732 {
733     Serialize(os, Using<VectorFormatter<DefaultFormatter>>(v));
734 }
735 
736 template<typename Stream, unsigned int N, typename T>
737 inline void Serialize(Stream& os, const prevector<N, T>& v)
738 {
739     Serialize_impl(os, v, T());
740 }
741 
742 
743 template<typename Stream, unsigned int N, typename T>
744 void Unserialize_impl(Stream& is, prevector<N, T>& v, const unsigned char&)
745 {
746     // Limit size per read so bogus size value won't cause out of memory
747     v.clear();
748     unsigned int nSize = ReadCompactSize(is);
749     unsigned int i = 0;
750     while (i < nSize)
751     {
752         unsigned int blk = std::min(nSize - i, (unsigned int)(1 + 4999999 / sizeof(T)));
753         v.resize_uninitialized(i + blk);
754         is.read((char*)&v[i], blk * sizeof(T));
755         i += blk;
756     }
757 }
758 
759 template<typename Stream, unsigned int N, typename T, typename V>
760 void Unserialize_impl(Stream& is, prevector<N, T>& v, const V&)
761 {
762     Unserialize(is, Using<VectorFormatter<DefaultFormatter>>(v));
763 }
764 
765 template<typename Stream, unsigned int N, typename T>
766 inline void Unserialize(Stream& is, prevector<N, T>& v)
767 {
768     Unserialize_impl(is, v, T());
769 }
770 
771 
772 
773 /**
774  * vector
775  */
776 template<typename Stream, typename T, typename A>
777 void Serialize_impl(Stream& os, const std::vector<T, A>& v, const unsigned char&)
778 {
779     WriteCompactSize(os, v.size());
780     if (!v.empty())
781         os.write((char*)v.data(), v.size() * sizeof(T));
782 }
783 
784 template<typename Stream, typename T, typename A>
785 void Serialize_impl(Stream& os, const std::vector<T, A>& v, const bool&)
786 {
787     // A special case for std::vector<bool>, as dereferencing
788     // std::vector<bool>::const_iterator does not result in a const bool&
789     // due to std::vector's special casing for bool arguments.
790     WriteCompactSize(os, v.size());
791     for (bool elem : v) {
792         ::Serialize(os, elem);
793     }
794 }
795 
796 template<typename Stream, typename T, typename A, typename V>
797 void Serialize_impl(Stream& os, const std::vector<T, A>& v, const V&)
798 {
799     Serialize(os, Using<VectorFormatter<DefaultFormatter>>(v));
800 }
801 
802 template<typename Stream, typename T, typename A>
803 inline void Serialize(Stream& os, const std::vector<T, A>& v)
804 {
805     Serialize_impl(os, v, T());
806 }
807 
808 
809 template<typename Stream, typename T, typename A>
810 void Unserialize_impl(Stream& is, std::vector<T, A>& v, const unsigned char&)
811 {
812     // Limit size per read so bogus size value won't cause out of memory
813     v.clear();
814     unsigned int nSize = ReadCompactSize(is);
815     unsigned int i = 0;
816     while (i < nSize)
817     {
818         unsigned int blk = std::min(nSize - i, (unsigned int)(1 + 4999999 / sizeof(T)));
819         v.resize(i + blk);
820         is.read((char*)&v[i], blk * sizeof(T));
821         i += blk;
822     }
823 }
824 
825 template<typename Stream, typename T, typename A, typename V>
826 void Unserialize_impl(Stream& is, std::vector<T, A>& v, const V&)
827 {
828     Unserialize(is, Using<VectorFormatter<DefaultFormatter>>(v));
829 }
830 
831 template<typename Stream, typename T, typename A>
832 inline void Unserialize(Stream& is, std::vector<T, A>& v)
833 {
834     Unserialize_impl(is, v, T());
835 }
836 
837 
838 
839 /**
840  * pair
841  */
842 template<typename Stream, typename K, typename T>
843 void Serialize(Stream& os, const std::pair<K, T>& item)
844 {
845     Serialize(os, item.first);
846     Serialize(os, item.second);
847 }
848 
849 template<typename Stream, typename K, typename T>
850 void Unserialize(Stream& is, std::pair<K, T>& item)
851 {
852     Unserialize(is, item.first);
853     Unserialize(is, item.second);
854 }
855 
856 
857 
858 /**
859  * map
860  */
861 template<typename Stream, typename K, typename T, typename Pred, typename A>
862 void Serialize(Stream& os, const std::map<K, T, Pred, A>& m)
863 {
864     WriteCompactSize(os, m.size());
865     for (const auto& entry : m)
866         Serialize(os, entry);
867 }
868 
869 template<typename Stream, typename K, typename T, typename Pred, typename A>
870 void Unserialize(Stream& is, std::map<K, T, Pred, A>& m)
871 {
872     m.clear();
873     unsigned int nSize = ReadCompactSize(is);
874     typename std::map<K, T, Pred, A>::iterator mi = m.begin();
875     for (unsigned int i = 0; i < nSize; i++)
876     {
877         std::pair<K, T> item;
878         Unserialize(is, item);
879         mi = m.insert(mi, item);
880     }
881 }
882 
883 
884 
885 /**
886  * set
887  */
888 template<typename Stream, typename K, typename Pred, typename A>
889 void Serialize(Stream& os, const std::set<K, Pred, A>& m)
890 {
891     WriteCompactSize(os, m.size());
892     for (typename std::set<K, Pred, A>::const_iterator it = m.begin(); it != m.end(); ++it)
893         Serialize(os, (*it));
894 }
895 
896 template<typename Stream, typename K, typename Pred, typename A>
897 void Unserialize(Stream& is, std::set<K, Pred, A>& m)
898 {
899     m.clear();
900     unsigned int nSize = ReadCompactSize(is);
901     typename std::set<K, Pred, A>::iterator it = m.begin();
902     for (unsigned int i = 0; i < nSize; i++)
903     {
904         K key;
905         Unserialize(is, key);
906         it = m.insert(it, key);
907     }
908 }
909 
910 
911 
912 /**
913  * unique_ptr
914  */
915 template<typename Stream, typename T> void
916 Serialize(Stream& os, const std::unique_ptr<const T>& p)
917 {
918     Serialize(os, *p);
919 }
920 
921 template<typename Stream, typename T>
922 void Unserialize(Stream& is, std::unique_ptr<const T>& p)
923 {
924     p.reset(new T(deserialize, is));
925 }
926 
927 
928 
929 /**
930  * shared_ptr
931  */
932 template<typename Stream, typename T> void
933 Serialize(Stream& os, const std::shared_ptr<const T>& p)
934 {
935     Serialize(os, *p);
936 }
937 
938 template<typename Stream, typename T>
939 void Unserialize(Stream& is, std::shared_ptr<const T>& p)
940 {
941     p = std::make_shared<const T>(deserialize, is);
942 }
943 
944 
945 
946 /**
947  * Support for SERIALIZE_METHODS and READWRITE macro.
948  */
949 struct CSerActionSerialize
950 {
951     constexpr bool ForRead() const { return false; }
952 };
953 struct CSerActionUnserialize
954 {
955     constexpr bool ForRead() const { return true; }
956 };
957 
958 
959 
960 
961 
962 
963 
964 
965 /* ::GetSerializeSize implementations
966  *
967  * Computing the serialized size of objects is done through a special stream
968  * object of type CSizeComputer, which only records the number of bytes written
969  * to it.
970  *
971  * If your Serialize or SerializationOp method has non-trivial overhead for
972  * serialization, it may be worthwhile to implement a specialized version for
973  * CSizeComputer, which uses the s.seek() method to record bytes that would
974  * be written instead.
975  */
976 class CSizeComputer
977 {
978 protected:
979     size_t nSize;
980 
981     const int nVersion;
982 public:
983     explicit CSizeComputer(int nVersionIn) : nSize(0), nVersion(nVersionIn) {}
984 
985     void write(const char *psz, size_t _nSize)
986     {
987         this->nSize += _nSize;
988     }
989 
990     /** Pretend _nSize bytes are written, without specifying them. */
991     void seek(size_t _nSize)
992     {
993         this->nSize += _nSize;
994     }
995 
996     template<typename T>
997     CSizeComputer& operator<<(const T& obj)
998     {
999         ::Serialize(*this, obj);
1000         return (*this);
1001     }
1002 
1003     size_t size() const {
1004         return nSize;
1005     }
1006 
1007     int GetVersion() const { return nVersion; }
1008 };
1009 
1010 template<typename Stream>
1011 void SerializeMany(Stream& s)
1012 {
1013 }
1014 
1015 template<typename Stream, typename Arg, typename... Args>
1016 void SerializeMany(Stream& s, const Arg& arg, const Args&... args)
1017 {
1018     ::Serialize(s, arg);
1019     ::SerializeMany(s, args...);
1020 }
1021 
1022 template<typename Stream>
1023 inline void UnserializeMany(Stream& s)
1024 {
1025 }
1026 
1027 template<typename Stream, typename Arg, typename... Args>
1028 inline void UnserializeMany(Stream& s, Arg&& arg, Args&&... args)
1029 {
1030     ::Unserialize(s, arg);
1031     ::UnserializeMany(s, args...);
1032 }
1033 
1034 template<typename Stream, typename... Args>
1035 inline void SerReadWriteMany(Stream& s, CSerActionSerialize ser_action, const Args&... args)
1036 {
1037     ::SerializeMany(s, args...);
1038 }
1039 
1040 template<typename Stream, typename... Args>
1041 inline void SerReadWriteMany(Stream& s, CSerActionUnserialize ser_action, Args&&... args)
1042 {
1043     ::UnserializeMany(s, args...);
1044 }
1045 
1046 template<typename Stream, typename Type, typename Fn>
1047 inline void SerRead(Stream& s, CSerActionSerialize ser_action, Type&&, Fn&&)
1048 {
1049 }
1050 
1051 template<typename Stream, typename Type, typename Fn>
1052 inline void SerRead(Stream& s, CSerActionUnserialize ser_action, Type&& obj, Fn&& fn)
1053 {
1054     fn(s, std::forward<Type>(obj));
1055 }
1056 
1057 template<typename Stream, typename Type, typename Fn>
1058 inline void SerWrite(Stream& s, CSerActionSerialize ser_action, Type&& obj, Fn&& fn)
1059 {
1060     fn(s, std::forward<Type>(obj));
1061 }
1062 
1063 template<typename Stream, typename Type, typename Fn>
1064 inline void SerWrite(Stream& s, CSerActionUnserialize ser_action, Type&&, Fn&&)
1065 {
1066 }
1067 
1068 template<typename I>
1069 inline void WriteVarInt(CSizeComputer &s, I n)
1070 {
1071     s.seek(GetSizeOfVarInt<I>(n));
1072 }
1073 
1074 inline void WriteCompactSize(CSizeComputer &s, uint64_t nSize)
1075 {
1076     s.seek(GetSizeOfCompactSize(nSize));
1077 }
1078 
1079 template <typename T>
1080 size_t GetSerializeSize(const T& t, int nVersion = 0)
1081 {
1082     return (CSizeComputer(nVersion) << t).size();
1083 }
1084 
1085 template <typename... T>
1086 size_t GetSerializeSizeMany(int nVersion, const T&... t)
1087 {
1088     CSizeComputer sc(nVersion);
1089     SerializeMany(sc, t...);
1090     return sc.size();
1091 }
1092 
1093 #endif // BITCOIN_SERIALIZE_H
1094