1package dns 2 3import ( 4 "crypto" 5 "crypto/ecdsa" 6 "crypto/ed25519" 7 "crypto/rsa" 8 "math/big" 9 "strconv" 10) 11 12const format = "Private-key-format: v1.3\n" 13 14var bigIntOne = big.NewInt(1) 15 16// PrivateKeyString converts a PrivateKey to a string. This string has the same 17// format as the private-key-file of BIND9 (Private-key-format: v1.3). 18// It needs some info from the key (the algorithm), so its a method of the DNSKEY. 19// It supports *rsa.PrivateKey, *ecdsa.PrivateKey and ed25519.PrivateKey. 20func (r *DNSKEY) PrivateKeyString(p crypto.PrivateKey) string { 21 algorithm := strconv.Itoa(int(r.Algorithm)) 22 algorithm += " (" + AlgorithmToString[r.Algorithm] + ")" 23 24 switch p := p.(type) { 25 case *rsa.PrivateKey: 26 modulus := toBase64(p.PublicKey.N.Bytes()) 27 e := big.NewInt(int64(p.PublicKey.E)) 28 publicExponent := toBase64(e.Bytes()) 29 privateExponent := toBase64(p.D.Bytes()) 30 prime1 := toBase64(p.Primes[0].Bytes()) 31 prime2 := toBase64(p.Primes[1].Bytes()) 32 // Calculate Exponent1/2 and Coefficient as per: http://en.wikipedia.org/wiki/RSA#Using_the_Chinese_remainder_algorithm 33 // and from: http://code.google.com/p/go/issues/detail?id=987 34 p1 := new(big.Int).Sub(p.Primes[0], bigIntOne) 35 q1 := new(big.Int).Sub(p.Primes[1], bigIntOne) 36 exp1 := new(big.Int).Mod(p.D, p1) 37 exp2 := new(big.Int).Mod(p.D, q1) 38 coeff := new(big.Int).ModInverse(p.Primes[1], p.Primes[0]) 39 40 exponent1 := toBase64(exp1.Bytes()) 41 exponent2 := toBase64(exp2.Bytes()) 42 coefficient := toBase64(coeff.Bytes()) 43 44 return format + 45 "Algorithm: " + algorithm + "\n" + 46 "Modulus: " + modulus + "\n" + 47 "PublicExponent: " + publicExponent + "\n" + 48 "PrivateExponent: " + privateExponent + "\n" + 49 "Prime1: " + prime1 + "\n" + 50 "Prime2: " + prime2 + "\n" + 51 "Exponent1: " + exponent1 + "\n" + 52 "Exponent2: " + exponent2 + "\n" + 53 "Coefficient: " + coefficient + "\n" 54 55 case *ecdsa.PrivateKey: 56 var intlen int 57 switch r.Algorithm { 58 case ECDSAP256SHA256: 59 intlen = 32 60 case ECDSAP384SHA384: 61 intlen = 48 62 } 63 private := toBase64(intToBytes(p.D, intlen)) 64 return format + 65 "Algorithm: " + algorithm + "\n" + 66 "PrivateKey: " + private + "\n" 67 68 case ed25519.PrivateKey: 69 private := toBase64(p.Seed()) 70 return format + 71 "Algorithm: " + algorithm + "\n" + 72 "PrivateKey: " + private + "\n" 73 74 default: 75 return "" 76 } 77} 78