1// Copyright 2019 The go-ethereum Authors
2// This file is part of the go-ethereum library.
3//
4// The go-ethereum library is free software: you can redistribute it and/or modify
5// it under the terms of the GNU Lesser General Public License as published by
6// the Free Software Foundation, either version 3 of the License, or
7// (at your option) any later version.
8//
9// The go-ethereum library is distributed in the hope that it will be useful,
10// but WITHOUT ANY WARRANTY; without even the implied warranty of
11// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12// GNU Lesser General Public License for more details.
13//
14// You should have received a copy of the GNU Lesser General Public License
15// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
16
17package snapshot
18
19import (
20	"bytes"
21	"fmt"
22	"sort"
23
24	"github.com/ethereum/go-ethereum/common"
25)
26
27// weightedIterator is a iterator with an assigned weight. It is used to prioritise
28// which account or storage slot is the correct one if multiple iterators find the
29// same one (modified in multiple consecutive blocks).
30type weightedIterator struct {
31	it       Iterator
32	priority int
33}
34
35// weightedIterators is a set of iterators implementing the sort.Interface.
36type weightedIterators []*weightedIterator
37
38// Len implements sort.Interface, returning the number of active iterators.
39func (its weightedIterators) Len() int { return len(its) }
40
41// Less implements sort.Interface, returning which of two iterators in the stack
42// is before the other.
43func (its weightedIterators) Less(i, j int) bool {
44	// Order the iterators primarily by the account hashes
45	hashI := its[i].it.Hash()
46	hashJ := its[j].it.Hash()
47
48	switch bytes.Compare(hashI[:], hashJ[:]) {
49	case -1:
50		return true
51	case 1:
52		return false
53	}
54	// Same account/storage-slot in multiple layers, split by priority
55	return its[i].priority < its[j].priority
56}
57
58// Swap implements sort.Interface, swapping two entries in the iterator stack.
59func (its weightedIterators) Swap(i, j int) {
60	its[i], its[j] = its[j], its[i]
61}
62
63// fastIterator is a more optimized multi-layer iterator which maintains a
64// direct mapping of all iterators leading down to the bottom layer.
65type fastIterator struct {
66	tree *Tree       // Snapshot tree to reinitialize stale sub-iterators with
67	root common.Hash // Root hash to reinitialize stale sub-iterators through
68
69	curAccount []byte
70	curSlot    []byte
71
72	iterators weightedIterators
73	initiated bool
74	account   bool
75	fail      error
76}
77
78// newFastIterator creates a new hierarchical account or storage iterator with one
79// element per diff layer. The returned combo iterator can be used to walk over
80// the entire snapshot diff stack simultaneously.
81func newFastIterator(tree *Tree, root common.Hash, account common.Hash, seek common.Hash, accountIterator bool) (*fastIterator, error) {
82	snap := tree.Snapshot(root)
83	if snap == nil {
84		return nil, fmt.Errorf("unknown snapshot: %x", root)
85	}
86	fi := &fastIterator{
87		tree:    tree,
88		root:    root,
89		account: accountIterator,
90	}
91	current := snap.(snapshot)
92	for depth := 0; current != nil; depth++ {
93		if accountIterator {
94			fi.iterators = append(fi.iterators, &weightedIterator{
95				it:       current.AccountIterator(seek),
96				priority: depth,
97			})
98		} else {
99			// If the whole storage is destructed in this layer, don't
100			// bother deeper layer anymore. But we should still keep
101			// the iterator for this layer, since the iterator can contain
102			// some valid slots which belongs to the re-created account.
103			it, destructed := current.StorageIterator(account, seek)
104			fi.iterators = append(fi.iterators, &weightedIterator{
105				it:       it,
106				priority: depth,
107			})
108			if destructed {
109				break
110			}
111		}
112		current = current.Parent()
113	}
114	fi.init()
115	return fi, nil
116}
117
118// init walks over all the iterators and resolves any clashes between them, after
119// which it prepares the stack for step-by-step iteration.
120func (fi *fastIterator) init() {
121	// Track which account hashes are iterators positioned on
122	var positioned = make(map[common.Hash]int)
123
124	// Position all iterators and track how many remain live
125	for i := 0; i < len(fi.iterators); i++ {
126		// Retrieve the first element and if it clashes with a previous iterator,
127		// advance either the current one or the old one. Repeat until nothing is
128		// clashing any more.
129		it := fi.iterators[i]
130		for {
131			// If the iterator is exhausted, drop it off the end
132			if !it.it.Next() {
133				it.it.Release()
134				last := len(fi.iterators) - 1
135
136				fi.iterators[i] = fi.iterators[last]
137				fi.iterators[last] = nil
138				fi.iterators = fi.iterators[:last]
139
140				i--
141				break
142			}
143			// The iterator is still alive, check for collisions with previous ones
144			hash := it.it.Hash()
145			if other, exist := positioned[hash]; !exist {
146				positioned[hash] = i
147				break
148			} else {
149				// Iterators collide, one needs to be progressed, use priority to
150				// determine which.
151				//
152				// This whole else-block can be avoided, if we instead
153				// do an initial priority-sort of the iterators. If we do that,
154				// then we'll only wind up here if a lower-priority (preferred) iterator
155				// has the same value, and then we will always just continue.
156				// However, it costs an extra sort, so it's probably not better
157				if fi.iterators[other].priority < it.priority {
158					// The 'it' should be progressed
159					continue
160				} else {
161					// The 'other' should be progressed, swap them
162					it = fi.iterators[other]
163					fi.iterators[other], fi.iterators[i] = fi.iterators[i], fi.iterators[other]
164					continue
165				}
166			}
167		}
168	}
169	// Re-sort the entire list
170	sort.Sort(fi.iterators)
171	fi.initiated = false
172}
173
174// Next steps the iterator forward one element, returning false if exhausted.
175func (fi *fastIterator) Next() bool {
176	if len(fi.iterators) == 0 {
177		return false
178	}
179	if !fi.initiated {
180		// Don't forward first time -- we had to 'Next' once in order to
181		// do the sorting already
182		fi.initiated = true
183		if fi.account {
184			fi.curAccount = fi.iterators[0].it.(AccountIterator).Account()
185		} else {
186			fi.curSlot = fi.iterators[0].it.(StorageIterator).Slot()
187		}
188		if innerErr := fi.iterators[0].it.Error(); innerErr != nil {
189			fi.fail = innerErr
190			return false
191		}
192		if fi.curAccount != nil || fi.curSlot != nil {
193			return true
194		}
195		// Implicit else: we've hit a nil-account or nil-slot, and need to
196		// fall through to the loop below to land on something non-nil
197	}
198	// If an account or a slot is deleted in one of the layers, the key will
199	// still be there, but the actual value will be nil. However, the iterator
200	// should not export nil-values (but instead simply omit the key), so we
201	// need to loop here until we either
202	//  - get a non-nil value,
203	//  - hit an error,
204	//  - or exhaust the iterator
205	for {
206		if !fi.next(0) {
207			return false // exhausted
208		}
209		if fi.account {
210			fi.curAccount = fi.iterators[0].it.(AccountIterator).Account()
211		} else {
212			fi.curSlot = fi.iterators[0].it.(StorageIterator).Slot()
213		}
214		if innerErr := fi.iterators[0].it.Error(); innerErr != nil {
215			fi.fail = innerErr
216			return false // error
217		}
218		if fi.curAccount != nil || fi.curSlot != nil {
219			break // non-nil value found
220		}
221	}
222	return true
223}
224
225// next handles the next operation internally and should be invoked when we know
226// that two elements in the list may have the same value.
227//
228// For example, if the iterated hashes become [2,3,5,5,8,9,10], then we should
229// invoke next(3), which will call Next on elem 3 (the second '5') and will
230// cascade along the list, applying the same operation if needed.
231func (fi *fastIterator) next(idx int) bool {
232	// If this particular iterator got exhausted, remove it and return true (the
233	// next one is surely not exhausted yet, otherwise it would have been removed
234	// already).
235	if it := fi.iterators[idx].it; !it.Next() {
236		it.Release()
237
238		fi.iterators = append(fi.iterators[:idx], fi.iterators[idx+1:]...)
239		return len(fi.iterators) > 0
240	}
241	// If there's no one left to cascade into, return
242	if idx == len(fi.iterators)-1 {
243		return true
244	}
245	// We next-ed the iterator at 'idx', now we may have to re-sort that element
246	var (
247		cur, next         = fi.iterators[idx], fi.iterators[idx+1]
248		curHash, nextHash = cur.it.Hash(), next.it.Hash()
249	)
250	if diff := bytes.Compare(curHash[:], nextHash[:]); diff < 0 {
251		// It is still in correct place
252		return true
253	} else if diff == 0 && cur.priority < next.priority {
254		// So still in correct place, but we need to iterate on the next
255		fi.next(idx + 1)
256		return true
257	}
258	// At this point, the iterator is in the wrong location, but the remaining
259	// list is sorted. Find out where to move the item.
260	clash := -1
261	index := sort.Search(len(fi.iterators), func(n int) bool {
262		// The iterator always advances forward, so anything before the old slot
263		// is known to be behind us, so just skip them altogether. This actually
264		// is an important clause since the sort order got invalidated.
265		if n < idx {
266			return false
267		}
268		if n == len(fi.iterators)-1 {
269			// Can always place an elem last
270			return true
271		}
272		nextHash := fi.iterators[n+1].it.Hash()
273		if diff := bytes.Compare(curHash[:], nextHash[:]); diff < 0 {
274			return true
275		} else if diff > 0 {
276			return false
277		}
278		// The elem we're placing it next to has the same value,
279		// so whichever winds up on n+1 will need further iteraton
280		clash = n + 1
281
282		return cur.priority < fi.iterators[n+1].priority
283	})
284	fi.move(idx, index)
285	if clash != -1 {
286		fi.next(clash)
287	}
288	return true
289}
290
291// move advances an iterator to another position in the list.
292func (fi *fastIterator) move(index, newpos int) {
293	elem := fi.iterators[index]
294	copy(fi.iterators[index:], fi.iterators[index+1:newpos+1])
295	fi.iterators[newpos] = elem
296}
297
298// Error returns any failure that occurred during iteration, which might have
299// caused a premature iteration exit (e.g. snapshot stack becoming stale).
300func (fi *fastIterator) Error() error {
301	return fi.fail
302}
303
304// Hash returns the current key
305func (fi *fastIterator) Hash() common.Hash {
306	return fi.iterators[0].it.Hash()
307}
308
309// Account returns the current account blob.
310// Note the returned account is not a copy, please don't modify it.
311func (fi *fastIterator) Account() []byte {
312	return fi.curAccount
313}
314
315// Slot returns the current storage slot.
316// Note the returned slot is not a copy, please don't modify it.
317func (fi *fastIterator) Slot() []byte {
318	return fi.curSlot
319}
320
321// Release iterates over all the remaining live layer iterators and releases each
322// of thme individually.
323func (fi *fastIterator) Release() {
324	for _, it := range fi.iterators {
325		it.it.Release()
326	}
327	fi.iterators = nil
328}
329
330// Debug is a convencience helper during testing
331func (fi *fastIterator) Debug() {
332	for _, it := range fi.iterators {
333		fmt.Printf("[p=%v v=%v] ", it.priority, it.it.Hash()[0])
334	}
335	fmt.Println()
336}
337
338// newFastAccountIterator creates a new hierarchical account iterator with one
339// element per diff layer. The returned combo iterator can be used to walk over
340// the entire snapshot diff stack simultaneously.
341func newFastAccountIterator(tree *Tree, root common.Hash, seek common.Hash) (AccountIterator, error) {
342	return newFastIterator(tree, root, common.Hash{}, seek, true)
343}
344
345// newFastStorageIterator creates a new hierarchical storage iterator with one
346// element per diff layer. The returned combo iterator can be used to walk over
347// the entire snapshot diff stack simultaneously.
348func newFastStorageIterator(tree *Tree, root common.Hash, account common.Hash, seek common.Hash) (StorageIterator, error) {
349	return newFastIterator(tree, root, account, seek, false)
350}
351