1// Copyright 2010 The Go Authors. All rights reserved.
2// Copyright 2011 ThePiachu. All rights reserved.
3// Copyright 2015 Jeffrey Wilcke, Felix Lange, Gustav Simonsson. All rights reserved.
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are
7// met:
8//
9// * Redistributions of source code must retain the above copyright
10//   notice, this list of conditions and the following disclaimer.
11// * Redistributions in binary form must reproduce the above
12//   copyright notice, this list of conditions and the following disclaimer
13//   in the documentation and/or other materials provided with the
14//   distribution.
15// * Neither the name of Google Inc. nor the names of its
16//   contributors may be used to endorse or promote products derived from
17//   this software without specific prior written permission.
18// * The name of ThePiachu may not be used to endorse or promote products
19//   derived from this software without specific prior written permission.
20//
21// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32
33package secp256k1
34
35import (
36	"crypto/elliptic"
37	"math/big"
38)
39
40const (
41	// number of bits in a big.Word
42	wordBits = 32 << (uint64(^big.Word(0)) >> 63)
43	// number of bytes in a big.Word
44	wordBytes = wordBits / 8
45)
46
47// readBits encodes the absolute value of bigint as big-endian bytes. Callers
48// must ensure that buf has enough space. If buf is too short the result will
49// be incomplete.
50func readBits(bigint *big.Int, buf []byte) {
51	i := len(buf)
52	for _, d := range bigint.Bits() {
53		for j := 0; j < wordBytes && i > 0; j++ {
54			i--
55			buf[i] = byte(d)
56			d >>= 8
57		}
58	}
59}
60
61// This code is from https://github.com/ThePiachu/GoBit and implements
62// several Koblitz elliptic curves over prime fields.
63//
64// The curve methods, internally, on Jacobian coordinates. For a given
65// (x, y) position on the curve, the Jacobian coordinates are (x1, y1,
66// z1) where x = x1/z1² and y = y1/z1³. The greatest speedups come
67// when the whole calculation can be performed within the transform
68// (as in ScalarMult and ScalarBaseMult). But even for Add and Double,
69// it's faster to apply and reverse the transform than to operate in
70// affine coordinates.
71
72// A BitCurve represents a Koblitz Curve with a=0.
73// See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html
74type BitCurve struct {
75	P       *big.Int // the order of the underlying field
76	N       *big.Int // the order of the base point
77	B       *big.Int // the constant of the BitCurve equation
78	Gx, Gy  *big.Int // (x,y) of the base point
79	BitSize int      // the size of the underlying field
80}
81
82func (BitCurve *BitCurve) Params() *elliptic.CurveParams {
83	return &elliptic.CurveParams{
84		P:       BitCurve.P,
85		N:       BitCurve.N,
86		B:       BitCurve.B,
87		Gx:      BitCurve.Gx,
88		Gy:      BitCurve.Gy,
89		BitSize: BitCurve.BitSize,
90	}
91}
92
93// IsOnCurve returns true if the given (x,y) lies on the BitCurve.
94func (BitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool {
95	// y² = x³ + b
96	y2 := new(big.Int).Mul(y, y) //y²
97	y2.Mod(y2, BitCurve.P)       //y²%P
98
99	x3 := new(big.Int).Mul(x, x) //x²
100	x3.Mul(x3, x)                //x³
101
102	x3.Add(x3, BitCurve.B) //x³+B
103	x3.Mod(x3, BitCurve.P) //(x³+B)%P
104
105	return x3.Cmp(y2) == 0
106}
107
108//TODO: double check if the function is okay
109// affineFromJacobian reverses the Jacobian transform. See the comment at the
110// top of the file.
111func (BitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
112	if z.Sign() == 0 {
113		return new(big.Int), new(big.Int)
114	}
115
116	zinv := new(big.Int).ModInverse(z, BitCurve.P)
117	zinvsq := new(big.Int).Mul(zinv, zinv)
118
119	xOut = new(big.Int).Mul(x, zinvsq)
120	xOut.Mod(xOut, BitCurve.P)
121	zinvsq.Mul(zinvsq, zinv)
122	yOut = new(big.Int).Mul(y, zinvsq)
123	yOut.Mod(yOut, BitCurve.P)
124	return
125}
126
127// Add returns the sum of (x1,y1) and (x2,y2)
128func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
129	// If one point is at infinity, return the other point.
130	// Adding the point at infinity to any point will preserve the other point.
131	if x1.Sign() == 0 && y1.Sign() == 0 {
132		return x2, y2
133	}
134	if x2.Sign() == 0 && y2.Sign() == 0 {
135		return x1, y1
136	}
137	z := new(big.Int).SetInt64(1)
138	if x1.Cmp(x2) == 0 && y1.Cmp(y2) == 0 {
139		return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z))
140	}
141	return BitCurve.affineFromJacobian(BitCurve.addJacobian(x1, y1, z, x2, y2, z))
142}
143
144// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and
145// (x2, y2, z2) and returns their sum, also in Jacobian form.
146func (BitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
147	// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
148	z1z1 := new(big.Int).Mul(z1, z1)
149	z1z1.Mod(z1z1, BitCurve.P)
150	z2z2 := new(big.Int).Mul(z2, z2)
151	z2z2.Mod(z2z2, BitCurve.P)
152
153	u1 := new(big.Int).Mul(x1, z2z2)
154	u1.Mod(u1, BitCurve.P)
155	u2 := new(big.Int).Mul(x2, z1z1)
156	u2.Mod(u2, BitCurve.P)
157	h := new(big.Int).Sub(u2, u1)
158	if h.Sign() == -1 {
159		h.Add(h, BitCurve.P)
160	}
161	i := new(big.Int).Lsh(h, 1)
162	i.Mul(i, i)
163	j := new(big.Int).Mul(h, i)
164
165	s1 := new(big.Int).Mul(y1, z2)
166	s1.Mul(s1, z2z2)
167	s1.Mod(s1, BitCurve.P)
168	s2 := new(big.Int).Mul(y2, z1)
169	s2.Mul(s2, z1z1)
170	s2.Mod(s2, BitCurve.P)
171	r := new(big.Int).Sub(s2, s1)
172	if r.Sign() == -1 {
173		r.Add(r, BitCurve.P)
174	}
175	r.Lsh(r, 1)
176	v := new(big.Int).Mul(u1, i)
177
178	x3 := new(big.Int).Set(r)
179	x3.Mul(x3, x3)
180	x3.Sub(x3, j)
181	x3.Sub(x3, v)
182	x3.Sub(x3, v)
183	x3.Mod(x3, BitCurve.P)
184
185	y3 := new(big.Int).Set(r)
186	v.Sub(v, x3)
187	y3.Mul(y3, v)
188	s1.Mul(s1, j)
189	s1.Lsh(s1, 1)
190	y3.Sub(y3, s1)
191	y3.Mod(y3, BitCurve.P)
192
193	z3 := new(big.Int).Add(z1, z2)
194	z3.Mul(z3, z3)
195	z3.Sub(z3, z1z1)
196	if z3.Sign() == -1 {
197		z3.Add(z3, BitCurve.P)
198	}
199	z3.Sub(z3, z2z2)
200	if z3.Sign() == -1 {
201		z3.Add(z3, BitCurve.P)
202	}
203	z3.Mul(z3, h)
204	z3.Mod(z3, BitCurve.P)
205
206	return x3, y3, z3
207}
208
209// Double returns 2*(x,y)
210func (BitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
211	z1 := new(big.Int).SetInt64(1)
212	return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z1))
213}
214
215// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
216// returns its double, also in Jacobian form.
217func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
218	// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
219
220	a := new(big.Int).Mul(x, x) //X1²
221	b := new(big.Int).Mul(y, y) //Y1²
222	c := new(big.Int).Mul(b, b) //B²
223
224	d := new(big.Int).Add(x, b) //X1+B
225	d.Mul(d, d)                 //(X1+B)²
226	d.Sub(d, a)                 //(X1+B)²-A
227	d.Sub(d, c)                 //(X1+B)²-A-C
228	d.Mul(d, big.NewInt(2))     //2*((X1+B)²-A-C)
229
230	e := new(big.Int).Mul(big.NewInt(3), a) //3*A
231	f := new(big.Int).Mul(e, e)             //E²
232
233	x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D
234	x3.Sub(f, x3)                            //F-2*D
235	x3.Mod(x3, BitCurve.P)
236
237	y3 := new(big.Int).Sub(d, x3)                  //D-X3
238	y3.Mul(e, y3)                                  //E*(D-X3)
239	y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C
240	y3.Mod(y3, BitCurve.P)
241
242	z3 := new(big.Int).Mul(y, z) //Y1*Z1
243	z3.Mul(big.NewInt(2), z3)    //3*Y1*Z1
244	z3.Mod(z3, BitCurve.P)
245
246	return x3, y3, z3
247}
248
249// ScalarBaseMult returns k*G, where G is the base point of the group and k is
250// an integer in big-endian form.
251func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
252	return BitCurve.ScalarMult(BitCurve.Gx, BitCurve.Gy, k)
253}
254
255// Marshal converts a point into the form specified in section 4.3.6 of ANSI
256// X9.62.
257func (BitCurve *BitCurve) Marshal(x, y *big.Int) []byte {
258	byteLen := (BitCurve.BitSize + 7) >> 3
259	ret := make([]byte, 1+2*byteLen)
260	ret[0] = 4 // uncompressed point flag
261	readBits(x, ret[1:1+byteLen])
262	readBits(y, ret[1+byteLen:])
263	return ret
264}
265
266// Unmarshal converts a point, serialised by Marshal, into an x, y pair. On
267// error, x = nil.
268func (BitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) {
269	byteLen := (BitCurve.BitSize + 7) >> 3
270	if len(data) != 1+2*byteLen {
271		return
272	}
273	if data[0] != 4 { // uncompressed form
274		return
275	}
276	x = new(big.Int).SetBytes(data[1 : 1+byteLen])
277	y = new(big.Int).SetBytes(data[1+byteLen:])
278	return
279}
280
281var theCurve = new(BitCurve)
282
283func init() {
284	// See SEC 2 section 2.7.1
285	// curve parameters taken from:
286	// http://www.secg.org/sec2-v2.pdf
287	theCurve.P, _ = new(big.Int).SetString("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 0)
288	theCurve.N, _ = new(big.Int).SetString("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 0)
289	theCurve.B, _ = new(big.Int).SetString("0x0000000000000000000000000000000000000000000000000000000000000007", 0)
290	theCurve.Gx, _ = new(big.Int).SetString("0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 0)
291	theCurve.Gy, _ = new(big.Int).SetString("0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 0)
292	theCurve.BitSize = 256
293}
294
295// S256 returns a BitCurve which implements secp256k1.
296func S256() *BitCurve {
297	return theCurve
298}
299