1// Copyright 2012 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Package bn256 implements a particular bilinear group.
6//
7// Bilinear groups are the basis of many of the new cryptographic protocols
8// that have been proposed over the past decade. They consist of a triplet of
9// groups (G₁, G₂ and GT) such that there exists a function e(g₁ˣ,g₂ʸ)=gTˣʸ
10// (where gₓ is a generator of the respective group). That function is called
11// a pairing function.
12//
13// This package specifically implements the Optimal Ate pairing over a 256-bit
14// Barreto-Naehrig curve as described in
15// http://cryptojedi.org/papers/dclxvi-20100714.pdf. Its output is compatible
16// with the implementation described in that paper.
17//
18// (This package previously claimed to operate at a 128-bit security level.
19// However, recent improvements in attacks mean that is no longer true. See
20// https://moderncrypto.org/mail-archive/curves/2016/000740.html.)
21package bn256
22
23import (
24	"crypto/rand"
25	"errors"
26	"io"
27	"math/big"
28)
29
30// BUG(agl): this implementation is not constant time.
31// TODO(agl): keep GF(p²) elements in Mongomery form.
32
33// G1 is an abstract cyclic group. The zero value is suitable for use as the
34// output of an operation, but cannot be used as an input.
35type G1 struct {
36	p *curvePoint
37}
38
39// RandomG1 returns x and g₁ˣ where x is a random, non-zero number read from r.
40func RandomG1(r io.Reader) (*big.Int, *G1, error) {
41	var k *big.Int
42	var err error
43
44	for {
45		k, err = rand.Int(r, Order)
46		if err != nil {
47			return nil, nil, err
48		}
49		if k.Sign() > 0 {
50			break
51		}
52	}
53
54	return k, new(G1).ScalarBaseMult(k), nil
55}
56
57func (e *G1) String() string {
58	return "bn256.G1" + e.p.String()
59}
60
61// CurvePoints returns p's curve points in big integer
62func (e *G1) CurvePoints() (*big.Int, *big.Int, *big.Int, *big.Int) {
63	return e.p.x, e.p.y, e.p.z, e.p.t
64}
65
66// ScalarBaseMult sets e to g*k where g is the generator of the group and
67// then returns e.
68func (e *G1) ScalarBaseMult(k *big.Int) *G1 {
69	if e.p == nil {
70		e.p = newCurvePoint(nil)
71	}
72	e.p.Mul(curveGen, k, new(bnPool))
73	return e
74}
75
76// ScalarMult sets e to a*k and then returns e.
77func (e *G1) ScalarMult(a *G1, k *big.Int) *G1 {
78	if e.p == nil {
79		e.p = newCurvePoint(nil)
80	}
81	e.p.Mul(a.p, k, new(bnPool))
82	return e
83}
84
85// Add sets e to a+b and then returns e.
86// BUG(agl): this function is not complete: a==b fails.
87func (e *G1) Add(a, b *G1) *G1 {
88	if e.p == nil {
89		e.p = newCurvePoint(nil)
90	}
91	e.p.Add(a.p, b.p, new(bnPool))
92	return e
93}
94
95// Neg sets e to -a and then returns e.
96func (e *G1) Neg(a *G1) *G1 {
97	if e.p == nil {
98		e.p = newCurvePoint(nil)
99	}
100	e.p.Negative(a.p)
101	return e
102}
103
104// Marshal converts n to a byte slice.
105func (e *G1) Marshal() []byte {
106	// Each value is a 256-bit number.
107	const numBytes = 256 / 8
108
109	if e.p.IsInfinity() {
110		return make([]byte, numBytes*2)
111	}
112
113	e.p.MakeAffine(nil)
114
115	xBytes := new(big.Int).Mod(e.p.x, P).Bytes()
116	yBytes := new(big.Int).Mod(e.p.y, P).Bytes()
117
118	ret := make([]byte, numBytes*2)
119	copy(ret[1*numBytes-len(xBytes):], xBytes)
120	copy(ret[2*numBytes-len(yBytes):], yBytes)
121
122	return ret
123}
124
125// Unmarshal sets e to the result of converting the output of Marshal back into
126// a group element and then returns e.
127func (e *G1) Unmarshal(m []byte) ([]byte, error) {
128	// Each value is a 256-bit number.
129	const numBytes = 256 / 8
130	if len(m) != 2*numBytes {
131		return nil, errors.New("bn256: not enough data")
132	}
133	// Unmarshal the points and check their caps
134	if e.p == nil {
135		e.p = newCurvePoint(nil)
136	}
137	e.p.x.SetBytes(m[0*numBytes : 1*numBytes])
138	if e.p.x.Cmp(P) >= 0 {
139		return nil, errors.New("bn256: coordinate exceeds modulus")
140	}
141	e.p.y.SetBytes(m[1*numBytes : 2*numBytes])
142	if e.p.y.Cmp(P) >= 0 {
143		return nil, errors.New("bn256: coordinate exceeds modulus")
144	}
145	// Ensure the point is on the curve
146	if e.p.x.Sign() == 0 && e.p.y.Sign() == 0 {
147		// This is the point at infinity.
148		e.p.y.SetInt64(1)
149		e.p.z.SetInt64(0)
150		e.p.t.SetInt64(0)
151	} else {
152		e.p.z.SetInt64(1)
153		e.p.t.SetInt64(1)
154
155		if !e.p.IsOnCurve() {
156			return nil, errors.New("bn256: malformed point")
157		}
158	}
159	return m[2*numBytes:], nil
160}
161
162// G2 is an abstract cyclic group. The zero value is suitable for use as the
163// output of an operation, but cannot be used as an input.
164type G2 struct {
165	p *twistPoint
166}
167
168// RandomG1 returns x and g₂ˣ where x is a random, non-zero number read from r.
169func RandomG2(r io.Reader) (*big.Int, *G2, error) {
170	var k *big.Int
171	var err error
172
173	for {
174		k, err = rand.Int(r, Order)
175		if err != nil {
176			return nil, nil, err
177		}
178		if k.Sign() > 0 {
179			break
180		}
181	}
182
183	return k, new(G2).ScalarBaseMult(k), nil
184}
185
186func (e *G2) String() string {
187	return "bn256.G2" + e.p.String()
188}
189
190// CurvePoints returns the curve points of p which includes the real
191// and imaginary parts of the curve point.
192func (e *G2) CurvePoints() (*gfP2, *gfP2, *gfP2, *gfP2) {
193	return e.p.x, e.p.y, e.p.z, e.p.t
194}
195
196// ScalarBaseMult sets e to g*k where g is the generator of the group and
197// then returns out.
198func (e *G2) ScalarBaseMult(k *big.Int) *G2 {
199	if e.p == nil {
200		e.p = newTwistPoint(nil)
201	}
202	e.p.Mul(twistGen, k, new(bnPool))
203	return e
204}
205
206// ScalarMult sets e to a*k and then returns e.
207func (e *G2) ScalarMult(a *G2, k *big.Int) *G2 {
208	if e.p == nil {
209		e.p = newTwistPoint(nil)
210	}
211	e.p.Mul(a.p, k, new(bnPool))
212	return e
213}
214
215// Add sets e to a+b and then returns e.
216// BUG(agl): this function is not complete: a==b fails.
217func (e *G2) Add(a, b *G2) *G2 {
218	if e.p == nil {
219		e.p = newTwistPoint(nil)
220	}
221	e.p.Add(a.p, b.p, new(bnPool))
222	return e
223}
224
225// Marshal converts n into a byte slice.
226func (n *G2) Marshal() []byte {
227	// Each value is a 256-bit number.
228	const numBytes = 256 / 8
229
230	if n.p.IsInfinity() {
231		return make([]byte, numBytes*4)
232	}
233
234	n.p.MakeAffine(nil)
235
236	xxBytes := new(big.Int).Mod(n.p.x.x, P).Bytes()
237	xyBytes := new(big.Int).Mod(n.p.x.y, P).Bytes()
238	yxBytes := new(big.Int).Mod(n.p.y.x, P).Bytes()
239	yyBytes := new(big.Int).Mod(n.p.y.y, P).Bytes()
240
241	ret := make([]byte, numBytes*4)
242	copy(ret[1*numBytes-len(xxBytes):], xxBytes)
243	copy(ret[2*numBytes-len(xyBytes):], xyBytes)
244	copy(ret[3*numBytes-len(yxBytes):], yxBytes)
245	copy(ret[4*numBytes-len(yyBytes):], yyBytes)
246
247	return ret
248}
249
250// Unmarshal sets e to the result of converting the output of Marshal back into
251// a group element and then returns e.
252func (e *G2) Unmarshal(m []byte) ([]byte, error) {
253	// Each value is a 256-bit number.
254	const numBytes = 256 / 8
255	if len(m) != 4*numBytes {
256		return nil, errors.New("bn256: not enough data")
257	}
258	// Unmarshal the points and check their caps
259	if e.p == nil {
260		e.p = newTwistPoint(nil)
261	}
262	e.p.x.x.SetBytes(m[0*numBytes : 1*numBytes])
263	if e.p.x.x.Cmp(P) >= 0 {
264		return nil, errors.New("bn256: coordinate exceeds modulus")
265	}
266	e.p.x.y.SetBytes(m[1*numBytes : 2*numBytes])
267	if e.p.x.y.Cmp(P) >= 0 {
268		return nil, errors.New("bn256: coordinate exceeds modulus")
269	}
270	e.p.y.x.SetBytes(m[2*numBytes : 3*numBytes])
271	if e.p.y.x.Cmp(P) >= 0 {
272		return nil, errors.New("bn256: coordinate exceeds modulus")
273	}
274	e.p.y.y.SetBytes(m[3*numBytes : 4*numBytes])
275	if e.p.y.y.Cmp(P) >= 0 {
276		return nil, errors.New("bn256: coordinate exceeds modulus")
277	}
278	// Ensure the point is on the curve
279	if e.p.x.x.Sign() == 0 &&
280		e.p.x.y.Sign() == 0 &&
281		e.p.y.x.Sign() == 0 &&
282		e.p.y.y.Sign() == 0 {
283		// This is the point at infinity.
284		e.p.y.SetOne()
285		e.p.z.SetZero()
286		e.p.t.SetZero()
287	} else {
288		e.p.z.SetOne()
289		e.p.t.SetOne()
290
291		if !e.p.IsOnCurve() {
292			return nil, errors.New("bn256: malformed point")
293		}
294	}
295	return m[4*numBytes:], nil
296}
297
298// GT is an abstract cyclic group. The zero value is suitable for use as the
299// output of an operation, but cannot be used as an input.
300type GT struct {
301	p *gfP12
302}
303
304func (g *GT) String() string {
305	return "bn256.GT" + g.p.String()
306}
307
308// ScalarMult sets e to a*k and then returns e.
309func (e *GT) ScalarMult(a *GT, k *big.Int) *GT {
310	if e.p == nil {
311		e.p = newGFp12(nil)
312	}
313	e.p.Exp(a.p, k, new(bnPool))
314	return e
315}
316
317// Add sets e to a+b and then returns e.
318func (e *GT) Add(a, b *GT) *GT {
319	if e.p == nil {
320		e.p = newGFp12(nil)
321	}
322	e.p.Mul(a.p, b.p, new(bnPool))
323	return e
324}
325
326// Neg sets e to -a and then returns e.
327func (e *GT) Neg(a *GT) *GT {
328	if e.p == nil {
329		e.p = newGFp12(nil)
330	}
331	e.p.Invert(a.p, new(bnPool))
332	return e
333}
334
335// Marshal converts n into a byte slice.
336func (n *GT) Marshal() []byte {
337	n.p.Minimal()
338
339	xxxBytes := n.p.x.x.x.Bytes()
340	xxyBytes := n.p.x.x.y.Bytes()
341	xyxBytes := n.p.x.y.x.Bytes()
342	xyyBytes := n.p.x.y.y.Bytes()
343	xzxBytes := n.p.x.z.x.Bytes()
344	xzyBytes := n.p.x.z.y.Bytes()
345	yxxBytes := n.p.y.x.x.Bytes()
346	yxyBytes := n.p.y.x.y.Bytes()
347	yyxBytes := n.p.y.y.x.Bytes()
348	yyyBytes := n.p.y.y.y.Bytes()
349	yzxBytes := n.p.y.z.x.Bytes()
350	yzyBytes := n.p.y.z.y.Bytes()
351
352	// Each value is a 256-bit number.
353	const numBytes = 256 / 8
354
355	ret := make([]byte, numBytes*12)
356	copy(ret[1*numBytes-len(xxxBytes):], xxxBytes)
357	copy(ret[2*numBytes-len(xxyBytes):], xxyBytes)
358	copy(ret[3*numBytes-len(xyxBytes):], xyxBytes)
359	copy(ret[4*numBytes-len(xyyBytes):], xyyBytes)
360	copy(ret[5*numBytes-len(xzxBytes):], xzxBytes)
361	copy(ret[6*numBytes-len(xzyBytes):], xzyBytes)
362	copy(ret[7*numBytes-len(yxxBytes):], yxxBytes)
363	copy(ret[8*numBytes-len(yxyBytes):], yxyBytes)
364	copy(ret[9*numBytes-len(yyxBytes):], yyxBytes)
365	copy(ret[10*numBytes-len(yyyBytes):], yyyBytes)
366	copy(ret[11*numBytes-len(yzxBytes):], yzxBytes)
367	copy(ret[12*numBytes-len(yzyBytes):], yzyBytes)
368
369	return ret
370}
371
372// Unmarshal sets e to the result of converting the output of Marshal back into
373// a group element and then returns e.
374func (e *GT) Unmarshal(m []byte) (*GT, bool) {
375	// Each value is a 256-bit number.
376	const numBytes = 256 / 8
377
378	if len(m) != 12*numBytes {
379		return nil, false
380	}
381
382	if e.p == nil {
383		e.p = newGFp12(nil)
384	}
385
386	e.p.x.x.x.SetBytes(m[0*numBytes : 1*numBytes])
387	e.p.x.x.y.SetBytes(m[1*numBytes : 2*numBytes])
388	e.p.x.y.x.SetBytes(m[2*numBytes : 3*numBytes])
389	e.p.x.y.y.SetBytes(m[3*numBytes : 4*numBytes])
390	e.p.x.z.x.SetBytes(m[4*numBytes : 5*numBytes])
391	e.p.x.z.y.SetBytes(m[5*numBytes : 6*numBytes])
392	e.p.y.x.x.SetBytes(m[6*numBytes : 7*numBytes])
393	e.p.y.x.y.SetBytes(m[7*numBytes : 8*numBytes])
394	e.p.y.y.x.SetBytes(m[8*numBytes : 9*numBytes])
395	e.p.y.y.y.SetBytes(m[9*numBytes : 10*numBytes])
396	e.p.y.z.x.SetBytes(m[10*numBytes : 11*numBytes])
397	e.p.y.z.y.SetBytes(m[11*numBytes : 12*numBytes])
398
399	return e, true
400}
401
402// Pair calculates an Optimal Ate pairing.
403func Pair(g1 *G1, g2 *G2) *GT {
404	return &GT{optimalAte(g2.p, g1.p, new(bnPool))}
405}
406
407// PairingCheck calculates the Optimal Ate pairing for a set of points.
408func PairingCheck(a []*G1, b []*G2) bool {
409	pool := new(bnPool)
410
411	acc := newGFp12(pool)
412	acc.SetOne()
413
414	for i := 0; i < len(a); i++ {
415		if a[i].p.IsInfinity() || b[i].p.IsInfinity() {
416			continue
417		}
418		acc.Mul(acc, miller(b[i].p, a[i].p, pool), pool)
419	}
420	ret := finalExponentiation(acc, pool)
421	acc.Put(pool)
422
423	return ret.IsOne()
424}
425
426// bnPool implements a tiny cache of *big.Int objects that's used to reduce the
427// number of allocations made during processing.
428type bnPool struct {
429	bns   []*big.Int
430	count int
431}
432
433func (pool *bnPool) Get() *big.Int {
434	if pool == nil {
435		return new(big.Int)
436	}
437
438	pool.count++
439	l := len(pool.bns)
440	if l == 0 {
441		return new(big.Int)
442	}
443
444	bn := pool.bns[l-1]
445	pool.bns = pool.bns[:l-1]
446	return bn
447}
448
449func (pool *bnPool) Put(bn *big.Int) {
450	if pool == nil {
451		return
452	}
453	pool.bns = append(pool.bns, bn)
454	pool.count--
455}
456
457func (pool *bnPool) Count() int {
458	return pool.count
459}
460