1 /**********************************************************************
2  * Copyright (c) 2013, 2014 Pieter Wuille                             *
3  * Distributed under the MIT software license, see the accompanying   *
4  * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5  **********************************************************************/
6 
7 #ifndef SECP256K1_FIELD_IMPL_H
8 #define SECP256K1_FIELD_IMPL_H
9 
10 #if defined HAVE_CONFIG_H
11 #include "libsecp256k1-config.h"
12 #endif
13 
14 #include "util.h"
15 
16 #if defined(USE_FIELD_10X26)
17 #include "field_10x26_impl.h"
18 #elif defined(USE_FIELD_5X52)
19 #include "field_5x52_impl.h"
20 #else
21 #error "Please select field implementation"
22 #endif
23 
secp256k1_fe_equal(const secp256k1_fe * a,const secp256k1_fe * b)24 SECP256K1_INLINE static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b) {
25     secp256k1_fe na;
26     secp256k1_fe_negate(&na, a, 1);
27     secp256k1_fe_add(&na, b);
28     return secp256k1_fe_normalizes_to_zero(&na);
29 }
30 
secp256k1_fe_equal_var(const secp256k1_fe * a,const secp256k1_fe * b)31 SECP256K1_INLINE static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b) {
32     secp256k1_fe na;
33     secp256k1_fe_negate(&na, a, 1);
34     secp256k1_fe_add(&na, b);
35     return secp256k1_fe_normalizes_to_zero_var(&na);
36 }
37 
secp256k1_fe_sqrt(secp256k1_fe * r,const secp256k1_fe * a)38 static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a) {
39     /** Given that p is congruent to 3 mod 4, we can compute the square root of
40      *  a mod p as the (p+1)/4'th power of a.
41      *
42      *  As (p+1)/4 is an even number, it will have the same result for a and for
43      *  (-a). Only one of these two numbers actually has a square root however,
44      *  so we test at the end by squaring and comparing to the input.
45      *  Also because (p+1)/4 is an even number, the computed square root is
46      *  itself always a square (a ** ((p+1)/4) is the square of a ** ((p+1)/8)).
47      */
48     secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
49     int j;
50 
51     /** The binary representation of (p + 1)/4 has 3 blocks of 1s, with lengths in
52      *  { 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
53      *  1, [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
54      */
55 
56     secp256k1_fe_sqr(&x2, a);
57     secp256k1_fe_mul(&x2, &x2, a);
58 
59     secp256k1_fe_sqr(&x3, &x2);
60     secp256k1_fe_mul(&x3, &x3, a);
61 
62     x6 = x3;
63     for (j=0; j<3; j++) {
64         secp256k1_fe_sqr(&x6, &x6);
65     }
66     secp256k1_fe_mul(&x6, &x6, &x3);
67 
68     x9 = x6;
69     for (j=0; j<3; j++) {
70         secp256k1_fe_sqr(&x9, &x9);
71     }
72     secp256k1_fe_mul(&x9, &x9, &x3);
73 
74     x11 = x9;
75     for (j=0; j<2; j++) {
76         secp256k1_fe_sqr(&x11, &x11);
77     }
78     secp256k1_fe_mul(&x11, &x11, &x2);
79 
80     x22 = x11;
81     for (j=0; j<11; j++) {
82         secp256k1_fe_sqr(&x22, &x22);
83     }
84     secp256k1_fe_mul(&x22, &x22, &x11);
85 
86     x44 = x22;
87     for (j=0; j<22; j++) {
88         secp256k1_fe_sqr(&x44, &x44);
89     }
90     secp256k1_fe_mul(&x44, &x44, &x22);
91 
92     x88 = x44;
93     for (j=0; j<44; j++) {
94         secp256k1_fe_sqr(&x88, &x88);
95     }
96     secp256k1_fe_mul(&x88, &x88, &x44);
97 
98     x176 = x88;
99     for (j=0; j<88; j++) {
100         secp256k1_fe_sqr(&x176, &x176);
101     }
102     secp256k1_fe_mul(&x176, &x176, &x88);
103 
104     x220 = x176;
105     for (j=0; j<44; j++) {
106         secp256k1_fe_sqr(&x220, &x220);
107     }
108     secp256k1_fe_mul(&x220, &x220, &x44);
109 
110     x223 = x220;
111     for (j=0; j<3; j++) {
112         secp256k1_fe_sqr(&x223, &x223);
113     }
114     secp256k1_fe_mul(&x223, &x223, &x3);
115 
116     /* The final result is then assembled using a sliding window over the blocks. */
117 
118     t1 = x223;
119     for (j=0; j<23; j++) {
120         secp256k1_fe_sqr(&t1, &t1);
121     }
122     secp256k1_fe_mul(&t1, &t1, &x22);
123     for (j=0; j<6; j++) {
124         secp256k1_fe_sqr(&t1, &t1);
125     }
126     secp256k1_fe_mul(&t1, &t1, &x2);
127     secp256k1_fe_sqr(&t1, &t1);
128     secp256k1_fe_sqr(r, &t1);
129 
130     /* Check that a square root was actually calculated */
131 
132     secp256k1_fe_sqr(&t1, r);
133     return secp256k1_fe_equal(&t1, a);
134 }
135 
secp256k1_fe_inv(secp256k1_fe * r,const secp256k1_fe * a)136 static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a) {
137     secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
138     int j;
139 
140     /** The binary representation of (p - 2) has 5 blocks of 1s, with lengths in
141      *  { 1, 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
142      *  [1], [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
143      */
144 
145     secp256k1_fe_sqr(&x2, a);
146     secp256k1_fe_mul(&x2, &x2, a);
147 
148     secp256k1_fe_sqr(&x3, &x2);
149     secp256k1_fe_mul(&x3, &x3, a);
150 
151     x6 = x3;
152     for (j=0; j<3; j++) {
153         secp256k1_fe_sqr(&x6, &x6);
154     }
155     secp256k1_fe_mul(&x6, &x6, &x3);
156 
157     x9 = x6;
158     for (j=0; j<3; j++) {
159         secp256k1_fe_sqr(&x9, &x9);
160     }
161     secp256k1_fe_mul(&x9, &x9, &x3);
162 
163     x11 = x9;
164     for (j=0; j<2; j++) {
165         secp256k1_fe_sqr(&x11, &x11);
166     }
167     secp256k1_fe_mul(&x11, &x11, &x2);
168 
169     x22 = x11;
170     for (j=0; j<11; j++) {
171         secp256k1_fe_sqr(&x22, &x22);
172     }
173     secp256k1_fe_mul(&x22, &x22, &x11);
174 
175     x44 = x22;
176     for (j=0; j<22; j++) {
177         secp256k1_fe_sqr(&x44, &x44);
178     }
179     secp256k1_fe_mul(&x44, &x44, &x22);
180 
181     x88 = x44;
182     for (j=0; j<44; j++) {
183         secp256k1_fe_sqr(&x88, &x88);
184     }
185     secp256k1_fe_mul(&x88, &x88, &x44);
186 
187     x176 = x88;
188     for (j=0; j<88; j++) {
189         secp256k1_fe_sqr(&x176, &x176);
190     }
191     secp256k1_fe_mul(&x176, &x176, &x88);
192 
193     x220 = x176;
194     for (j=0; j<44; j++) {
195         secp256k1_fe_sqr(&x220, &x220);
196     }
197     secp256k1_fe_mul(&x220, &x220, &x44);
198 
199     x223 = x220;
200     for (j=0; j<3; j++) {
201         secp256k1_fe_sqr(&x223, &x223);
202     }
203     secp256k1_fe_mul(&x223, &x223, &x3);
204 
205     /* The final result is then assembled using a sliding window over the blocks. */
206 
207     t1 = x223;
208     for (j=0; j<23; j++) {
209         secp256k1_fe_sqr(&t1, &t1);
210     }
211     secp256k1_fe_mul(&t1, &t1, &x22);
212     for (j=0; j<5; j++) {
213         secp256k1_fe_sqr(&t1, &t1);
214     }
215     secp256k1_fe_mul(&t1, &t1, a);
216     for (j=0; j<3; j++) {
217         secp256k1_fe_sqr(&t1, &t1);
218     }
219     secp256k1_fe_mul(&t1, &t1, &x2);
220     for (j=0; j<2; j++) {
221         secp256k1_fe_sqr(&t1, &t1);
222     }
223     secp256k1_fe_mul(r, a, &t1);
224 }
225 
secp256k1_fe_inv_var(secp256k1_fe * r,const secp256k1_fe * a)226 static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a) {
227 #if defined(USE_FIELD_INV_BUILTIN)
228     secp256k1_fe_inv(r, a);
229 #elif defined(USE_FIELD_INV_NUM)
230     secp256k1_num n, m;
231     static const secp256k1_fe negone = SECP256K1_FE_CONST(
232         0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL,
233         0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL, 0xFFFFFC2EUL
234     );
235     /* secp256k1 field prime, value p defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
236     static const unsigned char prime[32] = {
237         0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
238         0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
239         0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
240         0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F
241     };
242     unsigned char b[32];
243     int res;
244     secp256k1_fe c = *a;
245     secp256k1_fe_normalize_var(&c);
246     secp256k1_fe_get_b32(b, &c);
247     secp256k1_num_set_bin(&n, b, 32);
248     secp256k1_num_set_bin(&m, prime, 32);
249     secp256k1_num_mod_inverse(&n, &n, &m);
250     secp256k1_num_get_bin(b, 32, &n);
251     res = secp256k1_fe_set_b32(r, b);
252     (void)res;
253     VERIFY_CHECK(res);
254     /* Verify the result is the (unique) valid inverse using non-GMP code. */
255     secp256k1_fe_mul(&c, &c, r);
256     secp256k1_fe_add(&c, &negone);
257     CHECK(secp256k1_fe_normalizes_to_zero_var(&c));
258 #else
259 #error "Please select field inverse implementation"
260 #endif
261 }
262 
secp256k1_fe_inv_all_var(secp256k1_fe * r,const secp256k1_fe * a,size_t len)263 static void secp256k1_fe_inv_all_var(secp256k1_fe *r, const secp256k1_fe *a, size_t len) {
264     secp256k1_fe u;
265     size_t i;
266     if (len < 1) {
267         return;
268     }
269 
270     VERIFY_CHECK((r + len <= a) || (a + len <= r));
271 
272     r[0] = a[0];
273 
274     i = 0;
275     while (++i < len) {
276         secp256k1_fe_mul(&r[i], &r[i - 1], &a[i]);
277     }
278 
279     secp256k1_fe_inv_var(&u, &r[--i]);
280 
281     while (i > 0) {
282         size_t j = i--;
283         secp256k1_fe_mul(&r[j], &r[i], &u);
284         secp256k1_fe_mul(&u, &u, &a[j]);
285     }
286 
287     r[0] = u;
288 }
289 
secp256k1_fe_is_quad_var(const secp256k1_fe * a)290 static int secp256k1_fe_is_quad_var(const secp256k1_fe *a) {
291 #ifndef USE_NUM_NONE
292     unsigned char b[32];
293     secp256k1_num n;
294     secp256k1_num m;
295     /* secp256k1 field prime, value p defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
296     static const unsigned char prime[32] = {
297         0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
298         0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
299         0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
300         0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F
301     };
302 
303     secp256k1_fe c = *a;
304     secp256k1_fe_normalize_var(&c);
305     secp256k1_fe_get_b32(b, &c);
306     secp256k1_num_set_bin(&n, b, 32);
307     secp256k1_num_set_bin(&m, prime, 32);
308     return secp256k1_num_jacobi(&n, &m) >= 0;
309 #else
310     secp256k1_fe r;
311     return secp256k1_fe_sqrt(&r, a);
312 #endif
313 }
314 
315 #endif /* SECP256K1_FIELD_IMPL_H */
316