1  /*********************************************************************
2  * Copyright (c) 2016 Pieter Wuille                                   *
3  * Distributed under the MIT software license, see the accompanying   *
4  * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5  **********************************************************************/
6 
7 /* Constant time, unoptimized, concise, plain C, AES implementation
8  * Based On:
9  *   Emilia Kasper and Peter Schwabe, Faster and Timing-Attack Resistant AES-GCM
10  *   http://www.iacr.org/archive/ches2009/57470001/57470001.pdf
11  * But using 8 16-bit integers representing a single AES state rather than 8 128-bit
12  * integers representing 8 AES states.
13  */
14 
15 #include "ctaes.h"
16 
17 /* Slice variable slice_i contains the i'th bit of the 16 state variables in this order:
18  *  0  1  2  3
19  *  4  5  6  7
20  *  8  9 10 11
21  * 12 13 14 15
22  */
23 
24 /** Convert a byte to sliced form, storing it corresponding to given row and column in s */
LoadByte(AES_state * s,unsigned char byte,int r,int c)25 static void LoadByte(AES_state* s, unsigned char byte, int r, int c) {
26     int i;
27     for (i = 0; i < 8; i++) {
28         s->slice[i] |= (byte & 1) << (r * 4 + c);
29         byte >>= 1;
30     }
31 }
32 
33 /** Load 16 bytes of data into 8 sliced integers */
LoadBytes(AES_state * s,const unsigned char * data16)34 static void LoadBytes(AES_state *s, const unsigned char* data16) {
35     int c;
36     for (c = 0; c < 4; c++) {
37         int r;
38         for (r = 0; r < 4; r++) {
39             LoadByte(s, *(data16++), r, c);
40         }
41     }
42 }
43 
44 /** Convert 8 sliced integers into 16 bytes of data */
SaveBytes(unsigned char * data16,const AES_state * s)45 static void SaveBytes(unsigned char* data16, const AES_state *s) {
46     int c;
47     for (c = 0; c < 4; c++) {
48         int r;
49         for (r = 0; r < 4; r++) {
50             int b;
51             uint8_t v = 0;
52             for (b = 0; b < 8; b++) {
53                 v |= ((s->slice[b] >> (r * 4 + c)) & 1) << b;
54             }
55             *(data16++) = v;
56         }
57     }
58 }
59 
60 /* S-box implementation based on the gate logic from:
61  *   Joan Boyar and Rene Peralta, A depth-16 circuit for the AES S-box.
62  *   https://eprint.iacr.org/2011/332.pdf
63 */
SubBytes(AES_state * s,int inv)64 static void SubBytes(AES_state *s, int inv) {
65     /* Load the bit slices */
66     uint16_t U0 = s->slice[7], U1 = s->slice[6], U2 = s->slice[5], U3 = s->slice[4];
67     uint16_t U4 = s->slice[3], U5 = s->slice[2], U6 = s->slice[1], U7 = s->slice[0];
68 
69     uint16_t T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16;
70     uint16_t T17, T18, T19, T20, T21, T22, T23, T24, T25, T26, T27, D;
71     uint16_t M1, M6, M11, M13, M15, M20, M21, M22, M23, M25, M37, M38, M39, M40;
72     uint16_t M41, M42, M43, M44, M45, M46, M47, M48, M49, M50, M51, M52, M53, M54;
73     uint16_t M55, M56, M57, M58, M59, M60, M61, M62, M63;
74 
75     if (inv) {
76         uint16_t R5, R13, R17, R18, R19;
77         /* Undo linear postprocessing */
78         T23 = U0 ^ U3;
79         T22 = ~(U1 ^ U3);
80         T2 = ~(U0 ^ U1);
81         T1 = U3 ^ U4;
82         T24 = ~(U4 ^ U7);
83         R5 = U6 ^ U7;
84         T8 = ~(U1 ^ T23);
85         T19 = T22 ^ R5;
86         T9 = ~(U7 ^ T1);
87         T10 = T2 ^ T24;
88         T13 = T2 ^ R5;
89         T3 = T1 ^ R5;
90         T25 = ~(U2 ^ T1);
91         R13 = U1 ^ U6;
92         T17 = ~(U2 ^ T19);
93         T20 = T24 ^ R13;
94         T4 = U4 ^ T8;
95         R17 = ~(U2 ^ U5);
96         R18 = ~(U5 ^ U6);
97         R19 = ~(U2 ^ U4);
98         D = U0 ^ R17;
99         T6 = T22 ^ R17;
100         T16 = R13 ^ R19;
101         T27 = T1 ^ R18;
102         T15 = T10 ^ T27;
103         T14 = T10 ^ R18;
104         T26 = T3 ^ T16;
105     } else {
106         /* Linear preprocessing. */
107         T1 = U0 ^ U3;
108         T2 = U0 ^ U5;
109         T3 = U0 ^ U6;
110         T4 = U3 ^ U5;
111         T5 = U4 ^ U6;
112         T6 = T1 ^ T5;
113         T7 = U1 ^ U2;
114         T8 = U7 ^ T6;
115         T9 = U7 ^ T7;
116         T10 = T6 ^ T7;
117         T11 = U1 ^ U5;
118         T12 = U2 ^ U5;
119         T13 = T3 ^ T4;
120         T14 = T6 ^ T11;
121         T15 = T5 ^ T11;
122         T16 = T5 ^ T12;
123         T17 = T9 ^ T16;
124         T18 = U3 ^ U7;
125         T19 = T7 ^ T18;
126         T20 = T1 ^ T19;
127         T21 = U6 ^ U7;
128         T22 = T7 ^ T21;
129         T23 = T2 ^ T22;
130         T24 = T2 ^ T10;
131         T25 = T20 ^ T17;
132         T26 = T3 ^ T16;
133         T27 = T1 ^ T12;
134         D = U7;
135     }
136 
137     /* Non-linear transformation (shared between the forward and backward case) */
138     M1 = T13 & T6;
139     M6 = T3 & T16;
140     M11 = T1 & T15;
141     M13 = (T4 & T27) ^ M11;
142     M15 = (T2 & T10) ^ M11;
143     M20 = T14 ^ M1 ^ (T23 & T8) ^ M13;
144     M21 = (T19 & D) ^ M1 ^ T24 ^ M15;
145     M22 = T26 ^ M6 ^ (T22 & T9) ^ M13;
146     M23 = (T20 & T17) ^ M6 ^ M15 ^ T25;
147     M25 = M22 & M20;
148     M37 = M21 ^ ((M20 ^ M21) & (M23 ^ M25));
149     M38 = M20 ^ M25 ^ (M21 | (M20 & M23));
150     M39 = M23 ^ ((M22 ^ M23) & (M21 ^ M25));
151     M40 = M22 ^ M25 ^ (M23 | (M21 & M22));
152     M41 = M38 ^ M40;
153     M42 = M37 ^ M39;
154     M43 = M37 ^ M38;
155     M44 = M39 ^ M40;
156     M45 = M42 ^ M41;
157     M46 = M44 & T6;
158     M47 = M40 & T8;
159     M48 = M39 & D;
160     M49 = M43 & T16;
161     M50 = M38 & T9;
162     M51 = M37 & T17;
163     M52 = M42 & T15;
164     M53 = M45 & T27;
165     M54 = M41 & T10;
166     M55 = M44 & T13;
167     M56 = M40 & T23;
168     M57 = M39 & T19;
169     M58 = M43 & T3;
170     M59 = M38 & T22;
171     M60 = M37 & T20;
172     M61 = M42 & T1;
173     M62 = M45 & T4;
174     M63 = M41 & T2;
175 
176     if (inv){
177         /* Undo linear preprocessing */
178         uint16_t P0 = M52 ^ M61;
179         uint16_t P1 = M58 ^ M59;
180         uint16_t P2 = M54 ^ M62;
181         uint16_t P3 = M47 ^ M50;
182         uint16_t P4 = M48 ^ M56;
183         uint16_t P5 = M46 ^ M51;
184         uint16_t P6 = M49 ^ M60;
185         uint16_t P7 = P0 ^ P1;
186         uint16_t P8 = M50 ^ M53;
187         uint16_t P9 = M55 ^ M63;
188         uint16_t P10 = M57 ^ P4;
189         uint16_t P11 = P0 ^ P3;
190         uint16_t P12 = M46 ^ M48;
191         uint16_t P13 = M49 ^ M51;
192         uint16_t P14 = M49 ^ M62;
193         uint16_t P15 = M54 ^ M59;
194         uint16_t P16 = M57 ^ M61;
195         uint16_t P17 = M58 ^ P2;
196         uint16_t P18 = M63 ^ P5;
197         uint16_t P19 = P2 ^ P3;
198         uint16_t P20 = P4 ^ P6;
199         uint16_t P22 = P2 ^ P7;
200         uint16_t P23 = P7 ^ P8;
201         uint16_t P24 = P5 ^ P7;
202         uint16_t P25 = P6 ^ P10;
203         uint16_t P26 = P9 ^ P11;
204         uint16_t P27 = P10 ^ P18;
205         uint16_t P28 = P11 ^ P25;
206         uint16_t P29 = P15 ^ P20;
207         s->slice[7] = P13 ^ P22;
208         s->slice[6] = P26 ^ P29;
209         s->slice[5] = P17 ^ P28;
210         s->slice[4] = P12 ^ P22;
211         s->slice[3] = P23 ^ P27;
212         s->slice[2] = P19 ^ P24;
213         s->slice[1] = P14 ^ P23;
214         s->slice[0] = P9 ^ P16;
215     } else {
216         /* Linear postprocessing */
217         uint16_t L0 = M61 ^ M62;
218         uint16_t L1 = M50 ^ M56;
219         uint16_t L2 = M46 ^ M48;
220         uint16_t L3 = M47 ^ M55;
221         uint16_t L4 = M54 ^ M58;
222         uint16_t L5 = M49 ^ M61;
223         uint16_t L6 = M62 ^ L5;
224         uint16_t L7 = M46 ^ L3;
225         uint16_t L8 = M51 ^ M59;
226         uint16_t L9 = M52 ^ M53;
227         uint16_t L10 = M53 ^ L4;
228         uint16_t L11 = M60 ^ L2;
229         uint16_t L12 = M48 ^ M51;
230         uint16_t L13 = M50 ^ L0;
231         uint16_t L14 = M52 ^ M61;
232         uint16_t L15 = M55 ^ L1;
233         uint16_t L16 = M56 ^ L0;
234         uint16_t L17 = M57 ^ L1;
235         uint16_t L18 = M58 ^ L8;
236         uint16_t L19 = M63 ^ L4;
237         uint16_t L20 = L0 ^ L1;
238         uint16_t L21 = L1 ^ L7;
239         uint16_t L22 = L3 ^ L12;
240         uint16_t L23 = L18 ^ L2;
241         uint16_t L24 = L15 ^ L9;
242         uint16_t L25 = L6 ^ L10;
243         uint16_t L26 = L7 ^ L9;
244         uint16_t L27 = L8 ^ L10;
245         uint16_t L28 = L11 ^ L14;
246         uint16_t L29 = L11 ^ L17;
247         s->slice[7] = L6 ^ L24;
248         s->slice[6] = ~(L16 ^ L26);
249         s->slice[5] = ~(L19 ^ L28);
250         s->slice[4] = L6 ^ L21;
251         s->slice[3] = L20 ^ L22;
252         s->slice[2] = L25 ^ L29;
253         s->slice[1] = ~(L13 ^ L27);
254         s->slice[0] = ~(L6 ^ L23);
255     }
256 }
257 
258 #define BIT_RANGE(from,to) (((1 << ((to) - (from))) - 1) << (from))
259 
260 #define BIT_RANGE_LEFT(x,from,to,shift) (((x) & BIT_RANGE((from), (to))) << (shift))
261 #define BIT_RANGE_RIGHT(x,from,to,shift) (((x) & BIT_RANGE((from), (to))) >> (shift))
262 
ShiftRows(AES_state * s)263 static void ShiftRows(AES_state* s) {
264     int i;
265     for (i = 0; i < 8; i++) {
266         uint16_t v = s->slice[i];
267         s->slice[i] =
268             (v & BIT_RANGE(0, 4)) |
269             BIT_RANGE_LEFT(v, 4, 5, 3) | BIT_RANGE_RIGHT(v, 5, 8, 1) |
270             BIT_RANGE_LEFT(v, 8, 10, 2) | BIT_RANGE_RIGHT(v, 10, 12, 2) |
271             BIT_RANGE_LEFT(v, 12, 15, 1) | BIT_RANGE_RIGHT(v, 15, 16, 3);
272     }
273 }
274 
InvShiftRows(AES_state * s)275 static void InvShiftRows(AES_state* s) {
276     int i;
277     for (i = 0; i < 8; i++) {
278         uint16_t v = s->slice[i];
279         s->slice[i] =
280             (v & BIT_RANGE(0, 4)) |
281             BIT_RANGE_LEFT(v, 4, 7, 1) | BIT_RANGE_RIGHT(v, 7, 8, 3) |
282             BIT_RANGE_LEFT(v, 8, 10, 2) | BIT_RANGE_RIGHT(v, 10, 12, 2) |
283             BIT_RANGE_LEFT(v, 12, 13, 3) | BIT_RANGE_RIGHT(v, 13, 16, 1);
284     }
285 }
286 
287 #define ROT(x,b) (((x) >> ((b) * 4)) | ((x) << ((4-(b)) * 4)))
288 
MixColumns(AES_state * s,int inv)289 static void MixColumns(AES_state* s, int inv) {
290     /* The MixColumns transform treats the bytes of the columns of the state as
291      * coefficients of a 3rd degree polynomial over GF(2^8) and multiplies them
292      * by the fixed polynomial a(x) = {03}x^3 + {01}x^2 + {01}x + {02}, modulo
293      * x^4 + {01}.
294      *
295      * In the inverse transform, we multiply by the inverse of a(x),
296      * a^-1(x) = {0b}x^3 + {0d}x^2 + {09}x + {0e}. This is equal to
297      * a(x) * ({04}x^2 + {05}), so we can reuse the forward transform's code
298      * (found in OpenSSL's bsaes-x86_64.pl, attributed to Jussi Kivilinna)
299      *
300      * In the bitsliced representation, a multiplication of every column by x
301      * mod x^4 + 1 is simply a right rotation.
302      */
303 
304     /* Shared for both directions is a multiplication by a(x), which can be
305      * rewritten as (x^3 + x^2 + x) + {02}*(x^3 + {01}).
306      *
307      * First compute s into the s? variables, (x^3 + {01}) * s into the s?_01
308      * variables and (x^3 + x^2 + x)*s into the s?_123 variables.
309      */
310     uint16_t s0 = s->slice[0], s1 = s->slice[1], s2 = s->slice[2], s3 = s->slice[3];
311     uint16_t s4 = s->slice[4], s5 = s->slice[5], s6 = s->slice[6], s7 = s->slice[7];
312     uint16_t s0_01 = s0 ^ ROT(s0, 1), s0_123 = ROT(s0_01, 1) ^ ROT(s0, 3);
313     uint16_t s1_01 = s1 ^ ROT(s1, 1), s1_123 = ROT(s1_01, 1) ^ ROT(s1, 3);
314     uint16_t s2_01 = s2 ^ ROT(s2, 1), s2_123 = ROT(s2_01, 1) ^ ROT(s2, 3);
315     uint16_t s3_01 = s3 ^ ROT(s3, 1), s3_123 = ROT(s3_01, 1) ^ ROT(s3, 3);
316     uint16_t s4_01 = s4 ^ ROT(s4, 1), s4_123 = ROT(s4_01, 1) ^ ROT(s4, 3);
317     uint16_t s5_01 = s5 ^ ROT(s5, 1), s5_123 = ROT(s5_01, 1) ^ ROT(s5, 3);
318     uint16_t s6_01 = s6 ^ ROT(s6, 1), s6_123 = ROT(s6_01, 1) ^ ROT(s6, 3);
319     uint16_t s7_01 = s7 ^ ROT(s7, 1), s7_123 = ROT(s7_01, 1) ^ ROT(s7, 3);
320     /* Now compute s = s?_123 + {02} * s?_01. */
321     s->slice[0] = s7_01 ^ s0_123;
322     s->slice[1] = s7_01 ^ s0_01 ^ s1_123;
323     s->slice[2] = s1_01 ^ s2_123;
324     s->slice[3] = s7_01 ^ s2_01 ^ s3_123;
325     s->slice[4] = s7_01 ^ s3_01 ^ s4_123;
326     s->slice[5] = s4_01 ^ s5_123;
327     s->slice[6] = s5_01 ^ s6_123;
328     s->slice[7] = s6_01 ^ s7_123;
329     if (inv) {
330         /* In the reverse direction, we further need to multiply by
331          * {04}x^2 + {05}, which can be written as {04} * (x^2 + {01}) + {01}.
332          *
333          * First compute (x^2 + {01}) * s into the t?_02 variables: */
334         uint16_t t0_02 = s->slice[0] ^ ROT(s->slice[0], 2);
335         uint16_t t1_02 = s->slice[1] ^ ROT(s->slice[1], 2);
336         uint16_t t2_02 = s->slice[2] ^ ROT(s->slice[2], 2);
337         uint16_t t3_02 = s->slice[3] ^ ROT(s->slice[3], 2);
338         uint16_t t4_02 = s->slice[4] ^ ROT(s->slice[4], 2);
339         uint16_t t5_02 = s->slice[5] ^ ROT(s->slice[5], 2);
340         uint16_t t6_02 = s->slice[6] ^ ROT(s->slice[6], 2);
341         uint16_t t7_02 = s->slice[7] ^ ROT(s->slice[7], 2);
342         /* And then update s += {04} * t?_02 */
343         s->slice[0] ^= t6_02;
344         s->slice[1] ^= t6_02 ^ t7_02;
345         s->slice[2] ^= t0_02 ^ t7_02;
346         s->slice[3] ^= t1_02 ^ t6_02;
347         s->slice[4] ^= t2_02 ^ t6_02 ^ t7_02;
348         s->slice[5] ^= t3_02 ^ t7_02;
349         s->slice[6] ^= t4_02;
350         s->slice[7] ^= t5_02;
351     }
352 }
353 
AddRoundKey(AES_state * s,const AES_state * round)354 static void AddRoundKey(AES_state* s, const AES_state* round) {
355     int b;
356     for (b = 0; b < 8; b++) {
357         s->slice[b] ^= round->slice[b];
358     }
359 }
360 
361 /** column_0(s) = column_c(a) */
GetOneColumn(AES_state * s,const AES_state * a,int c)362 static void GetOneColumn(AES_state* s, const AES_state* a, int c) {
363     int b;
364     for (b = 0; b < 8; b++) {
365         s->slice[b] = (a->slice[b] >> c) & 0x1111;
366     }
367 }
368 
369 /** column_c1(r) |= (column_0(s) ^= column_c2(a)) */
KeySetupColumnMix(AES_state * s,AES_state * r,const AES_state * a,int c1,int c2)370 static void KeySetupColumnMix(AES_state* s, AES_state* r, const AES_state* a, int c1, int c2) {
371     int b;
372     for (b = 0; b < 8; b++) {
373         r->slice[b] |= ((s->slice[b] ^= ((a->slice[b] >> c2) & 0x1111)) & 0x1111) << c1;
374     }
375 }
376 
377 /** Rotate the rows in s one position upwards, and xor in r */
KeySetupTransform(AES_state * s,const AES_state * r)378 static void KeySetupTransform(AES_state* s, const AES_state* r) {
379     int b;
380     for (b = 0; b < 8; b++) {
381         s->slice[b] = ((s->slice[b] >> 4) | (s->slice[b] << 12)) ^ r->slice[b];
382     }
383 }
384 
385 /* Multiply the cells in s by x, as polynomials over GF(2) mod x^8 + x^4 + x^3 + x + 1 */
MultX(AES_state * s)386 static void MultX(AES_state* s) {
387     uint16_t top = s->slice[7];
388     s->slice[7] = s->slice[6];
389     s->slice[6] = s->slice[5];
390     s->slice[5] = s->slice[4];
391     s->slice[4] = s->slice[3] ^ top;
392     s->slice[3] = s->slice[2] ^ top;
393     s->slice[2] = s->slice[1];
394     s->slice[1] = s->slice[0] ^ top;
395     s->slice[0] = top;
396 }
397 
398 /** Expand the cipher key into the key schedule.
399  *
400  *  state must be a pointer to an array of size nrounds + 1.
401  *  key must be a pointer to 4 * nkeywords bytes.
402  *
403  *  AES128 uses nkeywords = 4, nrounds = 10
404  *  AES192 uses nkeywords = 6, nrounds = 12
405  *  AES256 uses nkeywords = 8, nrounds = 14
406  */
AES_setup(AES_state * rounds,const uint8_t * key,int nkeywords,int nrounds)407 static void AES_setup(AES_state* rounds, const uint8_t* key, int nkeywords, int nrounds)
408 {
409     int i;
410 
411     /* The one-byte round constant */
412     AES_state rcon = {{1,0,0,0,0,0,0,0}};
413     /* The number of the word being generated, modulo nkeywords */
414     int pos = 0;
415     /* The column representing the word currently being processed */
416     AES_state column;
417 
418     for (i = 0; i < nrounds + 1; i++) {
419         int b;
420         for (b = 0; b < 8; b++) {
421             rounds[i].slice[b] = 0;
422         }
423     }
424 
425     /* The first nkeywords round columns are just taken from the key directly. */
426     for (i = 0; i < nkeywords; i++) {
427         int r;
428         for (r = 0; r < 4; r++) {
429             LoadByte(&rounds[i >> 2], *(key++), r, i & 3);
430         }
431     }
432 
433     GetOneColumn(&column, &rounds[(nkeywords - 1) >> 2], (nkeywords - 1) & 3);
434 
435     for (i = nkeywords; i < 4 * (nrounds + 1); i++) {
436         /* Transform column */
437         if (pos == 0) {
438             SubBytes(&column, 0);
439             KeySetupTransform(&column, &rcon);
440             MultX(&rcon);
441         } else if (nkeywords > 6 && pos == 4) {
442             SubBytes(&column, 0);
443         }
444         if (++pos == nkeywords) pos = 0;
445         KeySetupColumnMix(&column, &rounds[i >> 2], &rounds[(i - nkeywords) >> 2], i & 3, (i - nkeywords) & 3);
446     }
447 }
448 
AES_encrypt(const AES_state * rounds,int nrounds,unsigned char * cipher16,const unsigned char * plain16)449 static void AES_encrypt(const AES_state* rounds, int nrounds, unsigned char* cipher16, const unsigned char* plain16) {
450     AES_state s = {{0}};
451     int round;
452 
453     LoadBytes(&s, plain16);
454     AddRoundKey(&s, rounds++);
455 
456     for (round = 1; round < nrounds; round++) {
457         SubBytes(&s, 0);
458         ShiftRows(&s);
459         MixColumns(&s, 0);
460         AddRoundKey(&s, rounds++);
461     }
462 
463     SubBytes(&s, 0);
464     ShiftRows(&s);
465     AddRoundKey(&s, rounds);
466 
467     SaveBytes(cipher16, &s);
468 }
469 
AES_decrypt(const AES_state * rounds,int nrounds,unsigned char * plain16,const unsigned char * cipher16)470 static void AES_decrypt(const AES_state* rounds, int nrounds, unsigned char* plain16, const unsigned char* cipher16) {
471     /* Most AES decryption implementations use the alternate scheme
472      * (the Equivalent Inverse Cipher), which allows for more code reuse between
473      * the encryption and decryption code, but requires separate setup for both.
474      */
475     AES_state s = {{0}};
476     int round;
477 
478     rounds += nrounds;
479 
480     LoadBytes(&s, cipher16);
481     AddRoundKey(&s, rounds--);
482 
483     for (round = 1; round < nrounds; round++) {
484         InvShiftRows(&s);
485         SubBytes(&s, 1);
486         AddRoundKey(&s, rounds--);
487         MixColumns(&s, 1);
488     }
489 
490     InvShiftRows(&s);
491     SubBytes(&s, 1);
492     AddRoundKey(&s, rounds);
493 
494     SaveBytes(plain16, &s);
495 }
496 
AES128_init(AES128_ctx * ctx,const unsigned char * key16)497 void AES128_init(AES128_ctx* ctx, const unsigned char* key16) {
498     AES_setup(ctx->rk, key16, 4, 10);
499 }
500 
AES128_encrypt(const AES128_ctx * ctx,size_t blocks,unsigned char * cipher16,const unsigned char * plain16)501 void AES128_encrypt(const AES128_ctx* ctx, size_t blocks, unsigned char* cipher16, const unsigned char* plain16) {
502     while (blocks--) {
503         AES_encrypt(ctx->rk, 10, cipher16, plain16);
504         cipher16 += 16;
505         plain16 += 16;
506     }
507 }
508 
AES128_decrypt(const AES128_ctx * ctx,size_t blocks,unsigned char * plain16,const unsigned char * cipher16)509 void AES128_decrypt(const AES128_ctx* ctx, size_t blocks, unsigned char* plain16, const unsigned char* cipher16) {
510     while (blocks--) {
511         AES_decrypt(ctx->rk, 10, plain16, cipher16);
512         cipher16 += 16;
513         plain16 += 16;
514     }
515 }
516 
AES192_init(AES192_ctx * ctx,const unsigned char * key24)517 void AES192_init(AES192_ctx* ctx, const unsigned char* key24) {
518     AES_setup(ctx->rk, key24, 6, 12);
519 }
520 
AES192_encrypt(const AES192_ctx * ctx,size_t blocks,unsigned char * cipher16,const unsigned char * plain16)521 void AES192_encrypt(const AES192_ctx* ctx, size_t blocks, unsigned char* cipher16, const unsigned char* plain16) {
522     while (blocks--) {
523         AES_encrypt(ctx->rk, 12, cipher16, plain16);
524         cipher16 += 16;
525         plain16 += 16;
526     }
527 
528 }
529 
AES192_decrypt(const AES192_ctx * ctx,size_t blocks,unsigned char * plain16,const unsigned char * cipher16)530 void AES192_decrypt(const AES192_ctx* ctx, size_t blocks, unsigned char* plain16, const unsigned char* cipher16) {
531     while (blocks--) {
532         AES_decrypt(ctx->rk, 12, plain16, cipher16);
533         cipher16 += 16;
534         plain16 += 16;
535     }
536 }
537 
AES256_init(AES256_ctx * ctx,const unsigned char * key32)538 void AES256_init(AES256_ctx* ctx, const unsigned char* key32) {
539     AES_setup(ctx->rk, key32, 8, 14);
540 }
541 
AES256_encrypt(const AES256_ctx * ctx,size_t blocks,unsigned char * cipher16,const unsigned char * plain16)542 void AES256_encrypt(const AES256_ctx* ctx, size_t blocks, unsigned char* cipher16, const unsigned char* plain16) {
543     while (blocks--) {
544         AES_encrypt(ctx->rk, 14, cipher16, plain16);
545         cipher16 += 16;
546         plain16 += 16;
547     }
548 }
549 
AES256_decrypt(const AES256_ctx * ctx,size_t blocks,unsigned char * plain16,const unsigned char * cipher16)550 void AES256_decrypt(const AES256_ctx* ctx, size_t blocks, unsigned char* plain16, const unsigned char* cipher16) {
551     while (blocks--) {
552         AES_decrypt(ctx->rk, 14, plain16, cipher16);
553         cipher16 += 16;
554         plain16 += 16;
555     }
556 }
557