1 // Copyright (c) 2011 The LevelDB Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. See the AUTHORS file for names of contributors.
4 
5 #ifndef STORAGE_LEVELDB_DB_DBFORMAT_H_
6 #define STORAGE_LEVELDB_DB_DBFORMAT_H_
7 
8 #include <cstddef>
9 #include <cstdint>
10 #include <string>
11 
12 #include "leveldb/comparator.h"
13 #include "leveldb/db.h"
14 #include "leveldb/filter_policy.h"
15 #include "leveldb/slice.h"
16 #include "leveldb/table_builder.h"
17 #include "util/coding.h"
18 #include "util/logging.h"
19 
20 namespace leveldb {
21 
22 // Grouping of constants.  We may want to make some of these
23 // parameters set via options.
24 namespace config {
25 static const int kNumLevels = 7;
26 
27 // Level-0 compaction is started when we hit this many files.
28 static const int kL0_CompactionTrigger = 4;
29 
30 // Soft limit on number of level-0 files.  We slow down writes at this point.
31 static const int kL0_SlowdownWritesTrigger = 8;
32 
33 // Maximum number of level-0 files.  We stop writes at this point.
34 static const int kL0_StopWritesTrigger = 12;
35 
36 // Maximum level to which a new compacted memtable is pushed if it
37 // does not create overlap.  We try to push to level 2 to avoid the
38 // relatively expensive level 0=>1 compactions and to avoid some
39 // expensive manifest file operations.  We do not push all the way to
40 // the largest level since that can generate a lot of wasted disk
41 // space if the same key space is being repeatedly overwritten.
42 static const int kMaxMemCompactLevel = 2;
43 
44 // Approximate gap in bytes between samples of data read during iteration.
45 static const int kReadBytesPeriod = 1048576;
46 
47 }  // namespace config
48 
49 class InternalKey;
50 
51 // Value types encoded as the last component of internal keys.
52 // DO NOT CHANGE THESE ENUM VALUES: they are embedded in the on-disk
53 // data structures.
54 enum ValueType { kTypeDeletion = 0x0, kTypeValue = 0x1 };
55 // kValueTypeForSeek defines the ValueType that should be passed when
56 // constructing a ParsedInternalKey object for seeking to a particular
57 // sequence number (since we sort sequence numbers in decreasing order
58 // and the value type is embedded as the low 8 bits in the sequence
59 // number in internal keys, we need to use the highest-numbered
60 // ValueType, not the lowest).
61 static const ValueType kValueTypeForSeek = kTypeValue;
62 
63 typedef uint64_t SequenceNumber;
64 
65 // We leave eight bits empty at the bottom so a type and sequence#
66 // can be packed together into 64-bits.
67 static const SequenceNumber kMaxSequenceNumber = ((0x1ull << 56) - 1);
68 
69 struct ParsedInternalKey {
70   Slice user_key;
71   SequenceNumber sequence;
72   ValueType type;
73 
ParsedInternalKeyParsedInternalKey74   ParsedInternalKey() {}  // Intentionally left uninitialized (for speed)
ParsedInternalKeyParsedInternalKey75   ParsedInternalKey(const Slice& u, const SequenceNumber& seq, ValueType t)
76       : user_key(u), sequence(seq), type(t) {}
77   std::string DebugString() const;
78 };
79 
80 // Return the length of the encoding of "key".
InternalKeyEncodingLength(const ParsedInternalKey & key)81 inline size_t InternalKeyEncodingLength(const ParsedInternalKey& key) {
82   return key.user_key.size() + 8;
83 }
84 
85 // Append the serialization of "key" to *result.
86 void AppendInternalKey(std::string* result, const ParsedInternalKey& key);
87 
88 // Attempt to parse an internal key from "internal_key".  On success,
89 // stores the parsed data in "*result", and returns true.
90 //
91 // On error, returns false, leaves "*result" in an undefined state.
92 bool ParseInternalKey(const Slice& internal_key, ParsedInternalKey* result);
93 
94 // Returns the user key portion of an internal key.
ExtractUserKey(const Slice & internal_key)95 inline Slice ExtractUserKey(const Slice& internal_key) {
96   assert(internal_key.size() >= 8);
97   return Slice(internal_key.data(), internal_key.size() - 8);
98 }
99 
100 // A comparator for internal keys that uses a specified comparator for
101 // the user key portion and breaks ties by decreasing sequence number.
102 class InternalKeyComparator : public Comparator {
103  private:
104   const Comparator* user_comparator_;
105 
106  public:
InternalKeyComparator(const Comparator * c)107   explicit InternalKeyComparator(const Comparator* c) : user_comparator_(c) {}
108   const char* Name() const override;
109   int Compare(const Slice& a, const Slice& b) const override;
110   void FindShortestSeparator(std::string* start,
111                              const Slice& limit) const override;
112   void FindShortSuccessor(std::string* key) const override;
113 
user_comparator()114   const Comparator* user_comparator() const { return user_comparator_; }
115 
116   int Compare(const InternalKey& a, const InternalKey& b) const;
117 };
118 
119 // Filter policy wrapper that converts from internal keys to user keys
120 class InternalFilterPolicy : public FilterPolicy {
121  private:
122   const FilterPolicy* const user_policy_;
123 
124  public:
InternalFilterPolicy(const FilterPolicy * p)125   explicit InternalFilterPolicy(const FilterPolicy* p) : user_policy_(p) {}
126   const char* Name() const override;
127   void CreateFilter(const Slice* keys, int n, std::string* dst) const override;
128   bool KeyMayMatch(const Slice& key, const Slice& filter) const override;
129 };
130 
131 // Modules in this directory should keep internal keys wrapped inside
132 // the following class instead of plain strings so that we do not
133 // incorrectly use string comparisons instead of an InternalKeyComparator.
134 class InternalKey {
135  private:
136   std::string rep_;
137 
138  public:
InternalKey()139   InternalKey() {}  // Leave rep_ as empty to indicate it is invalid
InternalKey(const Slice & user_key,SequenceNumber s,ValueType t)140   InternalKey(const Slice& user_key, SequenceNumber s, ValueType t) {
141     AppendInternalKey(&rep_, ParsedInternalKey(user_key, s, t));
142   }
143 
DecodeFrom(const Slice & s)144   bool DecodeFrom(const Slice& s) {
145     rep_.assign(s.data(), s.size());
146     return !rep_.empty();
147   }
148 
Encode()149   Slice Encode() const {
150     assert(!rep_.empty());
151     return rep_;
152   }
153 
user_key()154   Slice user_key() const { return ExtractUserKey(rep_); }
155 
SetFrom(const ParsedInternalKey & p)156   void SetFrom(const ParsedInternalKey& p) {
157     rep_.clear();
158     AppendInternalKey(&rep_, p);
159   }
160 
Clear()161   void Clear() { rep_.clear(); }
162 
163   std::string DebugString() const;
164 };
165 
Compare(const InternalKey & a,const InternalKey & b)166 inline int InternalKeyComparator::Compare(const InternalKey& a,
167                                           const InternalKey& b) const {
168   return Compare(a.Encode(), b.Encode());
169 }
170 
ParseInternalKey(const Slice & internal_key,ParsedInternalKey * result)171 inline bool ParseInternalKey(const Slice& internal_key,
172                              ParsedInternalKey* result) {
173   const size_t n = internal_key.size();
174   if (n < 8) return false;
175   uint64_t num = DecodeFixed64(internal_key.data() + n - 8);
176   uint8_t c = num & 0xff;
177   result->sequence = num >> 8;
178   result->type = static_cast<ValueType>(c);
179   result->user_key = Slice(internal_key.data(), n - 8);
180   return (c <= static_cast<uint8_t>(kTypeValue));
181 }
182 
183 // A helper class useful for DBImpl::Get()
184 class LookupKey {
185  public:
186   // Initialize *this for looking up user_key at a snapshot with
187   // the specified sequence number.
188   LookupKey(const Slice& user_key, SequenceNumber sequence);
189 
190   LookupKey(const LookupKey&) = delete;
191   LookupKey& operator=(const LookupKey&) = delete;
192 
193   ~LookupKey();
194 
195   // Return a key suitable for lookup in a MemTable.
memtable_key()196   Slice memtable_key() const { return Slice(start_, end_ - start_); }
197 
198   // Return an internal key (suitable for passing to an internal iterator)
internal_key()199   Slice internal_key() const { return Slice(kstart_, end_ - kstart_); }
200 
201   // Return the user key
user_key()202   Slice user_key() const { return Slice(kstart_, end_ - kstart_ - 8); }
203 
204  private:
205   // We construct a char array of the form:
206   //    klength  varint32               <-- start_
207   //    userkey  char[klength]          <-- kstart_
208   //    tag      uint64
209   //                                    <-- end_
210   // The array is a suitable MemTable key.
211   // The suffix starting with "userkey" can be used as an InternalKey.
212   const char* start_;
213   const char* kstart_;
214   const char* end_;
215   char space_[200];  // Avoid allocation for short keys
216 };
217 
~LookupKey()218 inline LookupKey::~LookupKey() {
219   if (start_ != space_) delete[] start_;
220 }
221 
222 }  // namespace leveldb
223 
224 #endif  // STORAGE_LEVELDB_DB_DBFORMAT_H_
225