1 /**********************************************************************
2  * Copyright (c) 2014-2015 Pieter Wuille                              *
3  * Distributed under the MIT software license, see the accompanying   *
4  * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5  **********************************************************************/
6 #include <stdio.h>
7 
8 #include "include/secp256k1.h"
9 
10 #include "assumptions.h"
11 #include "util.h"
12 #include "hash_impl.h"
13 #include "num_impl.h"
14 #include "field_impl.h"
15 #include "group_impl.h"
16 #include "scalar_impl.h"
17 #include "ecmult_const_impl.h"
18 #include "ecmult_impl.h"
19 #include "bench.h"
20 #include "secp256k1.c"
21 
22 typedef struct {
23     secp256k1_scalar scalar[2];
24     secp256k1_fe fe[4];
25     secp256k1_ge ge[2];
26     secp256k1_gej gej[2];
27     unsigned char data[64];
28     int wnaf[256];
29 } bench_inv;
30 
bench_setup(void * arg)31 void bench_setup(void* arg) {
32     bench_inv *data = (bench_inv*)arg;
33 
34     static const unsigned char init[4][32] = {
35         /* Initializer for scalar[0], fe[0], first half of data, the X coordinate of ge[0],
36            and the (implied affine) X coordinate of gej[0]. */
37         {
38             0x02, 0x03, 0x05, 0x07, 0x0b, 0x0d, 0x11, 0x13,
39             0x17, 0x1d, 0x1f, 0x25, 0x29, 0x2b, 0x2f, 0x35,
40             0x3b, 0x3d, 0x43, 0x47, 0x49, 0x4f, 0x53, 0x59,
41             0x61, 0x65, 0x67, 0x6b, 0x6d, 0x71, 0x7f, 0x83
42         },
43         /* Initializer for scalar[1], fe[1], first half of data, the X coordinate of ge[1],
44            and the (implied affine) X coordinate of gej[1]. */
45         {
46             0x82, 0x83, 0x85, 0x87, 0x8b, 0x8d, 0x81, 0x83,
47             0x97, 0xad, 0xaf, 0xb5, 0xb9, 0xbb, 0xbf, 0xc5,
48             0xdb, 0xdd, 0xe3, 0xe7, 0xe9, 0xef, 0xf3, 0xf9,
49             0x11, 0x15, 0x17, 0x1b, 0x1d, 0xb1, 0xbf, 0xd3
50         },
51         /* Initializer for fe[2] and the Z coordinate of gej[0]. */
52         {
53             0x3d, 0x2d, 0xef, 0xf4, 0x25, 0x98, 0x4f, 0x5d,
54             0xe2, 0xca, 0x5f, 0x41, 0x3f, 0x3f, 0xce, 0x44,
55             0xaa, 0x2c, 0x53, 0x8a, 0xc6, 0x59, 0x1f, 0x38,
56             0x38, 0x23, 0xe4, 0x11, 0x27, 0xc6, 0xa0, 0xe7
57         },
58         /* Initializer for fe[3] and the Z coordinate of gej[1]. */
59         {
60             0xbd, 0x21, 0xa5, 0xe1, 0x13, 0x50, 0x73, 0x2e,
61             0x52, 0x98, 0xc8, 0x9e, 0xab, 0x00, 0xa2, 0x68,
62             0x43, 0xf5, 0xd7, 0x49, 0x80, 0x72, 0xa7, 0xf3,
63             0xd7, 0x60, 0xe6, 0xab, 0x90, 0x92, 0xdf, 0xc5
64         }
65     };
66 
67     secp256k1_scalar_set_b32(&data->scalar[0], init[0], NULL);
68     secp256k1_scalar_set_b32(&data->scalar[1], init[1], NULL);
69     secp256k1_fe_set_b32(&data->fe[0], init[0]);
70     secp256k1_fe_set_b32(&data->fe[1], init[1]);
71     secp256k1_fe_set_b32(&data->fe[2], init[2]);
72     secp256k1_fe_set_b32(&data->fe[3], init[3]);
73     CHECK(secp256k1_ge_set_xo_var(&data->ge[0], &data->fe[0], 0));
74     CHECK(secp256k1_ge_set_xo_var(&data->ge[1], &data->fe[1], 1));
75     secp256k1_gej_set_ge(&data->gej[0], &data->ge[0]);
76     secp256k1_gej_rescale(&data->gej[0], &data->fe[2]);
77     secp256k1_gej_set_ge(&data->gej[1], &data->ge[1]);
78     secp256k1_gej_rescale(&data->gej[1], &data->fe[3]);
79     memcpy(data->data, init[0], 32);
80     memcpy(data->data + 32, init[1], 32);
81 }
82 
bench_scalar_add(void * arg,int iters)83 void bench_scalar_add(void* arg, int iters) {
84     int i, j = 0;
85     bench_inv *data = (bench_inv*)arg;
86 
87     for (i = 0; i < iters; i++) {
88         j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
89     }
90     CHECK(j <= iters);
91 }
92 
bench_scalar_negate(void * arg,int iters)93 void bench_scalar_negate(void* arg, int iters) {
94     int i;
95     bench_inv *data = (bench_inv*)arg;
96 
97     for (i = 0; i < iters; i++) {
98         secp256k1_scalar_negate(&data->scalar[0], &data->scalar[0]);
99     }
100 }
101 
bench_scalar_sqr(void * arg,int iters)102 void bench_scalar_sqr(void* arg, int iters) {
103     int i;
104     bench_inv *data = (bench_inv*)arg;
105 
106     for (i = 0; i < iters; i++) {
107         secp256k1_scalar_sqr(&data->scalar[0], &data->scalar[0]);
108     }
109 }
110 
bench_scalar_mul(void * arg,int iters)111 void bench_scalar_mul(void* arg, int iters) {
112     int i;
113     bench_inv *data = (bench_inv*)arg;
114 
115     for (i = 0; i < iters; i++) {
116         secp256k1_scalar_mul(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
117     }
118 }
119 
bench_scalar_split(void * arg,int iters)120 void bench_scalar_split(void* arg, int iters) {
121     int i, j = 0;
122     bench_inv *data = (bench_inv*)arg;
123 
124     for (i = 0; i < iters; i++) {
125         secp256k1_scalar_split_lambda(&data->scalar[0], &data->scalar[1], &data->scalar[0]);
126         j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
127     }
128     CHECK(j <= iters);
129 }
130 
bench_scalar_inverse(void * arg,int iters)131 void bench_scalar_inverse(void* arg, int iters) {
132     int i, j = 0;
133     bench_inv *data = (bench_inv*)arg;
134 
135     for (i = 0; i < iters; i++) {
136         secp256k1_scalar_inverse(&data->scalar[0], &data->scalar[0]);
137         j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
138     }
139     CHECK(j <= iters);
140 }
141 
bench_scalar_inverse_var(void * arg,int iters)142 void bench_scalar_inverse_var(void* arg, int iters) {
143     int i, j = 0;
144     bench_inv *data = (bench_inv*)arg;
145 
146     for (i = 0; i < iters; i++) {
147         secp256k1_scalar_inverse_var(&data->scalar[0], &data->scalar[0]);
148         j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
149     }
150     CHECK(j <= iters);
151 }
152 
bench_field_normalize(void * arg,int iters)153 void bench_field_normalize(void* arg, int iters) {
154     int i;
155     bench_inv *data = (bench_inv*)arg;
156 
157     for (i = 0; i < iters; i++) {
158         secp256k1_fe_normalize(&data->fe[0]);
159     }
160 }
161 
bench_field_normalize_weak(void * arg,int iters)162 void bench_field_normalize_weak(void* arg, int iters) {
163     int i;
164     bench_inv *data = (bench_inv*)arg;
165 
166     for (i = 0; i < iters; i++) {
167         secp256k1_fe_normalize_weak(&data->fe[0]);
168     }
169 }
170 
bench_field_mul(void * arg,int iters)171 void bench_field_mul(void* arg, int iters) {
172     int i;
173     bench_inv *data = (bench_inv*)arg;
174 
175     for (i = 0; i < iters; i++) {
176         secp256k1_fe_mul(&data->fe[0], &data->fe[0], &data->fe[1]);
177     }
178 }
179 
bench_field_sqr(void * arg,int iters)180 void bench_field_sqr(void* arg, int iters) {
181     int i;
182     bench_inv *data = (bench_inv*)arg;
183 
184     for (i = 0; i < iters; i++) {
185         secp256k1_fe_sqr(&data->fe[0], &data->fe[0]);
186     }
187 }
188 
bench_field_inverse(void * arg,int iters)189 void bench_field_inverse(void* arg, int iters) {
190     int i;
191     bench_inv *data = (bench_inv*)arg;
192 
193     for (i = 0; i < iters; i++) {
194         secp256k1_fe_inv(&data->fe[0], &data->fe[0]);
195         secp256k1_fe_add(&data->fe[0], &data->fe[1]);
196     }
197 }
198 
bench_field_inverse_var(void * arg,int iters)199 void bench_field_inverse_var(void* arg, int iters) {
200     int i;
201     bench_inv *data = (bench_inv*)arg;
202 
203     for (i = 0; i < iters; i++) {
204         secp256k1_fe_inv_var(&data->fe[0], &data->fe[0]);
205         secp256k1_fe_add(&data->fe[0], &data->fe[1]);
206     }
207 }
208 
bench_field_sqrt(void * arg,int iters)209 void bench_field_sqrt(void* arg, int iters) {
210     int i, j = 0;
211     bench_inv *data = (bench_inv*)arg;
212     secp256k1_fe t;
213 
214     for (i = 0; i < iters; i++) {
215         t = data->fe[0];
216         j += secp256k1_fe_sqrt(&data->fe[0], &t);
217         secp256k1_fe_add(&data->fe[0], &data->fe[1]);
218     }
219     CHECK(j <= iters);
220 }
221 
bench_group_double_var(void * arg,int iters)222 void bench_group_double_var(void* arg, int iters) {
223     int i;
224     bench_inv *data = (bench_inv*)arg;
225 
226     for (i = 0; i < iters; i++) {
227         secp256k1_gej_double_var(&data->gej[0], &data->gej[0], NULL);
228     }
229 }
230 
bench_group_add_var(void * arg,int iters)231 void bench_group_add_var(void* arg, int iters) {
232     int i;
233     bench_inv *data = (bench_inv*)arg;
234 
235     for (i = 0; i < iters; i++) {
236         secp256k1_gej_add_var(&data->gej[0], &data->gej[0], &data->gej[1], NULL);
237     }
238 }
239 
bench_group_add_affine(void * arg,int iters)240 void bench_group_add_affine(void* arg, int iters) {
241     int i;
242     bench_inv *data = (bench_inv*)arg;
243 
244     for (i = 0; i < iters; i++) {
245         secp256k1_gej_add_ge(&data->gej[0], &data->gej[0], &data->ge[1]);
246     }
247 }
248 
bench_group_add_affine_var(void * arg,int iters)249 void bench_group_add_affine_var(void* arg, int iters) {
250     int i;
251     bench_inv *data = (bench_inv*)arg;
252 
253     for (i = 0; i < iters; i++) {
254         secp256k1_gej_add_ge_var(&data->gej[0], &data->gej[0], &data->ge[1], NULL);
255     }
256 }
257 
bench_group_jacobi_var(void * arg,int iters)258 void bench_group_jacobi_var(void* arg, int iters) {
259     int i, j = 0;
260     bench_inv *data = (bench_inv*)arg;
261 
262     for (i = 0; i < iters; i++) {
263         j += secp256k1_gej_has_quad_y_var(&data->gej[0]);
264         /* Vary the Y and Z coordinates of the input (the X coordinate doesn't matter to
265            secp256k1_gej_has_quad_y_var). Note that the resulting coordinates will
266            generally not correspond to a point on the curve, but this is not a problem
267            for the code being benchmarked here. Adding and normalizing have less
268            overhead than EC operations (which could guarantee the point remains on the
269            curve). */
270         secp256k1_fe_add(&data->gej[0].y, &data->fe[1]);
271         secp256k1_fe_add(&data->gej[0].z, &data->fe[2]);
272         secp256k1_fe_normalize_var(&data->gej[0].y);
273         secp256k1_fe_normalize_var(&data->gej[0].z);
274     }
275     CHECK(j <= iters);
276 }
277 
bench_group_to_affine_var(void * arg,int iters)278 void bench_group_to_affine_var(void* arg, int iters) {
279     int i;
280     bench_inv *data = (bench_inv*)arg;
281 
282     for (i = 0; i < iters; ++i) {
283         secp256k1_ge_set_gej_var(&data->ge[1], &data->gej[0]);
284         /* Use the output affine X/Y coordinates to vary the input X/Y/Z coordinates.
285            Similar to bench_group_jacobi_var, this approach does not result in
286            coordinates of points on the curve. */
287         secp256k1_fe_add(&data->gej[0].x, &data->ge[1].y);
288         secp256k1_fe_add(&data->gej[0].y, &data->fe[2]);
289         secp256k1_fe_add(&data->gej[0].z, &data->ge[1].x);
290         secp256k1_fe_normalize_var(&data->gej[0].x);
291         secp256k1_fe_normalize_var(&data->gej[0].y);
292         secp256k1_fe_normalize_var(&data->gej[0].z);
293     }
294 }
295 
bench_ecmult_wnaf(void * arg,int iters)296 void bench_ecmult_wnaf(void* arg, int iters) {
297     int i, bits = 0, overflow = 0;
298     bench_inv *data = (bench_inv*)arg;
299 
300     for (i = 0; i < iters; i++) {
301         bits += secp256k1_ecmult_wnaf(data->wnaf, 256, &data->scalar[0], WINDOW_A);
302         overflow += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
303     }
304     CHECK(overflow >= 0);
305     CHECK(bits <= 256*iters);
306 }
307 
bench_wnaf_const(void * arg,int iters)308 void bench_wnaf_const(void* arg, int iters) {
309     int i, bits = 0, overflow = 0;
310     bench_inv *data = (bench_inv*)arg;
311 
312     for (i = 0; i < iters; i++) {
313         bits += secp256k1_wnaf_const(data->wnaf, &data->scalar[0], WINDOW_A, 256);
314         overflow += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
315     }
316     CHECK(overflow >= 0);
317     CHECK(bits <= 256*iters);
318 }
319 
320 
bench_sha256(void * arg,int iters)321 void bench_sha256(void* arg, int iters) {
322     int i;
323     bench_inv *data = (bench_inv*)arg;
324     secp256k1_sha256 sha;
325 
326     for (i = 0; i < iters; i++) {
327         secp256k1_sha256_initialize(&sha);
328         secp256k1_sha256_write(&sha, data->data, 32);
329         secp256k1_sha256_finalize(&sha, data->data);
330     }
331 }
332 
bench_hmac_sha256(void * arg,int iters)333 void bench_hmac_sha256(void* arg, int iters) {
334     int i;
335     bench_inv *data = (bench_inv*)arg;
336     secp256k1_hmac_sha256 hmac;
337 
338     for (i = 0; i < iters; i++) {
339         secp256k1_hmac_sha256_initialize(&hmac, data->data, 32);
340         secp256k1_hmac_sha256_write(&hmac, data->data, 32);
341         secp256k1_hmac_sha256_finalize(&hmac, data->data);
342     }
343 }
344 
bench_rfc6979_hmac_sha256(void * arg,int iters)345 void bench_rfc6979_hmac_sha256(void* arg, int iters) {
346     int i;
347     bench_inv *data = (bench_inv*)arg;
348     secp256k1_rfc6979_hmac_sha256 rng;
349 
350     for (i = 0; i < iters; i++) {
351         secp256k1_rfc6979_hmac_sha256_initialize(&rng, data->data, 64);
352         secp256k1_rfc6979_hmac_sha256_generate(&rng, data->data, 32);
353     }
354 }
355 
bench_context_verify(void * arg,int iters)356 void bench_context_verify(void* arg, int iters) {
357     int i;
358     (void)arg;
359     for (i = 0; i < iters; i++) {
360         secp256k1_context_destroy(secp256k1_context_create(SECP256K1_CONTEXT_VERIFY));
361     }
362 }
363 
bench_context_sign(void * arg,int iters)364 void bench_context_sign(void* arg, int iters) {
365     int i;
366     (void)arg;
367     for (i = 0; i < iters; i++) {
368         secp256k1_context_destroy(secp256k1_context_create(SECP256K1_CONTEXT_SIGN));
369     }
370 }
371 
372 #ifndef USE_NUM_NONE
bench_num_jacobi(void * arg,int iters)373 void bench_num_jacobi(void* arg, int iters) {
374     int i, j = 0;
375     bench_inv *data = (bench_inv*)arg;
376     secp256k1_num nx, na, norder;
377 
378     secp256k1_scalar_get_num(&nx, &data->scalar[0]);
379     secp256k1_scalar_order_get_num(&norder);
380     secp256k1_scalar_get_num(&na, &data->scalar[1]);
381 
382     for (i = 0; i < iters; i++) {
383         j += secp256k1_num_jacobi(&nx, &norder);
384         secp256k1_num_add(&nx, &nx, &na);
385     }
386     CHECK(j <= iters);
387 }
388 #endif
389 
main(int argc,char ** argv)390 int main(int argc, char **argv) {
391     bench_inv data;
392     int iters = get_iters(20000);
393 
394     if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "add")) run_benchmark("scalar_add", bench_scalar_add, bench_setup, NULL, &data, 10, iters*100);
395     if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "negate")) run_benchmark("scalar_negate", bench_scalar_negate, bench_setup, NULL, &data, 10, iters*100);
396     if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "sqr")) run_benchmark("scalar_sqr", bench_scalar_sqr, bench_setup, NULL, &data, 10, iters*10);
397     if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "mul")) run_benchmark("scalar_mul", bench_scalar_mul, bench_setup, NULL, &data, 10, iters*10);
398     if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "split")) run_benchmark("scalar_split", bench_scalar_split, bench_setup, NULL, &data, 10, iters);
399     if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse", bench_scalar_inverse, bench_setup, NULL, &data, 10, 2000);
400     if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse_var", bench_scalar_inverse_var, bench_setup, NULL, &data, 10, 2000);
401 
402     if (have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize", bench_field_normalize, bench_setup, NULL, &data, 10, iters*100);
403     if (have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize_weak", bench_field_normalize_weak, bench_setup, NULL, &data, 10, iters*100);
404     if (have_flag(argc, argv, "field") || have_flag(argc, argv, "sqr")) run_benchmark("field_sqr", bench_field_sqr, bench_setup, NULL, &data, 10, iters*10);
405     if (have_flag(argc, argv, "field") || have_flag(argc, argv, "mul")) run_benchmark("field_mul", bench_field_mul, bench_setup, NULL, &data, 10, iters*10);
406     if (have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse", bench_field_inverse, bench_setup, NULL, &data, 10, iters);
407     if (have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse_var", bench_field_inverse_var, bench_setup, NULL, &data, 10, iters);
408     if (have_flag(argc, argv, "field") || have_flag(argc, argv, "sqrt")) run_benchmark("field_sqrt", bench_field_sqrt, bench_setup, NULL, &data, 10, iters);
409 
410     if (have_flag(argc, argv, "group") || have_flag(argc, argv, "double")) run_benchmark("group_double_var", bench_group_double_var, bench_setup, NULL, &data, 10, iters*10);
411     if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_var", bench_group_add_var, bench_setup, NULL, &data, 10, iters*10);
412     if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine", bench_group_add_affine, bench_setup, NULL, &data, 10, iters*10);
413     if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine_var", bench_group_add_affine_var, bench_setup, NULL, &data, 10, iters*10);
414     if (have_flag(argc, argv, "group") || have_flag(argc, argv, "jacobi")) run_benchmark("group_jacobi_var", bench_group_jacobi_var, bench_setup, NULL, &data, 10, iters);
415     if (have_flag(argc, argv, "group") || have_flag(argc, argv, "to_affine")) run_benchmark("group_to_affine_var", bench_group_to_affine_var, bench_setup, NULL, &data, 10, iters);
416 
417     if (have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("wnaf_const", bench_wnaf_const, bench_setup, NULL, &data, 10, iters);
418     if (have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("ecmult_wnaf", bench_ecmult_wnaf, bench_setup, NULL, &data, 10, iters);
419 
420     if (have_flag(argc, argv, "hash") || have_flag(argc, argv, "sha256")) run_benchmark("hash_sha256", bench_sha256, bench_setup, NULL, &data, 10, iters);
421     if (have_flag(argc, argv, "hash") || have_flag(argc, argv, "hmac")) run_benchmark("hash_hmac_sha256", bench_hmac_sha256, bench_setup, NULL, &data, 10, iters);
422     if (have_flag(argc, argv, "hash") || have_flag(argc, argv, "rng6979")) run_benchmark("hash_rfc6979_hmac_sha256", bench_rfc6979_hmac_sha256, bench_setup, NULL, &data, 10, iters);
423 
424     if (have_flag(argc, argv, "context") || have_flag(argc, argv, "verify")) run_benchmark("context_verify", bench_context_verify, bench_setup, NULL, &data, 10, 1 + iters/1000);
425     if (have_flag(argc, argv, "context") || have_flag(argc, argv, "sign")) run_benchmark("context_sign", bench_context_sign, bench_setup, NULL, &data, 10, 1 + iters/100);
426 
427 #ifndef USE_NUM_NONE
428     if (have_flag(argc, argv, "num") || have_flag(argc, argv, "jacobi")) run_benchmark("num_jacobi", bench_num_jacobi, bench_setup, NULL, &data, 10, iters*10);
429 #endif
430     return 0;
431 }
432