1// Copyright 2019+ Klaus Post. All rights reserved. 2// License information can be found in the LICENSE file. 3// Based on work by Yann Collet, released under BSD License. 4 5package zstd 6 7import ( 8 "errors" 9 "fmt" 10 "math" 11 "math/bits" 12 13 "github.com/klauspost/compress/huff0" 14) 15 16type blockEnc struct { 17 size int 18 literals []byte 19 sequences []seq 20 coders seqCoders 21 litEnc *huff0.Scratch 22 wr bitWriter 23 24 extraLits int 25 last bool 26 27 output []byte 28 recentOffsets [3]uint32 29 prevRecentOffsets [3]uint32 30} 31 32// init should be used once the block has been created. 33// If called more than once, the effect is the same as calling reset. 34func (b *blockEnc) init() { 35 if cap(b.literals) < maxCompressedLiteralSize { 36 b.literals = make([]byte, 0, maxCompressedLiteralSize) 37 } 38 const defSeqs = 200 39 b.literals = b.literals[:0] 40 if cap(b.sequences) < defSeqs { 41 b.sequences = make([]seq, 0, defSeqs) 42 } 43 if cap(b.output) < maxCompressedBlockSize { 44 b.output = make([]byte, 0, maxCompressedBlockSize) 45 } 46 if b.coders.mlEnc == nil { 47 b.coders.mlEnc = &fseEncoder{} 48 b.coders.mlPrev = &fseEncoder{} 49 b.coders.ofEnc = &fseEncoder{} 50 b.coders.ofPrev = &fseEncoder{} 51 b.coders.llEnc = &fseEncoder{} 52 b.coders.llPrev = &fseEncoder{} 53 } 54 b.litEnc = &huff0.Scratch{WantLogLess: 4} 55 b.reset(nil) 56} 57 58// initNewEncode can be used to reset offsets and encoders to the initial state. 59func (b *blockEnc) initNewEncode() { 60 b.recentOffsets = [3]uint32{1, 4, 8} 61 b.litEnc.Reuse = huff0.ReusePolicyNone 62 b.coders.setPrev(nil, nil, nil) 63} 64 65// reset will reset the block for a new encode, but in the same stream, 66// meaning that state will be carried over, but the block content is reset. 67// If a previous block is provided, the recent offsets are carried over. 68func (b *blockEnc) reset(prev *blockEnc) { 69 b.extraLits = 0 70 b.literals = b.literals[:0] 71 b.size = 0 72 b.sequences = b.sequences[:0] 73 b.output = b.output[:0] 74 b.last = false 75 if prev != nil { 76 b.recentOffsets = prev.prevRecentOffsets 77 } 78} 79 80// reset will reset the block for a new encode, but in the same stream, 81// meaning that state will be carried over, but the block content is reset. 82// If a previous block is provided, the recent offsets are carried over. 83func (b *blockEnc) swapEncoders(prev *blockEnc) { 84 b.coders.swap(&prev.coders) 85 b.litEnc, prev.litEnc = prev.litEnc, b.litEnc 86} 87 88// blockHeader contains the information for a block header. 89type blockHeader uint32 90 91// setLast sets the 'last' indicator on a block. 92func (h *blockHeader) setLast(b bool) { 93 if b { 94 *h = *h | 1 95 } else { 96 const mask = (1 << 24) - 2 97 *h = *h & mask 98 } 99} 100 101// setSize will store the compressed size of a block. 102func (h *blockHeader) setSize(v uint32) { 103 const mask = 7 104 *h = (*h)&mask | blockHeader(v<<3) 105} 106 107// setType sets the block type. 108func (h *blockHeader) setType(t blockType) { 109 const mask = 1 | (((1 << 24) - 1) ^ 7) 110 *h = (*h & mask) | blockHeader(t<<1) 111} 112 113// appendTo will append the block header to a slice. 114func (h blockHeader) appendTo(b []byte) []byte { 115 return append(b, uint8(h), uint8(h>>8), uint8(h>>16)) 116} 117 118// String returns a string representation of the block. 119func (h blockHeader) String() string { 120 return fmt.Sprintf("Type: %d, Size: %d, Last:%t", (h>>1)&3, h>>3, h&1 == 1) 121} 122 123// literalsHeader contains literals header information. 124type literalsHeader uint64 125 126// setType can be used to set the type of literal block. 127func (h *literalsHeader) setType(t literalsBlockType) { 128 const mask = math.MaxUint64 - 3 129 *h = (*h & mask) | literalsHeader(t) 130} 131 132// setSize can be used to set a single size, for uncompressed and RLE content. 133func (h *literalsHeader) setSize(regenLen int) { 134 inBits := bits.Len32(uint32(regenLen)) 135 // Only retain 2 bits 136 const mask = 3 137 lh := uint64(*h & mask) 138 switch { 139 case inBits < 5: 140 lh |= (uint64(regenLen) << 3) | (1 << 60) 141 if debug { 142 got := int(lh>>3) & 0xff 143 if got != regenLen { 144 panic(fmt.Sprint("litRegenSize = ", regenLen, "(want) != ", got, "(got)")) 145 } 146 } 147 case inBits < 12: 148 lh |= (1 << 2) | (uint64(regenLen) << 4) | (2 << 60) 149 case inBits < 20: 150 lh |= (3 << 2) | (uint64(regenLen) << 4) | (3 << 60) 151 default: 152 panic(fmt.Errorf("internal error: block too big (%d)", regenLen)) 153 } 154 *h = literalsHeader(lh) 155} 156 157// setSizes will set the size of a compressed literals section and the input length. 158func (h *literalsHeader) setSizes(compLen, inLen int, single bool) { 159 compBits, inBits := bits.Len32(uint32(compLen)), bits.Len32(uint32(inLen)) 160 // Only retain 2 bits 161 const mask = 3 162 lh := uint64(*h & mask) 163 switch { 164 case compBits <= 10 && inBits <= 10: 165 if !single { 166 lh |= 1 << 2 167 } 168 lh |= (uint64(inLen) << 4) | (uint64(compLen) << (10 + 4)) | (3 << 60) 169 if debug { 170 const mmask = (1 << 24) - 1 171 n := (lh >> 4) & mmask 172 if int(n&1023) != inLen { 173 panic(fmt.Sprint("regensize:", int(n&1023), "!=", inLen, inBits)) 174 } 175 if int(n>>10) != compLen { 176 panic(fmt.Sprint("compsize:", int(n>>10), "!=", compLen, compBits)) 177 } 178 } 179 case compBits <= 14 && inBits <= 14: 180 lh |= (2 << 2) | (uint64(inLen) << 4) | (uint64(compLen) << (14 + 4)) | (4 << 60) 181 if single { 182 panic("single stream used with more than 10 bits length.") 183 } 184 case compBits <= 18 && inBits <= 18: 185 lh |= (3 << 2) | (uint64(inLen) << 4) | (uint64(compLen) << (18 + 4)) | (5 << 60) 186 if single { 187 panic("single stream used with more than 10 bits length.") 188 } 189 default: 190 panic("internal error: block too big") 191 } 192 *h = literalsHeader(lh) 193} 194 195// appendTo will append the literals header to a byte slice. 196func (h literalsHeader) appendTo(b []byte) []byte { 197 size := uint8(h >> 60) 198 switch size { 199 case 1: 200 b = append(b, uint8(h)) 201 case 2: 202 b = append(b, uint8(h), uint8(h>>8)) 203 case 3: 204 b = append(b, uint8(h), uint8(h>>8), uint8(h>>16)) 205 case 4: 206 b = append(b, uint8(h), uint8(h>>8), uint8(h>>16), uint8(h>>24)) 207 case 5: 208 b = append(b, uint8(h), uint8(h>>8), uint8(h>>16), uint8(h>>24), uint8(h>>32)) 209 default: 210 panic(fmt.Errorf("internal error: literalsHeader has invalid size (%d)", size)) 211 } 212 return b 213} 214 215// size returns the output size with currently set values. 216func (h literalsHeader) size() int { 217 return int(h >> 60) 218} 219 220func (h literalsHeader) String() string { 221 return fmt.Sprintf("Type: %d, SizeFormat: %d, Size: 0x%d, Bytes:%d", literalsBlockType(h&3), (h>>2)&3, h&((1<<60)-1)>>4, h>>60) 222} 223 224// pushOffsets will push the recent offsets to the backup store. 225func (b *blockEnc) pushOffsets() { 226 b.prevRecentOffsets = b.recentOffsets 227} 228 229// pushOffsets will push the recent offsets to the backup store. 230func (b *blockEnc) popOffsets() { 231 b.recentOffsets = b.prevRecentOffsets 232} 233 234// matchOffset will adjust recent offsets and return the adjusted one, 235// if it matches a previous offset. 236func (b *blockEnc) matchOffset(offset, lits uint32) uint32 { 237 // Check if offset is one of the recent offsets. 238 // Adjusts the output offset accordingly. 239 // Gives a tiny bit of compression, typically around 1%. 240 if true { 241 if lits > 0 { 242 switch offset { 243 case b.recentOffsets[0]: 244 offset = 1 245 case b.recentOffsets[1]: 246 b.recentOffsets[1] = b.recentOffsets[0] 247 b.recentOffsets[0] = offset 248 offset = 2 249 case b.recentOffsets[2]: 250 b.recentOffsets[2] = b.recentOffsets[1] 251 b.recentOffsets[1] = b.recentOffsets[0] 252 b.recentOffsets[0] = offset 253 offset = 3 254 default: 255 b.recentOffsets[2] = b.recentOffsets[1] 256 b.recentOffsets[1] = b.recentOffsets[0] 257 b.recentOffsets[0] = offset 258 offset += 3 259 } 260 } else { 261 switch offset { 262 case b.recentOffsets[1]: 263 b.recentOffsets[1] = b.recentOffsets[0] 264 b.recentOffsets[0] = offset 265 offset = 1 266 case b.recentOffsets[2]: 267 b.recentOffsets[2] = b.recentOffsets[1] 268 b.recentOffsets[1] = b.recentOffsets[0] 269 b.recentOffsets[0] = offset 270 offset = 2 271 case b.recentOffsets[0] - 1: 272 b.recentOffsets[2] = b.recentOffsets[1] 273 b.recentOffsets[1] = b.recentOffsets[0] 274 b.recentOffsets[0] = offset 275 offset = 3 276 default: 277 b.recentOffsets[2] = b.recentOffsets[1] 278 b.recentOffsets[1] = b.recentOffsets[0] 279 b.recentOffsets[0] = offset 280 offset += 3 281 } 282 } 283 } else { 284 offset += 3 285 } 286 return offset 287} 288 289// encodeRaw can be used to set the output to a raw representation of supplied bytes. 290func (b *blockEnc) encodeRaw(a []byte) { 291 var bh blockHeader 292 bh.setLast(b.last) 293 bh.setSize(uint32(len(a))) 294 bh.setType(blockTypeRaw) 295 b.output = bh.appendTo(b.output[:0]) 296 b.output = append(b.output, a...) 297 if debug { 298 println("Adding RAW block, length", len(a)) 299 } 300} 301 302// encodeRaw can be used to set the output to a raw representation of supplied bytes. 303func (b *blockEnc) encodeRawTo(dst, src []byte) []byte { 304 var bh blockHeader 305 bh.setLast(b.last) 306 bh.setSize(uint32(len(src))) 307 bh.setType(blockTypeRaw) 308 dst = bh.appendTo(dst) 309 dst = append(dst, src...) 310 if debug { 311 println("Adding RAW block, length", len(src)) 312 } 313 return dst 314} 315 316// encodeLits can be used if the block is only litLen. 317func (b *blockEnc) encodeLits(raw bool) error { 318 var bh blockHeader 319 bh.setLast(b.last) 320 bh.setSize(uint32(len(b.literals))) 321 322 // Don't compress extremely small blocks 323 if len(b.literals) < 32 || raw { 324 if debug { 325 println("Adding RAW block, length", len(b.literals)) 326 } 327 bh.setType(blockTypeRaw) 328 b.output = bh.appendTo(b.output) 329 b.output = append(b.output, b.literals...) 330 return nil 331 } 332 333 var ( 334 out []byte 335 reUsed, single bool 336 err error 337 ) 338 if len(b.literals) >= 1024 { 339 // Use 4 Streams. 340 out, reUsed, err = huff0.Compress4X(b.literals, b.litEnc) 341 } else if len(b.literals) > 32 { 342 // Use 1 stream 343 single = true 344 out, reUsed, err = huff0.Compress1X(b.literals, b.litEnc) 345 } else { 346 err = huff0.ErrIncompressible 347 } 348 349 switch err { 350 case huff0.ErrIncompressible: 351 if debug { 352 println("Adding RAW block, length", len(b.literals)) 353 } 354 bh.setType(blockTypeRaw) 355 b.output = bh.appendTo(b.output) 356 b.output = append(b.output, b.literals...) 357 return nil 358 case huff0.ErrUseRLE: 359 if debug { 360 println("Adding RLE block, length", len(b.literals)) 361 } 362 bh.setType(blockTypeRLE) 363 b.output = bh.appendTo(b.output) 364 b.output = append(b.output, b.literals[0]) 365 return nil 366 default: 367 return err 368 case nil: 369 } 370 // Compressed... 371 // Now, allow reuse 372 b.litEnc.Reuse = huff0.ReusePolicyAllow 373 bh.setType(blockTypeCompressed) 374 var lh literalsHeader 375 if reUsed { 376 if debug { 377 println("Reused tree, compressed to", len(out)) 378 } 379 lh.setType(literalsBlockTreeless) 380 } else { 381 if debug { 382 println("New tree, compressed to", len(out), "tree size:", len(b.litEnc.OutTable)) 383 } 384 lh.setType(literalsBlockCompressed) 385 } 386 // Set sizes 387 lh.setSizes(len(out), len(b.literals), single) 388 bh.setSize(uint32(len(out) + lh.size() + 1)) 389 390 // Write block headers. 391 b.output = bh.appendTo(b.output) 392 b.output = lh.appendTo(b.output) 393 // Add compressed data. 394 b.output = append(b.output, out...) 395 // No sequences. 396 b.output = append(b.output, 0) 397 return nil 398} 399 400// fuzzFseEncoder can be used to fuzz the FSE encoder. 401func fuzzFseEncoder(data []byte) int { 402 if len(data) > maxSequences || len(data) < 2 { 403 return 0 404 } 405 enc := fseEncoder{} 406 hist := enc.Histogram()[:256] 407 maxSym := uint8(0) 408 for i, v := range data { 409 v = v & 63 410 data[i] = v 411 hist[v]++ 412 if v > maxSym { 413 maxSym = v 414 } 415 } 416 if maxSym == 0 { 417 // All 0 418 return 0 419 } 420 maxCount := func(a []uint32) int { 421 var max uint32 422 for _, v := range a { 423 if v > max { 424 max = v 425 } 426 } 427 return int(max) 428 } 429 cnt := maxCount(hist[:maxSym]) 430 if cnt == len(data) { 431 // RLE 432 return 0 433 } 434 enc.HistogramFinished(maxSym, cnt) 435 err := enc.normalizeCount(len(data)) 436 if err != nil { 437 return 0 438 } 439 _, err = enc.writeCount(nil) 440 if err != nil { 441 panic(err) 442 } 443 return 1 444} 445 446// encode will encode the block and append the output in b.output. 447func (b *blockEnc) encode(raw bool) error { 448 if len(b.sequences) == 0 { 449 return b.encodeLits(raw) 450 } 451 // We want some difference 452 if len(b.literals) > (b.size - (b.size >> 5)) { 453 return errIncompressible 454 } 455 456 var bh blockHeader 457 var lh literalsHeader 458 bh.setLast(b.last) 459 bh.setType(blockTypeCompressed) 460 // Store offset of the block header. Needed when we know the size. 461 bhOffset := len(b.output) 462 b.output = bh.appendTo(b.output) 463 464 var ( 465 out []byte 466 reUsed, single bool 467 err error 468 ) 469 if len(b.literals) >= 1024 && !raw { 470 // Use 4 Streams. 471 out, reUsed, err = huff0.Compress4X(b.literals, b.litEnc) 472 } else if len(b.literals) > 32 && !raw { 473 // Use 1 stream 474 single = true 475 out, reUsed, err = huff0.Compress1X(b.literals, b.litEnc) 476 } else { 477 err = huff0.ErrIncompressible 478 } 479 480 switch err { 481 case huff0.ErrIncompressible: 482 lh.setType(literalsBlockRaw) 483 lh.setSize(len(b.literals)) 484 b.output = lh.appendTo(b.output) 485 b.output = append(b.output, b.literals...) 486 if debug { 487 println("Adding literals RAW, length", len(b.literals)) 488 } 489 case huff0.ErrUseRLE: 490 lh.setType(literalsBlockRLE) 491 lh.setSize(len(b.literals)) 492 b.output = lh.appendTo(b.output) 493 b.output = append(b.output, b.literals[0]) 494 if debug { 495 println("Adding literals RLE") 496 } 497 default: 498 if debug { 499 println("Adding literals ERROR:", err) 500 } 501 return err 502 case nil: 503 // Compressed litLen... 504 if reUsed { 505 if debug { 506 println("reused tree") 507 } 508 lh.setType(literalsBlockTreeless) 509 } else { 510 if debug { 511 println("new tree, size:", len(b.litEnc.OutTable)) 512 } 513 lh.setType(literalsBlockCompressed) 514 if debug { 515 _, _, err := huff0.ReadTable(out, nil) 516 if err != nil { 517 panic(err) 518 } 519 } 520 } 521 lh.setSizes(len(out), len(b.literals), single) 522 if debug { 523 printf("Compressed %d literals to %d bytes", len(b.literals), len(out)) 524 println("Adding literal header:", lh) 525 } 526 b.output = lh.appendTo(b.output) 527 b.output = append(b.output, out...) 528 b.litEnc.Reuse = huff0.ReusePolicyAllow 529 if debug { 530 println("Adding literals compressed") 531 } 532 } 533 // Sequence compression 534 535 // Write the number of sequences 536 switch { 537 case len(b.sequences) < 128: 538 b.output = append(b.output, uint8(len(b.sequences))) 539 case len(b.sequences) < 0x7f00: // TODO: this could be wrong 540 n := len(b.sequences) 541 b.output = append(b.output, 128+uint8(n>>8), uint8(n)) 542 default: 543 n := len(b.sequences) - 0x7f00 544 b.output = append(b.output, 255, uint8(n), uint8(n>>8)) 545 } 546 if debug { 547 println("Encoding", len(b.sequences), "sequences") 548 } 549 b.genCodes() 550 llEnc := b.coders.llEnc 551 ofEnc := b.coders.ofEnc 552 mlEnc := b.coders.mlEnc 553 err = llEnc.normalizeCount(len(b.sequences)) 554 if err != nil { 555 return err 556 } 557 err = ofEnc.normalizeCount(len(b.sequences)) 558 if err != nil { 559 return err 560 } 561 err = mlEnc.normalizeCount(len(b.sequences)) 562 if err != nil { 563 return err 564 } 565 566 // Choose the best compression mode for each type. 567 // Will evaluate the new vs predefined and previous. 568 chooseComp := func(cur, prev, preDef *fseEncoder) (*fseEncoder, seqCompMode) { 569 // See if predefined/previous is better 570 hist := cur.count[:cur.symbolLen] 571 nSize := cur.approxSize(hist) + cur.maxHeaderSize() 572 predefSize := preDef.approxSize(hist) 573 prevSize := prev.approxSize(hist) 574 575 // Add a small penalty for new encoders. 576 // Don't bother with extremely small (<2 byte gains). 577 nSize = nSize + (nSize+2*8*16)>>4 578 switch { 579 case predefSize <= prevSize && predefSize <= nSize || forcePreDef: 580 if debug { 581 println("Using predefined", predefSize>>3, "<=", nSize>>3) 582 } 583 return preDef, compModePredefined 584 case prevSize <= nSize: 585 if debug { 586 println("Using previous", prevSize>>3, "<=", nSize>>3) 587 } 588 return prev, compModeRepeat 589 default: 590 if debug { 591 println("Using new, predef", predefSize>>3, ". previous:", prevSize>>3, ">", nSize>>3, "header max:", cur.maxHeaderSize()>>3, "bytes") 592 println("tl:", cur.actualTableLog, "symbolLen:", cur.symbolLen, "norm:", cur.norm[:cur.symbolLen], "hist", cur.count[:cur.symbolLen]) 593 } 594 return cur, compModeFSE 595 } 596 } 597 598 // Write compression mode 599 var mode uint8 600 if llEnc.useRLE { 601 mode |= uint8(compModeRLE) << 6 602 llEnc.setRLE(b.sequences[0].llCode) 603 if debug { 604 println("llEnc.useRLE") 605 } 606 } else { 607 var m seqCompMode 608 llEnc, m = chooseComp(llEnc, b.coders.llPrev, &fsePredefEnc[tableLiteralLengths]) 609 mode |= uint8(m) << 6 610 } 611 if ofEnc.useRLE { 612 mode |= uint8(compModeRLE) << 4 613 ofEnc.setRLE(b.sequences[0].ofCode) 614 if debug { 615 println("ofEnc.useRLE") 616 } 617 } else { 618 var m seqCompMode 619 ofEnc, m = chooseComp(ofEnc, b.coders.ofPrev, &fsePredefEnc[tableOffsets]) 620 mode |= uint8(m) << 4 621 } 622 623 if mlEnc.useRLE { 624 mode |= uint8(compModeRLE) << 2 625 mlEnc.setRLE(b.sequences[0].mlCode) 626 if debug { 627 println("mlEnc.useRLE, code: ", b.sequences[0].mlCode, "value", b.sequences[0].matchLen) 628 } 629 } else { 630 var m seqCompMode 631 mlEnc, m = chooseComp(mlEnc, b.coders.mlPrev, &fsePredefEnc[tableMatchLengths]) 632 mode |= uint8(m) << 2 633 } 634 b.output = append(b.output, mode) 635 if debug { 636 printf("Compression modes: 0b%b", mode) 637 } 638 b.output, err = llEnc.writeCount(b.output) 639 if err != nil { 640 return err 641 } 642 start := len(b.output) 643 b.output, err = ofEnc.writeCount(b.output) 644 if err != nil { 645 return err 646 } 647 if false { 648 println("block:", b.output[start:], "tablelog", ofEnc.actualTableLog, "maxcount:", ofEnc.maxCount) 649 fmt.Printf("selected TableLog: %d, Symbol length: %d\n", ofEnc.actualTableLog, ofEnc.symbolLen) 650 for i, v := range ofEnc.norm[:ofEnc.symbolLen] { 651 fmt.Printf("%3d: %5d -> %4d \n", i, ofEnc.count[i], v) 652 } 653 } 654 b.output, err = mlEnc.writeCount(b.output) 655 if err != nil { 656 return err 657 } 658 659 // Maybe in block? 660 wr := &b.wr 661 wr.reset(b.output) 662 663 var ll, of, ml cState 664 665 // Current sequence 666 seq := len(b.sequences) - 1 667 s := b.sequences[seq] 668 llEnc.setBits(llBitsTable[:]) 669 mlEnc.setBits(mlBitsTable[:]) 670 ofEnc.setBits(nil) 671 672 llTT, ofTT, mlTT := llEnc.ct.symbolTT[:256], ofEnc.ct.symbolTT[:256], mlEnc.ct.symbolTT[:256] 673 674 // We have 3 bounds checks here (and in the loop). 675 // Since we are iterating backwards it is kinda hard to avoid. 676 llB, ofB, mlB := llTT[s.llCode], ofTT[s.ofCode], mlTT[s.mlCode] 677 ll.init(wr, &llEnc.ct, llB) 678 of.init(wr, &ofEnc.ct, ofB) 679 wr.flush32() 680 ml.init(wr, &mlEnc.ct, mlB) 681 682 // Each of these lookups also generates a bounds check. 683 wr.addBits32NC(s.litLen, llB.outBits) 684 wr.addBits32NC(s.matchLen, mlB.outBits) 685 wr.flush32() 686 wr.addBits32NC(s.offset, ofB.outBits) 687 if debugSequences { 688 println("Encoded seq", seq, s, "codes:", s.llCode, s.mlCode, s.ofCode, "states:", ll.state, ml.state, of.state, "bits:", llB, mlB, ofB) 689 } 690 seq-- 691 if llEnc.maxBits+mlEnc.maxBits+ofEnc.maxBits <= 32 { 692 // No need to flush (common) 693 for seq >= 0 { 694 s = b.sequences[seq] 695 wr.flush32() 696 llB, ofB, mlB := llTT[s.llCode], ofTT[s.ofCode], mlTT[s.mlCode] 697 // tabelog max is 8 for all. 698 of.encode(ofB) 699 ml.encode(mlB) 700 ll.encode(llB) 701 wr.flush32() 702 703 // We checked that all can stay within 32 bits 704 wr.addBits32NC(s.litLen, llB.outBits) 705 wr.addBits32NC(s.matchLen, mlB.outBits) 706 wr.addBits32NC(s.offset, ofB.outBits) 707 708 if debugSequences { 709 println("Encoded seq", seq, s) 710 } 711 712 seq-- 713 } 714 } else { 715 for seq >= 0 { 716 s = b.sequences[seq] 717 wr.flush32() 718 llB, ofB, mlB := llTT[s.llCode], ofTT[s.ofCode], mlTT[s.mlCode] 719 // tabelog max is below 8 for each. 720 of.encode(ofB) 721 ml.encode(mlB) 722 ll.encode(llB) 723 wr.flush32() 724 725 // ml+ll = max 32 bits total 726 wr.addBits32NC(s.litLen, llB.outBits) 727 wr.addBits32NC(s.matchLen, mlB.outBits) 728 wr.flush32() 729 wr.addBits32NC(s.offset, ofB.outBits) 730 731 if debugSequences { 732 println("Encoded seq", seq, s) 733 } 734 735 seq-- 736 } 737 } 738 ml.flush(mlEnc.actualTableLog) 739 of.flush(ofEnc.actualTableLog) 740 ll.flush(llEnc.actualTableLog) 741 err = wr.close() 742 if err != nil { 743 return err 744 } 745 b.output = wr.out 746 747 if len(b.output)-3-bhOffset >= b.size { 748 // Maybe even add a bigger margin. 749 b.litEnc.Reuse = huff0.ReusePolicyNone 750 return errIncompressible 751 } 752 753 // Size is output minus block header. 754 bh.setSize(uint32(len(b.output)-bhOffset) - 3) 755 if debug { 756 println("Rewriting block header", bh) 757 } 758 _ = bh.appendTo(b.output[bhOffset:bhOffset]) 759 b.coders.setPrev(llEnc, mlEnc, ofEnc) 760 return nil 761} 762 763var errIncompressible = errors.New("incompressible") 764 765func (b *blockEnc) genCodes() { 766 if len(b.sequences) == 0 { 767 // nothing to do 768 return 769 } 770 771 if len(b.sequences) > math.MaxUint16 { 772 panic("can only encode up to 64K sequences") 773 } 774 // No bounds checks after here: 775 llH := b.coders.llEnc.Histogram()[:256] 776 ofH := b.coders.ofEnc.Histogram()[:256] 777 mlH := b.coders.mlEnc.Histogram()[:256] 778 for i := range llH { 779 llH[i] = 0 780 } 781 for i := range ofH { 782 ofH[i] = 0 783 } 784 for i := range mlH { 785 mlH[i] = 0 786 } 787 788 var llMax, ofMax, mlMax uint8 789 for i, seq := range b.sequences { 790 v := llCode(seq.litLen) 791 seq.llCode = v 792 llH[v]++ 793 if v > llMax { 794 llMax = v 795 } 796 797 v = ofCode(seq.offset) 798 seq.ofCode = v 799 ofH[v]++ 800 if v > ofMax { 801 ofMax = v 802 } 803 804 v = mlCode(seq.matchLen) 805 seq.mlCode = v 806 mlH[v]++ 807 if v > mlMax { 808 mlMax = v 809 if debug && mlMax > maxMatchLengthSymbol { 810 panic(fmt.Errorf("mlMax > maxMatchLengthSymbol (%d), matchlen: %d", mlMax, seq.matchLen)) 811 } 812 } 813 b.sequences[i] = seq 814 } 815 maxCount := func(a []uint32) int { 816 var max uint32 817 for _, v := range a { 818 if v > max { 819 max = v 820 } 821 } 822 return int(max) 823 } 824 if mlMax > maxMatchLengthSymbol { 825 panic(fmt.Errorf("mlMax > maxMatchLengthSymbol (%d)", mlMax)) 826 } 827 if ofMax > maxOffsetBits { 828 panic(fmt.Errorf("ofMax > maxOffsetBits (%d)", ofMax)) 829 } 830 if llMax > maxLiteralLengthSymbol { 831 panic(fmt.Errorf("llMax > maxLiteralLengthSymbol (%d)", llMax)) 832 } 833 834 b.coders.mlEnc.HistogramFinished(mlMax, maxCount(mlH[:mlMax+1])) 835 b.coders.ofEnc.HistogramFinished(ofMax, maxCount(ofH[:ofMax+1])) 836 b.coders.llEnc.HistogramFinished(llMax, maxCount(llH[:llMax+1])) 837} 838