1 /*
2 * Copyright (c) 2012 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <math.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <tuple>
15
16 #include "third_party/googletest/src/include/gtest/gtest.h"
17
18 #include "./vp9_rtcd.h"
19 #include "./vpx_dsp_rtcd.h"
20 #include "test/acm_random.h"
21 #include "test/clear_system_state.h"
22 #include "test/register_state_check.h"
23 #include "test/util.h"
24 #include "vp9/common/vp9_entropy.h"
25 #include "vp9/common/vp9_scan.h"
26 #include "vpx/vpx_codec.h"
27 #include "vpx/vpx_integer.h"
28 #include "vpx_ports/mem.h"
29 #include "vpx_ports/msvc.h" // for round()
30
31 using libvpx_test::ACMRandom;
32
33 namespace {
34
35 const int kNumCoeffs = 256;
36 const double C1 = 0.995184726672197;
37 const double C2 = 0.98078528040323;
38 const double C3 = 0.956940335732209;
39 const double C4 = 0.923879532511287;
40 const double C5 = 0.881921264348355;
41 const double C6 = 0.831469612302545;
42 const double C7 = 0.773010453362737;
43 const double C8 = 0.707106781186548;
44 const double C9 = 0.634393284163646;
45 const double C10 = 0.555570233019602;
46 const double C11 = 0.471396736825998;
47 const double C12 = 0.38268343236509;
48 const double C13 = 0.290284677254462;
49 const double C14 = 0.195090322016128;
50 const double C15 = 0.098017140329561;
51
butterfly_16x16_dct_1d(double input[16],double output[16])52 void butterfly_16x16_dct_1d(double input[16], double output[16]) {
53 double step[16];
54 double intermediate[16];
55 double temp1, temp2;
56
57 // step 1
58 step[0] = input[0] + input[15];
59 step[1] = input[1] + input[14];
60 step[2] = input[2] + input[13];
61 step[3] = input[3] + input[12];
62 step[4] = input[4] + input[11];
63 step[5] = input[5] + input[10];
64 step[6] = input[6] + input[9];
65 step[7] = input[7] + input[8];
66 step[8] = input[7] - input[8];
67 step[9] = input[6] - input[9];
68 step[10] = input[5] - input[10];
69 step[11] = input[4] - input[11];
70 step[12] = input[3] - input[12];
71 step[13] = input[2] - input[13];
72 step[14] = input[1] - input[14];
73 step[15] = input[0] - input[15];
74
75 // step 2
76 output[0] = step[0] + step[7];
77 output[1] = step[1] + step[6];
78 output[2] = step[2] + step[5];
79 output[3] = step[3] + step[4];
80 output[4] = step[3] - step[4];
81 output[5] = step[2] - step[5];
82 output[6] = step[1] - step[6];
83 output[7] = step[0] - step[7];
84
85 temp1 = step[8] * C7;
86 temp2 = step[15] * C9;
87 output[8] = temp1 + temp2;
88
89 temp1 = step[9] * C11;
90 temp2 = step[14] * C5;
91 output[9] = temp1 - temp2;
92
93 temp1 = step[10] * C3;
94 temp2 = step[13] * C13;
95 output[10] = temp1 + temp2;
96
97 temp1 = step[11] * C15;
98 temp2 = step[12] * C1;
99 output[11] = temp1 - temp2;
100
101 temp1 = step[11] * C1;
102 temp2 = step[12] * C15;
103 output[12] = temp2 + temp1;
104
105 temp1 = step[10] * C13;
106 temp2 = step[13] * C3;
107 output[13] = temp2 - temp1;
108
109 temp1 = step[9] * C5;
110 temp2 = step[14] * C11;
111 output[14] = temp2 + temp1;
112
113 temp1 = step[8] * C9;
114 temp2 = step[15] * C7;
115 output[15] = temp2 - temp1;
116
117 // step 3
118 step[0] = output[0] + output[3];
119 step[1] = output[1] + output[2];
120 step[2] = output[1] - output[2];
121 step[3] = output[0] - output[3];
122
123 temp1 = output[4] * C14;
124 temp2 = output[7] * C2;
125 step[4] = temp1 + temp2;
126
127 temp1 = output[5] * C10;
128 temp2 = output[6] * C6;
129 step[5] = temp1 + temp2;
130
131 temp1 = output[5] * C6;
132 temp2 = output[6] * C10;
133 step[6] = temp2 - temp1;
134
135 temp1 = output[4] * C2;
136 temp2 = output[7] * C14;
137 step[7] = temp2 - temp1;
138
139 step[8] = output[8] + output[11];
140 step[9] = output[9] + output[10];
141 step[10] = output[9] - output[10];
142 step[11] = output[8] - output[11];
143
144 step[12] = output[12] + output[15];
145 step[13] = output[13] + output[14];
146 step[14] = output[13] - output[14];
147 step[15] = output[12] - output[15];
148
149 // step 4
150 output[0] = (step[0] + step[1]);
151 output[8] = (step[0] - step[1]);
152
153 temp1 = step[2] * C12;
154 temp2 = step[3] * C4;
155 temp1 = temp1 + temp2;
156 output[4] = 2 * (temp1 * C8);
157
158 temp1 = step[2] * C4;
159 temp2 = step[3] * C12;
160 temp1 = temp2 - temp1;
161 output[12] = 2 * (temp1 * C8);
162
163 output[2] = 2 * ((step[4] + step[5]) * C8);
164 output[14] = 2 * ((step[7] - step[6]) * C8);
165
166 temp1 = step[4] - step[5];
167 temp2 = step[6] + step[7];
168 output[6] = (temp1 + temp2);
169 output[10] = (temp1 - temp2);
170
171 intermediate[8] = step[8] + step[14];
172 intermediate[9] = step[9] + step[15];
173
174 temp1 = intermediate[8] * C12;
175 temp2 = intermediate[9] * C4;
176 temp1 = temp1 - temp2;
177 output[3] = 2 * (temp1 * C8);
178
179 temp1 = intermediate[8] * C4;
180 temp2 = intermediate[9] * C12;
181 temp1 = temp2 + temp1;
182 output[13] = 2 * (temp1 * C8);
183
184 output[9] = 2 * ((step[10] + step[11]) * C8);
185
186 intermediate[11] = step[10] - step[11];
187 intermediate[12] = step[12] + step[13];
188 intermediate[13] = step[12] - step[13];
189 intermediate[14] = step[8] - step[14];
190 intermediate[15] = step[9] - step[15];
191
192 output[15] = (intermediate[11] + intermediate[12]);
193 output[1] = -(intermediate[11] - intermediate[12]);
194
195 output[7] = 2 * (intermediate[13] * C8);
196
197 temp1 = intermediate[14] * C12;
198 temp2 = intermediate[15] * C4;
199 temp1 = temp1 - temp2;
200 output[11] = -2 * (temp1 * C8);
201
202 temp1 = intermediate[14] * C4;
203 temp2 = intermediate[15] * C12;
204 temp1 = temp2 + temp1;
205 output[5] = 2 * (temp1 * C8);
206 }
207
reference_16x16_dct_2d(int16_t input[256],double output[256])208 void reference_16x16_dct_2d(int16_t input[256], double output[256]) {
209 // First transform columns
210 for (int i = 0; i < 16; ++i) {
211 double temp_in[16], temp_out[16];
212 for (int j = 0; j < 16; ++j) temp_in[j] = input[j * 16 + i];
213 butterfly_16x16_dct_1d(temp_in, temp_out);
214 for (int j = 0; j < 16; ++j) output[j * 16 + i] = temp_out[j];
215 }
216 // Then transform rows
217 for (int i = 0; i < 16; ++i) {
218 double temp_in[16], temp_out[16];
219 for (int j = 0; j < 16; ++j) temp_in[j] = output[j + i * 16];
220 butterfly_16x16_dct_1d(temp_in, temp_out);
221 // Scale by some magic number
222 for (int j = 0; j < 16; ++j) output[j + i * 16] = temp_out[j] / 2;
223 }
224 }
225
226 typedef void (*FdctFunc)(const int16_t *in, tran_low_t *out, int stride);
227 typedef void (*IdctFunc)(const tran_low_t *in, uint8_t *out, int stride);
228 typedef void (*FhtFunc)(const int16_t *in, tran_low_t *out, int stride,
229 int tx_type);
230 typedef void (*IhtFunc)(const tran_low_t *in, uint8_t *out, int stride,
231 int tx_type);
232
233 typedef std::tuple<FdctFunc, IdctFunc, int, vpx_bit_depth_t> Dct16x16Param;
234 typedef std::tuple<FhtFunc, IhtFunc, int, vpx_bit_depth_t> Ht16x16Param;
235 typedef std::tuple<IdctFunc, IdctFunc, int, vpx_bit_depth_t> Idct16x16Param;
236
fdct16x16_ref(const int16_t * in,tran_low_t * out,int stride,int)237 void fdct16x16_ref(const int16_t *in, tran_low_t *out, int stride,
238 int /*tx_type*/) {
239 vpx_fdct16x16_c(in, out, stride);
240 }
241
idct16x16_ref(const tran_low_t * in,uint8_t * dest,int stride,int)242 void idct16x16_ref(const tran_low_t *in, uint8_t *dest, int stride,
243 int /*tx_type*/) {
244 vpx_idct16x16_256_add_c(in, dest, stride);
245 }
246
fht16x16_ref(const int16_t * in,tran_low_t * out,int stride,int tx_type)247 void fht16x16_ref(const int16_t *in, tran_low_t *out, int stride, int tx_type) {
248 vp9_fht16x16_c(in, out, stride, tx_type);
249 }
250
iht16x16_ref(const tran_low_t * in,uint8_t * dest,int stride,int tx_type)251 void iht16x16_ref(const tran_low_t *in, uint8_t *dest, int stride,
252 int tx_type) {
253 vp9_iht16x16_256_add_c(in, dest, stride, tx_type);
254 }
255
256 #if CONFIG_VP9_HIGHBITDEPTH
idct16x16_10(const tran_low_t * in,uint8_t * out,int stride)257 void idct16x16_10(const tran_low_t *in, uint8_t *out, int stride) {
258 vpx_highbd_idct16x16_256_add_c(in, CAST_TO_SHORTPTR(out), stride, 10);
259 }
260
idct16x16_12(const tran_low_t * in,uint8_t * out,int stride)261 void idct16x16_12(const tran_low_t *in, uint8_t *out, int stride) {
262 vpx_highbd_idct16x16_256_add_c(in, CAST_TO_SHORTPTR(out), stride, 12);
263 }
264
idct16x16_10_ref(const tran_low_t * in,uint8_t * out,int stride,int)265 void idct16x16_10_ref(const tran_low_t *in, uint8_t *out, int stride,
266 int /*tx_type*/) {
267 idct16x16_10(in, out, stride);
268 }
269
idct16x16_12_ref(const tran_low_t * in,uint8_t * out,int stride,int)270 void idct16x16_12_ref(const tran_low_t *in, uint8_t *out, int stride,
271 int /*tx_type*/) {
272 idct16x16_12(in, out, stride);
273 }
274
iht16x16_10(const tran_low_t * in,uint8_t * out,int stride,int tx_type)275 void iht16x16_10(const tran_low_t *in, uint8_t *out, int stride, int tx_type) {
276 vp9_highbd_iht16x16_256_add_c(in, CAST_TO_SHORTPTR(out), stride, tx_type, 10);
277 }
278
iht16x16_12(const tran_low_t * in,uint8_t * out,int stride,int tx_type)279 void iht16x16_12(const tran_low_t *in, uint8_t *out, int stride, int tx_type) {
280 vp9_highbd_iht16x16_256_add_c(in, CAST_TO_SHORTPTR(out), stride, tx_type, 12);
281 }
282
283 #if HAVE_SSE2
idct16x16_10_add_10_c(const tran_low_t * in,uint8_t * out,int stride)284 void idct16x16_10_add_10_c(const tran_low_t *in, uint8_t *out, int stride) {
285 vpx_highbd_idct16x16_10_add_c(in, CAST_TO_SHORTPTR(out), stride, 10);
286 }
287
idct16x16_10_add_12_c(const tran_low_t * in,uint8_t * out,int stride)288 void idct16x16_10_add_12_c(const tran_low_t *in, uint8_t *out, int stride) {
289 vpx_highbd_idct16x16_10_add_c(in, CAST_TO_SHORTPTR(out), stride, 12);
290 }
291
idct16x16_256_add_10_sse2(const tran_low_t * in,uint8_t * out,int stride)292 void idct16x16_256_add_10_sse2(const tran_low_t *in, uint8_t *out, int stride) {
293 vpx_highbd_idct16x16_256_add_sse2(in, CAST_TO_SHORTPTR(out), stride, 10);
294 }
295
idct16x16_256_add_12_sse2(const tran_low_t * in,uint8_t * out,int stride)296 void idct16x16_256_add_12_sse2(const tran_low_t *in, uint8_t *out, int stride) {
297 vpx_highbd_idct16x16_256_add_sse2(in, CAST_TO_SHORTPTR(out), stride, 12);
298 }
299
idct16x16_10_add_10_sse2(const tran_low_t * in,uint8_t * out,int stride)300 void idct16x16_10_add_10_sse2(const tran_low_t *in, uint8_t *out, int stride) {
301 vpx_highbd_idct16x16_10_add_sse2(in, CAST_TO_SHORTPTR(out), stride, 10);
302 }
303
idct16x16_10_add_12_sse2(const tran_low_t * in,uint8_t * out,int stride)304 void idct16x16_10_add_12_sse2(const tran_low_t *in, uint8_t *out, int stride) {
305 vpx_highbd_idct16x16_10_add_sse2(in, CAST_TO_SHORTPTR(out), stride, 12);
306 }
307 #endif // HAVE_SSE2
308 #endif // CONFIG_VP9_HIGHBITDEPTH
309
310 class Trans16x16TestBase {
311 public:
~Trans16x16TestBase()312 virtual ~Trans16x16TestBase() {}
313
314 protected:
315 virtual void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) = 0;
316
317 virtual void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) = 0;
318
RunAccuracyCheck()319 void RunAccuracyCheck() {
320 ACMRandom rnd(ACMRandom::DeterministicSeed());
321 uint32_t max_error = 0;
322 int64_t total_error = 0;
323 const int count_test_block = 10000;
324 for (int i = 0; i < count_test_block; ++i) {
325 DECLARE_ALIGNED(16, int16_t, test_input_block[kNumCoeffs]);
326 DECLARE_ALIGNED(16, tran_low_t, test_temp_block[kNumCoeffs]);
327 DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]);
328 DECLARE_ALIGNED(16, uint8_t, src[kNumCoeffs]);
329 #if CONFIG_VP9_HIGHBITDEPTH
330 DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]);
331 DECLARE_ALIGNED(16, uint16_t, src16[kNumCoeffs]);
332 #endif
333
334 // Initialize a test block with input range [-mask_, mask_].
335 for (int j = 0; j < kNumCoeffs; ++j) {
336 if (bit_depth_ == VPX_BITS_8) {
337 src[j] = rnd.Rand8();
338 dst[j] = rnd.Rand8();
339 test_input_block[j] = src[j] - dst[j];
340 #if CONFIG_VP9_HIGHBITDEPTH
341 } else {
342 src16[j] = rnd.Rand16() & mask_;
343 dst16[j] = rnd.Rand16() & mask_;
344 test_input_block[j] = src16[j] - dst16[j];
345 #endif
346 }
347 }
348
349 ASM_REGISTER_STATE_CHECK(
350 RunFwdTxfm(test_input_block, test_temp_block, pitch_));
351 if (bit_depth_ == VPX_BITS_8) {
352 ASM_REGISTER_STATE_CHECK(RunInvTxfm(test_temp_block, dst, pitch_));
353 #if CONFIG_VP9_HIGHBITDEPTH
354 } else {
355 ASM_REGISTER_STATE_CHECK(
356 RunInvTxfm(test_temp_block, CAST_TO_BYTEPTR(dst16), pitch_));
357 #endif
358 }
359
360 for (int j = 0; j < kNumCoeffs; ++j) {
361 #if CONFIG_VP9_HIGHBITDEPTH
362 const int32_t diff =
363 bit_depth_ == VPX_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j];
364 #else
365 const int32_t diff = dst[j] - src[j];
366 #endif
367 const uint32_t error = diff * diff;
368 if (max_error < error) max_error = error;
369 total_error += error;
370 }
371 }
372
373 EXPECT_GE(1u << 2 * (bit_depth_ - 8), max_error)
374 << "Error: 16x16 FHT/IHT has an individual round trip error > 1";
375
376 EXPECT_GE(count_test_block << 2 * (bit_depth_ - 8), total_error)
377 << "Error: 16x16 FHT/IHT has average round trip error > 1 per block";
378 }
379
RunCoeffCheck()380 void RunCoeffCheck() {
381 ACMRandom rnd(ACMRandom::DeterministicSeed());
382 const int count_test_block = 1000;
383 DECLARE_ALIGNED(16, int16_t, input_block[kNumCoeffs]);
384 DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]);
385 DECLARE_ALIGNED(16, tran_low_t, output_block[kNumCoeffs]);
386
387 for (int i = 0; i < count_test_block; ++i) {
388 // Initialize a test block with input range [-mask_, mask_].
389 for (int j = 0; j < kNumCoeffs; ++j) {
390 input_block[j] = (rnd.Rand16() & mask_) - (rnd.Rand16() & mask_);
391 }
392
393 fwd_txfm_ref(input_block, output_ref_block, pitch_, tx_type_);
394 ASM_REGISTER_STATE_CHECK(RunFwdTxfm(input_block, output_block, pitch_));
395
396 // The minimum quant value is 4.
397 for (int j = 0; j < kNumCoeffs; ++j)
398 EXPECT_EQ(output_block[j], output_ref_block[j]);
399 }
400 }
401
RunMemCheck()402 void RunMemCheck() {
403 ACMRandom rnd(ACMRandom::DeterministicSeed());
404 const int count_test_block = 1000;
405 DECLARE_ALIGNED(16, int16_t, input_extreme_block[kNumCoeffs]);
406 DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]);
407 DECLARE_ALIGNED(16, tran_low_t, output_block[kNumCoeffs]);
408
409 for (int i = 0; i < count_test_block; ++i) {
410 // Initialize a test block with input range [-mask_, mask_].
411 for (int j = 0; j < kNumCoeffs; ++j) {
412 input_extreme_block[j] = rnd.Rand8() % 2 ? mask_ : -mask_;
413 }
414 if (i == 0) {
415 for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = mask_;
416 } else if (i == 1) {
417 for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = -mask_;
418 }
419
420 fwd_txfm_ref(input_extreme_block, output_ref_block, pitch_, tx_type_);
421 ASM_REGISTER_STATE_CHECK(
422 RunFwdTxfm(input_extreme_block, output_block, pitch_));
423
424 // The minimum quant value is 4.
425 for (int j = 0; j < kNumCoeffs; ++j) {
426 EXPECT_EQ(output_block[j], output_ref_block[j]);
427 EXPECT_GE(4 * DCT_MAX_VALUE << (bit_depth_ - 8), abs(output_block[j]))
428 << "Error: 16x16 FDCT has coefficient larger than 4*DCT_MAX_VALUE";
429 }
430 }
431 }
432
RunQuantCheck(int dc_thred,int ac_thred)433 void RunQuantCheck(int dc_thred, int ac_thred) {
434 ACMRandom rnd(ACMRandom::DeterministicSeed());
435 const int count_test_block = 100000;
436 DECLARE_ALIGNED(16, int16_t, input_extreme_block[kNumCoeffs]);
437 DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]);
438
439 DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]);
440 DECLARE_ALIGNED(16, uint8_t, ref[kNumCoeffs]);
441 #if CONFIG_VP9_HIGHBITDEPTH
442 DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]);
443 DECLARE_ALIGNED(16, uint16_t, ref16[kNumCoeffs]);
444 #endif
445
446 for (int i = 0; i < count_test_block; ++i) {
447 // Initialize a test block with input range [-mask_, mask_].
448 for (int j = 0; j < kNumCoeffs; ++j) {
449 input_extreme_block[j] = rnd.Rand8() % 2 ? mask_ : -mask_;
450 }
451 if (i == 0) {
452 for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = mask_;
453 }
454 if (i == 1) {
455 for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = -mask_;
456 }
457
458 fwd_txfm_ref(input_extreme_block, output_ref_block, pitch_, tx_type_);
459
460 // clear reconstructed pixel buffers
461 memset(dst, 0, kNumCoeffs * sizeof(uint8_t));
462 memset(ref, 0, kNumCoeffs * sizeof(uint8_t));
463 #if CONFIG_VP9_HIGHBITDEPTH
464 memset(dst16, 0, kNumCoeffs * sizeof(uint16_t));
465 memset(ref16, 0, kNumCoeffs * sizeof(uint16_t));
466 #endif
467
468 // quantization with maximum allowed step sizes
469 output_ref_block[0] = (output_ref_block[0] / dc_thred) * dc_thred;
470 for (int j = 1; j < kNumCoeffs; ++j) {
471 output_ref_block[j] = (output_ref_block[j] / ac_thred) * ac_thred;
472 }
473 if (bit_depth_ == VPX_BITS_8) {
474 inv_txfm_ref(output_ref_block, ref, pitch_, tx_type_);
475 ASM_REGISTER_STATE_CHECK(RunInvTxfm(output_ref_block, dst, pitch_));
476 #if CONFIG_VP9_HIGHBITDEPTH
477 } else {
478 inv_txfm_ref(output_ref_block, CAST_TO_BYTEPTR(ref16), pitch_,
479 tx_type_);
480 ASM_REGISTER_STATE_CHECK(
481 RunInvTxfm(output_ref_block, CAST_TO_BYTEPTR(dst16), pitch_));
482 #endif
483 }
484 if (bit_depth_ == VPX_BITS_8) {
485 for (int j = 0; j < kNumCoeffs; ++j) EXPECT_EQ(ref[j], dst[j]);
486 #if CONFIG_VP9_HIGHBITDEPTH
487 } else {
488 for (int j = 0; j < kNumCoeffs; ++j) EXPECT_EQ(ref16[j], dst16[j]);
489 #endif
490 }
491 }
492 }
493
RunInvAccuracyCheck()494 void RunInvAccuracyCheck() {
495 ACMRandom rnd(ACMRandom::DeterministicSeed());
496 const int count_test_block = 1000;
497 DECLARE_ALIGNED(16, int16_t, in[kNumCoeffs]);
498 DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]);
499 DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]);
500 DECLARE_ALIGNED(16, uint8_t, src[kNumCoeffs]);
501 #if CONFIG_VP9_HIGHBITDEPTH
502 DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]);
503 DECLARE_ALIGNED(16, uint16_t, src16[kNumCoeffs]);
504 #endif // CONFIG_VP9_HIGHBITDEPTH
505
506 for (int i = 0; i < count_test_block; ++i) {
507 double out_r[kNumCoeffs];
508
509 // Initialize a test block with input range [-255, 255].
510 for (int j = 0; j < kNumCoeffs; ++j) {
511 if (bit_depth_ == VPX_BITS_8) {
512 src[j] = rnd.Rand8();
513 dst[j] = rnd.Rand8();
514 in[j] = src[j] - dst[j];
515 #if CONFIG_VP9_HIGHBITDEPTH
516 } else {
517 src16[j] = rnd.Rand16() & mask_;
518 dst16[j] = rnd.Rand16() & mask_;
519 in[j] = src16[j] - dst16[j];
520 #endif // CONFIG_VP9_HIGHBITDEPTH
521 }
522 }
523
524 reference_16x16_dct_2d(in, out_r);
525 for (int j = 0; j < kNumCoeffs; ++j) {
526 coeff[j] = static_cast<tran_low_t>(round(out_r[j]));
527 }
528
529 if (bit_depth_ == VPX_BITS_8) {
530 ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, 16));
531 #if CONFIG_VP9_HIGHBITDEPTH
532 } else {
533 ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, CAST_TO_BYTEPTR(dst16), 16));
534 #endif // CONFIG_VP9_HIGHBITDEPTH
535 }
536
537 for (int j = 0; j < kNumCoeffs; ++j) {
538 #if CONFIG_VP9_HIGHBITDEPTH
539 const uint32_t diff =
540 bit_depth_ == VPX_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j];
541 #else
542 const uint32_t diff = dst[j] - src[j];
543 #endif // CONFIG_VP9_HIGHBITDEPTH
544 const uint32_t error = diff * diff;
545 EXPECT_GE(1u, error)
546 << "Error: 16x16 IDCT has error " << error << " at index " << j;
547 }
548 }
549 }
550
CompareInvReference(IdctFunc ref_txfm,int thresh)551 void CompareInvReference(IdctFunc ref_txfm, int thresh) {
552 ACMRandom rnd(ACMRandom::DeterministicSeed());
553 const int count_test_block = 10000;
554 const int eob = 10;
555 const int16_t *scan = vp9_default_scan_orders[TX_16X16].scan;
556 DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]);
557 DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]);
558 DECLARE_ALIGNED(16, uint8_t, ref[kNumCoeffs]);
559 #if CONFIG_VP9_HIGHBITDEPTH
560 DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]);
561 DECLARE_ALIGNED(16, uint16_t, ref16[kNumCoeffs]);
562 #endif // CONFIG_VP9_HIGHBITDEPTH
563
564 for (int i = 0; i < count_test_block; ++i) {
565 for (int j = 0; j < kNumCoeffs; ++j) {
566 if (j < eob) {
567 // Random values less than the threshold, either positive or negative
568 coeff[scan[j]] = rnd(thresh) * (1 - 2 * (i % 2));
569 } else {
570 coeff[scan[j]] = 0;
571 }
572 if (bit_depth_ == VPX_BITS_8) {
573 dst[j] = 0;
574 ref[j] = 0;
575 #if CONFIG_VP9_HIGHBITDEPTH
576 } else {
577 dst16[j] = 0;
578 ref16[j] = 0;
579 #endif // CONFIG_VP9_HIGHBITDEPTH
580 }
581 }
582 if (bit_depth_ == VPX_BITS_8) {
583 ref_txfm(coeff, ref, pitch_);
584 ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, pitch_));
585 } else {
586 #if CONFIG_VP9_HIGHBITDEPTH
587 ref_txfm(coeff, CAST_TO_BYTEPTR(ref16), pitch_);
588 ASM_REGISTER_STATE_CHECK(
589 RunInvTxfm(coeff, CAST_TO_BYTEPTR(dst16), pitch_));
590 #endif // CONFIG_VP9_HIGHBITDEPTH
591 }
592
593 for (int j = 0; j < kNumCoeffs; ++j) {
594 #if CONFIG_VP9_HIGHBITDEPTH
595 const uint32_t diff =
596 bit_depth_ == VPX_BITS_8 ? dst[j] - ref[j] : dst16[j] - ref16[j];
597 #else
598 const uint32_t diff = dst[j] - ref[j];
599 #endif // CONFIG_VP9_HIGHBITDEPTH
600 const uint32_t error = diff * diff;
601 EXPECT_EQ(0u, error) << "Error: 16x16 IDCT Comparison has error "
602 << error << " at index " << j;
603 }
604 }
605 }
606
607 int pitch_;
608 int tx_type_;
609 vpx_bit_depth_t bit_depth_;
610 int mask_;
611 FhtFunc fwd_txfm_ref;
612 IhtFunc inv_txfm_ref;
613 };
614
615 class Trans16x16DCT : public Trans16x16TestBase,
616 public ::testing::TestWithParam<Dct16x16Param> {
617 public:
~Trans16x16DCT()618 virtual ~Trans16x16DCT() {}
619
SetUp()620 virtual void SetUp() {
621 fwd_txfm_ = GET_PARAM(0);
622 inv_txfm_ = GET_PARAM(1);
623 tx_type_ = GET_PARAM(2);
624 bit_depth_ = GET_PARAM(3);
625 pitch_ = 16;
626 fwd_txfm_ref = fdct16x16_ref;
627 inv_txfm_ref = idct16x16_ref;
628 mask_ = (1 << bit_depth_) - 1;
629 #if CONFIG_VP9_HIGHBITDEPTH
630 switch (bit_depth_) {
631 case VPX_BITS_10: inv_txfm_ref = idct16x16_10_ref; break;
632 case VPX_BITS_12: inv_txfm_ref = idct16x16_12_ref; break;
633 default: inv_txfm_ref = idct16x16_ref; break;
634 }
635 #else
636 inv_txfm_ref = idct16x16_ref;
637 #endif
638 }
TearDown()639 virtual void TearDown() { libvpx_test::ClearSystemState(); }
640
641 protected:
RunFwdTxfm(int16_t * in,tran_low_t * out,int stride)642 void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) {
643 fwd_txfm_(in, out, stride);
644 }
RunInvTxfm(tran_low_t * out,uint8_t * dst,int stride)645 void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) {
646 inv_txfm_(out, dst, stride);
647 }
648
649 FdctFunc fwd_txfm_;
650 IdctFunc inv_txfm_;
651 };
652
TEST_P(Trans16x16DCT,AccuracyCheck)653 TEST_P(Trans16x16DCT, AccuracyCheck) { RunAccuracyCheck(); }
654
TEST_P(Trans16x16DCT,CoeffCheck)655 TEST_P(Trans16x16DCT, CoeffCheck) { RunCoeffCheck(); }
656
TEST_P(Trans16x16DCT,MemCheck)657 TEST_P(Trans16x16DCT, MemCheck) { RunMemCheck(); }
658
TEST_P(Trans16x16DCT,QuantCheck)659 TEST_P(Trans16x16DCT, QuantCheck) {
660 // Use maximally allowed quantization step sizes for DC and AC
661 // coefficients respectively.
662 RunQuantCheck(1336, 1828);
663 }
664
TEST_P(Trans16x16DCT,InvAccuracyCheck)665 TEST_P(Trans16x16DCT, InvAccuracyCheck) { RunInvAccuracyCheck(); }
666
667 class Trans16x16HT : public Trans16x16TestBase,
668 public ::testing::TestWithParam<Ht16x16Param> {
669 public:
~Trans16x16HT()670 virtual ~Trans16x16HT() {}
671
SetUp()672 virtual void SetUp() {
673 fwd_txfm_ = GET_PARAM(0);
674 inv_txfm_ = GET_PARAM(1);
675 tx_type_ = GET_PARAM(2);
676 bit_depth_ = GET_PARAM(3);
677 pitch_ = 16;
678 fwd_txfm_ref = fht16x16_ref;
679 inv_txfm_ref = iht16x16_ref;
680 mask_ = (1 << bit_depth_) - 1;
681 #if CONFIG_VP9_HIGHBITDEPTH
682 switch (bit_depth_) {
683 case VPX_BITS_10: inv_txfm_ref = iht16x16_10; break;
684 case VPX_BITS_12: inv_txfm_ref = iht16x16_12; break;
685 default: inv_txfm_ref = iht16x16_ref; break;
686 }
687 #else
688 inv_txfm_ref = iht16x16_ref;
689 #endif
690 }
TearDown()691 virtual void TearDown() { libvpx_test::ClearSystemState(); }
692
693 protected:
RunFwdTxfm(int16_t * in,tran_low_t * out,int stride)694 void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) {
695 fwd_txfm_(in, out, stride, tx_type_);
696 }
RunInvTxfm(tran_low_t * out,uint8_t * dst,int stride)697 void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) {
698 inv_txfm_(out, dst, stride, tx_type_);
699 }
700
701 FhtFunc fwd_txfm_;
702 IhtFunc inv_txfm_;
703 };
704
TEST_P(Trans16x16HT,AccuracyCheck)705 TEST_P(Trans16x16HT, AccuracyCheck) { RunAccuracyCheck(); }
706
TEST_P(Trans16x16HT,CoeffCheck)707 TEST_P(Trans16x16HT, CoeffCheck) { RunCoeffCheck(); }
708
TEST_P(Trans16x16HT,MemCheck)709 TEST_P(Trans16x16HT, MemCheck) { RunMemCheck(); }
710
TEST_P(Trans16x16HT,QuantCheck)711 TEST_P(Trans16x16HT, QuantCheck) {
712 // The encoder skips any non-DC intra prediction modes,
713 // when the quantization step size goes beyond 988.
714 RunQuantCheck(429, 729);
715 }
716
717 class InvTrans16x16DCT : public Trans16x16TestBase,
718 public ::testing::TestWithParam<Idct16x16Param> {
719 public:
~InvTrans16x16DCT()720 virtual ~InvTrans16x16DCT() {}
721
SetUp()722 virtual void SetUp() {
723 ref_txfm_ = GET_PARAM(0);
724 inv_txfm_ = GET_PARAM(1);
725 thresh_ = GET_PARAM(2);
726 bit_depth_ = GET_PARAM(3);
727 pitch_ = 16;
728 mask_ = (1 << bit_depth_) - 1;
729 }
TearDown()730 virtual void TearDown() { libvpx_test::ClearSystemState(); }
731
732 protected:
RunFwdTxfm(int16_t *,tran_low_t *,int)733 void RunFwdTxfm(int16_t * /*in*/, tran_low_t * /*out*/, int /*stride*/) {}
RunInvTxfm(tran_low_t * out,uint8_t * dst,int stride)734 void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) {
735 inv_txfm_(out, dst, stride);
736 }
737
738 IdctFunc ref_txfm_;
739 IdctFunc inv_txfm_;
740 int thresh_;
741 };
742
TEST_P(InvTrans16x16DCT,CompareReference)743 TEST_P(InvTrans16x16DCT, CompareReference) {
744 CompareInvReference(ref_txfm_, thresh_);
745 }
746
747 using std::make_tuple;
748
749 #if CONFIG_VP9_HIGHBITDEPTH
750 INSTANTIATE_TEST_CASE_P(
751 C, Trans16x16DCT,
752 ::testing::Values(
753 make_tuple(&vpx_highbd_fdct16x16_c, &idct16x16_10, 0, VPX_BITS_10),
754 make_tuple(&vpx_highbd_fdct16x16_c, &idct16x16_12, 0, VPX_BITS_12),
755 make_tuple(&vpx_fdct16x16_c, &vpx_idct16x16_256_add_c, 0, VPX_BITS_8)));
756 #else
757 INSTANTIATE_TEST_CASE_P(C, Trans16x16DCT,
758 ::testing::Values(make_tuple(&vpx_fdct16x16_c,
759 &vpx_idct16x16_256_add_c,
760 0, VPX_BITS_8)));
761 #endif // CONFIG_VP9_HIGHBITDEPTH
762
763 #if CONFIG_VP9_HIGHBITDEPTH
764 INSTANTIATE_TEST_CASE_P(
765 C, Trans16x16HT,
766 ::testing::Values(
767 make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_10, 0, VPX_BITS_10),
768 make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_10, 1, VPX_BITS_10),
769 make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_10, 2, VPX_BITS_10),
770 make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_10, 3, VPX_BITS_10),
771 make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_12, 0, VPX_BITS_12),
772 make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_12, 1, VPX_BITS_12),
773 make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_12, 2, VPX_BITS_12),
774 make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_12, 3, VPX_BITS_12),
775 make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 0, VPX_BITS_8),
776 make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 1, VPX_BITS_8),
777 make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 2, VPX_BITS_8),
778 make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 3, VPX_BITS_8)));
779 #else
780 INSTANTIATE_TEST_CASE_P(
781 C, Trans16x16HT,
782 ::testing::Values(
783 make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 0, VPX_BITS_8),
784 make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 1, VPX_BITS_8),
785 make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 2, VPX_BITS_8),
786 make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 3, VPX_BITS_8)));
787 #endif // CONFIG_VP9_HIGHBITDEPTH
788
789 #if HAVE_NEON && !CONFIG_EMULATE_HARDWARE
790 INSTANTIATE_TEST_CASE_P(
791 NEON, Trans16x16DCT,
792 ::testing::Values(make_tuple(&vpx_fdct16x16_neon,
793 &vpx_idct16x16_256_add_neon, 0, VPX_BITS_8)));
794 #endif // HAVE_NEON && !CONFIG_EMULATE_HARDWARE
795
796 #if HAVE_SSE2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
797 INSTANTIATE_TEST_CASE_P(
798 SSE2, Trans16x16DCT,
799 ::testing::Values(make_tuple(&vpx_fdct16x16_sse2,
800 &vpx_idct16x16_256_add_sse2, 0, VPX_BITS_8)));
801 INSTANTIATE_TEST_CASE_P(
802 SSE2, Trans16x16HT,
803 ::testing::Values(make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_sse2,
804 0, VPX_BITS_8),
805 make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_sse2,
806 1, VPX_BITS_8),
807 make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_sse2,
808 2, VPX_BITS_8),
809 make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_sse2,
810 3, VPX_BITS_8)));
811 #endif // HAVE_SSE2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
812
813 #if HAVE_SSE2 && CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
814 INSTANTIATE_TEST_CASE_P(
815 SSE2, Trans16x16DCT,
816 ::testing::Values(
817 make_tuple(&vpx_highbd_fdct16x16_sse2, &idct16x16_10, 0, VPX_BITS_10),
818 make_tuple(&vpx_highbd_fdct16x16_c, &idct16x16_256_add_10_sse2, 0,
819 VPX_BITS_10),
820 make_tuple(&vpx_highbd_fdct16x16_sse2, &idct16x16_12, 0, VPX_BITS_12),
821 make_tuple(&vpx_highbd_fdct16x16_c, &idct16x16_256_add_12_sse2, 0,
822 VPX_BITS_12),
823 make_tuple(&vpx_fdct16x16_sse2, &vpx_idct16x16_256_add_c, 0,
824 VPX_BITS_8)));
825 INSTANTIATE_TEST_CASE_P(
826 SSE2, Trans16x16HT,
827 ::testing::Values(
828 make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_c, 0, VPX_BITS_8),
829 make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_c, 1, VPX_BITS_8),
830 make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_c, 2, VPX_BITS_8),
831 make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_c, 3,
832 VPX_BITS_8)));
833 // Optimizations take effect at a threshold of 3155, so we use a value close to
834 // that to test both branches.
835 INSTANTIATE_TEST_CASE_P(
836 SSE2, InvTrans16x16DCT,
837 ::testing::Values(make_tuple(&idct16x16_10_add_10_c,
838 &idct16x16_10_add_10_sse2, 3167, VPX_BITS_10),
839 make_tuple(&idct16x16_10, &idct16x16_256_add_10_sse2,
840 3167, VPX_BITS_10),
841 make_tuple(&idct16x16_10_add_12_c,
842 &idct16x16_10_add_12_sse2, 3167, VPX_BITS_12),
843 make_tuple(&idct16x16_12, &idct16x16_256_add_12_sse2,
844 3167, VPX_BITS_12)));
845 #endif // HAVE_SSE2 && CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
846
847 #if HAVE_MSA && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
848 INSTANTIATE_TEST_CASE_P(MSA, Trans16x16DCT,
849 ::testing::Values(make_tuple(&vpx_fdct16x16_msa,
850 &vpx_idct16x16_256_add_msa,
851 0, VPX_BITS_8)));
852 INSTANTIATE_TEST_CASE_P(
853 MSA, Trans16x16HT,
854 ::testing::Values(
855 make_tuple(&vp9_fht16x16_msa, &vp9_iht16x16_256_add_msa, 0, VPX_BITS_8),
856 make_tuple(&vp9_fht16x16_msa, &vp9_iht16x16_256_add_msa, 1, VPX_BITS_8),
857 make_tuple(&vp9_fht16x16_msa, &vp9_iht16x16_256_add_msa, 2, VPX_BITS_8),
858 make_tuple(&vp9_fht16x16_msa, &vp9_iht16x16_256_add_msa, 3,
859 VPX_BITS_8)));
860 #endif // HAVE_MSA && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
861
862 #if HAVE_VSX && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
863 INSTANTIATE_TEST_CASE_P(VSX, Trans16x16DCT,
864 ::testing::Values(make_tuple(&vpx_fdct16x16_c,
865 &vpx_idct16x16_256_add_vsx,
866 0, VPX_BITS_8)));
867 #endif // HAVE_VSX && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
868 } // namespace
869