1 /*
2  *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 /*
12  * This file contains the splitting filter functions.
13  *
14  */
15 
16 #include "signal_processing_library.h"
17 
18 // Number of samples in a low/high-band frame.
19 enum
20 {
21     kBandFrameLength = 160
22 };
23 
24 // QMF filter coefficients in Q16.
25 static const WebRtc_UWord16 WebRtcSpl_kAllPassFilter1[3] = {6418, 36982, 57261};
26 static const WebRtc_UWord16 WebRtcSpl_kAllPassFilter2[3] = {21333, 49062, 63010};
27 
28 ///////////////////////////////////////////////////////////////////////////////////////////////
29 // WebRtcSpl_AllPassQMF(...)
30 //
31 // Allpass filter used by the analysis and synthesis parts of the QMF filter.
32 //
33 // Input:
34 //    - in_data             : Input data sequence (Q10)
35 //    - data_length         : Length of data sequence (>2)
36 //    - filter_coefficients : Filter coefficients (length 3, Q16)
37 //
38 // Input & Output:
39 //    - filter_state        : Filter state (length 6, Q10).
40 //
41 // Output:
42 //    - out_data            : Output data sequence (Q10), length equal to
43 //                            |data_length|
44 //
45 
WebRtcSpl_AllPassQMF(WebRtc_Word32 * in_data,const WebRtc_Word16 data_length,WebRtc_Word32 * out_data,const WebRtc_UWord16 * filter_coefficients,WebRtc_Word32 * filter_state)46 void WebRtcSpl_AllPassQMF(WebRtc_Word32* in_data, const WebRtc_Word16 data_length,
47                           WebRtc_Word32* out_data, const WebRtc_UWord16* filter_coefficients,
48                           WebRtc_Word32* filter_state)
49 {
50     // The procedure is to filter the input with three first order all pass filters
51     // (cascade operations).
52     //
53     //         a_3 + q^-1    a_2 + q^-1    a_1 + q^-1
54     // y[n] =  -----------   -----------   -----------   x[n]
55     //         1 + a_3q^-1   1 + a_2q^-1   1 + a_1q^-1
56     //
57     // The input vector |filter_coefficients| includes these three filter coefficients.
58     // The filter state contains the in_data state, in_data[-1], followed by
59     // the out_data state, out_data[-1]. This is repeated for each cascade.
60     // The first cascade filter will filter the |in_data| and store the output in
61     // |out_data|. The second will the take the |out_data| as input and make an
62     // intermediate storage in |in_data|, to save memory. The third, and final, cascade
63     // filter operation takes the |in_data| (which is the output from the previous cascade
64     // filter) and store the output in |out_data|.
65     // Note that the input vector values are changed during the process.
66     WebRtc_Word16 k;
67     WebRtc_Word32 diff;
68     // First all-pass cascade; filter from in_data to out_data.
69 
70     // Let y_i[n] indicate the output of cascade filter i (with filter coefficient a_i) at
71     // vector position n. Then the final output will be y[n] = y_3[n]
72 
73     // First loop, use the states stored in memory.
74     // "diff" should be safe from wrap around since max values are 2^25
75     diff = WEBRTC_SPL_SUB_SAT_W32(in_data[0], filter_state[1]); // = (x[0] - y_1[-1])
76     // y_1[0] =  x[-1] + a_1 * (x[0] - y_1[-1])
77     out_data[0] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[0], diff, filter_state[0]);
78 
79     // For the remaining loops, use previous values.
80     for (k = 1; k < data_length; k++)
81     {
82         diff = WEBRTC_SPL_SUB_SAT_W32(in_data[k], out_data[k - 1]); // = (x[n] - y_1[n-1])
83         // y_1[n] =  x[n-1] + a_1 * (x[n] - y_1[n-1])
84         out_data[k] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[0], diff, in_data[k - 1]);
85     }
86 
87     // Update states.
88     filter_state[0] = in_data[data_length - 1]; // x[N-1], becomes x[-1] next time
89     filter_state[1] = out_data[data_length - 1]; // y_1[N-1], becomes y_1[-1] next time
90 
91     // Second all-pass cascade; filter from out_data to in_data.
92     diff = WEBRTC_SPL_SUB_SAT_W32(out_data[0], filter_state[3]); // = (y_1[0] - y_2[-1])
93     // y_2[0] =  y_1[-1] + a_2 * (y_1[0] - y_2[-1])
94     in_data[0] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[1], diff, filter_state[2]);
95     for (k = 1; k < data_length; k++)
96     {
97         diff = WEBRTC_SPL_SUB_SAT_W32(out_data[k], in_data[k - 1]); // =(y_1[n] - y_2[n-1])
98         // y_2[0] =  y_1[-1] + a_2 * (y_1[0] - y_2[-1])
99         in_data[k] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[1], diff, out_data[k-1]);
100     }
101 
102     filter_state[2] = out_data[data_length - 1]; // y_1[N-1], becomes y_1[-1] next time
103     filter_state[3] = in_data[data_length - 1]; // y_2[N-1], becomes y_2[-1] next time
104 
105     // Third all-pass cascade; filter from in_data to out_data.
106     diff = WEBRTC_SPL_SUB_SAT_W32(in_data[0], filter_state[5]); // = (y_2[0] - y[-1])
107     // y[0] =  y_2[-1] + a_3 * (y_2[0] - y[-1])
108     out_data[0] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[2], diff, filter_state[4]);
109     for (k = 1; k < data_length; k++)
110     {
111         diff = WEBRTC_SPL_SUB_SAT_W32(in_data[k], out_data[k - 1]); // = (y_2[n] - y[n-1])
112         // y[n] =  y_2[n-1] + a_3 * (y_2[n] - y[n-1])
113         out_data[k] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[2], diff, in_data[k-1]);
114     }
115     filter_state[4] = in_data[data_length - 1]; // y_2[N-1], becomes y_2[-1] next time
116     filter_state[5] = out_data[data_length - 1]; // y[N-1], becomes y[-1] next time
117 }
118 
WebRtcSpl_AnalysisQMF(const WebRtc_Word16 * in_data,WebRtc_Word16 * low_band,WebRtc_Word16 * high_band,WebRtc_Word32 * filter_state1,WebRtc_Word32 * filter_state2)119 void WebRtcSpl_AnalysisQMF(const WebRtc_Word16* in_data, WebRtc_Word16* low_band,
120                            WebRtc_Word16* high_band, WebRtc_Word32* filter_state1,
121                            WebRtc_Word32* filter_state2)
122 {
123     WebRtc_Word16 i;
124     WebRtc_Word16 k;
125     WebRtc_Word32 tmp;
126     WebRtc_Word32 half_in1[kBandFrameLength];
127     WebRtc_Word32 half_in2[kBandFrameLength];
128     WebRtc_Word32 filter1[kBandFrameLength];
129     WebRtc_Word32 filter2[kBandFrameLength];
130 
131     // Split even and odd samples. Also shift them to Q10.
132     for (i = 0, k = 0; i < kBandFrameLength; i++, k += 2)
133     {
134         half_in2[i] = WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)in_data[k], 10);
135         half_in1[i] = WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)in_data[k + 1], 10);
136     }
137 
138     // All pass filter even and odd samples, independently.
139     WebRtcSpl_AllPassQMF(half_in1, kBandFrameLength, filter1, WebRtcSpl_kAllPassFilter1,
140                          filter_state1);
141     WebRtcSpl_AllPassQMF(half_in2, kBandFrameLength, filter2, WebRtcSpl_kAllPassFilter2,
142                          filter_state2);
143 
144     // Take the sum and difference of filtered version of odd and even
145     // branches to get upper & lower band.
146     for (i = 0; i < kBandFrameLength; i++)
147     {
148         tmp = filter1[i] + filter2[i] + 1024;
149         tmp = WEBRTC_SPL_RSHIFT_W32(tmp, 11);
150         low_band[i] = WebRtcSpl_SatW32ToW16(tmp);
151 
152         tmp = filter1[i] - filter2[i] + 1024;
153         tmp = WEBRTC_SPL_RSHIFT_W32(tmp, 11);
154         high_band[i] = WebRtcSpl_SatW32ToW16(tmp);
155     }
156 }
157 
WebRtcSpl_SynthesisQMF(const WebRtc_Word16 * low_band,const WebRtc_Word16 * high_band,WebRtc_Word16 * out_data,WebRtc_Word32 * filter_state1,WebRtc_Word32 * filter_state2)158 void WebRtcSpl_SynthesisQMF(const WebRtc_Word16* low_band, const WebRtc_Word16* high_band,
159                             WebRtc_Word16* out_data, WebRtc_Word32* filter_state1,
160                             WebRtc_Word32* filter_state2)
161 {
162     WebRtc_Word32 tmp;
163     WebRtc_Word32 half_in1[kBandFrameLength];
164     WebRtc_Word32 half_in2[kBandFrameLength];
165     WebRtc_Word32 filter1[kBandFrameLength];
166     WebRtc_Word32 filter2[kBandFrameLength];
167     WebRtc_Word16 i;
168     WebRtc_Word16 k;
169 
170     // Obtain the sum and difference channels out of upper and lower-band channels.
171     // Also shift to Q10 domain.
172     for (i = 0; i < kBandFrameLength; i++)
173     {
174         tmp = (WebRtc_Word32)low_band[i] + (WebRtc_Word32)high_band[i];
175         half_in1[i] = WEBRTC_SPL_LSHIFT_W32(tmp, 10);
176         tmp = (WebRtc_Word32)low_band[i] - (WebRtc_Word32)high_band[i];
177         half_in2[i] = WEBRTC_SPL_LSHIFT_W32(tmp, 10);
178     }
179 
180     // all-pass filter the sum and difference channels
181     WebRtcSpl_AllPassQMF(half_in1, kBandFrameLength, filter1, WebRtcSpl_kAllPassFilter2,
182                          filter_state1);
183     WebRtcSpl_AllPassQMF(half_in2, kBandFrameLength, filter2, WebRtcSpl_kAllPassFilter1,
184                          filter_state2);
185 
186     // The filtered signals are even and odd samples of the output. Combine
187     // them. The signals are Q10 should shift them back to Q0 and take care of
188     // saturation.
189     for (i = 0, k = 0; i < kBandFrameLength; i++)
190     {
191         tmp = WEBRTC_SPL_RSHIFT_W32(filter2[i] + 512, 10);
192         out_data[k++] = WebRtcSpl_SatW32ToW16(tmp);
193 
194         tmp = WEBRTC_SPL_RSHIFT_W32(filter1[i] + 512, 10);
195         out_data[k++] = WebRtcSpl_SatW32ToW16(tmp);
196     }
197 
198 }
199